1
|
Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond) 2020; 134:2503-2520. [PMID: 32990313 DOI: 10.1042/cs20200308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| |
Collapse
|
2
|
De Mey JGR, Bloksgaard M, Aalkjær C. Physiological Consequences of Coronary Arteriolar Dysfunction and Its Influence on Cardiovascular Disease: Diagnostic and Additional Therapeutic Consequences. Physiology (Bethesda) 2019; 34:82-83. [PMID: 30724126 DOI: 10.1152/physiol.00053.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jo G R De Mey
- University of Southern Denmark , Odense , Denmark.,Aarhus University, Aarhus , Denmark
| | | | | |
Collapse
|
3
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Regoli D, Gobeil F. Kallikrein-kinin system as the dominant mechanism to counteract hyperactive renin-angiotensin system. Can J Physiol Pharmacol 2017; 95:1117-1124. [PMID: 28384411 DOI: 10.1139/cjpp-2016-0619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) generates, maintains, and makes worse hypertension and cardiovascular diseases (CVDs) through its biologically active component angiotensin II (Ang II), that causes vasoconstriction, sodium retention, and structural alterations of the heart and the arteries. A few endogenous vasodilators, kinins, natriuretic peptides, and possibly angiotensin (1-7), exert opposite actions and may provide useful therapeutic agents. As endothelial autacoids, the kinins are potent vasodilators, active natriuretics, and protectors of the endothelium. Indeed, the kallikrein-kinin system (KKS) is considered the dominant mechanism for counteracting the detrimental effects of the hyperactive RAS. The 2 systems, RAS and KKS, are controlled by the angiotensin-converting enzyme (ACE) that generates Ang II and inactivates the kinins. Inhibitors of ACE can reduce the impact of Ang II and potentiate the kinins, thus contributing to restore the cardiovascular homeostasis. In the last 20 years, ACE-inhibitors (ACE-Is) have become the drugs of first choice for the treatments of the major CVDs. ACE-Is not only reduce blood pressure, as sartans also do, but by protecting and potentiating the kinins, they can reduce morbidity and mortality and improve the quality of life for patients with CVDs. This paper provides a brief review of the literature on this topic.
Collapse
Affiliation(s)
- Domenico Regoli
- a Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernand Gobeil
- b Department of Pharmacology and Physiology, Université de Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf) 2017; 219:124-137. [PMID: 28009486 DOI: 10.1111/apha.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K+ channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.
Collapse
Affiliation(s)
- F. Schinzari
- Department of Internal Medicine; Catholic University; Rome Italy
| | - M. Tesauro
- Department of Internal Medicine; Tor Vergata University; Rome Italy
| | - C. Cardillo
- Department of Internal Medicine; Catholic University; Rome Italy
| |
Collapse
|
6
|
Browne DL, Meeking DR, Allard S, Munday LJ, Shaw KM, Cummings MH. Vasodilator prostanoids compensate for attenuated nitric oxide mediated vasodilation in type 1 diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514070070060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Previous research examining endothelial function and the biochemical pathways mediating vasodilation in type 1 diabetes has been conflicting. Both impaired and preserved nitric oxide (NO) mediated vasodilation have been reported whilst some authors have suggested enhanced vasodilator prostanoid (P) activity. The aim of this study was to determine the relative contributions of NO and P to endothelial function in a homogenous group of type 1 diabetic patients free of other confounding factors that may influence vascular behaviour.^f ^ Methods and results Endothelial function was assessed using forearm venous plethysmography in 16 patients with uncomplicated type 1 (duration of diabetes 16.8±2.5 years (mean±SEM), HbA1C 7.53±0.21% ) and 15 non-diabetic age and sex matched healthy control subjects. Forearm responses to the endothelium-dependent vasodilator, acetylcholine (ACh) (7.5, 15 and 30 µg/min), were recorded at baseline and after intra-arterial infusion of L-NMMA (a NO synthase inhibitor). Responses to ACh were re-examined following co-infusion of L-NMMA and indomethacin (a cyclo-oxygenase inhibitor). Responses to ACh were calculated as areas under the curve (AUC). At baseline vasodilator responses to ACh were similar (p=0.3) in diabetic and non-diabetic subjects. However, L-NMMA reduced ACh mediated responses to a lesser extent in diabetic subjects than control subjects (3±6% versus 18±3%; p<0.03 respectively). Co-infusion with indomethacin further reduced blood flow, but the relative decrease in AUC was greater in the diabetic group (28±3% vs. 14±3%; p<0.001). The contribution of biochemical pathways other than NO and P were similar in both diabetic and control groups (69±7% vs. 68±4%; p=0.45). Conclusions Vasodilator responses to ACh were unchanged in type 1 diabetes but this was reliant up on enhanced P mediated activity compensating for attenuated NO activity. Furthermore, vasoactive substances in addition to NO and P contribute significantly to vascular tone in both diabetic and non-diabetic subjects.
Collapse
Affiliation(s)
- Duncan L Browne
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK
| | - Darryl R Meeking
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK
| | - Sharon Allard
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK
| | - Linda J Munday
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK
| | - Kenneth M Shaw
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK
| | - Michael H Cummings
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY. UK,
| |
Collapse
|
7
|
Shukur A, Whitehead D, Seifalian A, Azzawi M. The influence of silica nanoparticles on small mesenteric arterial function. Nanomedicine (Lond) 2016; 11:2131-46. [DOI: 10.2217/nnm-2016-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the influence of silica nanoparticles (SiNPs) on small arterial function; both ex vivo and in vivo. Methods: Mono-dispersed dye-encapsulated SiNPs (97.85 ± 2.26 nm) were fabricated and vasoconstrictor and vasodilator responses of mesenteric arteries assessed. Results: We show that while exposure to SiNPs under static conditions, attenuated endothelial dependent dilator responses ex vivo, attenuation was only evident at lower agonist concentrations, when exposed under flow conditions or after intravenous administration in vivo. Pharmacological inhibition studies suggest that SiNPs may interfere with the endothelial dependent hyperpolarizing factor vasodilator pathway. Conclusion: The dosage dependent influence of SiNPs on arterial function will help identify strategies for their safe clinical administration.
Collapse
Affiliation(s)
- Ali Shukur
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Debra Whitehead
- School of Science & the Environment, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
8
|
Kovamees O, Shemyakin A, Eriksson M, Angelin B, Pernow J. Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. J Intern Med 2016; 279:477-84. [PMID: 26707366 DOI: 10.1111/joim.12461] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Elevated LDL cholesterol is an important risk factor for atherosclerosis. Endothelial dysfunction, an early event in the development of atherosclerosis, is characterized by a reduction in nitric oxide (NO) bioavailability. Arginase has emerged as a key regulator of endothelial function through competition with NO synthase for the common substrate l-arginine. Arginase in endothelial cells is activated by oxidized LDL. The study aim was to investigate the importance of arginase for endothelial dysfunction in patients with familial hypercholesterolaemia (FH). METHODS AND RESULTS Endothelial function was evaluated in 12 patients with heterozygous FH and 12 age-matched healthy normocholesterolaemic subjects using forearm venous occlusion plethysmography. The evaluations in FH patients occurred when they were on lipid-lowering therapy and 4 weeks after withdrawal of treatment. Endothelium-dependent vasodilatation (EDV) was assessed by intrabrachial artery infusion of serotonin, and endothelium-independent dilatation was assessed by infusion of nitroprusside before and after 120 min administration of the arginase inhibitor N (ω) -hydroxy-nor-l-arginine (nor-NOHA; 0.1 mg min(-1)). In FH patients LDL cholesterol increased from 4.3 ± 0.9 mmol L(-1) at baseline to 7.6 ± 1.9 mmol L(-1) at follow-up (P < 0.001). Arginase inhibition enhanced EDV in FH patients by a similar degree independent of lipid-lowering therapy. The improvement in EDV by arginase inhibition was significantly greater in FH patients than in the control group. CONCLUSION Arginase inhibition results in greater improvement in endothelial function in patients with FH compared to healthy controls irrespective of their cholesterol levels. Arginase may be a promising therapeutic target for improving endothelial function in patients with hypercholesterolaemia.
Collapse
Affiliation(s)
- O Kovamees
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Shemyakin
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M Eriksson
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska University Hospital, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - B Angelin
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska University Hospital, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Pernow
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Neuman RB, Hayek SS, Poole JC, Rahman A, Menon V, Kavtaradze N, Polhemus D, Veledar E, Lefer DJ, Quyyumi AA. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol. J Clin Hypertens (Greenwich) 2016; 18:223-31. [PMID: 26285691 PMCID: PMC4760906 DOI: 10.1111/jch.12649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 11/29/2022]
Abstract
Endothelial dysfunction is more prevalent in African Americans (AAs) compared with whites. The authors hypothesized that nebivolol, a selective β1 -antagonist that stimulates nitric oxide (NO), will improve endothelial function in AAs with hypertension when compared with metoprolol. In a double-blind, randomized, crossover study, 19 AA hypertensive patients were randomized to a 12-week treatment period with either nebivolol 10 mg or metoprolol succinate 100 mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-N(G) -monomethylarginine (L-NMMA) and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared with metoprolol treatment (21% vs 12% reduction in FBF, P=.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (P<.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared with metoprolol in AAs with hypertension.
Collapse
Affiliation(s)
- Robert B. Neuman
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Salim S. Hayek
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Joseph C. Poole
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Ayaz Rahman
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Vivek Menon
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Nino Kavtaradze
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - David Polhemus
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLA
| | - Emir Veledar
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - David J. Lefer
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLA
| | | |
Collapse
|
10
|
Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system. PLoS One 2015; 10:e0123602. [PMID: 25951330 PMCID: PMC4423982 DOI: 10.1371/journal.pone.0123602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR). Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF), and renin angiotensin system (RAS) modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day) for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the activation of angiotensin receptor 1 underlying pathways in mesenteric beds was shown in basal conditions in PEA-treated SHR. In conclusion, our data demonstrate the involvement of epoxyeicosatrienoic acids and renin angiotensin system in the blood pressure lowering effect of PEA.
