1
|
Zhang Y, Zhang Z, Jiang G, Zhang C. Camk2n1 deficiency reduces the NaCl cotransporter activity through the CUL3/KLHL3/WNK4 complex in the kidney. Eur J Pharmacol 2025; 990:177270. [PMID: 39798916 DOI: 10.1016/j.ejphar.2025.177270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear. We generated Camk2n1-/- mice using the CRISPR/Cas9 system. Compared to controls, Camk2n1-/- mice exhibited consistently lower systolic blood pressure across all measured time points. Deletion of Camk2n1 resulted in decreased apical labeling of phosphorylated and total thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule. NCC phosphorylation is regulated by activated SPAK/OSR1 kinases, which act downstream of With-No-lysine (K) kinase (WNK). In Camk2n1-/- mice, the elevated abundances of key components of the Cullin 3 (CUL3) RING ubiquitin ligase, including neddylated CUL3 and the adaptor Kelch-like protein 3, promoted proteasomal degradation of WNK4. In renal tissues, Camk2n1 deletion led to increased mRNA and protein levels of ubiquitin-like modifier-activating enzyme 3 (UBA3) and ubiquitin-conjugating enzyme E2 (UBE2M). Conversely, Camk2n1 overexpression in HEK293 cells resulted in decreased levels of UBA3 and UBE2M, along with reduced CUL3 neddylation. Treatment with MLN4924 effectively suppressed CUL3 hyperneddylation and restored WNK4 levels in the kidneys of Camk2n1-/- mice. In summary, Camk2n1 deletion lowers blood pressure, likely by promoting WNK4 degradation through dysregulated CUL3 RING ubiquitin ligase activity, which leads to decreased NCC activity.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Moreno E, Pacheco-Alvarez D, Chávez-Canales M, Elizalde S, Leyva-Ríos K, Gamba G. Structure-function relationships in the sodium chloride cotransporter. Front Physiol 2023; 14:1118706. [PMID: 36998989 PMCID: PMC10043231 DOI: 10.3389/fphys.2023.1118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The thiazide sensitive Na+:Cl− cotransporter (NCC) is the principal via for salt reabsorption in the apical membrane of the distal convoluted tubule (DCT) in mammals and plays a fundamental role in managing blood pressure. The cotransporter is targeted by thiazide diuretics, a highly prescribed medication that is effective in treating arterial hypertension and edema. NCC was the first member of the electroneutral cation-coupled chloride cotransporter family to be identified at a molecular level. It was cloned from the urinary bladder of the Pseudopleuronectes americanus (winter flounder) 30 years ago. The structural topology, kinetic and pharmacology properties of NCC have been extensively studied, determining that the transmembrane domain (TM) coordinates ion and thiazide binding. Functional and mutational studies have discovered residues involved in the phosphorylation and glycosylation of NCC, particularly on the N-terminal domain, as well as the extracellular loop connected to TM7-8 (EL7-8). In the last decade, single-particle cryogenic electron microscopy (cryo-EM) has permitted the visualization of structures at high atomic resolution for six members of the SLC12 family (NCC, NKCC1, KCC1-KCC4). Cryo-EM insights of NCC confirm an inverted conformation of the TM1-5 and TM6-10 regions, a characteristic also found in the amino acid-polyamine-organocation (APC) superfamily, in which TM1 and TM6 clearly coordinate ion binding. The high-resolution structure also displays two glycosylation sites (N-406 and N-426) in EL7-8 that are essential for NCC expression and function. In this review, we briefly describe the studies related to the structure-function relationship of NCC, beginning with the first biochemical/functional studies up to the recent cryo-EM structure obtained, to acquire an overall view enriched with the structural and functional aspects of the cotransporter.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Karla Leyva-Ríos
- Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Phisiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Gerardo Gamba,
| |
Collapse
|
5
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
6
|
Nan J, Yuan Y, Yang X, Shan Z, Liu H, Wei F, Zhang W, Zhang Y. Cryo-EM structure of the human sodium-chloride cotransporter NCC. SCIENCE ADVANCES 2022; 8:eadd7176. [PMID: 36351028 PMCID: PMC9645730 DOI: 10.1126/sciadv.add7176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
The sodium-chloride cotransporter NCC mediates the coupled import of sodium and chloride across the plasma membrane, playing vital roles in kidney extracellular fluid volume and blood pressure control. Here, we present the full-length structure of human NCC, with 2.9 Å for the transmembrane domain and 3.8 Å for the carboxyl-terminal domain. NCC adopts an inward-open conformation and a domain-swap dimeric assembly. Conserved ion binding sites among the cation-chloride cotransporters and the Na2 site are observed in our structure. A unique His residue in the substrate pocket in NCC potentially interacts with Na1 and Cl1 and might also mediate the coordination of Na2 through a Ser residue. Putative observed water molecules are indicated to participate in the coordination of ions and TM coupling. Together with transport activity assays, our structure provides the first glimpse of NCC and defines ion binding sites, promoting drug development for hypertension targeting on NCC.
Collapse
Affiliation(s)
- Jing Nan
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuemei Yang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ziyang Shan
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Feiwen Wei
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Zhang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanqing Zhang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Moreno E, Plata C, Vazquez N, Oropeza-Víveros DM, Pacheco-Alvarez D, Rojas-Vega L, Olin-Sandoval V, Gamba G. The European and Japanese eel NaCl cotransporter β exhibit chloride currents and are resistant to thiazide type diuretics. Am J Physiol Cell Physiol 2022; 323:C385-C399. [PMID: 35759442 PMCID: PMC9359660 DOI: 10.1152/ajpcell.00213.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCa is located in the kidney and eNCCb, which is present in the apical membrane of the rectum. Interestingly, the European eNCCb functions as a NaCl cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCβ and jNCCβ are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCβ into jNCCβ. Our data showed that jNCCβ, similar to eNCCβ, is resistant to thiazides. In addition, both NCCβ proteins have high transport capacity with respect to their renal NCC orthologs, and in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCb proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl-, and site I172 is important for the function of NCCβ.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Norma Vazquez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan 14080 Mexico City, Mexico
| | - Dulce María Oropeza-Víveros
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | | | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Viridiana Olin-Sandoval
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan 14080 Mexico City, Mexico
| |
Collapse
|
8
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
9
|
Akpinar Gozetici M, Ersoy Dursun F, Dursun H. Three uncommon mutations of the SLC12A3 gene in gitelman syndrome: case reports and review of the literature. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gitelman syndrome is a rare autosomal recessive salt-wasting tubulopathy characterized by low potassium and magnesium levels in the blood, decreased excretion of calcium in the urine, and metabolic alkalosis. It is commonly caused by an inactivating mutation in the SLC12A3 gene (16q13), which encodes a thiazide-sensitive sodium chloride cotransporter. Here, we present three cases with the same clinical and laboratory findings that showed different mutations in the SLC12A3 gene.
Case presentation
Three children, a 14-year-old boy, a 7-year-old girl, and an 11-year-old boy, were admitted to our hospital at different times with nausea, weakness, muscle cramps in hands, and failure to thrive complaints. Blood tests showed hypokalemia, hypomagnesemia and metabolic alkalosis. Patients were referred to Pediatric Nephrology Clinic and diagnosed with Gitelman syndrome. Genetic tests of three cases showed homozygous mutations of c.1928C > T, p.Pro643Leu, c.248G > A, p.Arg83Gln, and c.1919A > G, p.N640S in the SLC12A3 gene exists, respectively. Potassium chloride, magnesium replacements, and indomethacin were given for treatment to patients. During follow-up, patients' heights and weights were increased dramatically, and nausea complaints were over.
