1
|
Schulze KM, Hirai DM, Colburn TD, Craig JC, Musch TI, Poole DC. K ATP channel inhibition-induced hyporemia in skeletal muscle: No evidence for pre-capillary sphincter action. Microvasc Res 2025; 160:104808. [PMID: 40164381 DOI: 10.1016/j.mvr.2025.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Whether pre-capillary sphincters are present and regulate red blood cell (RBC) flux at the individual capillary level, especially in skeletal muscle, is controversial. Recently, blockade of KATP channels using the sulphonylurea glibenclamide (GLI) was demonstrated to reduce muscle blood flow and lower vascular conductance. The present investigation tested the hypothesis that, if pre-capillary sphincters were involved in GLI-induced blood flow reductions, a defined luminal narrowing would be evident in the proximate region of the capillaries. METHODS Videomicroscopy of the spinotrapezius capillary bed was performed under control (Krebs-Henseleit) and GLI (200 μM in Krebs-Henseleit) superfusion. Capillary RBC flux was measured within individual capillaries and their luminal diameter was measured using a calibrated digital ruler at the branch-point and subsequently downstream. RESULTS GLI reduced capillary RBC flux by 31% (p = 0.004). Despite the presence of a reduced RBC flux, no detectable reduction or, indeed, any change in capillary luminal diameter was present at any measurement site. The average diameter at the branching point was 4.9 ± 0.3 μm, and at 5, 10, 20 and 50 μm downstream, the average diameters were 4.8 ± 0.4, 4.8 ± 0.5, 5.0 ± 0.7, and 5.2 ± 0.4 μm, respectively and were unchanged by GLI (all P > 0.05). CONCLUSIONS Accordingly, the absence of any evidence for capillary luminal narrowing or constriction in these data support that the GLI-induced reductions in capillary RBC flux and muscle blood flow occur via upstream effects within the arteriolar bed. Decreases in skeletal muscle microcirculatory RBC flux with this KATP channel blocker were not regulated by any detectable capillary structural alterations.
Collapse
Affiliation(s)
- Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America.
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, United States of America
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Jesse C Craig
- Department of Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT 84148, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| |
Collapse
|
2
|
Yartsev VN. Effects of Nephrectomy on the Electrical Field Stimulation-Evoked Changes in Tone of Arteries from the Normotensive and Spontaneously Hypertensive Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Hirai DM, Tabuchi A, Craig JC, Colburn TD, Musch TI, Poole DC. Regulation of capillary hemodynamics by K ATP channels in resting skeletal muscle. Physiol Rep 2021; 9:e14803. [PMID: 33932103 PMCID: PMC8087980 DOI: 10.14814/phy2.14803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive K+ channels (KATP ) have been implicated in the regulation of resting vascular smooth muscle membrane potential and tone. However, whether KATP channels modulate skeletal muscle microvascular hemodynamics at the capillary level (the primary site for blood-myocyte O2 exchange) remains unknown. We tested the hypothesis that KATP channel inhibition would reduce the proportion of capillaries supporting continuous red blood cell (RBC) flow and impair RBC hemodynamics and distribution in perfused capillaries within resting skeletal muscle. RBC flux (fRBC ), velocity (VRBC ), and capillary tube hematocrit (Hctcap ) were assessed via intravital microscopy of the rat spinotrapezius muscle (n = 6) under control (CON) and glibenclamide (GLI; KATP channel antagonist; 10 µM) superfusion conditions. There were no differences in mean arterial pressure (CON:120 ± 5, GLI:124 ± 5 mmHg; p > 0.05) or heart rate (CON:322 ± 32, GLI:337 ± 33 beats/min; p > 0.05) between conditions. The %RBC-flowing capillaries were not altered between conditions (CON:87 ± 2, GLI:85 ± 1%; p > 0.05). In RBC-perfused capillaries, GLI reduced fRBC (CON:20.1 ± 1.8, GLI:14.6 ± 1.3 cells/s; p < 0.05) and VRBC (CON:240 ± 17, GLI:182 ± 17 µm/s; p < 0.05) but not Hctcap (CON:0.26 ± 0.01, GLI:0.26 ± 0.01; p > 0.05). The absence of GLI effects on the %RBC-flowing capillaries and Hctcap indicates preserved muscle O2 diffusing capacity (DO2 m). In contrast, GLI lowered both fRBC and VRBC thus impairing perfusive microvascular O2 transport (Q̇m) and lengthening RBC capillary transit times, respectively. Given the interdependence between diffusive and perfusive O2 conductances (i.e., %O2 extraction∝DO2 m/Q̇m), such GLI alterations are expected to elevate muscle %O2 extraction to sustain a given metabolic rate. These results support that KATP channels regulate capillary hemodynamics and, therefore, microvascular gas exchange in resting skeletal muscle.