Collapse
|
11
|
Ozkor MA, Hayek SS, Rahman AM, Murrow JR, Kavtaradze N, Lin J, Manatunga A, Quyyumi AA. Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia. Vasc Med 2015; 20:14-22. [PMID: 25648989 PMCID: PMC9135050 DOI: 10.1177/1358863x14565374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of endothelium-derived hyperpolarizing factor (EDHF) in either the healthy circulation or in those with hypercholesterolemia is unknown. In healthy and hypercholesterolemic subjects, we measured forearm blood flow (FBF) using strain-gauge plethysmography at rest, during graded handgrip exercise, and after sodium nitroprusside infusion. Measurements were repeated after l-NMMA, tetraethylammonium (TEA), and combined infusions. At rest, l-NMMA infusion reduced FBF in healthy but not hypercholesterolemic subjects. At peak exercise, vasodilation was lower in hypercholesterolemic compared to healthy subjects (274% vs 438% increase in FBF, p=0.017). TEA infusion reduced exercise-induced vasodilation in both healthy and hypercholesterolemic subjects (27%, p<0.0001 and -20%, p<0.0001, respectively). The addition of l-NMMA to TEA further reduced FBF in healthy (-14%, p=0.012) but not in hypercholesterolemic subjects, indicating a reduced nitric oxide and greater EDHF-mediated contribution to exercise-induced vasodilation in hypercholesterolemia. In conclusion, exercise-induced vasodilation is impaired and predominantly mediated by EDHF in hypercholesterolemic subjects. CLINICAL TRIAL REGISTRATION IDENTIFIER NCT00166166:
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayaz M Rahman
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan R Murrow
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nino Kavtaradze
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji Lin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amita Manatunga
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Islam MZ, Watanabe Y, Nguyen HTT, Yamazaki-Himeno E, Obi T, Shiraishi M, Miyamoto A. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. J Vet Med Sci 2014; 76:1339-45. [PMID: 24942113 PMCID: PMC4221166 DOI: 10.1292/jvms.14-0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the responsiveness of the mouse basilar artery to acetylcholine (ACh), bradykinin (BK), noradrenaline (NA), 5-hydroxytryptamine (5-HT), histamine (His) and angiotensin (Ang) II in order to characterize the related receptor subtypes in vitro. ACh and BK induced endothelium-dependent relaxation of precontracted arteries with U-46619 (a thromboxane A2 analogue). Atropine (a non-selective muscarinic receptor antagonist) and Nω-nitro-L-arginine (a NO synthase inhibitor, L-NNA) shifted the concentration-response curve for ACh to the right, whereas pirenzepine, methoctramine and pFHHSiD (muscarinic M1, M2 and M3 antagonists, respectively) had no significant effect. L-NNA and HOE140 (a B2 antagonist) shifted the concentration-response curve for BK to the right, whereas des-Arg(9)-[Leu(8)]-BK (a B1 antagonist) and indomethacin (a cyclooxygenase inhibitor) had no significant effect. NA failed to produce any vasomotor action. His and Ang II induced concentration-dependent contraction. Diphenhydramine (a H1 antagonist) shifted the concentration-response curve for His to the right, whereas cimetidine (a H2 antagonist) had no significant effect. Losartan (an AT1 antagonist) shifted the concentration-response curve for Ang II to the right, whereas PD123319 (an AT2 antagonist) had no significant effect. These results suggest that the H1 and AT1 receptor subtypes might play an important role in arterial contraction, whereas muscarinic receptor subtypes apart from M1, M2 and M3, and B2 receptors on the endothelium, might modify these contractions to relaxations.
Collapse
Affiliation(s)
- Md Zahorul Islam
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Rahman AM, Murrow JR, Ozkor MA, Kavtaradze N, Lin J, De Staercke C, Hooper WC, Manatunga A, Hayek S, Quyyumi AA. Endothelium-derived hyperpolarizing factor mediates bradykinin-stimulated tissue plasminogen activator release in humans. J Vasc Res 2014; 51:200-8. [PMID: 24925526 DOI: 10.1159/000362666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
AIMS Bradykinin (BK) stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although BK stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of BK-stimulated t-PA release in the forearm vasculature of healthy human subjects. METHODS In 33 healthy subjects (age 40.3 ± 1.9 years), forearm blood flow (FBF) and t-PA release were measured at rest and after intra-arterial infusions of BK (400 ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of tetraethylammonium chloride (TEA; 1 µmol/min), fluconazole (0.4 µmol·min(-1)·l(-1)), and N(G)-monomethyl-L-arginine (L-NMMA, 8 µmol/min) to block nitric oxide, and their combination in separate studies. RESULTS BK significantly increased net t-PA release across the forearm (p < 0.0001). Fluconazole attenuated both BK-mediated vasodilation (-23.3 ± 2.7% FBF, p < 0.0001) and t-PA release (from 50.9 ± 9.0 to 21.3 ± 8.9 ng/min/100 ml, p = 0.02). TEA attenuated FBF (-14.7 ± 3.2%, p = 0.002) and abolished BK-stimulated t-PA release (from 22.9 ± 5.7 to -0.8 ± 3.6 ng/min/100 ml, p = 0.0002). L-NMMA attenuated FBF (p < 0.0001), but did not inhibit BK-induced t-PA release (nonsignificant). CONCLUSION BK-stimulated t-PA release is partly due to cytochrome P450-derived epoxides and is inhibited by K(+)Ca channel blockade. Thus, BK stimulates both EDHF-dependent vasodilation and t-PA release.
Collapse
Affiliation(s)
- Ayaz M Rahman
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Ga., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ozkor MA, Rahman AM, Murrow JR, Kavtaradze N, Lin J, Manatunga A, Hayek S, Quyyumi AA. Differences in vascular nitric oxide and endothelium-derived hyperpolarizing factor bioavailability in blacks and whites. Arterioscler Thromb Vasc Biol 2014; 34:1320-7. [PMID: 24675657 DOI: 10.1161/atvbaha.113.303136] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abnormalities in nitric oxide (NO) bioavailability have been reported in blacks. Whether there are differences in endothelium-derived hyperpolarizing factor (EDHF) in addition to NO between blacks and whites and how these affect physiological vasodilation remain unknown. We hypothesized that the bioavailability of vascular NO and EDHF, at rest and with pharmacological and physiological vasodilation, varies between whites and blacks. APPROACH AND RESULTS In 74 white and 86 black subjects without known cardiovascular disease risk factors, forearm blood flow was measured using plethysmography at rest and during inhibition of NO with N(G)-monomethyl-L-arginine and of K(+) Ca channels (EDHF) with tetraethylammonium. The reduction in resting forearm blood flow was greater with N(G)-monomethyl-L-arginine (P=0.019) and similar with tetraethylammonium in whites compared with blacks. Vasodilation with bradykinin, acetylcholine, and sodium nitroprusside was lower in blacks compared with whites (all P<0.0001). Inhibition with N(G)-monomethyl-L-arginine was greater in whites compared with blacks with bradykinin, acetylcholine, and exercise. Inhibition with tetraethylammonium was lower in blacks with bradykinin, but greater during exercise and with acetylcholine. CONCLUSIONS The contribution to both resting and stimulus-mediated vasodilator tone of NO is greater in whites compared with blacks. EDHF partly compensates for the reduced NO release in exercise and acetylcholine-mediated vasodilation in blacks. Preserved EDHF but reduced NO bioavailability and sensitivity characterizes the vasculature in healthy blacks. CLINICAL TRIAL REGISTRATION URL http://clinicaltrials.gov/. Unique identifier: NCT00166166.
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Ayaz M Rahman
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Jonathan R Murrow
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Nino Kavtaradze
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Ji Lin
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Amita Manatunga
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Salim Hayek
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.).
| |
Collapse
|
15
|
Okamoto T, Sakamaki-Sunaga M, Min S, Miura T, Iwasaki T. Acute effect of brisk walking with graduated compression stockings on vascular endothelial function and oxidative stress. Clin Physiol Funct Imaging 2013; 33:455-62. [PMID: 23701492 DOI: 10.1111/cpf.12052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the acute effect of brisk walking with and without graduated compression stockings (GCSs) on vascular endothelial function and oxidative stress. Ten young healthy subjects walked briskly for 30 min with (GCS trial) and without (CON trial) GCSs in a randomized crossover trial. Brachial artery flow-mediated dilation (FMD) was measured as the per cent rise in the peak diameter from the baseline value at prior occlusion at each FMD measurement using B-mode ultrasonography before and 30 min after walking in the two trials. Derivatives of reactive oxygen metabolites (d-ROM), as an index of products of reactive oxygen species, and biological anti-oxidant potential (BAP), as an index of anti-oxidant potential, were also measured using a free radical elective evaluator before and 30 min after walking in both trials. FMD significantly decreased after brisk walking in both trials (P<0·05). However, FMD after brisk walking in the GCS trial was significantly higher than that in the CON trial (P<0·05). The d-ROM did not change before and after both trials, whereas the BAP significantly increased after walking in the GCS trial (P<0·05). These findings demonstrate that brisk walking while wearing GCSs suppresses the decrease in FMD and increases BAP.