Conclusion
Different mutations in the SLC12A3 gene in Gitelman syndrome can be detected but clinical, and laboratory findings were generally similar. Treatment with potassium, magnesium supplements, and indomethacin showed significant improvements in symptoms.
Collapse
|
10
|
Signal Transduction of Mineralocorticoid and Angiotensin II Receptors in the Central Control of Sodium Appetite: A Narrative Review. Int J Mol Sci 2021; 22:ijms222111735. [PMID: 34769164 PMCID: PMC8584094 DOI: 10.3390/ijms222111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone-sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II-sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen-activated protein kinase (MAPK) and inositol 1,4,5-thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation.
Collapse
|
11
|
Nuñez-Gonzalez L, Carrera N, Garcia-Gonzalez MA. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians. Int J Mol Sci 2021; 22:11414. [PMID: 34768847 PMCID: PMC8584233 DOI: 10.3390/ijms222111414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.
Collapse
Affiliation(s)
- Laura Nuñez-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Fundación Pública Galega de Medicina Xenomica—SERGAS, Complexo Hospitalario de Santiago de Compotela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Wan X, Perry J, Zhang H, Jin F, Ryan KA, Van Hout C, Reid J, Overton J, Baras A, Han Z, Streeten E, Li Y, Mitchell BD, Shuldiner AR, Fu M, on behalf of the Regeneron Genetics Center. Heterozygosity for a Pathogenic Variant in SLC12A3 That Causes Autosomal Recessive Gitelman Syndrome Is Associated with Lower Serum Potassium. J Am Soc Nephrol 2021; 32:756-765. [PMID: 33542107 PMCID: PMC7920171 DOI: 10.1681/asn.2020071030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Potassium levels regulate multiple physiologic processes. The heritability of serum potassium level is moderate, with published estimates varying from 17% to 60%, suggesting genetic influences. However, the genetic determinants of potassium levels are not generally known. METHODS A whole-exome sequencing association study of serum potassium levels in 5812 subjects of the Old Order Amish was performed. A dietary salt intervention in 533 Amish subjects estimated interaction between p.R642G and sodium intake. RESULTS A cluster of variants, spanning approximately 537 kb on chromosome 16q13, was significantly associated with serum potassium levels. Among the associated variants, a known pathogenic variant of autosomal recessive Gitelman syndrome (p.R642G SLC12A3) was most likely causal; there were no homozygotes in our sample. Heterozygosity for p.R642G was also associated with lower chloride levels, but not with sodium levels. Notably, p.R642G showed a novel association with lower serum BUN levels. Heterozygotes for p.R642G had a two-fold higher rate of self-reported bone fractures and had higher resting heart rates on a low-salt diet compared with noncarriers. CONCLUSIONS This study provides evidence that heterozygosity for a pathogenic variant in SLC12A3 causing Gitelman syndrome, a canonically recessive disorder, contributes to serum potassium concentration. The findings provide insights into SLC12A3 biology and the effects of heterozygosity on electrolyte homeostasis and related subclinical phenotypes that may have implications for personalized medicine and nutrition.
Collapse
Affiliation(s)
- Xuesi Wan
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland,Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - James Perry
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Haichen Zhang
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng Jin
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kathleen A. Ryan
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, New York
| | - Zhe Han
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth Streeten
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Braxton D. Mitchell
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Mao Fu
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
13
|
Alexandru M, Courbebaisse M, Le Pajolec C, Ménage A, Papon JF, Vargas-Poussou R, Nevoux J, Blanchard A. Investigation of Vestibular Function in Adult Patients with Gitelman Syndrome: Results of an Observational Study. J Clin Med 2020; 9:jcm9113790. [PMID: 33238651 PMCID: PMC7700665 DOI: 10.3390/jcm9113790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gitelman syndrome (GS) is a rare salt-losing tubulopathy caused by an inactivating mutation in the SLC12A3 gene, encoding the thiazide-sensitive sodium chloride cotransporter (NCC). Patients with GS frequently complain of vertigo, usually attributed to hypovolemia. Because NCC is also located in the endolymphatic sac, we hypothesized that patients with GS might have vestibular dysfunction. Between April 2013 and September 2016, 20 (22%) out of 90 patients followed at the reference center complained of vertigo in the absence of orthostatic hypotension. Sixteen of them were referred to an otology department for investigation of vestibular function. The vertigo was of short duration and triggered in half of them by head rotation. Seven patients (44%) had a vestibular syndrome. Vestibular syndrome was defined: (1) clinically, as nystagmus triggered by the head shaking test (n = 5); and/or (2) paraclinically, as an abnormal video head impulse test (n = 0), abnormal kinetic test (n = 4) and/or abnormal bithermal caloric test (n = 3). Five patients had associated auditory signs (tinnitus, aural fullness or hearing loss). In conclusion, we found a high frequency of vestibular disorder in GS patients suffering from vertigo, suggesting a role of NCC in the inner ear. Referent physicians of these patients should be aware of this extrarenal manifestation that requires specific investigations and treatment.
Collapse
Affiliation(s)
- Mihaela Alexandru
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Marie Courbebaisse
- AP-HP, Centre—Université de Paris, Hôpital Européen Georges-Pompidou, Service de Physiologie-Exploration Fonctionnelles Rénales, 75015 Paris, France;
- Faculté de Médecine Paris Descartes, Université de Paris, 75006 Paris, France
- INSERM, U1151-CNRS UMR8253, 75015 Paris, France
| | - Christine Le Pajolec
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Adeline Ménage
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Jean-François Papon
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
- Faculté de Médecine, Université Paris-Saclay, F-94275 Le Kremlin-Bicêtre, France
| | - Rosa Vargas-Poussou
- AP-HP, Centre—Université de Paris, Hôpital Européen Georges-Pompidou, Département de Génétique et Biologie Moléculaire, 75015 Paris, France;
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Jérôme Nevoux
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
- Faculté de Médecine, Université Paris-Saclay, F-94275 Le Kremlin-Bicêtre, France
- INSERM, U1120, Institut Pasteur, 75724 Paris CEDEX 15, France
- Correspondence: (J.N.); (A.B.); Tel.: +33-1-4521-3688 (J.N.); +33-1-5609-2913 (A.B.)
| | - Anne Blanchard
- Faculté de Médecine Paris Descartes, Université de Paris, 75006 Paris, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), Hôpital Européen Georges-Pompidou, 75015 Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Centre d’Investigation Clinique 1418, 75015 Paris, France
- Correspondence: (J.N.); (A.B.); Tel.: +33-1-4521-3688 (J.N.); +33-1-5609-2913 (A.B.)
| |
Collapse
|
14
|
Oba T, Kobayashi S, Nakamura Y, Nagao M, Nozu K, Fukuda I, Iijima K, Sugihara H. A Case of Gitelman Syndrome that Was Difficult to Distinguish from Hypokalemic Periodic Paralysis Caused by Graves' Disease. J NIPPON MED SCH 2019; 86:301-306. [PMID: 31105122 DOI: 10.1272/jnms.jnms.2019_86-505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 21-year-old man presented with hyperthyroidism and hypokalemia and was treated for thyrotoxic hypokalemic periodic paralysis caused by Graves' disease. Thyroid function soon normalized but hypokalemia persisted. Laboratory data revealed hyperreninemic hyperaldosteronism and metabolic alkalosis consistent with Gitelman Syndrome. The patient was found to have a previously unreported compound heterozygous mutation of T180K and L858H in the SLC12A3 gene, and Gitelman Syndrome was diagnosed. He was started on eplerenone to control serum potassium level. Alternative diagnoses should be considered when electrolyte imbalances persist after disease resolution.
