1
|
Song L, Shi X, Kovacs L, Han W, John J, Barman SA, Dong Z, Lucas R, Fulton DJR, Verin AD, Su Y. Calpain Promotes LPS-induced Lung Endothelial Barrier Dysfunction via Cleavage of Talin. Am J Respir Cell Mol Biol 2023; 69:678-688. [PMID: 37639326 PMCID: PMC10704117 DOI: 10.1165/rcmb.2023-0009oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.
Collapse
Affiliation(s)
| | | | - Laszlo Kovacs
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | | | - Joseph John
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | | | - Zheng Dong
- Department of Cellular Biology and Anatomy, and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - David J. R. Fulton
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Alexander D. Verin
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Yunchao Su
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
2
|
Liu H, Xu S, Xu Z, Cheng S, Du M. Absorption characteristics and the effect on vascular endothelial cell permeability of an anticoagulant peptide. Food Res Int 2023; 173:113405. [PMID: 37803744 DOI: 10.1016/j.foodres.2023.113405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
In the former report, the casein peptide TKLTEEEKNR (PfCN) exhibits strong thrombin inhibitory activity in vitro. Its absorption capabilities, however, are unclear. Therefore, we studied its absorption characteristics both in vivo and in vitro. PfCN was carried by cells from the apical chamber to the basolateral chamber via active translocation in Caco-2 cells. Meanwhile, it can also be transported by HUVECs. We found that PfCN can be taken up by HUVECs using confocal laser imaging. PfCN has been proven to have good absorption properties in in vivo experiments. After five minutes of oral treatment, PfCN was identified in the blood, peaking at 82.75 ± 36.52 ng/mL in 30 min. And PfCN vanished from the blood circulation after 120 min. According to in vivo experiments, excessive concentrations of PfCN will alter the permeability of HUVECs. As a result, there is a foundation for PfCN application in the food sector. Meanwhile, we also hope this article can give an idea to the researchers who studying the absorption of functional peptides.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
4
|
Gu J, Zhu LK, Zhao X, Jiang J, Jiang R. Low testosterone state inhibits erectile function by downregulating the expression of GIT1 in rat penile corpus cavernosum. Sex Med 2023; 11:qfad017. [PMID: 37256221 PMCID: PMC10226814 DOI: 10.1093/sexmed/qfad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Background The mechanism of erectile dysfunction (ED) caused by a low androgen level is still not clear. Aim To explore the influence of the low testosterone state on G protein-coupled receptor kinase interactor 1 (GIT1) and its contact to erectile function. Methods Thirty male Sprague-Dawley rats aged 8 weeks were distributed at random into 5 groups: control (sham operated), castration, testosterone supplement after castration, castration + vacant lentiviral transfection, and castration + lentiviral transfection. The testis and epididymis were removed through a scrotal incision to develop castrated rats. Four weeks after castration, a lentivirus carrying the GIT1 gene was injected into the middle of rat penile corpus cavernosum. One week after transfection, maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP), serum testosterone, nitric oxide, GIT1, endothelial nitric oxide synthase (eNOS), phospho-eNOS (p-eNOS), p-eNOS/eNOS, and the interaction between eNOS and GIT1 were assessed in the rats. Outcomes The levels of GIT1 in the penile cavernous tissue of castrated rats are significantly lower than that of controls. Results GIT1 was expressed in the cytoplasm and cell membrane of vascular endothelial cells and smooth muscle cells in rat penile tissue. In comparison with normal rats, the castrated rats showed lower levels of GIT1 expression, GIT1 and eNOS interaction, p-eNOS/eNOS, nitric oxide, and ICPmax/MAP (P < .01). Overexpression of GIT1 can intensively enhance the expression level of GIT1, the interaction between GIT1 and eNOS, p-eNOS/eNOS, nitric oxide, and ICPmax/MAP in rats (P < .01). Clinical Translation Modulating the interaction between eNOS and GIT1 might be a novel method of treating ED caused by a low androgen level. Strengths and Limitations The impact of GIT1 phosphorylation on the activity of eNOS and its possible mechanisms affecting erectile function require further study. Conclusion A low testosterone state inhibits erectile function in rats by reducing the expression of GIT1 and the protein interaction between GIT1 and eNOS.
Collapse
Affiliation(s)
| | | | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Corresponding author: Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Taiping Road, Luzhou, Sichuan 646000, China. ;
| |
Collapse
|
5
|
Zhang J, Zhang J, Liu W, Ge R, Gao T, Tian Q, Mu X, Zhao L, Li X. UBTF facilitates melanoma progression via modulating MEK1/2-ERK1/2 signalling pathways by promoting GIT1 transcription. Cancer Cell Int 2021; 21:543. [PMID: 34663332 PMCID: PMC8522148 DOI: 10.1186/s12935-021-02237-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background UBTF is an HMGB-box DNA binding protein and a necessary Pol I/Pol II basal transcription factor. It has been found that UBTF involves in carcinogenesis and progression of a few cancers. Nevertheless, the the biological function and potential molecular mechanism of UBTF in melanoma are still not clear and need to be clarified. Methods UBTF and GIT1 expressions in melanoma specimens and cell lines were examined by quantitative real-time PCR (qRT-PCR) and Western blot. MTT and colony formation assays were used to investigate the effects of UBTF and GIT1 on melanoma cell proliferation. Cell cycle and apoptosis assays were detected by flow cytometry. Tumor formation assay was used to analyze the effect of UBTF on melanoma growth. Bioinformatics predicting, chromatin immunoprecipitation (ChIP)-qRT-PCR and reporter gene assay were fulfilled for verifing GIT1 as UBTF targeting gene. Results Here we reported that UBTF mRNA and protein expressions were upregulated in primary melanoma specimens and cell lines. UBTF overexpression facilitated melanoma cell proliferation and cell cycle progression and restrained. Silencing UBTF suppressed cell multiplication, cell cycle progression and tumor growth, and promoted apoptosis. UBTF expression was positively related with GIT1 expression in human melanoma tissues. It was verified that UBTF promoted GIT1 transcription in melanoma cells through binding to the promoter region of GIT1. Furthermore, GIT1 overexpression promoted melanoma cell growth and suppressed apoptosis. Knockdown of GIT1 inhibited cell multiplication and induced apoptosis. Overexpression of GIT1 eliminated the effects of silencing UBTF on melanoma cells. Importantly, UBTF activated MEK1/2-ERK1/2 signalling pathways by upregulating GIT1 expression. Conclusions Our study demonstrates that UBTF promotes melanoma cell proliferation and cell cycle progression by promoting GIT1 transcription, thereby activating MEK1/2-ERK1/2 signalling pathways. The findings indicate that UBTF plays a crucial function in melanoma and may be a potential therapeutic target for the treatment of this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02237-8.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaojiao Zhang