Collapse
Affiliation(s)
- Takanobu Okamoto
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Paterson KJ, Zambreanu L, Bennett DLH, McMahon SB. Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis. Pain 2013; 154:782-92. [PMID: 23422725 PMCID: PMC3919168 DOI: 10.1016/j.pain.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/19/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022]
Abstract
Bradykinin (BK) is an inflammatory mediator that can evoke oedema and vasodilatation, and is a potent algogen signalling via the B1 and B2 G-protein coupled receptors. In naïve skin, BK is effective via constitutively expressed B2 receptors (B2R), while B1 receptors (B1R) are purported to be upregulated by inflammation. The aim of this investigation was to optimise BK delivery to investigate the algesic effects of BK and how these are modulated by inflammation. BK iontophoresis evoked dose- and temperature-dependent pain and neurogenic erythema, as well as thermal and mechanical hyperalgesia (P < 0.001 vs saline control). To differentiate the direct effects of BK from indirect effects mediated by histamine released from mast cells (MCs), skin was pretreated with compound 4880 to degranulate the MCs prior to BK challenge. The early phase of BK-evoked pain was reduced in degranulated skin (P < 0.001), while thermal and mechanical sensitisation, wheal, and flare were still evident. In contrast to BK, the B1R selective agonist des-Arg9-BK failed to induce pain or sensitise naïve skin. However, following skin inflammation induced by ultraviolet B irradiation, this compound produced a robust pain response. We have optimised a versatile experimental model by which BK and its analogues can be administered to human skin. We have found that there is an early phase of BK-induced pain which partly depends on the release of inflammatory mediators by MCs; however, subsequent hyperalgesia is not dependent on MC degranulation. In naïve skin, B2R signaling predominates, however, cutaneous inflammation results in enhanced B1R responses.
Collapse
Affiliation(s)
- Kathryn J Paterson
- Wolfson Centre for Age-Related Disease, King's College London, London, UK.
| | | | | | | |
Collapse
|
17
|
Ozkor MA, Quyyumi AA. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011; 2011:156146. [PMID: 21876822 PMCID: PMC3157651 DOI: 10.4061/2011/156146] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 01/20/2023] Open
Abstract
Endothelial function refers to a multitude of physiological processes that maintain healthy homeostasis of the vascular wall. Exposure of the endothelium to cardiac risk factors results in endothelial dysfunction and is associated with an alteration in the balance of vasoactive substances produced by endothelial cells. These include a reduction in nitric oxide (NO), an increase in generation of potential vasoconstrictor substances and a potential compensatory increase in other mediators of vasodilation. The latter has been surmised from data demonstrating persistent endothelium-dependent vasodilatation despite complete inhibition of NO and prostaglandins. This remaining non-NO, non-prostaglandin mediated endothelium-dependent vasodilator response has been attributed to endothelium-derived hyperpolarizing factor/s (EDHF). Endothelial hyperpolarization is likely due to several factors that appear to be site and species specific. Experimental studies suggest that the contribution of the EDHFs increase as the vessel size decreases, with a predominance of EDHF activity in the resistance vessels, and a compensatory up-regulation of hyperpolarization in states characterized by reduced NO availability. Since endothelial dysfunction is a precursor for atherosclerosis development and its magnitude is a reflection of future risk, then the mechanisms underlying endothelial dysfunction need to be fully understood, so that adequate therapeutic interventions can be designed.
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- The Heart Hospital, University College London, London WIG 8PH, UK
| | | |
Collapse
|
18
|
Ozkor MA, Murrow JR, Rahman AM, Kavtaradze N, Lin J, Manatunga A, Quyyumi AA. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation 2011; 123:2244-53. [PMID: 21555712 DOI: 10.1161/circulationaha.110.990317] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND We assessed the contribution of endothelium-derived hyperpolarizing factors to resting and agonist-stimulated vasodilator tone in health and disease. Tetraethylammonium chloride (TEA) was used to inhibit K(+)(Ca) channel activation and fluconazole was used to inhibit cytochrome P450 2C9-mediated epoxyeicosatrienoic acid synthesis. We hypothesized that endothelium-derived hyperpolarizing factors contribute to resting vascular tone by K(+)(Ca) channel activation and epoxyeicosatrienoic acid release and that endothelium-derived hyperpolarizing factors compensate for reduced nitric oxide bioavailability at rest and with endothelium-dependent vasodilators. METHODS AND RESULTS In 103 healthy subjects and 71 nonhypertensive subjects with multiple risk factors, we measured resting forearm blood flow (FBF) using venous occlusion plethysmography before and after intra-arterial infusions of N(G)-monomethyl-l-arginine (L-NMMA), TEA, fluconazole, and their combination. The effects of these antagonists on resting FBF and on bradykinin- and acetylcholine-mediated vasodilation were studied. Resting FBF decreased with TEA and L-NMMA in all subjects (P<0.001); however, the vasoconstrictor response to L-NMMA was greater (P=0.04) and to TEA was lower (P=0.04) in healthy subjects compared with those with risk factors. Fluconazole decreased resting FBF in all subjects, and the addition of TEA further reduced FBF after fluconazole, suggesting that cytochrome P450 metabolites and other hyperpolarizing factor(s) activate K(+)(Ca) channels. Both L-NMMA and TEA attenuated bradykinin-mediated vasodilation in healthy and hypercholesterolemic subjects (P<0.001). In contrast, acetylcholine-mediated vasodilation remained unchanged with TEA in healthy subjects but was significantly attenuated in hypercholesterolemia (P<0.04). CONCLUSIONS First, by activating TEA-inhibitable K(+)(Ca) channels, endothelium-derived hyperpolarizing factors, together with nitric oxide, contribute to resting microvascular dilator tone. The contribution of K(+)(Ca) channel activation compared with nitric oxide is greater in those with multiple risk factors compared with healthy subjects. Second, activation of K(+)(Ca) channels is only partly through epoxyeicosatrienoic acid release, indicating the presence of other hyperpolarizing mechanisms. Third, bradykinin, but not acetylcholine, stimulates K(+)(Ca) channel-mediated vasodilation in healthy subjects, whereas in hypercholesterolemia, K(+)(Ca) channel-mediated vasodilation compensates for the reduced nitric oxide activity. Thus, enhanced endothelium-derived hyperpolarizing factor activity in conditions of nitric oxide deficiency contributes to maintenance of resting and agonist-stimulated vasodilation. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00166166.
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 2010; 459:881-95. [PMID: 20224870 DOI: 10.1007/s00424-010-0804-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 12/28/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are produced by the vascular endothelium in response to agonists such as bradykinin and acetylcholine or physical stimuli such as shear stress or cyclic stretch. In the vasculature, the EETs have biological actions that are involved in the regulation of vascular tone, hemostasis, and inflammation. In preconstricted arteries in vitro, EETs activate calcium-activated potassium channels on vascular smooth muscle and the endothelium causing membrane hyperpolarization and relaxation. These effects are observed in a variety of arteries from experimental animals and humans; however, this is not a universal finding in all arteries. The mechanism of EET action may vary. In some arteries, EETs are released from the endothelium and are transferred to the smooth muscle where they cause potassium channel activation, hyperpolarization, and relaxation through a guanine nucleotide binding protein-coupled mechanism or transient receptor potential (TRP) channel activation. In other arteries, EETs activate TRP channels on the endothelium to cause endothelial hyperpolarization that is transferred to the smooth muscle by gap junctions or potassium ion. Some arteries use a combination of mechanisms. Acetylcholine and bradykinin increase blood flow in dogs and humans that is inhibited by potassium channel blockers and cytochrome P450 inhibitors. Thus, the EETs are endothelium-derived hyperpolarizing factors mediating a portion of the relaxations to acetylcholine, bradykinin, shear stress, and cyclic stretch and regulate vascular tone in vitro and in vivo.
Collapse
Affiliation(s)
- William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
20
|
Pfister SL, Gauthier KM, Campbell WB. Vascular pharmacology of epoxyeicosatrienoic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:27-59. [PMID: 21081214 PMCID: PMC3373307 DOI: 10.1016/b978-0-12-385061-4.00002-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are produced by the vascular endothelium in responses to various stimuli such as the agonists acetylcholine (ACH) or bradykinin or by shear stress which activates phospholipase A(2) to release arachidonic acid. EETs are important regulators of vascular tone and homeostasis. In the modulation of vascular tone, EETs function as endothelium-derived hyperpolarizing factors (EDHFs). In models of vascular inflammation, EETs attenuate inflammatory signaling pathways in both the endothelium and vascular smooth muscle. Likewise, EETs regulate blood vessel formation or angiogenesis by mechanisms that are still not completely understood. Soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids (DHETs) and this metabolism limits many of the biological actions of EETs. The recent development of inhibitors of sEH provides an emerging target for pharmacological manipulation of EETs. Additionally, EETs may initiate their biological effects by interacting with a cell surface protein that is a G protein-coupled receptor (GPCR). Since GPCRs represent a common target of most drugs, further characterization of the EET receptor and synthesis of specific EET agonists and antagonist can be used to exploit many of the beneficial effects of EETs in vascular diseases, such as hypertension and atherosclerosis. This review will focus on the current understanding of the contribution of EETs to the regulation of vascular tone, inflammation, and angiogenesis. Furthermore, the therapeutic potential of targeting the EET pathway in vascular disease will be highlighted.