Collapse
Affiliation(s)
- Takeshi Oba
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| | - Shunsuke Kobayashi
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| | - Yuko Nakamura
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| | - Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine
| | - Izumi Fukuda
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
15
|
Blanchard A, Vallet M, Dubourg L, Hureaux M, Allard J, Haymann JP, de la Faille R, Arnoux A, Dinut A, Bergerot D, Becker PH, Courand PY, Baron S, Houillier P, Tack I, Devuyst O, Jeunemaitre X, Azizi M, Vargas-Poussou R. Resistance to Insulin in Patients with Gitelman Syndrome and a Subtle Intermediate Phenotype in Heterozygous Carriers: A Cross-Sectional Study. J Am Soc Nephrol 2019; 30:1534-1545. [PMID: 31285285 DOI: 10.1681/asn.2019010031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gitelman syndrome is a salt-losing tubulopathy caused by mutations in the SLC12A3 gene, which encodes the thiazide-sensitive sodium-chloride cotransporter. Previous studies suggested an intermediate phenotype for heterozygous carriers. METHODS To evaluate the phenotype of heterozygous carriers of pathogenic SLC12A3 mutations, we performed a cross-sectional study of patients with Gitelman syndrome, heterozygous carriers, and healthy noncarriers. Participants measured their BP at home for three consecutive days before hospital admission for blood and urine sampling and an oral glucose tolerance test. RESULTS We enrolled 242 participants, aged 18-75 years, including 81 heterozygous carriers, 82 healthy noncarriers, and 79 patients with Gitelman syndrome. The three groups had similar age, sex ratio, and body mass index. Compared with healthy noncarriers, heterozygous carriers showed significantly higher serum calcium concentration (P=0.01) and a trend for higher plasma aldosterone (P=0.06), but measures of home BP, plasma and urine electrolytes, renin, parathyroid hormone, vitamin D, and response to oral glucose tolerance testing were similar. Patients with Gitelman syndrome had lower systolic BP and higher heart rate than noncarriers and heterozygote carriers; they also had significantly higher fasting serum glucose concentration, higher levels of markers of insulin resistance, and a three-fold higher sensitivity to overweight. According to oral glucose tolerance testing, approximately 14% of patients with Gitelman syndrome were prediabetic, compared with 5% of heterozygous carriers and 4% of healthy noncarriers. CONCLUSIONS Heterozygous carriers had a weak intermediate phenotype, between that of healthy noncarriers and patients with Gitelman syndrome. Moreover, the latter are at risk for development of type 2 diabetes, indicating the heightened importance of body weight control in these patients.
Collapse
Affiliation(s)
- Anne Blanchard
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Marion Vallet
- Department of Physiological Functional Investigations, Université Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - Laurence Dubourg
- Department of Physiological Functional Investigations, Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marguerite Hureaux
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Genetics
| | - Julien Allard
- Department of Nephrology, Hôpital Dupuytren, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Clinical Investigations Center-1435, Institut National de la Santé et de la Recherche Médicale, Limoges, France
| | - Jean-Philippe Haymann
- Department of Physiological Functional Investigations, Hôpital Tenon, Assistance Publique Hôpitaux des Hôpitaux de Paris, Paris, France.,Faculty of Medicine, Université Pierre et Marie Curie, Paris, France.,Unité Mixte de Recherche_S 1155, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Renaud de la Faille
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Arnoux
- Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Clinical Research Unit, and
| | - Aurelie Dinut
- Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Clinical Research Unit, and
| | - Damien Bergerot
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Pierre-Hadrien Becker
- Department of Biochemistry, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Pierre-Yves Courand
- Clinical Investigations Center.,Department of Cardiology, Croix-Rousse and Lyon-Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphanie Baron
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Physiological Functional Investigations, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pascal Houillier
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Physiological Functional Investigations, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ivan Tack
- Department of Physiological Functional Investigations, Université Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium; and
| | - Xavier Jeunemaitre
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Genetics.,Unité Mixte de Recherche_970, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Michel Azizi
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | |
Collapse
|
16
|
Affiliation(s)
- David H Ellison
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; .,Renal Section, VA Portland Health Care System, Portland, Oregon; and
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Zhong F, Ying H, Jia W, Zhou X, Zhang H, Guan Q, Xu J, Fang L, Zhao J, Xu C. Characteristics and Follow-Up of 13 pedigrees with Gitelman syndrome. J Endocrinol Invest 2019; 42:653-665. [PMID: 30413979 PMCID: PMC6531408 DOI: 10.1007/s40618-018-0966-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023]
Abstract
CONTEXT Gitelman syndrome (GS) is clinically heterogeneous. The genotype and phenotype correlation has not been well established. Though the long-term prognosis is considered to be favorable, hypokalemia is difficult to cure. OBJECTIVE To analyze the clinical and genetic characteristics and treatment of all members of 13 GS pedigrees. METHODS Thirteen pedigrees (86 members, 17 GS patients) were enrolled. Symptoms and management, laboratory findings, and genotype-phenotype associations among all the members were analyzed. RESULTS The average ages at onset and diagnosis were 27.6 ± 10.2 years and 37.9 ± 11.6 years, respectively. Males were an average of 10 years younger and exhibited more profound hypokalemia than females. Eighteen mutations were detected. Two novel mutations (p.W939X, p.G212S) were predicted to be pathogenic by bioinformatic analysis. GS patients exhibited the lowest blood pressure, serum K+, Mg2+, and 24-h urinary Ca2+ levels. Although blood pressure, serum K+ and Mg2+ levels were normal in heterozygous carriers, 24-h urinary Na+ excretion was significantly increased. During follow-up, only 41.2% of patients reached a normal serum K+ level. Over 80% of patients achieved a normal Mg2+ level. Patients were taking 2-3 medications at higher doses than usual prescription to stabilize their K+ levels. Six patients were taking spironolactone simultaneously, but no significant elevation in the serum K+ level was observed. CONCLUSION The phenotypic variability of GS and therapeutic strategies deserve further research to improve GS diagnosis and prognosis. Even heterozygous carriers exhibited increased 24-h Na+ urine excretion, which may make them more susceptible to diuretic-induced hypokalemia.
Collapse
Affiliation(s)
- F Zhong
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - H Ying
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - W Jia
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - X Zhou
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - H Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - Q Guan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - J Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - L Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China
| | - J Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China.
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China.
| | - C Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan, 250021, Shandong, China.