Collapse
Affiliation(s)
- Daniel M. Hirai
- Department of Health and KinesiologyPurdue UniversityWest LafayetteIndianaUSA,Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - Ayaka Tabuchi
- Department of KinesiologyKansas State UniversityManhattanKansasUSA,Department of Engineering ScienceUniversity of Electro‐CommunicationsTokyoJapan
| | - Jesse C. Craig
- Department of KinesiologyKansas State UniversityManhattanKansasUSA,Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA,Geriatric ResearchEducation and Clinical CenterVeterans Affairs Medical CenterSalt Lake CityUtahUSA
| | | | - Timothy I. Musch
- Department of KinesiologyKansas State UniversityManhattanKansasUSA,Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - David C. Poole
- Department of KinesiologyKansas State UniversityManhattanKansasUSA,Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
4
|
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, Behnke BJ, Poole DC, Musch TI. Vascular ATP-sensitive K + channels support maximal aerobic capacity and critical speed via convective and diffusive O 2 transport. J Physiol 2020; 598:4843-4858. [PMID: 32798233 PMCID: PMC7874302 DOI: 10.1113/jp280232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V ̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V ̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V ̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V ̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V ̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q ̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V ̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V ̇ O2 was reduced via impaired Q ̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
5
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
7
|
Murrant CL, Dodd JD, Foster AJ, Inch KA, Muckle FR, Ruiz DA, Simpson JA, Scholl JHP. Prostaglandins induce vasodilatation of the microvasculature during muscle contraction and induce vasodilatation independent of adenosine. J Physiol 2014; 592:1267-81. [PMID: 24469074 DOI: 10.1113/jphysiol.2013.264259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood flow data from contracting muscle in humans indicates that adenosine (ADO) stimulates the production of nitric oxide (NO) and vasodilating prostaglandins (PG) to produce arteriolar vasodilatation in a redundant fashion such that when one is inhibited the other can compensate. We sought to determine whether these redundant mechanisms are employed at the microvascular level. First, we determined whether PGs were involved in active hyperaemia at the microvascular level. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of 2A arterioles (maximum diameter 40 μm, third arteriolar level up from the capillaries) at a site of overlap with the stimulated muscle fibres before and after 2 min of contraction [stimulus frequencies: 4, 20 and 60 Hz at 15 contractions per minute (CPM) or contraction frequencies of 6, 15 or 60 CPM at 20 Hz; 250 ms train duration]. Muscle fibres were stimulated in the absence and presence of the phospholipase A2 inhibitor quinacrine. Further, we applied a range of concentrations of ADO (10(-7)-10(-5) M) extraluminally, (to mimic muscle contraction) in the absence and presence of L-NAME (NO synthase inhibitor), indomethacin (INDO, cyclooxygenase inhibitor) and L-NAME + INDO and observed the response of 2A arterioles. We repeated the latter experiment on a different level of the cremaster microvasculature (1A arterioles) and on the microvasculature of a different skeletal muscle (gluteus maximus, 2A arterioles). We observed that quinacrine inhibited vasodilatation during muscle contraction at intermediate and high contraction frequencies (15 and 60 CPM). L-NAME, INDO and L-NAME + INDO were not effective at inhibiting vasodilatation induced by any concentration of ADO tested in 2A and 1A arterioles in the cremaster muscle or 2A arterioles in the gluteus maximus muscle. Our data show that PGs are involved in the vasodilatation of the microvasculature in response to muscle contraction but did not obtain evidence that extraluminal ADO causes vasodilatation through NO or PG or both. Thus, we propose that PG-induced microvascular vasodilation during exercise is independent of ADO.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ngo AT, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C, Jensen LJ. Significance of K(ATP) channels, L-type Ca²⁺ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC PHYSIOLOGY 2013; 13:8. [PMID: 23663730 PMCID: PMC3663688 DOI: 10.1186/1472-6793-13-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Background ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2. Results Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2. Conclusions We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2.
Collapse
Affiliation(s)
- Anh Thuc Ngo
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark.
| | | | | | | | | |
Collapse
|
9
|
Twynstra J, Ruiz DA, Murrant CL. Functional coordination of the spread of vasodilations through skeletal muscle microvasculature: implications for blood flow control. Acta Physiol (Oxf) 2012; 206:229-41. [PMID: 22726936 DOI: 10.1111/j.1748-1716.2012.02465.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/30/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022]
Abstract
AIM We sought to understand the integrated vascular response to muscle contraction by determining how different branch orders of the terminal microvascular network respond to stimulation using a K(ATP) channel opener pinacidil (PIN) as a muscle contraction mimetic. METHODS Using the blood perfused, hamster cremaster preparation in situ, we locally micropipette-applied 10(-5) M PIN on the capillaries, Branch arteriole (third order, two branch orders up from the capillaries) and transverse arterioles (TA) (second order, three branch orders up from the capillaries) and observed different branch orders of the microvasculature to determine where the localized vasodilation spread throughout the terminal microvascular network. RESULTS We observed that PIN stimulation of capillaries caused associated upstream vasodilation of the module inflow arteriole (MI) (fourth order, the terminal arteriole) (2.1 ± 0.4 μm), the associate Branch (1.4 ± 0.5 μm) and in the upstream direction on the TA (2.1 ± 0.5 μm). Vasodilation did not occur in all MIs (-0.2 ± 0.2 μm) from the vasodilated branch and did not go downstream on the TA (0.7 ± 0.4 μm). Branch stimulation caused upstream TA (3.3 ± 1.0 μm) and upstream Branch (1.7 ± 0.3 μm) vasodilation but not downstream TA (1.5 ± 0.6 μm) or downstream Branch (0.2 ± 0.3 μm) vasodilation. TA stimulation caused conducted responses in both directions and into all associated arteriolar Branches and MIs. CONCLUSIONS The spread of the conducted response is dependent on the vascular branch order stimulated: capillary stimulation was most specific in its direction and TA stimulation was the least specific. Our data indicate that vascular branch order is important in determining the vascular response needed to direct blood flow to contracting skeletal muscle cells.