Collapse
Affiliation(s)
- Sandra L. Pfister
- Department of Pharmacology and Toxicology Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, Wisconsin 53226, USA
| | - Kathryn M. Gauthier
- Department of Pharmacology and Toxicology Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, Wisconsin 53226, USA
| | - William B. Campbell
- Department of Pharmacology and Toxicology Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
21
|
Kojima N, Saito M, Mori A, Sakamoto K, Nakahara T, Ishii K. Role of cyclooxygenase in vasodilation of retinal blood vessels induced by bradykinin in Brown Norway rats. Vascul Pharmacol 2009; 51:119-24. [DOI: 10.1016/j.vph.2009.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 01/22/2023]
|
22
|
Olson TP, Frantz RP, Turner ST, Bailey KR, Wood CM, Johnson BD. Gene Variant of the Bradykinin B2 Receptor Influences Pulmonary Arterial Pressures in Heart Failure Patients. CLINICAL MEDICINE. CIRCULATORY, RESPIRATORY AND PULMONARY MEDICINE 2009. [DOI: 10.4137/ccrpm.s2147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Pulmonary arterial pressure (PAP) varies considerably in heart failure (HF) despite similar degrees of left ventricular (LV) dysfunction. Bradykinin alters vascular tone and common variations in the kinin B2 receptor (BDKRB2) gene exists. We hypothesized that genetic variation in this receptor would influence PAP in HF. Methods 131 HF patients (>1yr history systolic HF), without COPD, not currently smoking, BMI < 40, without atrial fibrillation completed the study which included a blood draw for genotyping and neurohormones (ACE, A-II, Bradykinin, ANP, BNP, and catecholamines), an echocardiogram for cardiac function and systolic PAP (PAPsys). Results Mean LVEF was 29% ∓ 12%, NYHA class 2 ∓ 1, age 56 ∓ 12 yr, BMI 28 ∓ 5 kg/m2. Forty-six patients (35%) were homozygous for the +9 allele, 58 (44%) were heterozygous (+9/-9) and 27 (21%) were homozygous for the -9 allele of the BDKRB2. PAPsys averaged 42 ∓ 13, 38 ∓ 12, and 35 ∓ 11 mmHg for +9/+9, +9/-9 and -9/-9, respectively (p = 0.03). There was a trend towards gene effect for plasma ACE with the highest values in +9/+9 and lowest in -9/-9 patients (9.5 ∓ 10.7, 7.1 ∓ 8.7, and 5.4 ∓ 6.4 U/L, respectively, p = 0.06). There were no differences in plasma bradykinin or A-II, LVEF, or NYHA across genotypes. Conclusion These data suggest the +9/+9 polymorphism of the BDKRB2 receptor influences pulmonary vascular tone in stable HF.
Collapse
|
23
|
The vascular effects of rotigaptide in vivo in man. Biochem Pharmacol 2008; 76:1194-200. [DOI: 10.1016/j.bcp.2008.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022]
|
24
|
Dietze GJ, Henriksen EJ. Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis. J Renin Angiotensin Aldosterone Syst 2008; 9:75-88. [PMID: 18584583 DOI: 10.3317/jraas.2008.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recent evidence suggests a coordinated regulation by the local renin-angiotensin system (RAS) and tissue kallikrein-kinin system (TKKS) of blood flow and substrate supply in oxidative red myofibres of skeletal muscle tissue during endurance exercise. The performance of these myofibres is dependent on the increased oxidation of substrates facilitated by augmenting nutritive blood flow and glucose uptake. Humoral factors released by the contracting fibres, such as adenosine and kinins, are suggested to be responsible for this metabolic adjustment. The considerable drain of blood volume and the enormous consumption of glucose during endurance exercise require a control mechanism for the maintenance of blood pressure (BP) and glucose homeostasis. This is achieved by the sympathetic nervous system and its subordinate RAS, which is located in the nutritive vessels and parenchyma of the red myofibres. The angiotensin-converting enzyme (ACE) is the primary enzyme responsible for kinin degradation during exercise, underscoring the important interrelationship between the RAS and the TKKS in the critical role of kinins in the multifactorial regulation of muscle bioenergetics and glucose and BP homeostasis. Importantly, overactivity of the ACE, as occurs in individuals displaying risk factors such as overweight, causes exaggerated BP response and reduced glucose disposal. If they persist over years, compensatory responses to this ACE overactivity, such as hypersecretion of insulin and compliance of the vessel walls, will inevitably be exhausted, leading ultimately to the manifestation of type 2 diabetes and hypertension. This concept also provides a unifying explanation for the beneficial effects of ACE-inhibitors and Angiotensin II receptor antagonists in the treatment of hypertension and insulin resistance.
Collapse
Affiliation(s)
- Guenther J Dietze
- Hypertension and Diabetes Research Unit, Max Grundig Clinic, Buehl, Germany
| | | |
Collapse
|
25
|
Bellien J, Thuillez C, Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol 2008; 22:363-77. [DOI: 10.1111/j.1472-8206.2008.00610.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Gudmundsdóttir IJ, Lang NN, Boon NA, Ludlam CA, Webb DJ, Fox KA, Newby DE. Role of the endothelium in the vascular effects of the thrombin receptor (protease-activated receptor type 1) in humans. J Am Coll Cardiol 2008; 51:1749-56. [PMID: 18452780 DOI: 10.1016/j.jacc.2007.12.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/21/2007] [Accepted: 12/17/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the role of the endothelium in the vascular actions of protease-activated receptor type 1 (PAR-1) activation in vivo in man. BACKGROUND Thrombin is central to the pathophysiology of atherothrombosis. Its cellular actions are mediated via PAR-1. Protease-activated receptor type 1 activation causes arterial vasodilation, venoconstriction, platelet activation, and tissue-type plasminogen activator release in man. METHODS Dorsal hand vein diameter was measured in 6 healthy volunteers before and after endothelial denudation. Forearm arterial blood flow, plasma fibrinolytic factors, and platelet activation were measured in 24 healthy volunteers during venous occlusion plethysmography. The effects of inhibition of prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor on PAR-1 responses were assessed during coadministration of aspirin, the "NO clamp" (L-N(G)-monomethyl arginine and sodium nitroprusside), and tetraethylammonium ion, respectively. RESULTS Endothelial denudation did not affect PAR-1-evoked venoconstriction (SFLLRN; 0.05 to 15 nmol/min). Although aspirin had no effect, SFLLRN-induced vasodilation (5 to 50 nmol/min) was attenuated by the NO clamp (p < 0.0001) and tetraethylammonium ion (p < 0.05) and abolished by their combination (p < 0.01). The NO clamp augmented SFLLRN-induced tissue-type plasminogen activator and plasminogen activator inhibitor type 1 antigen (p < 0.0001) release, but tetraethylammonium ion and aspirin had no effect. SFLLRN-induced platelet activation was unaffected by NO or prostacyclin inhibition. CONCLUSIONS Acting via PAR-1, thrombin causes contrasting effects in the human vasculature and has a major interaction with the endothelium. This highlights the critical importance of endothelial function during acute arterial injury and intravascular thrombosis, as occurs in cardiovascular events including myocardial infarction and stroke.
Collapse
|
27
|
Lenasi H, Strucl M. The effect of nitric oxide synthase and cyclooxygenase inhibition on cutaneous microvascular reactivity. Eur J Appl Physiol 2008; 103:719-26. [PMID: 18516617 DOI: 10.1007/s00421-008-0769-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
The role of nitric oxide (NO)- and prostacyclin (PGI(2))-independent mechanism, potentially attributable to endothelium-derived hyperpolarizing factor (EDHF), has not been extensively studied in human skin microcirculation. The aim of our study was to elucidate the contribution of the NO- and PGI(2)-independent mechanism to microvascular reactivity of cutaneous microcirculation. Skin perfusion was measured on the volar aspect of the forearm in 12 healthy male subjects (mean age 25.0 +/- 1.5), using laser Doppler (LD) fluxmetry. Combined endothelial nitric oxide synthase (eNOS) and cyclooxygenase (COX) inhibition was achieved by an intradermal injection (10 microl) of the eNOS inhibitor, L(omega)-monomethyl L-arginine (L-NMMA, 10 mM) and the COX inhibitor, diclofenac (10 mM); saline was injected as a control. LD flux was assessed at rest and after an iontophoretical application of acetylcholine (ACh, 1%), an endothelial agonist and sodium nitroprusside (SNP, 1%), an endothelium-independent agonist, respectively. Combined eNOS and COX inhibition had no effect on the baseline LDF (12.5 +/- 2.3 PU (perfusion units) in control vs. 10.9 +/- 1.8 PU in the treated site). On the other hand, the ACh-stimulated increase in LDF was significantly attenuated after eNOS and COX inhibition (390.5 +/- 43.5%), compared to the control (643.7 +/- 80.3% increase, t-test, P < 0.05). Nevertheless, at least 60% of ACh-mediated vasodilatation was preserved after combined eNOS and COX inhibition. eNOS and COX inhibition had no impact on the SNP-stimulated increase in LDF (768.8 +/- 70.5% in control vs. 733.5 +/- 54.6% in the treated site). These findings indicate that NO- and PGI(2)-independent mechanism plays an important role in the regulation of blood flow in the human skin microcirculation.
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, School of Medicine, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia.
| | | |
Collapse
|
28
|
Moraes MR, Bacurau RFP, Ramalho JDS, Reis FCG, Casarini DE, Chagas JR, Oliveira V, Higa EMS, Abdalla DSP, Pesquero JL, Pesquero JB, Araujo RC. Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers. Biol Chem 2007; 388:533-40. [PMID: 17516849 DOI: 10.1515/bc.2007.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Post-exercise hypotension is an important event for blood pressure regulation, especially in hypertensive individuals. Although post-exercise hypotension is a well-known phenomenon, the mechanism responsible is still unclear. The kallikrein-kinin system is involved in blood pressure control, but its role in post-exercise hypotension has not yet been investigated. Thus, the purpose of this study was to investigate the involvement of the vasodilators bradykinin and des-Arg(9)-BK and kallikrein activity in post-exercise hypotension promoted by 35 min of cycle ergometer (CE) or circuit weight-training (CWT) bouts in normotensive and hypertensive individuals. A significant decrease in mean arterial pressure at 45 and 60 min after CE and 45 min after CWT was observed in normotensive individuals. Hypertensive values of mean arterial pressure were significantly reduced at 45 and 60 min after CE and at 60 min after CWT. Before exercise, plasma bradykinin concentrations and kallikrein activity were higher in hypertensive compared to normotensive volunteers. Kinin levels increased in the groups evaluated at the end of the training period and 60 min post-exercise. These data suggest that the kallikrein-kinin system may be involved in post-exercise hypotension in normotensive and hypertensive individuals subjected to CE and CWT bouts.