- Department of Dermatology, The Third Hospital of Yulin, Yulin, 719000, Shaanxi, China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyuan Gao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiong Tian
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Mascarenhas JB, Gaber AA, Larrinaga TM, Mayfield R, Novak S, Camp SM, Gregorio C, Jacobson JR, Cress AE, Dudek SM, Garcia JGN. EVL is a novel focal adhesion protein involved in the regulation of cytoskeletal dynamics and vascular permeability. Pulm Circ 2021; 11:20458940211049002. [PMID: 34631011 PMCID: PMC8493322 DOI: 10.1177/20458940211049002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein
Collapse
Affiliation(s)
| | - Amir A Gaber
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Tania M Larrinaga
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rachel Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carol Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Amado-Azevedo J, van Stalborch AMD, Valent ET, Nawaz K, van Bezu J, Eringa EC, Hoevenaars FPM, De Cuyper IM, Hordijk PL, van Hinsbergh VWM, van Nieuw Amerongen GP, Aman J, Margadant C. Depletion of Arg/Abl2 improves endothelial cell adhesion and prevents vascular leak during inflammation. Angiogenesis 2021; 24:677-693. [PMID: 33770321 PMCID: PMC7996118 DOI: 10.1007/s10456-021-09781-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Erik T Valent
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kalim Nawaz
- Sanquin Research, Amsterdam, The Netherlands
| | - Jan van Bezu
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Femke P M Hoevenaars
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands. .,Department of Pulmonology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Perini MV, Dmello RS, Nero TL, Chand AL. Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020; 211:107527. [PMID: 32173557 DOI: 10.1016/j.pharmthera.2020.107527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cellular membrane receptors identified and characterized. It is estimated that 30 to 50% of marketed drugs target these receptors. The angiotensin II receptor type 1 (AT1R) is a GPCR which signals in response to systemic alterations of the peptide hormone angiotensin II (AngII) in circulation. The enzyme responsible for converting AngI to AngII is the angiotensin-converting enzyme (ACE). Specific inhibitors for the AT1R (more commonly known as AT1R blockers or antagonists) and ACE are well characterized for their effects on the cardiovascular system. Combined with the extensive clinical data available on patient tolerance of AT1R blockers (ARBs) and ACE inhibitors (ACEIs), as well as their non-classical roles in cancer, the notion of repurposing this class of medications as cancer treatment(s) is explored in the current review. Given that AngII-dependent AT1R activity directly regulates angiogenesis, remodeling of vasculature, pro-inflammatory responses, stem cell programming and hematopoiesis, and electrolyte balance; the modulation of these processes with pharmacologically well characterized medications could present a valuable complementary treatment option for cancer patients.
Collapse
Affiliation(s)
- Marcos V Perini
- Department of Surgery, The University of Melbourne, and Austin Health, Heidelberg, VIC, Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Tracy L Nero
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia.
| |
Collapse
|
10
|
Liu S, Luttrell LM, Premont RT, Rockey DC. β-Arrestin2 is a critical component of the GPCR-eNOS signalosome. Proc Natl Acad Sci U S A 2020; 117:11483-11492. [PMID: 32404425 PMCID: PMC7261012 DOI: 10.1073/pnas.1922608117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cell nitric oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in endothelial cells, is regulated by complex posttranslational mechanisms. Sinusoidal portal hypertension, a disorder characterized by liver sinusoidal endothelial cell (SEC) injury with resultant reduced eNOS activity and NO production within the liver, has been associated with defects in eNOS protein-protein interactions and posttranslational modifications. We and others have previously identified novel eNOS interactors, including G protein-coupled receptor (GPCR) kinase interactor 1 (GIT1), which we found to play an unexpected stimulatory role in GPCR-mediated eNOS signaling. Here we report that β-arrestin 2 (β-Arr2), a canonical GPCR signaling partner, localizes in SECs with eNOS in a GIT1/eNOS/NO signaling module. Most importantly, we show that β-Arr2 stimulates eNOS activity, and that β-Arr2 expression is reduced and formation of the GIT1/eNOS/NO signaling module is interrupted during liver injury. In β-Arr2-deficient mice, bile duct ligation injury (BDL) led to significantly reduced eNOS activity and to a dramatic increase in portal hypertension compared to BDL in wild-type mice. Overexpression of β-Arr2 in injured or β-Arr2-deficient SECs rescued eNOS function by increasing eNOS complex formation and NO production. We also found that β-Arr2-mediated GIT1/eNOS complex formation is dependent on Erk1/2 and Src, two kinases known to interact with and be activated by β-Arr2 in response to GCPR activation. Our data emphasize that β-Arr2 is an integral component of the GIT1/eNOS/NO signaling pathway and have implications for the pathogenesis of sinusoidal portal hypertension.
Collapse
Affiliation(s)
- Songling Liu
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Louis M Luttrell
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Richard T Premont
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Don C Rockey
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
11
|
Rippe B. Does an Endothelial Surface Layer Contribute to the Size Selectivity of the Permeable Pathways of the Three-Pore Model? Perit Dial Int 2020. [DOI: 10.1177/089686080802800104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bengt Rippe
- Department of Nephrology Lund University University Hospital of Lund Lund, Sweden
| |
Collapse
|
12
|
Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Front Physiol 2019; 10:511. [PMID: 31105595 PMCID: PMC6498899 DOI: 10.3389/fphys.2019.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI.