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, Shandong, China.
| |
Collapse
|
18
|
Structure-function relationships in the renal NaCl cotransporter (NCC). CURRENT TOPICS IN MEMBRANES 2019; 83:177-204. [PMID: 31196605 DOI: 10.1016/bs.ctm.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties. Additionally, we report the cloning and characterization of the NCC from the spiny dogfish (Squalus acanthias) kidney (sNCC). The purpose of the present study was to determine the main functional, pharmacological and regulatory properties of sNCC to make a direct comparison with other NCC orthologous. The sNCC cRNA encodes a 1033 amino acid membrane protein, when expressed in Xenopus oocytes, functions as a thiazide-sensitive Na-Cl cotransporter with NCC regulation and thiazide-inhibition properties similar to mammals, rather than to teleosts. However, the Km values for ion transport kinetics are significantly higher than those observed in the mammal species. In summary, we present a review on NCC structure-function relationships with the addition of the sNCC information in order to enrich the NCC cotransporter knowledge.
Collapse
|
19
|
Başer H, Topaloğlu O, Çakır B. A Rare Reason of Hypokalemia in a Hyperthyroid Patient: Gitelman Syndrome. ANKARA MEDICAL JOURNAL 2018. [DOI: 10.17098/amj.461663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Ostrosky-Frid M, Castañeda-Bueno M, Gamba G. Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals. Am J Physiol Renal Physiol 2018; 316:F146-F158. [PMID: 30089030 DOI: 10.1152/ajprenal.00288.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.
Collapse
Affiliation(s)
- Mauricio Ostrosky-Frid
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
21
|
Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. J Cardiol 2018; 72:42-49. [PMID: 29544657 DOI: 10.1016/j.jjcc.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
High salt intake is one of the major dietary determinants of hypertension and cardiovascular disease in Japan and throughout the world. Although dietary salt restriction may be of clinical benefit in salt-sensitive individuals, many individuals may not wish, or be able to, reduce their intake of salt. Thus, identification of functional foods that can help protect against mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable medical and scientific interest. According to the "vasodysfunction" theory of salt-induced hypertension, the hemodynamic abnormality initiating salt-induced increases in blood pressure usually involves subnormal vasodilation and abnormally increased vascular resistance in response to increased salt intake. Because disturbances in nitric oxide activity can contribute to subnormal vasodilator responses to increased salt intake that often mediate blood pressure salt sensitivity, increased intake of functional foods that support nitric oxide activity may help to reduce the risk for salt-induced hypertension. Mounting evidence indicates that increased consumption of traditional Japanese vegetables and other vegetables with high nitrate content such as table beets and kale can promote the formation of nitric oxide through an endothelial independent pathway that involves reduction of dietary nitrate to nitrite and nitric oxide. In addition, recent studies in animal models have demonstrated that modest increases in nitrate intake can protect against the initiation of salt-induced hypertension. These observations are: (1) consistent with the view that increased intake of many traditional Japanese vegetables and other nitrate rich vegetables, and of functional foods derived from such vegetables, may help maintain healthy blood pressure despite a high salt diet; (2) support government recommendations to increase vegetable intake in the Japanese population.
Collapse
|
22
|
Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, Ellison DH, Karet Frankl FE, Knoers NVAM, Konrad M, Lin SH, Vargas-Poussou R. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017; 91:24-33. [PMID: 28003083 DOI: 10.1016/j.kint.2016.09.046] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Gitelman syndrome (GS) is a rare, salt-losing tubulopathy characterized by hypokalemic metabolic alkalosis with hypomagnesemia and hypocalciuria. The disease is recessively inherited, caused by inactivating mutations in the SLC12A3 gene that encodes the thiazide-sensitive sodium-chloride cotransporter (NCC). GS is usually detected during adolescence or adulthood, either fortuitously or in association with mild or nonspecific symptoms or both. The disease is characterized by high phenotypic variability and a significant reduction in the quality of life, and it may be associated with severe manifestations. GS is usually managed by a liberal salt intake together with oral magnesium and potassium supplements. A general problem in rare diseases is the lack of high quality evidence to inform diagnosis, prognosis, and management. We report here on the current state of knowledge related to the diagnostic evaluation, follow-up, management, and treatment of GS; identify knowledge gaps; and propose a research agenda to substantiate a number of issues related to GS. This expert consensus statement aims to establish an initial framework to enable clinical auditing and thus improve quality control of care.
Collapse
Affiliation(s)
- Anne Blanchard
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique, Paris, France; Centre d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; UMR 970, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, UK; Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, UK
| | - Davide Bolignano
- Institute of Clinical Physiology, National Research Council, Reggio, Calabria, Italy
| | - Lorenzo A Calò
- Department of Medicine, Nephrology, University of Padova, Padova, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health and Science University, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Fiona E Karet Frankl
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals National Health Service Trust, Cambridge, UK; Division of Renal Medicine, University of Cambridge and Cambridge University Hospitals National Health Service Trust, Cambridge, UK
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Rosa Vargas-Poussou
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France
| |
Collapse
|
23
|
Mehta V. Addictive salt may not be solely responsible for causing hypertension: A sweet and fatty hypothesis. HIPERTENSION Y RIESGO VASCULAR 2017; 35:S1889-1837(17)30060-0. [PMID: 28927660 DOI: 10.1016/j.hipert.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Abstract
In literature, since many decades, it is often believed and condoned that excessive common salt (Nacl) ingestion can lead to hypertension. Hence, every health organisation, agencies and physicians have been advising salt restriction to hypertensive patients. However, there is no concrete evidence suggesting that salt restriction can reduce the risk of hypertension (HTN). The present article is based on the current literature search which was performed using MEDLINE, EMBASE, Google Scholar and PubMed. The meta-analysis, randomised control trials, clinical trials and review articles were chosen. The present review article suggests that consumption of high salt diet does not lead to hypertension and there are other factors which can lead to hypertension, sugar and fats being the main reasons. Salt can however lead to addiction and generally, these salty food items have a larger proportion of sugar and fats, which if over-consumed has a potential to cause obesity, hyperlipidaemia and subsequently, hypertension and other cardiovascular disorders. Hence, through the present review, I would like to suggest all the physicians to ask the hypertensive patients to cut down the intake of sugar and fat containing food items and keep a check on addiction of salty food items.
Collapse
Affiliation(s)
- V Mehta
- Mount Sinai Hospital, New York, US; MGM Medical College, Navi Mumbai, India.
| |
Collapse
|
24
|
Ellison DH. Treatment of Disorders of Sodium Balance in Chronic Kidney Disease. Adv Chronic Kidney Dis 2017; 24:332-341. [PMID: 29031361 DOI: 10.1053/j.ackd.2017.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
Abstract
Extracellular fluid volume expansion is nearly universal in patients with CKD. Such volume expansion has features similar to the syndrome of heart failure with preserved ejection fraction, which not only leads to symptoms but can also lead to further organ damage. Unique treatment challenges are present in this patient population, including low glomerular filtration, which limits sodium chloride filtration, intrinsic tubule predisposition to sodium chloride retention, and proteinuria. In addition, pharmacokinetic considerations alter the disposition of diuretics in patients with CKD and nephrotic syndrome. Maintaining extracellular fluid volume near to normal is often necessary for hypertension treatment in this population, but it may also help prevent progressive cardiovascular and kidney damage. Although powerful diuretics can often accomplish this goal, this often comes at a cost of competing adverse effects. An approach to reduce extracellular fluid volume while avoiding adverse effects, therefore, requires a nuanced yet aggressive therapeutic approach.