Collapse
Affiliation(s)
- J. Twynstra
- Department of Human Health and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - D. A. Ruiz
- Department of Human Health and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - C. L. Murrant
- Department of Human Health and Nutritional Science; University of Guelph; Guelph; ON; Canada
| |
Collapse
|
10
|
Xiang L, Hester RL. Adipocyte-derived factor reduces vasodilatory capability in ob-/ob- mice. Am J Physiol Heart Circ Physiol 2009; 297:H689-95. [PMID: 19502550 DOI: 10.1152/ajpheart.01327.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is associated with impaired functional hyperemic response. We have shown that ATP-sensitive potassium (K(ATP)) channels are important in mediating functional vasodilation. Adipocyte-derived factors (ADFs) can alter vascular tone via opening K(ATP) channels. We hypothesize that, in an animal model of obesity, ADFs will decrease basal arteriolar tone by opening K(ATP) channels, resulting in an attenuated functional vasodilation. We used wild-type (WT) mice and ob(-)/ob(-) mice (ob) to test this hypothesis. The spinotrapezius muscle was prepared for the microcirculatory observation of arcade arterioles, and we measured the vasodilatory responses to muscle stimulation. The basal arteriolar diameter was larger in ob mice compared with WT mice. The K(ATP) channel inhibitor glibenclamide (10 microM) decreased arteriolar diameter in ob mice with no effect in WT mice. The increase in arteriolar diameter induced by muscle stimulation was attenuated in ob mice compared with WT mice. To determine the mechanisms for the opening of K(ATP) channels, fat was collected from the ob mice, subcutaneous fat from around the spinotrapezius muscle (OBSF) or visceral fat (OBVF) and was incubated in physiological saline solution (PSS). The vasodilatory responses to the fat-conditioned PSS were determined in WT mice. Treatment with OBSF- or OBVF -conditioned PSS increased the arteriolar diameters in WT mice, a dilation that was inhibited by glibenclamide. The absolute diameters induced by muscle stimulation were not altered by the fat-conditioned PSS. These results suggest that, in ob mice, local ADFs reduce the functional vasodilatory capability via opening K(ATP) channels.
Collapse
Affiliation(s)
- Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
11
|
Hojs N, Strucl M, Cankar K. The effect of glibenclamide on acetylcholine and sodium nitroprusside induced vasodilatation in human cutaneous microcirculation. Clin Physiol Funct Imaging 2009; 29:38-44. [DOI: 10.1111/j.1475-097x.2008.00833.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Hodnett BL, Dearman JA, Carter CB, Hester RL. Attenuated PGI2 synthesis in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2008; 296:R715-21. [PMID: 19118096 DOI: 10.1152/ajpregu.90330.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In obesity, skeletal muscle blood flow during exercise (functional hyperemia) is impaired. We have indirectly demonstrated that an altered arachidonic acid metabolism is responsible for the impaired functional vasodilation in the obese Zucker rat (OZR), a model of obesity. In this study, we tested the hypothesis that there is an impaired release of PGI(2) due to a nitration of PGI(2) synthase (PGIS), which is associated with a decreased prostanoid receptor expression. PGI(2), PGE(2), and thromboxane A(2) (TXA(2)) release were determined in vitro using ELISA under basal conditions and in response to arachidonic acid (AA) administration (50 microM). Immunofluorescence of PGI(2) and TXA(2) receptors (IP and TP, respectively) was determined in dispersed vascular smooth muscle cells (VSMCs). Nitration of tyrosine residues of the PGIS enzyme was determined using immunoprecipitation and Western blot analysis. Following AA administration, PGI(2) and PGE(2) release were attenuated in OZR compared with lean Zucker rats (LZR; controls). Basal and AA-induced TXA(2) release were not significantly different between groups. IP and TP immunofluorescence were not significantly different between OZR and LZR groups. OZR exhibited elevated nitration of tyrosine residues of PGIS compared with LZR. These results suggest that alterations in the PGI(2) pathway (attenuated PGI(2) synthesis), and not the TXA(2) pathway (normal TXA(2) synthesis/no change in TP receptor expression), underlie the attenuated functional hyperemia in the OZR.