Collapse
Affiliation(s)
- Milton R Moraes
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Törnqvist H, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, Macnee W, Donaldson K, Söderberg S, Newby DE, Sandström T, Blomberg A. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med 2007; 176:395-400. [PMID: 17446340 DOI: 10.1164/rccm.200606-872oc] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to combustion-derived air pollution is associated with an early (1-2 h) and sustained (24 h) rise in cardiovascular morbidity and mortality. We have previously demonstrated that inhalation of diesel exhaust causes an immediate (within 2 h) impairment of vascular and endothelial function in humans. OBJECTIVES To investigate the vascular and systemic effects of diesel exhaust in humans 24 hours after inhalation. METHODS Fifteen healthy men were exposed to diesel exhaust (particulate concentration, 300 microg/m(3)) or filtered air for 1 hour in a double-blind, randomized, crossover study. Twenty-four hours after exposure, bilateral forearm blood flow, and inflammatory and fibrinolytic markers were measured before and during unilateral intrabrachial bradykinin (100-1,000 pmol/min), acetylcholine (5-20 microg/min), sodium nitroprusside (2-8 microg/min), and verapamil (10-100 microg/min) infusions. MEASUREMENTS AND MAIN RESULTS Resting forearm blood flow, blood pressure, and basal fibrinolytic markers were similar 24 hours after either exposure. Diesel exhaust increased plasma cytokine concentrations (tumor necrosis factor-alpha and interleukin-6, p < 0.05 for both) but appeared to reduce acetylcholine (p = 0.01), and bradykinin (p = 0.08) induced forearm vasodilatation. In contrast, there were no differences in either endothelium-independent (sodium nitroprusside and verapamil) vasodilatation or bradykinin-induced acute plasma tissue plasminogen activator release. CONCLUSIONS Twenty-four hours after diesel exposure, there is a selective and persistent impairment of endothelium-dependent vasodilatation that occurs in the presence of mild systemic inflammation. These findings suggest that combustion-derived air pollution may have important systemic and adverse vascular effects for at least 24 hours after exposure.
Collapse
Affiliation(s)
- Håkan Törnqvist
- Department of Respiratory Medicine and Allergy, Umeå University Hospital, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tirapelli CR, Bonaventura D, de Oliveira AM. Functional characterization of the mechanisms underlying bradykinin-induced relaxation in the isolated rat carotid artery. Life Sci 2007; 80:1799-805. [PMID: 17367816 DOI: 10.1016/j.lfs.2007.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
This work aimed to functionally characterize the mechanisms underlying the relaxation induced by bradykinin (BK) in the rat carotid artery. Vascular reactivity experiments, using standard muscle bath procedures, showed that BK (0.1 nmol/L-3 mumol/L) induced relaxation of phenylephrine-pre-contracted rings in a concentration-dependent manner. Endothelial removal strongly attenuated BK-induced relaxation. HOE-140, the selective antagonist of bradykinin B(2) receptors concentration-dependently reduced the relaxation induced by BK. Pre-incubation of endothelium-intact rings with L-NAME (100 micromol/L), a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (100 micromol/L), a selective inhibitor of the eNOS or 7-nitroindazole (100 micromol/L), the selective inhibitor of nNOS, reduced BK-induced relaxation. Conversely, 1400 W (10 nmol/L), a selective inhibitor of iNOS, did not alter the relaxation induced by BK. Surprisingly, indomethacin (10 micromol/L) a non-selective inhibitor of cyclooxygenase (COX) increased BK-induced relaxation in endothelium-intact but not denuded rings. Neither SQ29548 (3 micromol/L), a competitive antagonist of PGH(2)/TXA(2) receptors nor AH6809 (10 micromol/L), an antagonist of PGF(2alpha) receptors significantly altered the relaxation induced by BK in endothelium-intact rings. The combination of SQ29548 and AH6809 increased BK-induced relaxation. The present study shows that the vasorelaxant action displayed by BK in the rat carotid is mediated by endothelial B(2) receptors and the activation of the NO pathway. The major finding of this work is that it demonstrated functionally that endothelial-derived vasoconstrictor prostanoids (probably PGH(2), TXA(2) and PGF(2alpha)) counteract the vasorelaxant action displayed by BK.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), SP, Brazil
| | | | | |
Collapse
|
31
|
Mortensen SP, González-Alonso J, Damsgaard R, Saltin B, Hellsten Y. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. J Physiol 2007; 581:853-61. [PMID: 17347273 PMCID: PMC2075180 DOI: 10.1113/jphysiol.2006.127423] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prostaglandins, nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs) are substances that have been proposed to be involved in the regulation of skeletal muscle blood flow during physical activity. We measured haemodynamics, plasma ATP at rest and during one-legged knee-extensor exercise (19 +/- 1 W) in nine healthy subjects with and without intra-arterial infusion of indomethacin (Indo; 621 +/- 17 microg min(-1)), Indo + N(G)-monomethyl-L-arginine (L-NMMA; 12.4 +/- 0.3 mg min(-1)) (double blockade) and Indo + L-NMMA + tetraethylammonium chloride (TEA; 12.4 +/- 0.3 mg min(-1)) (triple blockade). Double and triple blockade lowered leg blood flow (LBF) at rest (P<0.05), while it remained unchanged with Indo. During exercise, LBF and vascular conductance were 2.54 +/- 0.10 l min(-1) and 25 +/- 1 mmHg, respectively, in control and they were lower with double (33 +/- 3 and 36 +/- 4%, respectively) and triple (26 +/- 4 and 28 +/- 3%, respectively) blockade (P<0.05), while there was no difference with Indo. The lower LBF and vascular conductance with double and triple blockade occurred in parallel with a lower O(2) delivery, cardiac output, heart rate and plasma [noradrenaline] (P<0.05), while blood pressure remained unchanged and O(2) extraction and femoral venous plasma [ATP] increased. Despite the increased O(2) extraction, leg was 13 and 17% (triple and double blockade, respectively) lower than control in parallel to a lower femoral venous temperature and lactate release (P<0.05). These results suggest that NO and prostaglandins play important roles in skeletal muscle blood flow regulation during moderate intensity exercise and that EDHFs do not compensate for the impaired formation of NO and prostaglandins. Moreover, inhibition of NO and prostaglandin formation is associated with a lower aerobic energy turnover and increased concentration of vasoactive ATP in plasma.
Collapse
Affiliation(s)
- Stefan P Mortensen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Endothelium-dependent relaxations are attributed to the release of various factors, such as nitric oxide, carbon monoxide, reactive oxygen species, adenosine, peptides and arachidonic acid metabolites derived from the cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases pathways. The hyperpolarization of the smooth muscle cell can contribute to or be an integral part of the mechanisms underlying the relaxations elicited by virtually all these endothelial mediators. These endothelium-derived factors can activate different families of K(+) channels of the vascular smooth muscle. Other events associated with the hyperpolarization of both the endothelial and the vascular smooth muscle cells (endothelium-derived hyperpolarizing factor (EDHF)-mediated responses) contribute also to endothelium-dependent relaxations. These responses involve an increase in the intracellular Ca(2+) concentration of the endothelial cells followed by the opening of Ca(2+)-activated K(+) channels of small and intermediate conductance and the subsequent hyperpolarization of these cells. Then, the endothelium-dependent hyperpolarization of the underlying smooth muscle cells can be evoked by direct electrical coupling through myoendothelial junctions and/or the accumulation of K(+) ions in the intercellular space between the two cell types. These various mechanisms are not necessarily mutually exclusive and, depending on the vascular bed and the experimental conditions, can occur simultaneously or sequentially, or also may act synergistically.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|
33
|
Kalliokoski KK, Langberg H, Ryberg AK, Scheede-Bergdahl C, Doessing S, Kjaer A, Kjaer M, Boushel R. Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol 2006; 291:R803-9. [PMID: 16556903 DOI: 10.1152/ajpregu.00808.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-d-[18F]glucose without and with local blockade of NO and PG at rest and during one-legged dynamic knee-extension exercise. Local blockade was produced by infusing nitro-l-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1 and 4 cm away from the infusion of blockers. Local blockade during exercise at 25 and 40 watts significantly decreased blood flow in the infusion region and in the region 1 cm away from the site of infusion but not in the region 4 cm away. During exercise, muscle glucose uptake did not show any regional differences in response to blockade. These results show that NO and PG synergistically contribute to the local regulation of blood flow in skeletal muscle independently of muscle glucose uptake in healthy young men. Thus these vasodilators can play a role in regulating microvascular blood flow in localized regions of vastus lateralis muscle but do not influence regional glucose uptake. The findings suggest that local substrate uptake in skeletal muscle can be regulated independently of regional changes in blood flow.