Collapse
|
25
|
Gu X, Su Z, Chen M, Xu Y, Wang Y. Acquired Gitelman syndrome in a primary Sjögren syndrome patient with a SLC12A3 heterozygous mutation: A case report and literature review. Nephrology (Carlton) 2017; 22:652-655. [PMID: 28685938 PMCID: PMC6099516 DOI: 10.1111/nep.13045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Acquired Gitelman's syndrome (GS) associated with Sjögren syndrome (SS) is rare. A 50-year-old woman was admitted to our department because of nausea, acratia and sicca complex. Laboratory tests after admission showed renal failure, hypokalaemia, metabolic alkalosis, hypomagnesaemia and hypocalciuria, all of which met the diagnostic criteria for GS. Diagnostic evaluation identified primary SS as the cause of the acquired GS. Light microscopy of the renal tissue from the patient showed severe membranoproliferative glomerunephritis and tubulointerstitial nephritis. Immunohistochemical staining of the renal tissue showed the absence of sodium-chloride co-transporter (NCCT) in distal convoluted tubules. Genetic analysis of chromosomal DNA extracted from the patient's peripheral blood showed SLC12A3 gene heterozygous mutation. The reported case was comprehensively analyzed on the basis of the clinical features, and laboratory, pathological and genetic test findings. The patient has achieved a complete remission after meticulous care and appropriate treatment.
Collapse
Affiliation(s)
- Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zheling Su
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
26
|
DiNicolantonio JJ, Mehta V, O'Keefe JH. Is Salt a Culprit or an Innocent Bystander in Hypertension? A Hypothesis Challenging the Ancient Paradigm. Am J Med 2017; 130:893-899. [PMID: 28373112 DOI: 10.1016/j.amjmed.2017.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
For decades the notion that an excessive consumption of salt (NaCl) leads to hypertension has persisted. However, this idea is based on opinion, not scientific proof. Despite this, every health organization, agency, and clinicians around the world have been advising salt restriction, especially to hypertensive patients. The present review article suggests that the consumption of a high-salt diet is not the cause of hypertension and that there are other factors, such as added sugars, which are causative for inducing hypertension and cardiovascular disease.
Collapse
Affiliation(s)
| | - Varshil Mehta
- Mount Sinai Hospital, New York, NY; MGM Medical College, Navi Mumbai, India
| | | |
Collapse
|
27
|
Alshahrani S, Rapoport RM, Zahedi K, Jiang M, Nieman M, Barone S, Meredith AL, Lorenz JN, Rubinstein J, Soleimani M. The non-diuretic hypotensive effects of thiazides are enhanced during volume depletion states. PLoS One 2017; 12:e0181376. [PMID: 28719636 PMCID: PMC5515454 DOI: 10.1371/journal.pone.0181376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Thiazide derivatives including Hydrochlorothiazide (HCTZ) represent the most common treatment of mild to moderate hypertension. Thiazides initially enhance diuresis via inhibition of the kidney Na+-Cl- Cotransporter (NCC). However, chronic volume depletion and diuresis are minimal while lowered blood pressure (BP) is maintained on thiazides. Thus, a vasodilator action of thiazides is proposed, likely via Ca2+-activated K+ (BK) channels in vascular smooth muscles. This study ascertains the role of volume depletion induced by salt restriction or salt wasting in NCC KO mice on the non-diuretic hypotensive action of HCTZ. HCTZ (20mg/kg s.c.) lowered BP in 1) NCC KO on a salt restricted diet but not with normal diet; 2) in volume depleted but not in volume resuscitated pendrin/NCC dKO mice; the BP reduction occurs without any enhancement in salt excretion or reduction in cardiac output. HCTZ still lowered BP following treatment of NCC KO on salt restricted diet with paxilline (8 mg/kg, i.p.), a BK channel blocker, and in BK KO and BK/NCC dKO mice on salt restricted diet. In aortic rings from NCC KO mice on normal and low salt diet, HCTZ did not alter and minimally decreased maximal phenylephrine contraction, respectively, while contractile sensitivity remained unchanged. These results demonstrate 1) the non-diuretic hypotensive effects of thiazides are augmented with volume depletion and 2) that the BP reduction is likely the result of HCTZ inhibition of vasoconstriction through a pathway dependent on factors present in vivo, is unrelated to BK channel activation, and involves processes associated with intravascular volume depletion.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Robert M. Rapoport
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Kamyar Zahedi
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Min Jiang
- Division of Cardiology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Michelle Nieman
- Department of Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Sharon Barone
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - John N. Lorenz
- Department of Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Jack Rubinstein
- Division of Cardiology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Manoocher Soleimani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kompatscher A, de Baaij JHF, Aboudehen K, Hoefnagels APWM, Igarashi P, Bindels RJM, Veenstra GJC, Hoenderop JGJ. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney Int 2017; 92:1145-1156. [PMID: 28577853 DOI: 10.1016/j.kint.2017.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 1 homeobox B (HNF1β) is an essential transcription factor for the development and functioning of the kidney. Mutations in HNF1β cause autosomal dominant tubulointerstitial kidney disease characterized by renal cysts and maturity-onset diabetes of the young (MODY). Moreover, these patients suffer from a severe electrolyte phenotype consisting of hypomagnesemia and hypokalemia. Until now, genes that are regulated by HNF1β are only partially known and do not fully explain the phenotype of the patients. Therefore, we performed chIP-seq in the immortalized mouse kidney cell line mpkDCT to identify HNF1β binding sites on a genome-wide scale. In total 7,421 HNF1β-binding sites were identified, including several genes involved in electrolyte transport and diabetes. A highly specific and conserved HNF1β site was identified in the promoter of Kcnj16 that encodes the potassium channel Kir5.1. Luciferase-promoter assays showed a 2.2-fold increase in Kcnj16 expression when HNF1β was present. Expression of the Hnf1β p.Lys156Glu mutant, previously identified in a patient with autosomal dominant tubulointerstitial kidney disease, did not activate Kcnj16 expression. Knockdown of Hnf1β in mpkDCT cells significantly reduced the appearance of Kcnj16 (Kir5.1) and Kcnj10 (Kir4.1) by 38% and 37%, respectively. These results were confirmed in a HNF1β renal knockout mouse which exhibited downregulation of Kcnj16, Kcnj10 and Slc12a3 transcripts in the kidney by 78%, 83% and 76%, respectively, compared to HNF1β wild-type mice. Thus, HNF1β is a transcriptional activator of Kcnj16. Hence, patients with HNF1β mutations may have reduced Kir5.1 activity in the kidney, resulting in hypokalemia and hypomagnesemia.
Collapse
Affiliation(s)
- Andreas Kompatscher
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Anke P W M Hoefnagels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gertjan J C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
29
|
Gollasch B, Anistan YM, Canaan-Kühl S, Gollasch M. Late-onset Bartter syndrome type II. Clin Kidney J 2017; 10:594-599. [PMID: 28979772 PMCID: PMC5622898 DOI: 10.1093/ckj/sfx033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the ROMK1 potassium channel gene (KCNJ1) cause antenatal/neonatal Bartter syndrome type II (aBS II), a renal disorder that begins in utero, accounting for the polyhydramnios and premature delivery that is typical in affected infants, who develop massive renal salt wasting, hypokalaemic metabolic alkalosis, secondary hyperreninaemic hyperaldosteronism, hypercalciuria and nephrocalcinosis. This BS type is believed to represent a disorder of the infancy, but not in adulthood. We herein describe a female patient with a remarkably late-onset and mild clinical manifestation of BS II with compound heterozygous KCNJ1 missense mutations, consisting of a novel c.197T > A (p.I66N) and a previously reported c.875G > A (p.R292Q) KCNJ1 mutation. We implemented and evaluated the performance of two different bioinformatics-based approaches of targeted massively parallel sequencing [next generation sequencing (NGS)] in defining the molecular diagnosis. Our results demonstrate that aBS II may be suspected in patients with a late-onset phenotype. Our experimental approach of NGS-based mutation screening combined with Sanger sequencing proved to be a reliable molecular approach for defining the clinical diagnosis in our patient, and results in important differential diagnostic and therapeutic implications for patients with BS. Our results could have a significant impact on the diagnosis and methodological approaches of genetic testing in other patients with clinical unclassified phenotypes of nephrocalcinosis and congenital renal electrolyte abnormalities.