Collapse
Affiliation(s)
- Gabriel T Kelly
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Yao Zhang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen M Black
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
13
|
Goicoechea I, Rezola R, Arestin M, M Caffarel M, Cortazar AR, Manterola L, Fernandez-Mercado M, Armesto M, Sole C, Larrea E, M Araujo A, Ancizar N, Plazaola A, Urruticoechea A, Carracedo A, Ruiz I, Alvarez Lopez I, H Lawrie C. Spatial intratumoural heterogeneity in the expression of GIT1 is associated with poor prognostic outcome in oestrogen receptor positive breast cancer patients with synchronous lymph node metastases. F1000Res 2017; 6:1606. [PMID: 29862012 PMCID: PMC5843846 DOI: 10.12688/f1000research.12393.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background: The outcome for oestrogen receptor positive (ER+) breast cancer patients has improved greatly in recent years largely due to targeted therapy. However, the presence of involved multiple synchronous lymph nodes remains associated with a poor outcome. Consequently, these patients would benefit from the identification of new prognostic biomarkers and therapeutic targets. The expression of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) has recently been shown to be an indicator of advanced stage breast cancer. Therefore, we investigated its expression and prognostic value of GIT1 in a cohort of 140 ER+ breast cancer with synchronous lymph node involvement. Methods: Immunohistochemistry was employed to assess GIT1 expression in a tissue microarray (TMA) containing duplicate non-adjacent cores with matched primary tumour and lymph node tissue (n=140). GIT1 expression in tumour cells was scored and statistical correlation analyses were carried out. Results: The results revealed a sub-group of patients that displayed discordant expression of GIT1 between the primary tumour and the lymph nodes (i.e. spatial intratumoural heterogeneity). We observed that loss of GIT1 expression in the tumour cells of the metastasis was associated with a shorter time to recurrence, poorer overall survival, and a shorter median survival time. Moreover, multivariate analysis demonstrated that GIT1 expression was an independent prognostic indicator. Conclusions: GIT1 expression enabled the identification of a sub-class of ER+ patients with lymph node metastasis that have a particularly poor prognostic outcome. We propose that this biomarker could be used to further stratify ER+ breast cancer patients with synchronous lymph node involvement and therefore facilitate adjuvant therapy decision making.
Collapse
Affiliation(s)
- Ibai Goicoechea
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - Ricardo Rezola
- Department of Pathology and Anatomy, Onkologikoa- Instituto Oncológico, San Sebastián, 20014, Spain
| | - María Arestin
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - María M Caffarel
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | | | - Lorea Manterola
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | | | - María Armesto
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - Carla Sole
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - Erika Larrea
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - Angela M Araujo
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain
| | - Nerea Ancizar
- Oncology Department, University Hospital Donostia, San Sebastián, 20014, Spain
| | - Arrate Plazaola
- Onkologikoa- Instituto Oncológico, San Sebastián, 20014, Spain
| | | | - Arkaitz Carracedo
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.,CIC bioGUNE, Derio, 48160, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa , 48940, Spain
| | - Irune Ruiz
- Department of Pathology and Anatomy, University Hospital Donostia, San Sebastián, 20014, Spain
| | | | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, 20014, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.,Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
14
|
Thomas A, Wang S, Sohrabi S, Orr C, He R, Shi W, Liu Y. Characterization of vascular permeability using a biomimetic microfluidic blood vessel model. BIOMICROFLUIDICS 2017; 11:024102. [PMID: 28344727 PMCID: PMC5336476 DOI: 10.1063/1.4977584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/08/2017] [Indexed: 05/18/2023]
Abstract
The inflammatory response in endothelial cells (ECs) leads to an increase in vascular permeability through the formation of gaps. However, the dynamic nature of vascular permeability and external factors involved is still elusive. In this work, we use a biomimetic blood vessel (BBV) microfluidic model to measure in real-time the change in permeability of the EC layer under culture in physiologically relevant flow conditions. This platform studies the dynamics and characterizes vascular permeability when the EC layer is triggered with an inflammatory agent using tracer molecules of three different sizes, and the results are compared to a transwell insert study. We also apply an analytical model to compare the permeability data from the different tracer molecules to understand the physiological and bio-transport significance of endothelial permeability based on the molecule of interest. A computational model of the BBV model is also built to understand the factors influencing transport of molecules of different sizes under flow. The endothelial monolayer cultured under flow in the BBV model was treated with thrombin, a serine protease that induces a rapid and reversible increase in endothelium permeability. On analysis of permeability data, it is found that the transport characteristics for fluorescein isothiocyanate (FITC) dye and FITC Dextran 4k Da molecules are similar in both BBV and transwell models, but FITC Dextran 70k Da molecules show increased permeability in the BBV model as convection flow (Peclet number > 1) influences the molecule transport in the BBV model. We also calculated from permeability data the relative increase in intercellular gap area during thrombin treatment for ECs in the BBV and transwell insert models to be between 12% and 15%. This relative increase was found to be within range of what we quantified from F-actin stained EC layer images. The work highlights the importance of incorporating flow in in vitro vascular models, especially in studies involving transport of large size objects such as antibodies, proteins, nano/micro particles, and cells.