Collapse
Affiliation(s)
- Benjamin L Hodnett
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | |
Collapse
|
13
|
Goodwill AG, James ME, Frisbee JC. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension. Am J Physiol Heart Circ Physiol 2008; 295:H1522-8. [PMID: 18689495 DOI: 10.1152/ajpheart.00596.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2).
Collapse
Affiliation(s)
- Adam G Goodwill
- Center for Interdisciplinary Research in Cardiovascular Science, Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505, USA
| | | | | |
Collapse
|
14
|
Hodnett BL, Xiang L, Dearman JA, Carter CB, Hester RL. K(ATP)-mediated vasodilation is impaired in obese Zucker rats. Microcirculation 2008; 15:485-94. [PMID: 19086258 PMCID: PMC2788296 DOI: 10.1080/10739680801942240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Skeletal muscle blood flow during exercise is impaired in obesity. We tested the hypothesis that the attenuated vasodilation in skeletal muscle arterioles of obese Zucker rats (OZR) is due to altered K(ATP) channel-mediated vasodilation. MATERIALS AND METHODS K(ATP) channel function was determined in isolated skeletal muscle arterioles in response to the K(ATP) opener cromakalim (0.1-10 microM) during normal myogenic tone and alpha-adrenergic-mediated tone (0.1 microM phenylephrine). The spinotrapezius muscle was prepared and the vasodilatory responses to muscle stimulation or iloprost (0.028-2.8 microM) were observed before and after the application of the K(ATP) inhibitor, glibenclamide (10 microM). Channel subunit expression was determined by using western blot analyses. RESULTS Cromakalim concentration-response curves were shifted in OZR as compared to lean controls. OZR exhibited impaired functional and iloprost-induced vasodilation as compared to the lean controls. Glibenclamide inhibited the functional and iloprost-induced dilation in the lean rats with no effects in the obese a nimals. Channel subunit expression was similar in femoral arteries. CONCLUSION The impaired functional vasodilation in the OZR is associated with altered K(ATP) channel sensitivity.
Collapse
Affiliation(s)
- Benjamin L Hodnett
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | |
Collapse
|
15
|
Xiang L, Naik JS, Hester RL. Functional vasodilation in the rat spinotrapezius muscle: role of nitric oxide, prostanoids and epoxyeicosatrienoic acids. Clin Exp Pharmacol Physiol 2008; 35:617-24. [PMID: 18215183 PMCID: PMC2788941 DOI: 10.1111/j.1440-1681.2007.04864.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The present study was designed to determine the mechanisms responsible for functional vasodilation of arterioles paired and unpaired with venules in the rat spinotrapezius muscle. 2. The spinotrapezius muscle (from Sprague-Dawley rats) was treated with combinations of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L), the cyclo-oxygenase inhibitor indomethacin (10 micromol/L) and the epoxygenase inhibitor 6-(2-propargyloxyphenyl) hexanoic acid (PPOH; 30 micromol/L) to determine vascular responses to muscle stimulation. Both paired and unpaired arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following 2 min muscle stimulation before and 30 min after subsequent application of each inhibitor. 3. In all cases, L-NAME treatment resulted in decreased basal diameter that was restored to control levels by the addition of sodium nitroprusside (0.01-0.1 micromol/L) to the superfusion solution. N(G)-Nitro-L-arginine methyl ester significantly inhibited the functional dilation in both paired (-20 +/- 3%) and unpaired (-29 +/- 3%) arterioles, whereas these inhibitory effects of L-NAME were diminished after pretreatment with indomethacin and PPOH. Indomethacin treatment attenuated the dilation in paired (-33 +/- 5%) but not unpaired (-6 +/- 4%) arterioles. Treatment with PPOH had no effect on the functional dilation in either set of arterioles. Approximately 50% of the vasodilatory responses remained in the presence of L-NAME, indomethacin and PPOH. 4. These results suggest that both nitric oxide and vasodilator prostanoid(s) are involved in mediating functional vasodilation in the rat spinotrapezius. The vasodilator prostanoid(s) released from venules is responsible for a portion of the vasodilation of the paired arteriole. The results also suggest possible interactions between the synthesis of nitric oxide and prostaglandin or epoxyeicosatrienoic acids during muscle contraction.