Collapse
Affiliation(s)
- Benjamin Gollasch
- Franz Volhard Clinical Research Center at the Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association of National Research Centers, Berlin, Germany
| | - Yoland-Marie Anistan
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association of National Research Centers, Berlin, Germany
| | - Sima Canaan-Kühl
- Medical Clinic for Nephrology and Internal Intensive Care, Campus Virchow, Charité University Medicine, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association of National Research Centers, Berlin, Germany.,Medical Clinic for Nephrology and Internal Intensive Care, Campus Virchow, Charité University Medicine, Berlin, Germany
| |
Collapse
|
30
|
Lee M, Kim DI, Lee KH, Byun JH, Hwang J, Hwang WM, Yun SR, Yoon SH. HELLP syndrome in a pregnant patient with Gitelman syndrome. Kidney Res Clin Pract 2017; 36:95-99. [PMID: 28393002 PMCID: PMC5331980 DOI: 10.23876/j.krcp.2017.36.1.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/04/2022] Open
Abstract
Gitelman syndrome is characterized by hypokalemia, metabolic alkalosis, hypocalciuria, and hypomagnesemia. The clinical course of Gitelman syndrome in pregnant women remains unclear, but it is thought to be benign. We report here the first Korean case of atypical eclampsia in a 31-year-old who was diagnosed with Gitelman syndrome incidentally during an antenatal screening test. The patient did well during pregnancy despite significant hypokalemia. At 33 weeks' gestation, the patient exhibited eclampsia, hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome, and renal insufficiency without significant hypertension or proteinuria. We explain this unusual clinical course through a review of the relevant literature.
Collapse
Affiliation(s)
- Minhyeok Lee
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Il Kim
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Kyung-Ho Lee
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Jun-Hyun Byun
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Jiyong Hwang
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Won-Min Hwang
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Sung-Ro Yun
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Se-Hee Yoon
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
31
|
Xia MF, Bian H, Liu H, Wu HJ, Zhang ZG, Lu ZQ, Gao X. Hypokalemia, hypomagnesemia, hypocalciuria, and recurrent tetany: Gitelman syndrome in a Chinese pedigree and literature review. Clin Case Rep 2017; 5:578-586. [PMID: 28469853 PMCID: PMC5412754 DOI: 10.1002/ccr3.874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Gitelman syndrome is an autosomal recessive disease mostly associated with loss‐of‐function mutations of the SLC12A3 gene and featured by clinical hypokalemia, hypomagnesemia, hypocalciuria, and histologically hypertrophy of the juxtaglomerular apparatus. A novel homozygous mutation (p.Arg399Pro) at the extracellular domain of SLC12A3 was found and correlated with the severe clinical manifestations.
Collapse
Affiliation(s)
- Ming-Feng Xia
- Department of Endocrinology and Metabolism Zhongshan Hospital Fudan University Shanghai China
| | - Hua Bian
- Department of Endocrinology and Metabolism Zhongshan Hospital Fudan University Shanghai China
| | - Hong Liu
- Department of Nephrology Zhongshan Hospital Fudan University Shanghai China
| | - Hui-Juan Wu
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Zhi-Gang Zhang
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Zhi-Qiang Lu
- Department of Endocrinology and Metabolism Zhongshan Hospital Fudan University Shanghai China
| | - Xin Gao
- Department of Endocrinology and Metabolism Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
32
|
van der Merwe PDT, Rensburg MA, Haylett WL, Bardien S, Davids MR. Gitelman syndrome in a South African family presenting with hypokalaemia and unusual food cravings. BMC Nephrol 2017; 18:38. [PMID: 28125972 PMCID: PMC5270235 DOI: 10.1186/s12882-017-0455-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gitelman syndrome (GS) is an autosomal recessive renal tubular disorder characterised by renal salt wasting with hypokalaemia, metabolic alkalosis, hypomagnesaemia and hypocalciuria. It is caused by mutations in SLC12A3 encoding the sodium-chloride cotransporter on the apical membrane of the distal convoluted tubule. We report a South African family with five affected individuals presenting with hypokalaemia and unusual food cravings. METHODS The affected individuals and two unaffected first degree relatives were enrolled into the study. Phenotypes were evaluated through history, physical examination and biochemical analysis of blood and urine. Mutation screening was performed by sequencing of SLC12A3, and determining the allele frequencies of the sequence variants found in this family in 117 ethnically matched controls. RESULTS The index patient, her sister, father and two aunts had a history of severe salt cravings, fatigue and tetanic episodes, leading to consumption of large quantities of salt and vinegar. All affected individuals demonstrated hypokalaemia with renal potassium wasting. Genetic analysis revealed that the pseudo-dominant pattern of inheritance was due to compound heterozygosity with two novel mutations: a S546G substitution in exon 13, and insertion of AGCCCC at c.1930 in exon 16. These variants were present in the five affected individuals, but only one variant each in the unaffected family members. Neither variant was found in any of the controls. CONCLUSIONS The diagnosis of GS was established in five members of a South African family through clinical assessment, biochemical analysis and mutation screening of the SLC12A3 gene, which identified two novel putative pathogenic mutations.
Collapse
Affiliation(s)
- Pieter Du Toit van der Merwe
- Division of Nephrology, Department of Medicine, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Megan A Rensburg
- Division of Chemical Pathology, Stellenbosch University and National Health Laboratory Service, Cape Town, South Africa
| | - William L Haylett
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - M Razeen Davids
- Division of Nephrology, Department of Medicine, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
33
|
NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem 2016; 73:199-205. [PMID: 27909897 DOI: 10.1007/s13105-016-0539-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023]
Abstract
Increased renal reabsorption of sodium is a significant risk factor in hypertension. An established clinical marker for essential hypertension is elevated sodium lithium countertransport (SLC) activity. NHA2 is a newly identified Na+(Li+)/H+ antiporter with potential genetic links to hypertension, which has been shown to mediate SLC activity and H+-coupled Na+(Li+) efflux in kidney-derived MDCK cells. To evaluate a putative role in sodium homeostasis, we determined the effect of dietary salt on NHA2. In murine kidney sections, NHA2 localized apically to distal convoluted (both DCT1 and 2) and connecting tubules, partially overlapping in distribution with V-ATPase, AQP2, and NCC1 transporters. Mice fed a diet high in sodium chloride showed elevated transcripts and expression of NHA2 protein. We propose a model in which NHA2 plays a dual role in salt reabsorption or secretion, depending on the coupling ion (sodium or protons). The identified novel regulation of Na+/H+ antiporter in the kidney suggests new roles in salt homeostasis and disease.