Collapse
Affiliation(s)
- Antony Thomas
- Bioengineering Program, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | - Shunqiang Wang
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | - Salman Sohrabi
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | - Colin Orr
- Bioengineering Program, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | - Ran He
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | - Wentao Shi
- Bioengineering Program, Lehigh University , Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
15
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
16
|
Uehara K, Uehara A. Differentiated localizations of phosphorylated focal adhesion kinase in endothelial cells of rat splenic sinus. Cell Tissue Res 2016; 364:611-622. [PMID: 26846226 DOI: 10.1007/s00441-015-2350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023]
Abstract
The splenic sinus endothelium adhering via adherens junctions and tight junctions regulates the passage of blood cells through the splenic cord. Focal adhesion kinase (FAK) regulates the focal adhesion complex in the basal part of endothelial cells and is an integrated component of cell-cell adhesion, depending on its phosphorylation status. The objectives of this study are to assess the localization of FAK phosphorylated at tyrosine residues and the related proteins of integrin β5, talin, paxillin, p130Cas, vinculin, RhoA, Rac1, Rac2, Cdc42 and VE-cadherin, in the sinus endothelial cells of rat spleen and to examine the roles of FAK in regulating endothelial adhesion and the passage of blood cells. Immunofluorescence microscopy of tissue cryosections revealed that FAK was localized in the entire circumference of sinus endothelial cells and FAK phosphorylated at Try397 residue (pFAKy397) and pFAKy576 were precisely localized in the adherens junctions of the endothelial cells, whereas pFAKy925 was localized in the basal part of the endothelial cells. Paxillin and vinculin were prominently localized in the basal part of the endothelial cells. Integrin β5, talin and p130Cas were colocalized with FAK in the entire circumference of sinus endothelial cells. RhoA, Rac2 and Cdc42 were localized in the entire circumference of sinus endothelial cells close to FAK, stress fibers and cortical actin filaments. Immunogold electron microscopy revealed that pFAKy397 and pFAKy576 were colocalized with VE-cadherin, RhoA, Rac2 and Cdc42 in the adherens junctions of the endothelial cells. Possible functional roles of FAK in splenic sinus endothelial cells are also discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
17
|
Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5. PLoS One 2015; 10:e0119361. [PMID: 25742295 PMCID: PMC4351203 DOI: 10.1371/journal.pone.0119361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptor kinase-interactor 1 (Git1) is involved in cell motility control by serving as an adaptor that links signaling proteins such as Pix and PAK to focal adhesion proteins. We previously demonstrated that Git1 was a multiply tyrosine-phosphorylated protein, its primary phosphorylation site was Tyr-554 in the vicinity of the focal adhesion targeting-homology (FAH) domain, and this site was selectively dephosphorylated by protein tyrosine phosphatase receptor type Z (Ptprz). In the present study, we showed that Tyr-554 phosphorylation reduced the association of Git1 with the FAH-domain-binding proteins, paxillin and Hic-5, based on immunoprecipitation experiments using the Tyr-554 mutants of Git1. The Tyr-554 phosphorylation of Git1 was higher, and its binding to paxillin was consistently lower in the brains of Ptprz-deficient mice than in those of wild-type mice. We then investigated the role of Tyr-554 phosphorylation in cell motility control using three different methods: random cell motility, wound healing, and Boyden chamber assays. The shRNA-mediated knockdown of endogenous Git1 impaired cell motility in A7r5 smooth muscle cells. The motility defect was rescued by the exogenous expression of wild-type Git1 and a Git1 mutant, which only retained Tyr-554 among the multiple potential tyrosine phosphorylation sites, but not by the Tyr-554 phosphorylation-defective or phosphorylation-state mimic Git1 mutant. Our results suggested that cyclic phosphorylation-dephosphorylation at Tyr-554 of Git1 was crucial for dynamic interactions between Git1 and paxillin/Hic-5 in order to ensure coordinated cell motility.
Collapse
|
18
|
Wilson E, Leszczynska K, Poulter NS, Edelmann F, Salisbury VA, Noy PJ, Bacon A, Rappoport JZ, Heath JK, Bicknell R, Heath VL. RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly. J Cell Sci 2014; 127:3039-51. [PMID: 24928894 PMCID: PMC4106786 DOI: 10.1242/jcs.140434] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RhoJ is a Rho GTPase expressed in endothelial cells and tumour cells, which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; small interfering RNA (siRNA)-mediated knockdown of RhoJ increased focal adhesion disassembly time, whereas expression of an active mutant (daRhoJ) decreased it. Furthermore, daRhoJ co-precipitated with the GIT–PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast two-hybrid experiments, and this depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX (also known as ARHGEF7) and RhoJ all colocalised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT–PIX complex regulated endothelial tube formation, with knockdown of both GIT1 and GIT2, or β-PIX phenocopying RhoJ knockdown. RhoJ-knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give new insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation.
Collapse
Affiliation(s)
- Eleanor Wilson
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Katarzyna Leszczynska
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Natalie S Poulter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Francesca Edelmann
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Victoria A Salisbury
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter J Noy
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Bacon
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | | - John K Heath
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Roy Bicknell
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Victoria L Heath
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 2014; 289:18163-74. [PMID: 24764294 DOI: 10.1074/jbc.m113.521203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production.
Collapse
Affiliation(s)
- Songling Liu
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Don C Rockey
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
20
|
Totaro A, Astro V, Tonoli D, de Curtis I. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation. PLoS One 2014; 9:e93199. [PMID: 24699139 PMCID: PMC3974724 DOI: 10.1371/journal.pone.0093199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 03/03/2014] [Indexed: 11/21/2022] Open
Abstract
GIT1 is an ArfGAP and scaffolding protein regulating cell adhesion and migration. The multidomain structure of GIT1 allows the interaction with several partners. Binding of GIT1 to some of its partners requires activation of the GIT1 polypeptide. Our previous studies indicated that binding of paxillin to GIT1 is enhanced by release of an intramolecular interaction between the amino-terminal and carboxy-terminal portions that keeps the protein in a binding-incompetent state. Here we have addressed the mechanism mediating this intramolecular inhibitory mechanism by testing the effects of the mutation of several formerly identified GIT1 phosphorylation sites on the binding to paxillin. We have identified two tyrosines at positions 246 and 293 of the human GIT1 polypeptide that are needed to keep the protein in the inactive conformation. Interestingly, mutation of these residues to phenylalanine did not affect binding to paxillin, while mutation to either alanine or glutamic acid enhanced binding to paxillin, without affecting the constitutive binding to the Rac/Cdc42 exchange factor βPIX. The involvement of the two tyrosine residues in the intramolecular interaction was supported by reconstitution experiments showing that these residues are important for the binding between the amino-terminal fragment and carboxy-terminal portions of GIT1. Either GIT1 or GIT1-N tyrosine phosphorylation by Src and pervanadate treatment to inhibit protein tyrosine phosphatases did not affect the intramolecular binding between the amino- and carboxy-terminal fragments, nor the binding of GIT1 to paxillin. Mutations increasing the binding of GIT1 to paxillin positively affected cell motility, measured both by transwell migration and wound healing assays. Altogether these results show that tyrosines 246 and 293 of GIT1 are required for the intramolecular inhibitory mechanism that prevents the binding of GIT1 to paxillin. The data also suggest that tyrosine phosphorylation may not be sufficient to release the intramolecular interaction that keeps GIT1 in the inactive conformation.