Collapse
Affiliation(s)
- Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | |
Collapse
|
16
|
Cankar K, Strucl M. The effect of glibenclamide on cutaneous laser-Doppler flux. Microvasc Res 2008; 75:97-103. [PMID: 17675187 DOI: 10.1016/j.mvr.2007.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/28/2007] [Accepted: 06/15/2007] [Indexed: 11/26/2022]
Abstract
The K(ATP) channels play a crucial role in regulation of vascular tone in conditions of hypoxia. Whether they contribute to peripheral blood flow regulation in human cutaneous microcirculation during a non-hypoxic state is the matter of conflicting in vivo studies that have used plethysmographic method. Our aim was therefore to elucidate the role of K(ATP) channels in human skin microcirculation in three different conditions that evoke different interplays of vascular mechanisms; during resting conditions, during the postocclusive vasodilatation and in the vasoconstriction response to local cold exposure. The laser-Doppler (LD) skin response was monitored in 12 healthy volunteers on the skin of the fingertips of both hands at rest, after the release of an 8-min digital arteries occlusion, and during local cooling of one hand at 15 degrees C. We compared the direct (at the measuring site) and the indirect (at the contralateral non-cooled hand) LD flux response after intradermal microinjection of saline solution (1 mul) and after a microinjection of the K(ATP) channel blocker glibenclamide (8 muM saturated solution) at the measuring site after obtaining the dose-dependent effect of glibenclamide. The effect of the saline solution was used as a reference value. There was a statistically significant lower resting LD flux after the microinjection of glibenclamide 273.6+/-36 PU when compared to the values obtained after the application of the saline solution 375.8+/-31 PU (paired t-test, p=0.016). Glibenclamide also significantly reduced the relative area under the LD flux curve during the PRH response 14551+/-2508 PU*s vs. 6402+/-1476 PU*s (paired t-test, p=0.01) and increased the principal frequency of postocclusive PRH oscillations 0.0931+/-0.01 Hz vs. 0.1309+/-0.02 Hz (p=0.01). In addition, glibenclamide significantly decreased the LD flux during both the direct and indirect response to local cold exposure when compared to the application of saline solution (paired t-test, p<0.01). Our results support the conjecture that ATP sensitive K(+) channels are importantly involved in blood flow regulation of human skin microcirculation in PRH response, in resting conditions as well as in microvascular local cold response.
Collapse
Affiliation(s)
- Ksenija Cankar
- Institute of Physiology, School of Medicine, Zaloska 4, 1000 Ljubljana, Slovenia.
| | | |
Collapse
|
17
|
Xiang L, Naik JS, Abram SR, Hester RL. Chronic hyperglycemia impairs functional vasodilation via increasing thromboxane-receptor-mediated vasoconstriction. Am J Physiol Heart Circ Physiol 2007; 292:H231-6. [PMID: 16905600 DOI: 10.1152/ajpheart.00623.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individuals with hyperglycemia exhibit impaired exercise performance and functional vasodilatory response. Based on the importance of arachidonic acid (AA) metabolites in functional vasodilation and the increased thromboxane-to-prostacyclin ratio in diabetes, we hypothesized that chronic hyperglycemia in diabetes increases thromboxane-receptor (TP)-mediated vasoconstriction, resulting in an attenuated functional vasodilation. Three groups of lean Zucker rats (8 wk) were used to test the effects of chronic hyperglycemia on endothelial function: normal, streptozotocin (STZ; 70 mg/kg ip), and STZ + insulin (2 U/day). After 4 wk of treatment, spinotrapezius arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following muscle stimulation and 10 μM AA application in the absence and presence of 1 μM SQ-29548 (TP antagonist). STZ rats exhibited significantly higher fasting glucose levels and attenuated functional and AA-induced dilation compared with normal animals. SQ-29548 improved the vasodilatory responses in STZ rats but had no effect in controls. Insulin treatment normalized both the glucose levels and the vasodilatory responses, and SQ-29548 treatment had no effect on functional or AA-mediated vasodilation in STZ + insulin animals. These results suggest that the impaired functional vasodilation in diabetic rats is due to hyperglycemia-mediated increases in TP-mediated vasoconstriction.
Collapse
Affiliation(s)
- Lusha Xiang
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 North State St., Jackson, MI 39216-4505, USA
| | | | | | | |
Collapse
|
18
|
Kim MH, Harris NR. Leukocyte adherence inhibits adenosine-dependent venular control of arteriolar diameter and nitric oxide. Am J Physiol Heart Circ Physiol 2006; 291:H724-31. [PMID: 16582017 DOI: 10.1152/ajpheart.01215.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Venular control of arteriolar perfusion has been the focus of several investigations in recent years. This study investigated 1) whether endogenous adenosine helps control venule-dependent arteriolar dilation and 2) whether venular leukocyte adherence limits this response via an oxidant-dependent mechanism in which nitric oxide (NO) levels are decreased. Intravital microscopy was used to assess changes in arteriolar diameters and NO levels in rat mesentery. The average resting diameter of arterioles (27.5 +/- 1.0 microm) paired with venules with minimal leukocyte adherence (2.1 +/- 0.3 per 100-microm length) was significantly larger than that of unpaired arterioles (24.5 +/- 0.8 microm) and arterioles (23.3 +/- 1.3 microm) paired with venules with higher leukocyte adherence (9.0 +/- 0.5 per 100-microm length). Local superfusion of adenosine deaminase (ADA) induced significant decreases in diameter and perivascular NO concentration in arterioles closely paired to venules with minimal leukocyte adherence. However, ADA had little effect on arterioles closely paired to venules with high leukocyte adherence or on unpaired arterioles. To determine whether the attenuated response to ADA for the high-adherence group was oxidant dependent, the responses were also observed in arterioles treated with 10(-4) M Tempol. In the high-adherence group, Tempol fully restored NO levels to those of the low-adherence group; however, the ADA-induced constriction remained attenuated, suggesting a possible role for an oxidant-independent vasoconstrictor released from the inflamed venules. These findings suggest that adenosine- and venule-dependent dilation of paired arterioles may be mediated, in part, by NO and inhibited by venular leukocyte adherence.