Collapse
|
34
|
Blowey DL. Diuretics in the treatment of hypertension. Pediatr Nephrol 2016; 31:2223-2233. [PMID: 26983630 DOI: 10.1007/s00467-016-3334-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/12/2023]
Abstract
Diuretics have long been used for the treatment of hypertension. Thiazide diuretics are the most commonly prescribed diuretics for hypertension, but other classes of diuretics may be useful in alternative circumstances. Although diuretics are no longer considered the preferred agent for treatment of hypertension in adults and children, they remain acceptable first-line options. Diuretics effectively decrease blood pressure in hypertensive patients, and in adults with hypertension reduce the risk of adverse cardiovascular outcomes. Because of varied pharmacokinetic and pharmacodynamic differences, chlorthalidone may be the preferred thiazide diuretic in the treatment of primary hypertension. Other types of diuretics (e.g., loop, potassium sparing) may be useful for the treatment of hypertension related to chronic kidney disease (CKD) and other varied conditions. Common side effects of thiazides are mostly dose-related and involve electrolyte and metabolic abnormalities.
Collapse
Affiliation(s)
- Douglas L Blowey
- Pediatrics and Pharmacology, Division of Pediatric Nephrology, Children's Mercy Hospital, University of Missouri, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| |
Collapse
|
35
|
Santos F, Gil-Peña H, Blázquez C, Coto E. Gitelman syndrome: a review of clinical features, genetic diagnosis and therapeutic management. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1223542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016; 90:965-973. [PMID: 27546606 DOI: 10.1016/j.kint.2016.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022]
Abstract
It is widely held that in response to high salt diets, normal individuals are acutely and chronically resistant to salt-induced hypertension because they rapidly excrete salt and retain little of it so that their blood volume, and therefore blood pressure, does not increase. Conversely, it is also widely held that salt-sensitive individuals develop salt-induced hypertension because of an impaired renal capacity to excrete salt that causes greater salt retention and blood volume expansion than that which occurs in normal salt-resistant individuals. Here we review results of both acute and chronic salt-loading studies that have compared salt-induced changes in sodium retention and blood volume between normal subjects (salt-resistant normotensive control subjects) and salt-sensitive subjects. The results of properly controlled studies strongly support an alternative view: during acute or chronic increases in salt intake, normal salt-resistant subjects undergo substantial salt retention and do not excrete salt more rapidly, retain less sodium, or undergo lesser blood volume expansion than do salt-sensitive subjects. These observations: (i) directly conflict with the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension, and (ii) have implications for contemporary understanding of how various genetic, immunologic, and other factors determine acute and chronic blood pressure responses to high salt diets.
Collapse
|
37
|
The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 2016; 473:3237-52. [PMID: 27422782 DOI: 10.1042/bcj20160312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
Collapse
|
38
|
Garneau AP, Marcoux AA, Noël M, Frenette-Cotton R, Drolet MC, Couet J, Larivière R, Isenring P. Ablation of Potassium-Chloride Cotransporter Type 3 (Kcc3) in Mouse Causes Multiple Cardiovascular Defects and Isosmotic Polyuria. PLoS One 2016; 11:e0154398. [PMID: 27166674 PMCID: PMC4864296 DOI: 10.1371/journal.pone.0154398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Inactivation of Kcc3 in a mixed 129/Sv×C57BL/6 mouse background has been previously found to increase systemic blood pressure (BP) through presumed neurogenic mechanisms. Yet, while this background is generally not considered ideal to investigate the cardiovascular system, KCC3 is also expressed in the arterial wall and proximal nephron. In the current study, the effects of Kcc3 ablation was investigated in a pure rather than mixed C57BL/6J background under regular- and high-salt diets to determine whether they could be mediated through vasculogenic and nephrogenic mechanisms. Aortas were also assessed for reactivity to pharmacological agents while isolated from the influence of sympathetic ganglia. This approach led to the identification of unforeseen abnormalities such as lower pulse pressure, heart rate, aortic reactivity and aortic wall thickness, but higher diastolic BP, left ventricular mass and urinary output in the absence of increased catecholamine levels. Salt loading also led systolic BP to be higher, but to no further changes in hemodynamic parameters. Importantly, aortic vascular smooth muscle cells and cardiomyocytes were both found to express KCC3 abundantly in heterozygous mice. Hence, Kcc3 inactivation in our model caused systemic vascular resistance and ventricular mass to increase while preventing extracellular fluid volume to accumulate. Given that it also affected the physiological properties of aortas in vitro, vasculogenic mechanisms could therefore account for a number of the hemodynamic abnormalities observed.
Collapse
Affiliation(s)
- Alexandre P. Garneau
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Andrée-Anne Marcoux
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Micheline Noël
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Marie-Claude Drolet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Jacques Couet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Richard Larivière
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Paul Isenring
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
- * E-mail:
| |
Collapse
|
39
|
Yu B, Pulit SL, Hwang SJ, Brody JA, Amin N, Auer PL, Bis JC, Boerwinkle E, Burke GL, Chakravarti A, Correa A, Dreisbach AW, Franco OH, Ehret GB, Franceschini N, Hofman A, Lin DY, Metcalf GA, Musani SK, Muzny D, Palmas W, Raffel L, Reiner A, Rice K, Rotter JI, Veeraraghavan N, Fox E, Guo X, North KE, Gibbs RA, van Duijn CM, Psaty BM, Levy D, Newton-Cheh C, Morrison AC. Rare Exome Sequence Variants in CLCN6 Reduce Blood Pressure Levels and Hypertension Risk. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:64-70. [PMID: 26658788 PMCID: PMC4771070 DOI: 10.1161/circgenetics.115.001215] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rare genetic variants influence blood pressure (BP). METHODS AND RESULTS Whole-exome sequencing was performed on DNA samples from 17 956 individuals of European ancestry and African ancestry (14 497, first-stage discovery and 3459, second-stage discovery) to examine the effect of rare variants on hypertension and 4 BP traits: systolic BP, diastolic BP, pulse pressure, and mean arterial pressure. Tests of ≈170 000 common variants (minor allele frequency, ≥1%; statistical significance, P≤2.9×10(-7)) and gene-based tests of rare variants (minor allele frequency, <1%; ≈17 000 genes; statistical significance, P≤1.5×10(-6)) were evaluated for each trait and ancestry, followed by multiethnic meta-analyses. In the first-stage discovery, rare coding variants (splicing, stop-gain, stop-loss, nonsynonymous variants, or indels) in CLCN6 were associated with lower diastolic BP (cumulative minor allele frequency, 1.3%; β=-3.20; P=4.1×10(-6)) and were independent of a nearby common variant (rs17367504) previously associated with BP. CLCN6 rare variants were also associated with lower systolic BP (β=-4.11; P=2.8×10(-4)), mean arterial pressure (β=-3.50; P=8.9×10(-6)), and reduced hypertension risk (odds ratio, 0.72; P=0.017). Meta-analysis of the 2-stage discovery samples showed that CLCN6 was associated with lower diastolic BP at exome-wide significance (cumulative minor allele frequency, 1.1%; β=-3.30; P=5.0×10(-7)). CONCLUSIONS These findings implicate the effect of rare coding variants in CLCN6 in BP variation and offer new insights into BP regulation.