Collapse
Affiliation(s)
- Antonio Totaro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Veronica Astro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
21
|
Majumder S, Sowden MP, Gerber SA, Thomas T, Christie CK, Mohan A, Yin G, Lord EM, Berk BC, Pang J. G-protein-coupled receptor-2-interacting protein-1 is required for endothelial cell directional migration and tumor angiogenesis via cortactin-dependent lamellipodia formation. Arterioscler Thromb Vasc Biol 2013; 34:419-26. [PMID: 24265417 DOI: 10.1161/atvbaha.113.302689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development. However, the functional role of GIT1 in pathological angiogenesis during tumor growth is unknown. APPROACH AND RESULTS In the present study, we show inhibition of angiogenesis in matrigel implants as well as reduced tumor angiogenesis and melanoma tumor growth in GIT1-knockout mice. We demonstrate that this is a result of impaired directional migration of GIT1-depleted endothelial cells toward a vascular endothelial growth factor gradient. Cortactin-mediated lamellipodia formation in the leading edge is critical for directional migration. We observed a significant reduction in cortactin localization and lamellipodia formation in the leading edge of GIT1-depleted endothelial cells. We specifically identified that the Spa homology domain (aa 250-420) of GIT1 is required for GIT1-cortactin complex localization to the leading edge. The mechanisms involved extracellular signal-regulated kinases 1 and 2-mediated Cortactin-S405 phosphorylation and activation of Rac1/Cdc42. Finally, using gain of function studies, we show that a constitutively active mutant of cortactin restored directional migration of GIT1-depleted cells. CONCLUSION Our data demonstrated that a GIT1-cortactin association through GIT1-Spa homology domain is required for cortactin localization to the leading edge and is essential for endothelial cell directional migration and tumor angiogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cortactin/genetics
- Cortactin/metabolism
- GTPase-Activating Proteins/deficiency
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Phosphorylation
- Protein Interaction Domains and Motifs
- Pseudopodia/metabolism
- RNA Interference
- Signal Transduction
- Soft Tissue Neoplasms/blood supply
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/metabolism
- Soft Tissue Neoplasms/pathology
- Time Factors
- Transfection
- Tumor Burden
- Vascular Endothelial Growth Factor A/metabolism
- cdc42 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Syamantak Majumder
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (S.M., M.P.S., T.T., C.K.C., A.M. G.Y., B.C.B., J.P.); and Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY (S.A.G., E.M.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
23
|
Arnold KM, Goeckeler ZM, Wysolmerski RB. Loss of Focal Adhesion Kinase Enhances Endothelial Barrier Function and Increases Focal Adhesions. Microcirculation 2013; 20:637-49. [DOI: 10.1111/micc.12063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 12/30/2022]
|
24
|
Abstract
The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes.
Collapse
Affiliation(s)
- J E Aslan
- Department of Biomedical Engineering and Cell & Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
25
|
Phosphorylation of GIT1 tyrosine 321 is required for association with FAK at focal adhesions and for PDGF-activated migration of osteoblasts. Mol Cell Biochem 2012; 365:109-18. [DOI: 10.1007/s11010-012-1249-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/14/2012] [Indexed: 01/26/2023]
|
26
|
Fujikawa A, Fukada M, Makioka Y, Suzuki R, Chow JPH, Matsumoto M, Noda M. Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z. J Biol Chem 2011; 286:37137-46. [PMID: 21890632 DOI: 10.1074/jbc.m111.270140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.
Collapse
Affiliation(s)
- Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2011; 83:31-44. [PMID: 21640127 DOI: 10.1016/j.mvr.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
Ligands by binding to G protein coupled receptors (GPCRs) stimulate dissociation of heterotrimeric G proteins into Gα and Gβγ subunits. Released Gα and Gβγ subunits induce discrete signaling cues that differentially regulate focal adhesion kinase (FAK) activity and endothelial barrier function. Activation of G proteins downstream of receptors such as protease activated receptor 1 (PAR1) and histamine receptors rapidly increases endothelial permeability which reverses naturally within the following 1-2 h. However, activation of G proteins coupled to the sphingosine-1-phosphate receptor 1 (S1P1) signal cues that enhance basal barrier endothelial function and restore endothelial barrier function following the increase in endothelial permeability by edemagenic agents. Intriguingly, both PAR1 and S1P1 activation stimulates FAK activity, which associates with alteration in endothelial barrier function by these agonists. In this review, we focus on the role of the G protein subunits downstream of PAR1 and S1P1 in regulating FAK activity and endothelial barrier function.
Collapse
Affiliation(s)
- Tracy Thennes
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
28
|
|
29
|
Swan DJ, Kirby JA, Ali S. Vascular biology: the role of sphingosine 1-phosphate in both the resting state and inflammation. J Cell Mol Med 2011; 14:2211-22. [PMID: 20716131 PMCID: PMC3822560 DOI: 10.1111/j.1582-4934.2010.01136.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The vascular and immune systems of mammals are closely intertwined: the individual components of the immune system must move between various body compartments to perform their function effectively. Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, exerts effects on the two organ systems and influences the interaction between them. In the resting state, the vascular S1P gradient contributes to control of lymphocyte recirculation through the blood, lymphoid tissue and lymphatic vasculature. The high level of S1P in blood helps maintain endothelial barrier integrity. During the inflammatory process, both the level of S1P in different immune compartments and S1P receptor expression on lymphocytes and endothelial cells are modified, resulting in functionally important changes in endothelial cell and lymphocyte behaviour. These include transient arrest of lymphocytes in secondary lymphoid tissue, crucial for generation of adaptive immunity, and subsequent promotion of lymphocyte recruitment to sites of inflammation. This review begins with an outline of the basic biochemistry of S1P. S1P receptor signalling is then discussed, followed by an exploration of the roles of S1P in the vascular and immune systems, with particular focus on the interface between them. The latter part concerns crosstalk between S1P and other signalling pathways, and concludes with a look at therapies targeting the S1P-S1P receptor axis.
Collapse
Affiliation(s)
- David J Swan
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | | |
Collapse
|
30
|
Menon P, Yin G, Smolock EM, Zuscik MJ, Yan C, Berk BC. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass. J Cell Physiol 2010; 225:777-85. [PMID: 20568227 DOI: 10.1002/jcp.22282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G-protein-coupled receptor (GPCR) kinase 2 interacting protein-1 (GIT1) is a scaffold protein expressed in various cell types including neurons, endothelial, and vascular smooth muscle cells. The GIT1 knockout (KO) mouse has a pulmonary phenotype due to impaired endothelial function. Because GIT1 is tyrosine phosphorylated by Src kinase, we anticipated that GIT1 KO should have a bone phenotype similar to Src KO. Microcomputed tomography of the long bones revealed that GIT1 KO mice have a 2.3-fold increase in bone mass compared to wild-type controls. Histomorphometry showed increased trabecular number and connectivity suggesting impaired bone remodeling. Immunoblot analysis of GIT1 expression showed that it was expressed in both osteoclasts and osteoblasts. Osteoblast activity and function assayed by alkaline phosphatase, mineral nodule formation, and in vivo calcein labeling were normal in GIT1 KO mice suggesting that the observed increase in bone mass was due to an osteoclast defect. GIT1 KO bone marrow cells differentiated into multinucleated osteoclasts, but had defective bone resorbing function on dentin slices. This defect was likely caused by loss of podosome belt based on immunofluorescence analysis and previous studies showing that GIT1 is required for podosome formation. Furthermore, we found that GIT1 was a regulator of receptor activator of NFκB (RANK) signaling since it was tyrosine phosphorylated in a Src-dependent manner and was required for phospholipase C-γ2 phosphorylation. These data show that GIT1 is a key regulator of bone mass in vivo by regulating osteoclast function and suggest GIT1 as a potential target for osteoporosis therapy.