Collapse
Affiliation(s)
- Min-ho Kim
- Dept. of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
19
|
Schrage WG, Dietz NM, Joyner MJ. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. J Appl Physiol (1985) 2006; 100:1506-12. [PMID: 16469932 DOI: 10.1152/japplphysiol.01639.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels have been suggested to contribute to coronary and skeletal muscle vasodilation during exercise, either alone or interacting in a parallel or redundant process with nitric oxide (NO), prostaglandins (PGs), and adenosine. We tested the hypothesis that KATP channels, alone or in combination with NO and PGs, regulate exercise hyperemia in forearm muscle. Eighteen healthy young adults performed 20 min of moderate dynamic forearm exercise, with forearm blood flow (FBF) measured via Doppler ultrasound. After steady-state FBF was achieved for 5 min (saline control), the KATP inhibitor glibenclamide (Glib) was infused into the brachial artery for 5 min (10 microg.dl(-1).min(-1)), followed by saline infusion during the final 10 min of exercise (n = 9). Exercise increased FBF from 71 +/- 11 to 239 +/- 24 ml/min, and FBF was not altered by 5 min of Glib. Systemic plasma Glib levels were above the therapeutic range, and Glib increased insulin levels by approximately 50%, whereas blood glucose was unchanged (88 +/- 2 vs. 90 +/- 2 mg/dl). In nine additional subjects, Glib was followed by combined infusion of NG-nitro-L-arginine methyl ester (L-NAME) plus ketorolac (to inhibit NO and PGs, respectively). As above, Glib had no effect on FBF but addition of L-NAME + ketorolac (i.e., triple blockade) reduced FBF by approximately 15% below steady-state exercise levels in seven of nine subjects. Interestingly, triple blockade in two subjects caused FBF to transiently and dramatically decrease. This was followed by an acute recovery of flow above steady-state exercise values. We conclude 1) opening of KATP channels is not obligatory for forearm exercise hyperemia, and 2) triple blockade of NO, PGs, and KATP channels does not reduce hyperemia more than the inhibition of NO and PGs in most subjects. However, some subjects are sensitive to triple blockade, but they are able to restore FBF acutely during exercise. Future studies are required to determine the nature of these compensatory mechanisms in the affected individuals.
Collapse
Affiliation(s)
- William G Schrage
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
20
|
Xiang L, Naik JS, Hodnett BL, Hester RL. Altered arachidonic acid metabolism impairs functional vasodilation in metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2005; 290:R134-8. [PMID: 16166209 DOI: 10.1152/ajpregu.00295.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies tested the hypothesis that in obese Zucker rats (OZRs), a model of metabolic syndrome, the impaired functional vasodilation is due to increased thromboxane receptor (TP)-mediated vasoconstriction and/or decreased prostacyclin-induced vasodilation. Spinotrapezius arcade arterioles from 12-wk-old lean (LZR) and OZR were chosen for microcirculatory observation. Arteriolar diameter (5 LZR and 6 OZR) was measured after 2 min of muscle stimulation in the absence or presence of 1 microM SQ-29548 (TP antagonist). Additionally, arteriolar diameter (6 for each group) was measured after application of iloprost (prostacyclin analog; 0.28, 2.8, and 28 microM), arachidonic acid (10 microM), and sodium nitroprusside (0.1, 1, and 10 microM) in the absence or presence of 1 microM SQ-29548. A 10 microM concentration of adenosine was used to induce a maximal dilation. Basal diameters were not different between LZRs and OZRs. Functional hyperemia and arachidonic acid-mediated vasodilations were significantly attenuated in OZR compared with LZR, and treatment with 1 microM SQ-29548 significantly enhanced the dilations in OZRs, although it had no effect in LZRs. Vasodilatory responses to iloprost and sodium nitroprusside (1 and 10 microM) were significantly reduced in OZR. Adenosine-mediated vasodilation was not different between groups. These results suggest that the impaired functional dilation in the OZR is due to an increased TP-mediated vasoconstriction and a decreased PGI2-induced vasodilation.