Collapse
|
34
|
Duka A, Duka I, Gao G, Shenouda S, Gavras I, Gavras H. Role of bradykinin B1 and B2 receptors in normal blood pressure regulation. Am J Physiol Endocrinol Metab 2006; 291:E268-74. [PMID: 16507603 DOI: 10.1152/ajpendo.00382.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With inhibition or absence of the bradykinin B2 receptor (B2R), B1R is upregulated and assumes some of the hemodynamic properties of B2R, indicating that both participate in the maintenance of normal vasoregulation or to development of hypertension. Herein we further evaluate the role of bradykinin in normal blood pressure (BP) regulation and its relationship with other vasoactive factors by selectively blocking its receptors. Six groups of Wistar rats were treated for 3 wk: one control group with vehicle alone, one with concurrent administration of B1R antagonist R-954 (70 microg x kg(-1) x day(-1)) and B2R antagonist HOE-140 (500 microg x kg(-1) x day(-1)), one with R-954 alone, one with HOE 140 alone, one with concurrent administration of both R-954 and HOE-140 plus the angiotensin antagonist losartan (5 mg x kg(-1) x day(-1)), and one with only losartan. BP was measured continuously by radiotelemetry. Only combined administration of B1R and B2R antagonists produced a significant BP increase from a baseline of 107-119 mmHg at end point, which could be partly prevented by losartan and was not associated with change in catecholamines, suggesting no involvement of the sympathoadrenal system. The impact of blockade of bradykinin on other vasoregulating systems was assessed by evaluating gene expression of different vasoactive factors. There was upregulation of the eNOS, AT1 receptor, PGE2 receptor, and tissue kallikrein genes in cardiac and renal tissues, more pronounced when both bradykinin receptors were blocked; significant downregulation of AT2 receptor gene in renal tissues only; and no consistent changes in B1R and B2R genes in either tissue. The results indicate that both B1R and B2R contribute to the maintenance of normal BP, but one can compensate for inhibition of the other, and the chronic inhibition of both leads to significant upregulation in the genes of related vasoactive systems.
Collapse
Affiliation(s)
- Arvi Duka
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Bioregulators are naturally occurring organic compounds that regulate a multitude of biologic processes. Under natural circumstances, bioregulators are synthesized in minute quantities in a variety of living organisms and are essential for physiologic homeostasis. In the wrong hands, these compounds have the capability to be used as nontraditional threat agents that are covered by the prohibitions of the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. Unlike traditional biowarfare/bioterrorism agents that have a latency period of hours to days,the onset of action of bioregulators may occur within minutes after host exposure. Concerns regarding the potential misuse of bioregulators for nefarious purposes relate to the ability of these nontraditional agents to induce profound physiologic effects.
Collapse
Affiliation(s)
- Elliott Kagan
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
36
|
Robinson SD, Dawson P, Ludlam CA, Boon NA, Newby DE. Vascular and fibrinolytic effects of intra-arterial tumour necrosis factor-alpha in patients with coronary heart disease. Clin Sci (Lond) 2006; 110:353-60. [PMID: 16309383 DOI: 10.1042/cs20050268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elevated plasma t-PA (tissue plasminogen activator) and serum CRP (C-reactive protein) concentrations are associated with an adverse cardiovascular risk. In the present study, we investigated whether acute local inflammation causes vascular dysfunction and influences t-PA release in patients with stable coronary heart disease. Serum CRP, plasma t-PA and PAI-1 (plasminogen activator inhibitor type 1) concentrations were determined in 95 patients with stable coronary heart disease. A representative subpopulation of 12 male patients received an intra-brachial infusion of TNF-alpha (tumour necrosis factor-alpha) and saline placebo using a randomized double-blind cross-over study design. Forearm blood flow and plasma fibrinolytic and inflammatory variables were measured. Serum CRP concentrations correlated with plasma t-PA concentrations (r=0.37, P<0.001) and t-PA/PAI-1 ratio (r=-0.21, P<0.05). Intra-arterial TNF-alpha caused a rise in t-PA concentrations (P<0.001) without affecting blood flow or PAI-1 concentrations. TNF-alpha pretreatment impaired acetylcholine- and sodium nitroprusside-induced vasodilatation (P<0.001 for both) whilst doubling bradykinin-induced t-PA release (P=0.006). In patients with stable coronary heart disease, plasma fibrinolytic factors correlate with a systemic inflammatory marker and local vascular inflammation directly impairs vasomotor function whilst enhancing endothelial t-PA release. We suggest that the adverse prognosis associated with elevated plasma t-PA concentrations relates to the underlying causative association with vascular inflammation and injury.
Collapse
Affiliation(s)
- Simon D Robinson
- Centre for Cardiovascular Sciences, University of Edinburgh, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K.
| | | | | | | | | |
Collapse
|
37
|
Helmy A, Ferguson JW, Hayes PC, Newby DE, Webb DJ. Bradykinin Does Not Contribute to Peripheral Vascular Tone in Patients With Cirrhosis and Ascites. J Cardiovasc Pharmacol 2006; 47:556-60. [PMID: 16680069 DOI: 10.1097/01.fjc.0000211727.23304.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bradykinin is an endothelium-dependent vasodilator and inflammatory mediator. The aim of the present study was to examine the effects of bradykinin on peripheral vascular tone in patients with cirrhosis and ascites. Forearm blood flow was measured using venous occlusion plethysmography in 8 patients with biopsy-proven alcohol-induced cirrhosis, ascites, and portal hypertension, and 8 age- and sex-matched healthy controls. On 1 occasion, subjects received an intrabrachial infusion of the selective bradykinin antagonist B9340 (1.5-13.5 nmol/min) followed by a control vasoconstrictor norepinephrine (60-540 pmol/min), and on another occasion bradykinin (100-900 pmol/min) followed by the endothelium-independent vasodilator, sodium nitroprusside (SNP, 2-8 microg/min). Bradykinin and SNP caused a dose-dependent vasodilatation (P < 0.001 for both) that did not differ between the 2 groups. Although norepinephrine caused a similar dose-dependent vasoconstriction in both groups (P < 0.001), B9340 had no effect on forearm blood flow in either group (at 13.5 nmol/min in patients; -5%, 95% CI -13-3). Bradykinin does not provide a major contribution to the maintenance of peripheral vascular tone in patients with cirrhosis and ascites. Our findings also suggest that, in contrast to cardiovascular disease, patients with liver cirrhosis do not have marked endothelial dysfunction.
Collapse
Affiliation(s)
- Ahmed Helmy
- Department of Hepatology, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
38
|
Bellien J, Joannides R, Iacob M, Arnaud P, Thuillez C. Evidence for a basal release of a cytochrome-related endothelium-derived hyperpolarizing factor in the radial artery in humans. Am J Physiol Heart Circ Physiol 2006; 290:H1347-52. [PMID: 16339823 DOI: 10.1152/ajpheart.01079.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Whether a cytochrome P-450 (CYP)-related endothelium-derived hyperpolarizing factor (EDHF), acting through calcium-activated potassium (KCa) channels, interacts with nitric oxide (NO) to regulate the basal diameter of human peripheral conduit arteries is unexplored in vivo. Radial artery diameter (echo tracking) and blood flow (Doppler) were measured, after oral aspirin (500 mg), in eight healthy volunteers during local infusion for 8 min of tetraethylammonium chloride (TEA; 9 μmol/min), as KCachannel inhibitor, and fluconazole (0.4 μmol/min), as CYP inhibitor, alone and in combination with NG-monomethyl-l-arginine (l-NMMA; 8 μmol/min), as endothelial NO synthase inhibitor. Endothelium-independent dilatation was assessed by using sodium nitroprusside (SNP). Radial diameter was unaffected by l-NMMA (0.4 ± 0.9%) and fluconazole (−1.6 ± 0.8%) but was decreased by TEA (−5.0 ± 1.0%), l-NMMA + fluconazole (−5.3 ± 0.5%), and l-NMMA + TEA (−9.9 ± 1.3%). These effects are still significant even when the concomitant decreases in blood flow induced by l-NMMA (−24 ± 4%), TEA (−21 ± 3%), l-NMMA + fluconazole (−26 ± 5%), and l-NMMA + TEA (−35 ± 4%) were taken as covariate into analysis. Conversely, fluconazole alone slightly but not significantly increased radial flow (13 ± 6%). l-NMMA alone or with TEA and with fluconazole enhanced radial artery dilatation to SNP, whereas TEA and fluconazole alone did not modify this response. These results confirm in humans the involvement of NO and KCachannels in the regulation of basal conduit artery diameter. Moreover, the synergistic effect of combined inhibition of NO synthesis and CYP on the decrease in radial diameter in the absence of such effect after l-NMMA and fluconazole alone unmasks the role of CYP in this regulation and shows the presence of an interaction between NO and a CYP-related EDHF to maintain peripheral conduit artery diameter in vivo. Furthermore, the higher vasoconstrictor effect of TEA compared with fluconazole suggests that different KCachannel-dependent hyperpolarizing mechanisms could exist in conduit arteries.
Collapse
Affiliation(s)
- Jeremy Bellien
- Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644, Rouen University Hospital, France
| | | | | | | | | |
Collapse
|
39
|
Wotherspoon F, Browne DL, Meeking DR, Allard SE, Munday LJ, Shaw KM, Cummings MH. The contribution of nitric oxide and vasodilatory prostanoids to bradykinin-mediated vasodilation in Type 1 diabetes. Diabet Med 2005; 22:697-702. [PMID: 15910619 DOI: 10.1111/j.1464-5491.2005.01493.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the effect of bradykinin on endothelial tone in normoalbuminuric Type 1 diabetic patients and specifically whether any changes are mediated through nitric oxide or prostaglandins. METHODS Forearm blood flow was measured using venous occlusion plethysmography at baseline and after brachial artery infusions of incremental doses of bradykinin (50, 100 and 200 ng/min) in 15 patients with Type 1 diabetes and 13 non-diabetic controls. Forearm blood flow at baseline and following bradykinin was then re-examined after local infusion of L-NMMA, a nitric oxide synthase inhibitor, and L-NMMA with indomethacin, a cyclo-oxygenase inhibitor. RESULTS Baseline blood flow in the diabetic and control groups were similar (4.46 +/- 1.11 vs. 3.41 +/- 1.23 ml/min/100 ml, respectively; P = 0.07). After infusion of L-NMMA and L-NMMA with indomethacin, there was a similar reduction in blood flow responses to bradykinin in both groups. There was no significant difference between the diabetic patients and control subjects in the percentage reduction in forearm blood flow following L-NMMA (16.55 vs. 18.12%, respectively, P = 0.94) and L-NMMA with indomethacin (47.1 vs. 37.3%, respectively, P = 0.14). CONCLUSIONS This study demonstrates that bradykinin-stimulated vasodilation is mediated by both nitric oxide and prostaglandin release from the endothelium in patients with Type 1 diabetes and normoalbuminuria, and in healthy control subjects. We have also shown that the relative contributions of nitric oxide and prostaglandin to bradykinin-mediated vasodilation are similar in these diabetic patients compared with non-diabetic subjects.