Collapse
Affiliation(s)
- Prashanthi Menon
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/Calmodulin-dependent protein kinase II delta 6 (CaMKIIdelta6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem 2010; 285:21303-12. [PMID: 20442409 DOI: 10.1074/jbc.m110.120790] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple Ca(2+) release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca(2+) signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIdelta(6) isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nM thrombin maximally increased CaMKIIdelta(6) activation assessed by Thr(287) autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIdelta (siCaMKIIdelta) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nM thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIdelta inhibited 2.5 nM thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIdelta(6) mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIdelta(6)/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
32
|
Menon P, Deane R, Sagare A, Lane SM, Zarcone TJ, O'Dell MR, Yan C, Zlokovic BV, Berk BC. Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Res 2010; 1317:218-26. [PMID: 20043896 DOI: 10.1016/j.brainres.2009.11.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/29/2022]
Abstract
The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells. GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that compared to WT controls, deletion of GIT1 results in markedly reduced dendritic length and spine density in the hippocampus by 36.7% (p<0.0106) and 35.1% (p<0.0028), respectively. This correlated with their poor adaptation to new environments as shown by impaired performance on tasks dependent on learning. We also studied the effect of GIT1 gene deletion on brain microcirculation. In contrast to findings in systemic circulation, GIT1 KO mice had an intact blood-brain barrier and normal regional cerebral blood flow as determined with radiotracers. Thus, our data suggest that GIT1 plays an important role in brain in vivo by regulating spine density involved in synaptic plasticity that is required for processes involved in learning.
Collapse
Affiliation(s)
- Prashanthi Menon
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sarai K, Shikata K, Shikata Y, Omori K, Watanabe N, Sasaki M, Nishishita S, Wada J, Goda N, Kataoka N, Makino H. Endothelial barrier protection by FTY720 under hyperglycemic condition: involvement of focal adhesion kinase, small GTPases, and adherens junction proteins. Am J Physiol Cell Physiol 2009; 297:C945-54. [PMID: 19657053 DOI: 10.1152/ajpcell.00606.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, sphingosine 1-phosphate (S1P) has been highlighted as an endothelial barrier-stabilizing mediator. FTY720 is a S1P analog originally developed as a novel immunosuppressant. The phosphorylated form of FTY720 binds to S1P receptors to exert S1P-like biological effects, suggesting endothelial barrier promotion by FTY720. To elucidate whether FTY720 induces signaling events related to endothelial barrier enhancement under hyperglycemic conditions, human microvascular endothelial cells (HMVECs) preincubated with hyperglycemic (30 mM) medium were treated with 100 nM FTY720 for 3 h. Immunofluorescent microscopy and coprecipitation study revealed FTY720-induced focal adhesion kinase (FAK)-associated adherens junction (AJ) assembly at cell-cell contacts coincident with formation of a prominent cortical actin ring. FTY720 also induced transmonolayer electrical resistance (TER) augmentation in HMVEC monolayers in both normoglycemic and hyperglycemic conditions, implying endothelial barrier enhancement. Similar to S1P, site-specific FAK tyrosine phosphorylation analysis revealed FTY720-induced FAK [Y576] phosphorylation without phosphorylation of FAK [Y397/Y925]. Furthermore, FTY720 conditioned the phosphorylation profile of FAK [Y397/Y576/Y925] in hyperglycemic medium to the same pattern observed in normoglycemic medium. FTY720 challenge resulted in small GTPase Rac activation under hyperglycemic conditions, whereas increased Rho activity in hyperglycemic medium was restored to the basal level. Rac protein depletion by small interfering RNA (siRNA) technique completely abolished FTY720-induced FAK [Y576] phosphorylation. These findings strongly suggest the barrier protective effect of FTY720 on HMVEC monolayers in hyperglycemic medium via S1P signaling, further implying the possibility of FTY720 as a therapeutic agent of diabetic vascular disorder.
Collapse
Affiliation(s)
- Kei Sarai
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gröger M, Pasteiner W, Ignatyev G, Matt U, Knapp S, Atrasheuskaya A, Bukin E, Friedl P, Zinkl D, Hofer-Warbinek R, Zacharowski K, Petzelbauer P, Reingruber S. Peptide Bbeta(15-42) preserves endothelial barrier function in shock. PLoS One 2009; 4:e5391. [PMID: 19401765 PMCID: PMC2670535 DOI: 10.1371/journal.pone.0005391] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/03/2009] [Indexed: 11/22/2022] Open
Abstract
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn−/− mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.
Collapse
Affiliation(s)
- Marion Gröger
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | | | - George Ignatyev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Ulrich Matt
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine 1, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alena Atrasheuskaya
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Eugenij Bukin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Peter Friedl
- Fibrex Medical Research & Development GmbH., Vienna, Austria
| | - Daniela Zinkl
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Renate Hofer-Warbinek
- Department of Vascular Biology and Thrombosis Research, Medical University Vienna, Vienna, Austria
| | - Kai Zacharowski
- Molecular Cardioprotection & Inflammation Group, Department of Anesthesia, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Peter Petzelbauer
- Department of Dermatology, Medical University Vienna, Vienna, Austria
- * E-mail: (PP); (SR)
| | - Sonja Reingruber
- Fibrex Medical Research & Development GmbH., Vienna, Austria
- * E-mail: (PP); (SR)
| |
Collapse
|
35
|
|
36
|
Wang L, Dudek SM. Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc Res 2008; 77:39-45. [PMID: 18973762 DOI: 10.1016/j.mvr.2008.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/08/2008] [Indexed: 01/11/2023]
Abstract
A significant and sustained increase in vascular permeability is a hallmark of acute inflammatory diseases such as acute lung injury (ALI) and sepsis and is an essential component of tumor metastasis, angiogenesis, and atherosclerosis. Sphingosine 1-phosphate (S1P), an endogenous bioactive lipid produced in many cell types, regulates endothelial barrier function by activation of its G-protein coupled receptor S1P(1). S1P enhances vascular barrier function through a series of profound events initiated by S1P(1) ligation with subsequent downstream activation of the Rho family of small GTPases, cytoskeletal reorganization, adherens junction and tight junction assembly, and focal adhesion formation. Furthermore, recent studies have identified transactivation of S1P(1) signaling by other barrier-enhancing agents as a common mechanism for promoting endothelial barrier function. This review summarizes the state of our current knowledge about the mechanisms through which the S1P/S1P(1) axis reduces vascular permeability, which remains an area of active investigation that will hopefully produce novel therapeutic agents in the near future.