Collapse
Affiliation(s)
- Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
21
|
Harris NR, Whatley JR, Carter PR, Specian RD. Venular constriction of submucosal arterioles induced by dextran sodium sulfate. Inflamm Bowel Dis 2005; 11:806-13. [PMID: 16116314 DOI: 10.1097/01.mib.0000178262.95980.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Leukocyte and platelet adherence in postcapillary venules has been speculated to induce constriction of closely paired arterioles. This mechanism was investigated in the current study, in a model of intestinal inflammation induced by dextran sodium sulfate (DSS; 5,000 molecular weight). METHODS Closely paired, parallel arterioles and venules in the submucosa of the mouse intestine were observed using fluorescent intravital microscopy. Arterioles in control mice were compared to arterioles in mice given 5% DSS in drinking water for 11 days. RESULTS DSS induced an inflammatory response in which fluorescently labeled leukocytes and platelets were observed adhering to venules. Arterioles constricted and flow decreased significantly when the arterioles were paired with venules having adherent leukocytes and platelets, although the decreases in flow and diameter appeared to be more dependent on platelet than leukocyte adherence. No significant constriction was observed in arterioles paired with venules having minimal platelet adherence. Inhibition of thromboxane with 100 mg/kg ozagrel induced a significant dilation of arterioles in DSS mice that was absent in control mice. CONCLUSION The results are consistent with a proposed mechanism in which thromboxane constricts submucosal arterioles when the arterioles are closely paired with platelet-bearing venules in DSS-induced inflammation.
Collapse
Affiliation(s)
- Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE To test the hypothesis that active hyperemia is reduced in skeletal muscle of old rats due to a decreased bioavailability of prostanoids, which in turn is due to increased oxidative stress. METHODS The microvasculature of the spinotrapezius muscle of 3-, 12-, and 24-month male Sprague-Dawley rats was examined using in vivo videomicroscopy. Arteriolar diameter and centerline red cell velocity were measured in resting and contracting muscle. The effect of prostanoids was examined using indomethacin (10 microM), and passive resting arteriolar diameters were determined using adenosine (100 microM). Lipid peroxidation was assessed ex vivo by measuring tissue levels of malondialdehyde. RESULTS Arteriolar diameters and blood flow in resting muscle did not differ among the age groups, but increases in diameter and flow during muscle contraction in young rats were greater than in the two older age groups. Indomethacin did not affect resting arteriolar diameters and blood flow in 3- and 12-month rats, but significantly decreased both parameters in 24-month rats. Indomethacin had no effect on arteriolar diameter and blood flow responses during muscle contraction in any age group. Passive resting diameters of arterioles were significantly smaller in 12- and 24-month rats than in 3-month rats. Tissue levels of TBARS were not different among the three age groups. CONCLUSIONS Arteriolar tone and blood flow in resting skeletal muscle of rats is not altered with age, whereas the increases in these variables that normally accompany muscle contraction are markedly impaired during aging. Neither cyclooxygenase metabolites nor lipid peroxidation appear to be involved in this impairment.
Collapse
Affiliation(s)
- Leah W Hammer
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, 26506, USA.
| | | |
Collapse
|
23
|
Hammer LW, Overstreet CR, Choi J, Hester RL. ATP stimulates the release of prostacyclin from perfused veins isolated from the hamster hindlimb. Am J Physiol Regul Integr Comp Physiol 2003; 285:R193-9. [PMID: 12649128 DOI: 10.1152/ajpregu.00468.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-stimulated prostacyclin release from veins was investigated using epigastric veins isolated from hamsters. Veins were perfused with MOPS-buffered physiological salt solution (PSS). ATP was administered into the perfusate, and the bath solution (MOPS-PSS) was collected and assayed for the presence of the stable prostacyclin metabolite 6-keto-PGF1alpha. ATP (100 microM) resulted in reproducible increases in bath concentration from 73 +/- 22 to 279 +/- 50 pg/ml (P < 0.05, n = 5). This response was abolished by indomethacin (10 microM, P < 0.05). To ascertain whether the endothelium was the source of prostacyclin, endothelium was disrupted using air (n = 10) or deoxycholic acid (n = 6). Perfusion with air significantly reduced (P < 0.05) but did not completely abolish ATP-stimulated release of prostacyclin, while deoxycholic acid totally abolished the response (P < 0.05). The nonselective P2 receptor antagonist reactive blue 2 (100 microM) attenuated ATP-mediated release of prostacyclin but did not significantly alter ACh-stimulated release of prostacyclin. The nonselective adenosine receptor antagonist xanthine amine congener (1 microM) had no effect on ATP-stimulated release, and adenosine did not stimulate the release of prostacyclin. These results show that increases in intraluminal concentration of ATP stimulate abluminal release of prostacyclin from the venous endothelium. This effect is mediated by P2 receptors while adenosine and its receptors are not involved in this response.
Collapse
Affiliation(s)
- Leah W Hammer
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Venuloarteriolar signaling helps mediate microvascular function and dysfunction. Mediators produced at venular sites of inflammation appear to constrict arterioles and increase capillary permeability. In contrast, venules beneficially dilate arterioles to enhance capillary flow according to metabolic demand. These mechanisms are altered with cardiovascular risk factors, contributing to microvascular complications.