Collapse
Affiliation(s)
- F Wotherspoon
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Portsmouth, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Schrage WG, Dietz NM, Eisenach JH, Joyner MJ. Agonist-dependent variablity of contributions of nitric oxide and prostaglandins in human skeletal muscle. J Appl Physiol (1985) 2004; 98:1251-7. [PMID: 15563630 DOI: 10.1152/japplphysiol.00966.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative contributions of endothelium-dependent dilators [nitric oxide (NO), prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF)] in human limbs are poorly understood. We tested the hypothesis that relative contributions of NO and PGs differ between endothelial agonists acetylcholine (ACh; 1, 2, and 4 microg.dl(-1).min(-1)) and bradykinin (BK; 6.25, 25, and 50 ng.dl(-1).min(-1)). We measured forearm blood flow (FBF) using venous occlusion plethysmography in 50 healthy volunteers (27 +/- 1 yr) in response to brachial artery infusion of ACh or BK in the absence and presence of inhibitors of NO synthase [NOS; with NG-monomethyl-L-arginine (L-NMMA)] and cyclooxygenase (COX; with ketorolac). Furthermore, we tested the idea that the NOS + COX-independent dilation (in the presence of L-NMMA + ketorolac, presumably EDHF) could be inhibited by exogenous NO administration, as reported in animal studies. FBF increased approximately 10-fold in the ACh control; L-NMMA reduced baseline FBF and ACh dilation, whereas addition of ketorolac had no further effect. Ketorolac alone did not alter ACh dilation, but addition of L-NMMA reduced ACh dilation significantly. For BK infusion, FBF increased approximately 10-fold in the control condition; L-NMMA tended to reduce BK dilation (P < 0.1), and addition of ketorolac significantly reduced BK dilation. Similar to ACh, ketorolac alone did not alter BK dilation, but addition of L-NMMA reduced BK dilation. To test the idea that NO can inhibit the NOS + COX-independent portion of dilation, we infused a dose of sodium nitroprusside (NO-clamp technique) during ACh or BK that restored the reduction in baseline blood flow due to L-NMMA. Regardless of treatment order, the NO clamp restored baseline FBF but did not reduce the NOS + COX-independent dilation to ACh or BK. We conclude that the contribution of NO and PGs differs between ACh and BK, with ACh being more dependent on NO and BK being mostly dependent on a NOS + COX-independent mechanism (EDHF) in healthy young adults. The NOS + COX-independent dilation does not appear sensitive to feedback inhibition from NO in the human forearm.
Collapse
Affiliation(s)
- William G Schrage
- Dept. of Anesthesiology, Joseph 4-184W, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
41
|
Fricker R, Hesse C, Weiss J, Tayrouz Y, Hoffmann MM, Unnebrink K, Mansmann U, Haefeli WE. Endothelial venodilator response in carriers of genetic polymorphisms involved in NO synthesis and degradation. Br J Clin Pharmacol 2004; 58:169-77. [PMID: 15255799 PMCID: PMC1884579 DOI: 10.1111/j.1365-2125.2004.02130.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Polymorphisms of the NOSIII gene and of the CYBA gene have been associated with a number of pathological conditions such as arterial hypertension, coronary artery disease, and myocardial infarction. Because endothelium-dependent vasodilation is impaired in these disorders, we hypothesized that polymorphisms of NOSIII or CYBA might modulate endothelial function of venous capacitance vessels already before cardiovascular disease becomes overt. METHODS Endothelium-dependent and -independent venodilation was assessed by measuring local vascular responses to bradykinin and sodium nitroprusside in the dorsal hand vein after preconstriction with phenylephrine in 72 healthy male Caucasians after careful exclusion of cardiovascular risk factors. Genotyping was performed for polymorphisms of the NOSIII gene (T-786C, G894T, (CA)(n)) and the CYBA gene (C242T). RESULTS Genotype distribution for each polymorphism followed the Hardy-Weinberg equilibrium. In all studied single nucleotide polymorphisms no significant difference between the respective genotypes and the venodilator response to either sodium nitroprusside or bradykinin was observed, and the number of CA repeat copies was not related to the venodilator response to bradykinin. Mean venodilation induced by bradykinin 50 ng min(-1) (+/-SEM) for homozygote carriers of the single nucleotide polymorphisms was 48.9 +/- 8.5% venodilation (G894T; wild type: 49.8 +/- 6.9), 50.3 +/- 11.0% venodilation (T-786C; wild type: 42.6 +/- 5.2), and 30.4 +/- 9.1% venodilation (C242T; wild type: 49.2 +/- 6.0), respectively. CONCLUSIONS This study suggests that the studied polymorphisms of NOSIII and CYBA do not significantly modulate endothelium-dependent venodilation in individuals without vascular risk factors.
Collapse
Affiliation(s)
- Ruth Fricker
- Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nelli S, Dowell FJ, Wilson WS, Stirrat A, Martin W. Requirement for flow in the blockade of endothelium-derived hyperpolarizing factor (EDHF) by ascorbate in the bovine ciliary artery. Br J Pharmacol 2004; 142:1081-90. [PMID: 15237098 PMCID: PMC1575176 DOI: 10.1038/sj.bjp.0705816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously reported that ascorbate inhibits endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary circulation and rat perfused mesentery, but not in rings of bovine or porcine coronary artery. In this study, we have compared the ability of ascorbate to inhibit EDHF-mediated vasodilatation in a single vessel, the bovine long posterior ciliary artery, when perfused and when mounted as rings in a myograph. Both in segments perfused at a flow rate of 2.5 ml min(-1) and in rings mounted in a myograph, bradykinin and acetylcholine each induced vasodilator responses that were mediated jointly by EDHF and nitric oxide, as revealed by their respective blocking agents, apamin/charybdotoxin, and L-NAME. Ascorbate (50 and 150 microm) induced a time (max at 2-3 h)-dependent inhibition of the EDHF-mediated component of vasodilatation to bradykinin or acetylcholine in perfused segments, but not in rings. Ascorbate (50 microm) failed to inhibit bradykinin-induced vasodilatation at a flow rate of 1.25 ml min(-1) or below, but produced graded blockade at the higher flow rates of 2.5 and 5 ml min(-1). Furthermore, using a pressure myograph where pressure and flow were independently controlled, it was confirmed that the inhibitory action of ascorbate (150 microm) was directly related to flow per se and not any associated changes in pressure. Thus, we have shown in the bovine ciliary artery that ascorbate inhibits EDHF-mediated vasodilatation under conditions of flow but not in a static myograph. The mechanism by which flow renders EDHF susceptible to inhibition by ascorbate remains to be determined.
Collapse
Affiliation(s)
- Silvia Nelli
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Fiona J Dowell
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Road, Glasgow, G61 1QH, Scotland
| | - William S Wilson
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Alison Stirrat
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - William Martin
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
- Author for correspondence:
| |
Collapse
|
43
|
Abstract
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within ∼30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.
Collapse
Affiliation(s)
- Philip S Clifford
- Department of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | |
Collapse
|
44
|
Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84:649-98. [PMID: 15044685 DOI: 10.1152/physrev.00031.2003] [Citation(s) in RCA: 1004] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM), and especially the connective tissue with its collagen, links tissues of the body together and plays an important role in the force transmission and tissue structure maintenance especially in tendons, ligaments, bone, and muscle. The ECM turnover is influenced by physical activity, and both collagen synthesis and degrading metalloprotease enzymes increase with mechanical loading. Both transcription and posttranslational modifications, as well as local and systemic release of growth factors, are enhanced following exercise. For tendons, metabolic activity, circulatory responses, and collagen turnover are demonstrated to be more pronounced in humans than hitherto thought. Conversely, inactivity markedly decreases collagen turnover in both tendon and muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as, dependent on the type of collagen in question, some degree of net collagen synthesis. These changes will modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress, and likely make it more load resistant. Cross-linking in connective tissue involves an intimate, enzymatical interplay between collagen synthesis and ECM proteoglycan components during growth and maturation and influences the collagen-derived functional properties of the tissue. With aging, glycation contributes to additional cross-linking which modifies tissue stiffness. Physiological signaling pathways from mechanical loading to changes in ECM most likely involve feedback signaling that results in rapid alterations in the mechanical properties of the ECM. In developing skeletal muscle, an important interplay between muscle cells and the ECM is present, and some evidence from adult human muscle suggests common signaling pathways to stimulate contractile and ECM components. Unaccostumed overloading responses suggest an important role of ECM in the adaptation of myofibrillar structures in adult muscle. Development of overuse injury in tendons involve morphological and biochemical changes including altered collagen typing and fibril size, hypervascularization zones, accumulation of nociceptive substances, and impaired collagen degradation activity. Counteracting these phenomena requires adjusted loading rather than absence of loading in the form of immobilization. Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.