Collapse
Affiliation(s)
- Lichun Wang
- Section of Pulmonary and Critical Care Medicine, University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | |
Collapse
|
37
|
Cavet ME, Pang J, Yin G, Berk BC. An epidermal growth factor (EGF) -dependent interaction between GIT1 and sorting nexin 6 promotes degradation of the EGF receptor. FASEB J 2008; 22:3607-16. [PMID: 18523162 DOI: 10.1096/fj.07-094086] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
G-protein coupled receptor (GPCR) kinase-2 interacting protein 1 (GIT1) is a multifunctional scaffolding protein that regulates epidermal growth factor receptor (EGFR) signaling pathways. We demonstrate that GIT1 interacts with sorting nexin 6 (SNX6), a member of the SNX family that increases EGFR trafficking between endosomes and lysosomes, thereby enhancing EGFR degradation. The GIT1-SNX6 interaction is increased 3-fold after treatment with EGF for 60 min. The second coiled-coil domain (CC2; aa 424-474) of GIT1 mediates binding to SNX6. Subcellular fractionation and confocal microscopy data indicate that GIT1 and SNX6 interact in endosomes. Knockdown of GIT1 expression by small interfering RNA decreased the rate of EGF-induced EGFR degradation. Expression of exogenous GIT1 or SNX6 alone did not alter EGFR degradation; however, coexpression of GIT1 and SNX6 decreased EGFR levels both basally and in response to EGF. In contrast, expression of GIT1(CC2 deleted) and SNX6 did not reduce EGFR levels, demonstrating that the interaction between GIT1 and SNX6 was required to regulate EGFR trafficking. Phosphorylation of the EGFR substrate phospholipase C-gamma was decreased by coexpression of GIT1 and SNX6. These data demonstrate an endosomal, EGF-regulated interaction between SNX6 and GIT1 that enhances degradation of the EGFR, and thereby alters EGFR signaling. Our findings suggest a new role for GIT1 in tyrosine kinase receptor trafficking.
Collapse
Affiliation(s)
- Megan E Cavet
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
38
|
Ha VL, Bharti S, Inoue H, Vass WC, Campa F, Nie Z, de Gramont A, Ward Y, Randazzo PA. ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion. J Biol Chem 2008; 283:14915-26. [PMID: 18400762 DOI: 10.1074/jbc.m709717200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ASAP3, an Arf GTPase-activating protein previously called DDEFL1 and ACAP4, has been implicated in the pathogenesis of hepatocellular carcinoma. We have examined in vitro and in vivo functions of ASAP3 and compared it to the related Arf GAP ASAP1 that has also been implicated in oncogenesis. ASAP3 was biochemically similar to ASAP1: the pleckstrin homology domain affected function of the catalytic domain by more than 100-fold; catalysis was stimulated by phosphatidylinositol 4,5-bisphosphate; and Arf1, Arf5, and Arf6 were used as substrates in vitro. Like ASAP1, ASAP3 associated with focal adhesions and circular dorsal ruffles. Different than ASAP1, ASAP3 did not localize to invadopodia or podosomes. Cells, derived from a mammary carcinoma and from a glioblastoma, with reduced ASAP3 expression had fewer actin stress fiber, reduced levels of phosphomyosin, and migrated more slowly than control cells. Reducing ASAP3 expression also slowed invasion of mammary carcinoma cells. In contrast, reduction of ASAP1 expression had no effect on migration or invasion. We propose that ASAP3 functions nonredundantly with ASAP1 to control cell movement and may have a role in cancer cell invasion. In comparing ASAP1 and ASAP3, we also found that invadopodia are dispensable for the invasive behavior of cells derived from a mammary carcinoma.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rippe B. Free water transport, small pore transport and the osmotic pressure gradient three-pore model of peritoneal transport. Nephrol Dial Transplant 2008; 23:2147-53. [PMID: 18388123 DOI: 10.1093/ndt/gfn049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bengt Rippe
- Department of Nephrology, University Hospital of Lund, Sweden.
| |
Collapse
|
40
|
|
41
|
Morrissey C, Vessella RL. The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 2007; 101:873-86. [PMID: 17387734 DOI: 10.1002/jcb.21214] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Prostate cancer (PCa) epithelial cells require a number of factors to facilitate their establishment and growth at a distant site of metastasis. Their ability to adapt to their microenvironment, proliferate and recruit an underlying stroma is integral to the survival and growth of the metastasis. PCa predominantly metastasizes to the bone, and bone metastases are the main cause of morbidity. The bone marrow provides a permissive environment for the formation of a metastasis. In some cases, the cells may remain dormant for some time, eventually proliferating in response to an unknown "trigger." The marrow is rich in progenitor cells that differentiate into numerous cell types, producing new blood vessels, supporting fibroblasts, and an underlying extracellular matrix (ECM) that form the reactive stroma. By secreting a number of cytokines, growth factors and proteases they recruit auxiliary cells required to produce a functional stroma. These components are involved in a reciprocal interaction between the stroma and the PCa cells, allowing for the growth and survival of the tumor. Left unchecked, once a PCa tumor has established itself in the bone marrow it will eventually replace the marrow, interrupting bone homeostasis and typically promoting an osteoblastic response in the bone including osteoclastic events. The abundant deposition of new woven bone results in nerve compression, bone pain and an increase in fractures in patients with PCa bone metastases. This review will examine the tumor microenvironment, its role in facilitating tumor dissemination, growth and the resultant pathologies associated with PCa bone metastasis.