Collapse
Affiliation(s)
- Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Sara L. Pulit
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands
- Broad Institute of Harvard & MIT, Cambridge
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Paul L. Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Gregory L. Burke
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Albert W. Dreisbach
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Georg B. Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospitals, Genève, Switzerland
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger A. Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Solomon K. Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Leslie Raffel
- Medical Genetics Research Institute & UCLA Clinical & Translational Science Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Alex Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I. Rotter
- Institute for Translational Genomics & Population Sciences, Los Angeles Biomedical Research Institute at Harbor- University of California Los Angeles Medical Center, Torrance, CA
| | | | - Ervin Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Xiuqing Guo
- Institute for Translational Genomics & Population Sciences, Los Angeles Biomedical Research Institute at Harbor- University of California Los Angeles Medical Center, Torrance, CA
| | - Kari E. North
- Department of Epidemiology & Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Departments of Epidemiology & Health Science, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Boston University School of Medicine
| | - Christopher Newton-Cheh
- Broad Institute of Harvard & MIT, Cambridge
- Cardiovascular Research Center & Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Alanna C. Morrison
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
40
|
Kusuda T, Hosoya T, Mori T, Ihara K, Nishida H, Chiga M, Sohara E, Rai T, Koike R, Uchida S, Kohsaka H. Acquired Gitelman Syndrome in an Anti-SSA Antibody-positive Patient with a SLC12A3 Heterozygous Mutation. Intern Med 2016; 55:3201-3204. [PMID: 27803420 PMCID: PMC5140875 DOI: 10.2169/internalmedicine.55.6390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 36-year-old woman developed hypokalemic metabolic alkalosis after anti SS-A antibody was found to be positive. Diuretic loading test results were compatible with Gitelman syndrome (GS). The patient had a heterozygous mutation in SLC12A3, which encodes for thiazide-sensitive NaCl cotransporter (NCCT). While the mutation may be responsible for a latent hypofunction of NCCTs, the underlying anti-SSA antibody-associated autoimmunity induced the manifestation of its hypofunction. To the best of our knowledge, this is the first report to demonstrate that anti SS-A antibody-associated autoimmunity may induce GS in a patient with a SLC12A3 heterozygous mutation.
Collapse
Affiliation(s)
- Takeshi Kusuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schröder K, Müller D. [Electrolyte disorders as a hallmark of monogenetic diseases]. Internist (Berl) 2015; 56:739-44. [PMID: 26078045 DOI: 10.1007/s00108-015-3672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In daily clinical practice, the term electrolyte generally refers to sodium, potassium, chloride, calcium, and magnesium ions. In addition to their many functions, such as neuronal and muscular transmission, some electrolytes also contribute to osmolality and maintenance of electrochemical gradients, which, in turn enable many transport processes. The absorption and reabsorption of electrolytes occurs via polarized cell assemblies, i.e., epithelia. Besides the intestine (absorption), the most important organ is the kidney. Here, following glomerular filtration, electrolytes are reabsorbed via trans- and paracellular mechanisms along the renal tubular system. In the past, the identification and elucidation of transport-associated monogenetic disorders has contributed tremendously to our understanding of the physiology and pathophysiology of such transport mechanisms. Sodium reabsorption mechanisms along the tubular system have been characterized by means of pharmacological compounds for a long time. However, only with the development of novel molecular genetic tools and approaches has it been possible to clarify the genetic basis of distinct diseases. As examples, we discuss here Bartter and Gitelman syndrome, and other sodium disorders such as pseudohypoaldosteronism and Liddle Syndrome. Diagnosis, clinical presentation, and therapy are briefly described. Furthermore, examples of magnesium homeostasis disorders are also presented, the molecular mechanisms and pathophysiology of which could also be characterized by the identification of different human mutations.
Collapse
Affiliation(s)
- K Schröder
- Klinik für Pädiatrie mit Schwerpunkt Nephrologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Deutschland
| | | |
Collapse
|
42
|
Wang L, Dong C, Xi YG, Su X. Thiazide-sensitive Na+-Cl- cotransporter: genetic polymorphisms and human diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:325-334. [PMID: 25841442 DOI: 10.1093/abbs/gmv020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 12/16/2022] Open
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is responsible for the major sodium chloride reabsorption pathway, which is located in the apical membrane of the epithelial cells of the distal convoluted tubule. TSC is involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. In addition, TSC serves as the target of thiazide-type diuretics that are the first line of therapy for the treatment of hypertension in the clinic, and its mutants are also reported to be associated with the hereditary disease, Gitelman's syndrome. This review aims to summarize the publications with regard to the TSC by focusing on the association between TSC mutants and human hypertension as well as Gitelman's syndrome.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Chao Dong
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ya-Guang Xi
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
43
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
44
|
Ko B, Mistry A, Hanson L, Mallick R, Hoover RS. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol 2015; 308:F720-7. [PMID: 25651566 DOI: 10.1152/ajprenal.00465.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
Angiotensin II (ANG II) increases thiazide-sensitive sodium-chloride cotransporter (NCC) activity both acutely and chronically. ANG II has been implicated as a switch that turns WNK4 from an inhibitor of NCC into an activator of NCC, and ANG II's effect on NCC appears to require WNK4. Chronically, ANG II stimulation of NCC results in an increase in total and phosphorylated NCC, but the role of NCC phosphorylation in acute ANG II actions is unclear. Here, using a mammalian cell model with robust native NCC activity, we corroborate the role that ANG II plays in WNK4 regulation and clarify the role of Ste20-related proline alanine-rich kinase (SPAK)-induced NCC phosphorylation in ANG II action. ANG II was noted to have a biphasic effect on NCC, with a peak increase in NCC activity in the physiologic range of 10(-11) M ANG II. This effect was apparent as early as 15 min and remained sustained through 120 min. These changes correlated with significant increases in NCC surface protein expression. Knockdown of WNK4 expression sharply attenuated the effect of ANG II. SPAK knockdown did not affect ANG II action at early time points (15 and 30 min), but it did attenuate the response at 60 min. Correspondingly, NCC phosphorylation did not increase at 15 or 30 min, but increased significantly at 60 min. We therefore conclude that within minutes of an increase in ANG II, NCC is rapidly trafficked to the cell surface in a phosphorylation-independent but WNK4-dependent manner. Then, after 60 min, ANG II induces SPAK-dependent phosphorylation of NCC.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Abinash Mistry
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Lauren Hanson
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and Atlanta Veteran's Administration Medical Center, Decatur, Georgia
| |
Collapse
|
45
|
Abstract
The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, & VA Medical Center, Portland, Oregon, United States
| | | |
Collapse
|
46
|
Fu Y, Vallon V. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms. Nephron Clin Pract 2014; 128:8-16. [PMID: 25376899 DOI: 10.1159/000368264] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC.
Collapse
Affiliation(s)
- Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
47
|
|
48
|
Tamargo J, Segura J, Ruilope LM. Diuretics in the treatment of hypertension. Part 1: thiazide and thiazide-like diuretics. Expert Opin Pharmacother 2014; 15:527-47. [DOI: 10.1517/14656566.2014.879118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Picard N, Trompf K, Yang CL, Miller RL, Carrel M, Loffing-Cueni D, Fenton RA, Ellison DH, Loffing J. Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 2013; 25:511-22. [PMID: 24231659 DOI: 10.1681/asn.2012121202] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.
Collapse
Affiliation(s)
- Nicolas Picard
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|