Collapse
Affiliation(s)
- Michael Kjaer
- Sports Medicine Research Unit, Department of Rheumatology, Copenhagen University Hospital at Bispebjerg, 23 Bispebjerg Bakke, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
45
|
van Ginneken EEM, Meijer P, Verkaik N, Smits P, Rongen GA. ATP-induced vasodilation in human skeletal muscle. Br J Pharmacol 2004; 141:842-50. [PMID: 14769779 PMCID: PMC1574250 DOI: 10.1038/sj.bjp.0705589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The purine nucleotide adenosine-5'-triphosphate (ATP) exerts pronounced effects on the cardiovascular system. The mechanism of action of the vasodilator response to ATP in humans has not been elucidated yet. The proposed endothelium-derived relaxing factors (EDRFs) were studied in a series of experiments, using the perfused forearm technique. 2. Adenosine 5'-triphosphate (0.2, 0.6, 6 and 20 nmol dl(-1) forearm volume min(-1)) evoked a dose-dependent forearm vasodilator response, which could not be inhibited by separate infusion of the nonselective COX inhibitor indomethacin (5 microg dl(-1) min(-1), n=10), the blocker of Na(+)/K(+)-ATPase ouabain (0.2 microg dl(-1) min(-1), n=8), the blocker of K(Ca) channels tetraethylammonium chloride (TEA, 0.1 microg dl(-1) min(-1), n=10), nor by the K(ATP)-channel blocker glibenclamide (2 microg dl(-1) min(-1), n=10). All blockers, except glibenclamide, caused a significant increase in baseline vascular tone. The obtained results might be due to compensatory actions of unblocked EDRFs. Combined infusion of TEA, indomethacin and l-NMMA (n=6) significantly increased the baseline forearm vascular resistance. The ATP-induced relative decreases in forearm vascular resistance were 48+/-5, 67+/-3, 88+/-2, and 92+/-2% in the absence and 23+/-7, 62+/-4, 89+/-2, and 93+/-1% in the presence of the combination of TEA, indomethacin and l-NMMA (P<0.05, repeated-measures ANOVA, n=6). A similar inhibition was obtained for sodium nitroprusside (SNP, P<0.05 repeated-measures ANOVA, n=6), indicating a nonspecific interaction due to the blocker-induced vasoconstriction. 3. ATP-induced vasodilation in the human forearm cannot be inhibited by separate infusion of indomethacin, ouabain, glibenclamide or TEA, or by a combined infusion of TEA, indomethacin, and l-NMMA. Endothelium-independent mechanisms and involvement of unblocked EDRFs, such as CO, might play a role, and call for further studies.
Collapse
Affiliation(s)
- E E M van Ginneken
- Department of General Internal Medicine, University Medical Centre Nijmegen, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - P Meijer
- Department of Pharmacology-Toxicology, University Medical Centre Nijmegen, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - N Verkaik
- Department of Pharmacology-Toxicology, University Medical Centre Nijmegen, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - P Smits
- Department of Pharmacology-Toxicology, University Medical Centre Nijmegen, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - G A Rongen
- Department of Pharmacology-Toxicology, University Medical Centre Nijmegen, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Author for correspondence:
| |
Collapse
|
46
|
Abstract
During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascular control of blood flow is illustrated by local dilation of terminal arterioles during contraction of muscle fibers and conduction of vasodilation upstream. Endothelial-derived vasodilator mechanisms are known to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow is reduced under nonselective adenosine-receptor blockade. No clear role has been demonstrated for either NO or PGI2(2), based on studies employing selective inhibition of these substances individually, suggesting a redundancy of vasodilator mechanisms. This is supported by recent work demonstrating that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study.
Collapse
Affiliation(s)
- Robert Boushel
- Dept. of Exercise Science, Concordia University DA-215, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6
| |
Collapse
|
47
|
Ueda S, Wada A, Umemura S. Methodological Validity and Feasibility of the Nitric Oxide Clamp Technique for Nitric Oxide Research in Human Resistant Vessels. Hypertens Res 2004; 27:351-7. [PMID: 15198483 DOI: 10.1291/hypres.27.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N(G)-methyl-L-arginine (L-NMMA) has been widely used for nitric oxide (NO) research, particularly for the assessment of NO-dependent vasodilatation evoked by agonists. However, such experiments may not be straightforward because L-NMMA causes vasoconstriction, which itself must non-specifically affect responses to any vasoactive agents. Therefore, in order to more accurately estimate the roles of NO in human vessels in vivo, we developed an NO clamp technique that uses co-infusion of an NO donor with L-NMMA. To assess the validity and feasibility of this technique, we compared the effects of intra-arterial infusion of L-NMMA on the forearm blood flow responses to vasodilators with and without the NO clamp technique in healthy males. All drugs were intra-arterially infused and changes in forearm blood flow (FBF) were measured by strain-gauge plethysmography. Vasodilatation evoked by atrial natriuretic peptide was significantly attenuated by L-NMMA alone (p = 0.001) but not by the NO clamp technique. L-NMMA significantly attenuated the responses to acetylcholine either with or without the NO clamp technique. However, the ratio of the area under the curve (AUC) of acetylcholine with L-NMMA to that without L-NMMA was significantly higher when the NO clamp technique was not used (AUC ratio: 0.62 +/- 0.13 vs. 0.48 +/- 0.14, respectively; p = 0.031). The contribution of NO to the FBF responses to vasodilators may be more properly assessed by the co-infusion of L-NMMA with the NO clamp technique than by L-NMMA alone. Our NO clamp technique thus appears to be valid and feasible for human NO research.
Collapse
Affiliation(s)
- Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | | | | |
Collapse
|
48
|
Avogaro A, de Kreutzenberg S, Kiwanuka E, Tiengo A. Nonesterified fatty acids and endothelial dysfunction. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0531-5131(02)01282-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zou W, Yang Q, Yim APC, He GW. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in porcine pulmonary microarteries after cold storage with Euro-Collins and University of Wisconsin solutions. J Thorac Cardiovasc Surg 2003; 126:208-215. [PMID: 12878957 DOI: 10.1016/s0022-5223(02)73615-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Endothelium plays an important role in mediating the function of transplanted organs. The widely used University of Wisconsin solution impairs the endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries, but little is known about effects of lung preservation on endothelium-derived hyperpolarizing factor-mediated endothelial function. This study examined the effect of organ preservation solutions on the endothelium-derived hyperpolarizing factor-mediated relaxation in the pulmonary microarteries (diameter 200 to 450 microm). METHODS Two segments (1 as control) from the same microartery were allocated in 2 chambers of a myograph. After incubation with hyperkalemia (potassium 115 mmol/L), University of Wisconsin, or Euro-Collins solution (at 4 degrees C for 4 hours), the endothelium-derived hyperpolarizing factor-mediated relaxation was induced by bradykinin (-10 to -6.5 log M, n = 8) or calcium ionophore (A(23187), -9 to -5.5 log M, n = 7) in U(46619) (-7.5 log M) precontracted rings in the presence of indomethacin (7 micromol/L), N(G)-nitro-L-arginine (300 micromol/L), and oxyhemoglobin (20 micromol/L). RESULTS Exposure to hyperkalemia and storage with Euro-Collins or University of Wisconsin solution significantly decreased the relaxation to bradykinin (51.9 +/- 8.4% vs 60.3 +/- 6.1%, P =.02 or 49.3 +/- 7.3% vs 65.2 +/- 3.5%, P =.04) or A(23187) (12.5 +/- 0.02% vs 33.8 +/- 0.07%, P =.02 or 13.2 +/- 0.03% vs 31.0 +/- 0.05%, P =.03%). CONCLUSIONS Endothelium-derived hyperpolarizing factor plays an important role in porcine pulmonary microarteries, and the endothelium-derived hyperpolarizing factor-mediated relaxation is impaired when the lung is preserved with University of Wisconsin or Euro-Collins solution. This impairment may affect the lung function during the reperfusion period after lung transplantation.
Collapse
Affiliation(s)
- Wei Zou
- Department of Surgery, The Chinese University of Hong Kong, SAR, China
| | | | | | | |
Collapse
|
50
|
de Kreutzenberg SV, Puato M, Kiwanuka E, Del Prato S, Pauletto P, Pasini L, Tiengo A, Avogaro A. Elevated non-esterified fatty acids impair nitric oxide independent vasodilation, in humans: evidence for a role of inwardly rectifying potassium channels. Atherosclerosis 2003; 169:147-53. [PMID: 12860261 DOI: 10.1016/s0021-9150(03)00153-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED To evaluate the role of elevation of non-esterified fatty acids on forearm nitric oxide (NO) dependent and independent relaxation, four studies were performed in the forearms of 14 normals: (1). endothelium-dependent and -independent vasodilations were assessed during acetylcholine (Ach) and sodium nitroprusside (SNP) infusions; (2). flow-mediated vasodilation (FMD) was assessed; (3) .bradykinin (BK) was infused during NO and prostaglandin inhibition (NO clamp); (4). blood flow (FBF) was measured during Ouabain, a Na(+)/K(+) ATPase, and BaCl(2), rectifying potassium channel (K(IR)) blockers, respectively. All studies were performed before and after 120 min. Intralipid+heparin (high-NEFA) infusion. Ach-mediated FBF increase was lower at high-NEFA (332+/-34 vs. 436+/-44% at 45 microg l forearm(-1) min(-1); % of ratio infused: control arm P<0.05), while SNP response was similar. FMD did not differ before and during high-NEFA, which induced a blunted response of FBF during BK with or without NO clamp. Ouabain and BaCl(2)-mediated FBF inhibition was lower (P<0.01) at high-NEFA. During ouabain alone FBF decreased slightly. IN CONCLUSION High-NEFA exerts a negative role on both NO-dependent and independent vasodilations. The decrease in FBF, mediated by K(IR) inhibition, is blunted by high-NEFA: these substrates interfere with hemodynamic/metabolism coupling, possibly through the inhibition of these channels.
Collapse
Affiliation(s)
- Saula Vigili de Kreutzenberg
- Department of Clinical and Experimental Medicine, Cattedra di Malattie del Metabolismo, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|