Collapse
Affiliation(s)
- Norman R Harris
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Nellore K, Harris NR. L-arginine and antineutrophil serum enable venular control of capillary perfusion in hypercholesterolemic rats. Microcirculation 2002; 9:477-85. [PMID: 12483545 DOI: 10.1038/sj.mn.7800162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 08/03/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate and counteract dysfunctional control of capillary flow in hypercholesterolemia. Capillary flow is controlled by arteriolar tone, which in turn is influenced by mediators released from closely paired venules in a mechanism that involves nitric oxide (NO). However, venular control of capillary flow is altered with hypercholesterolemia. METHODS Rats were given a normal or high-cholesterol diet before measurements of mesenteric capillary red blood cell velocity. The arteriolar pathway leading to the capillary was videotaped to measure the percent of the surrounding area (within 15 |gmm) that was occupied by a venule (% pairing). RESULTS Venule-paired arterioles were significantly smaller in hypercholesterolemia compared with normocholesterolemia, corresponding to slower capillary flow. A positive correlation between capillary velocity and % pairing observed in normocholesterolemia was not observed during NO synthase inhibition or in hypercholesterolemic rats. However, positive correlations between the two parameters were found in hypercholesterolemia when the rats were given drinking water supplementation of L-arginine or an injection of antineutrophil serum, both of which tended to improve velocity in capillaries branching from venule-paired arteriolar pathways. CONCLUSIONS Dysfunctional venular control of capillary perfusion in hypercholesterolemia may be a consequence of a neutrophil-mediated deficiency of NO.
Collapse
Affiliation(s)
- Kavitha Nellore
- Bioengineering Department, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
26
|
Abstract
During an increasing metabolic demand, as in exercise, the close venular-arteriolar pairing allows for diffusion of vasoactive substances from the venular blood to the arterioles. Adenosine triphosphate release from red blood cells may stimulate the venular endothelium to release vasoactive metabolites of arachidonic acid. The venous circulation is in an optimal position to provide a feedback regulation of arteriolar diameter.
Collapse
Affiliation(s)
- Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | |
Collapse
|
27
|
Hester RL, Hammer LW. Venular-arteriolar communication in the regulation of blood flow. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1280-5. [PMID: 11959667 DOI: 10.1152/ajpregu.00744.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle blood flow is regulated to meet the metabolic needs of the tissue. With the vasculature arranged as a successive branching of arterioles and the larger, >50 microm, arterioles providing the major site of resistance, an increasing metabolic demand requires the vasodilation of the small arterioles first then the vasodilation of the more proximal, larger arterioles. The mechanism(s) for the coordination of this ascending vasodilation are not clear and may involve a conducted vasodilation and/or a flow-dependent response. The close arteriolar-venular pairing provides an additional mechanism by which the arteriolar diameter can be increased due to the diffusion of vasoactive substances from the venous blood. Evidence is presented that the venular endothelium releases a relaxing factor, a metabolite of arachidonic acid, that will vasodilate the adjacent arteriole. The stimulus for this release is not known, but it is hypothesized that hypoxia-induced ATP release from red blood cells may be responsible for the stimulation of arachidonic release from the venular endothelial cells. Thus the venous circulation is in an optimal position to monitor the overall metabolic state of the tissue and thus provide a feedback regulation of arteriolar diameter.
Collapse
Affiliation(s)
- Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
28
|
Cohen KD, Sarelius IH. Muscle contraction under capillaries in hamster muscle induces arteriolar dilatation via K(ATP) channels and nitric oxide. J Physiol 2002; 539:547-55. [PMID: 11882686 PMCID: PMC2290146 DOI: 10.1113/jphysiol.2001.013388] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the hypothesis that adenosine and nitric oxide can be sensed by capillaries and are implicated in the remote arteriolar dilatation initiated by muscle contraction. We also explored a role for K(ATP) channel activity in this response. Small bundles of muscle fibres underlying a group of capillaries in cremaster muscles of anaesthetized hamsters were electrically stimulated to contract for 2 min at each of 2, 4 and 8 Hz. Diameter changes were measured in the inflow arteriole to the group of capillaries after muscle contraction in the presence or absence of 10(-6) M xanthine amine congener (XAC) to block A(1) and A(2) adenosine receptors, 10(-4) or 10(-3) M N(omega)-nitro-L-arginine (LNNA) to block nitric oxide production, or 10(-5) M glibenclamide to block K(ATP) channel activity. Dilatations were unchanged with XAC (3.0 +/- 0.5, 3.9 +/- 0.7 and 6.1 +/- 1.0 microm), but were significantly reduced with LNNA (to 1.8 +/- 0.6, 3.5 +/- 0.7 and 4.9 +/- 0.7 microm) or glibenclamide (to 0.4 +/- 0.3, 0.8 +/- 0.7 and 1.9 +/- 0.6 microm). Neither K(ATP) channel activity nor nitric oxide was required for transmission or manifestation of the dilator response. Thus, muscle contraction can be sensed by capillaries and the signalling mechanism for the ensuing remote dilatation depends on K(ATP) channel activity and on NO, but not adenosine. Local application of 10(-4) M adenosine, 10(-4) M sodium nitroprusside or 10(-5) M pinacidil directly to capillaries initiated remote arteriolar dilatations. Thus, capillaries can respond directly to known mediators of metabolic vasodilatation, but these signalling pathways are not invariably implicated in the response to muscle contraction.
Collapse
Affiliation(s)
- Kenneth D Cohen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|