Collapse
Affiliation(s)
- Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
42
|
Omori K, Shikata Y, Sarai K, Watanabe N, Wada J, Goda N, Kataoka N, Shikata K, Makino H. Edaravone mimics sphingosine-1-phosphate-induced endothelial barrier enhancement in human microvascular endothelial cells. Am J Physiol Cell Physiol 2007; 293:C1523-31. [PMID: 17686998 DOI: 10.1152/ajpcell.00524.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent scavenger of hydroxyl radicals and is quite successful in patients with acute cerebral ischemia, and several organ-protective effects have been reported. Treatment of human microvascular endothelial cells with edaravone (1.5 microM) resulted in the enhancement of transmonolayer electrical resistance coincident with cortical actin enhancement and redistribution of focal adhesion proteins and adherens junction proteins to the cell periphery. Edaravone also induced small GTPase Rac activation and focal adhesion kinase (FAK; Tyr(576)) phosphorylation associated with sphingosine-1-phosphate receptor type 1 (S1P(1)) transactivation. S1P(1) protein depletion by the short interfering RNA technique completely abolished edaravone-induced FAK (Tyr(576)) phosphorylation and Rac activation. This is the first report of edaravone-induced endothelial barrier enhancement coincident with focal adhesion remodeling and cytoskeletal rearrangement associated with Rac activation via S1P(1) transactivation. Considering the well-established endothelial barrier-protective effect of S1P, endothelial barrier enhancement as a consequence of S1P(1) transactivation may at least partly be the potent mechanisms for the organ-protective effect of edaravone and is suggestive of edaravone as a therapeutic agent against systemic vascular barrier disorder.
Collapse
Affiliation(s)
- Kazuyoshi Omori
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sen U, Moshal KS, Singh M, Tyagi N, Tyagi SC. Homocysteine-induced biochemical stress predisposes to cytoskeletal remodeling in stretched endothelial cells. Mol Cell Biochem 2007; 302:133-43. [PMID: 17525826 DOI: 10.1007/s11010-007-9435-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Cellular cytoskeletal remodeling reflects alterations in local biochemical and mechanical changes in terms of stress that manifests relocation of signaling molecules within and across the cell. Although stretching due to load and chemical changes by high homocysteine (HHcy) causes cytoskeletal re-arrangement, the synergism between stretch and HHcy is unclear. We investigated the contribution of HHcy in cyclic stretch-induced focal adhesion (FA) protein redistribution leading to cytoskeletal re-arrangement in mouse aortic endothelial cells (MAEC). MAEC were subjected to cyclic stretch (CS) and HHcy alone or in combination. The redistribution of FA protein, and small GTPases were determined by Confocal microscopy and Western blot techniques in membrane and cytosolic compartments. We found that each treatment induces focal adhesion kinase (FAK) phosphorylation and cytoskeletal actin polymerization. In addition, CS activates and membrane translocates small GTPases RhoA with minimal effect on Rac1, whereas HHcy alone is ineffective in both GTPases translocation. However, the combined effect of CS and HHcy activates and membrane translocates both GTPases. Free radical scavenger NAC (N-Acetyl-Cysteine) inhibits CS and HHcy-mediated FAK phosphorylation and actin stress fiber formation. Interestingly, CS also activates and membrane translocates another FA protein, paxillin in HHcy condition. Cytochalasin D, an actin polymerization blocker and PI3-kinase inhibitor Wortmannin inhibited FAK phosphorylation and membrane translocation of paxillin suggesting the involvement of PI3K pathway. Together our results suggest that CS- and HHcy-induced oxidative stress synergistically contribute to small GTPase membrane translocation and focal adhesion protein redistribution leading to endothelial remodeling.
Collapse
Affiliation(s)
- Utpal Sen
- Department of Physiology & Biophysics, HSC, University of Louisville School of Medicine, A-1215, 500 South Preston Street, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
44
|
Stockton R, Reutershan J, Scott D, Sanders J, Ley K, Schwartz MA. Induction of vascular permeability: beta PIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK. Mol Biol Cell 2007; 18:2346-55. [PMID: 17429073 PMCID: PMC1877103 DOI: 10.1091/mbc.e06-07-0584] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Increased permeability of blood vessels is an important component of inflammation, but in some circumstances it contributes to tissue injury and organ failure. Previous work showed that p21-activated kinase (PAK) is a critical regulator of endothelial cell-cell junctions through effects on myosin light chain phosphorylation and cell contractility. We now show that blocking PAK function inhibits fluid leak in a mouse model of acute lung injury. In cultured endothelial cells, induction of myosin light chain phosphorylation by PAK is mediated by mitogen-activated protein kinase kinase and extracellular signal-regulated kinase (Erk). Erk in lipopolysaccharide (LPS)-treated mouse lung is activated in a PAK-dependent manner in several cell types, most prominently vascular endothelium. Activation of Erk requires the integrity of the complex between PAK, PIX, and GIT1. Several means of disrupting this complex inhibit stimulation of vascular permeability in vitro. A cell-permeant peptide that blocks binding of PAK to PIX inhibits LPS-induced fluid leak in the mouse lung injury model. We conclude that the PAK-PIX-GIT1 complex is critical for Erk-dependent myosin phosphorylation and vascular permeability.
Collapse
Affiliation(s)
| | | | - David Scott
- *Robert M. Berne Cardiovascular Research Center, and
| | - John Sanders
- *Robert M. Berne Cardiovascular Research Center, and
| | - Klaus Ley
- *Robert M. Berne Cardiovascular Research Center, and
- Departments of Biomedical Engineering
- Molecular Physiology and Biological Physics, and
| | - Martin Alexander Schwartz
- *Robert M. Berne Cardiovascular Research Center, and
- Departments of Biomedical Engineering
- Microbiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
45
|
Birukova AA, Fu P, Chatchavalvanich S, Burdette D, Oskolkova O, Bochkov VN, Birukov KG. Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2007; 292:L924-35. [PMID: 17158600 DOI: 10.1152/ajplung.00395.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th St., CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Schmalzigaug R, Garron ML, Tyler Roseman J, Xing Y, Davidson CE, Arold ST, Premont RT. GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cell Signal 2007; 19:1733-44. [PMID: 17467235 PMCID: PMC2025689 DOI: 10.1016/j.cellsig.2007.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/20/2007] [Indexed: 01/08/2023]
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.
Collapse
Affiliation(s)
- Robert Schmalzigaug
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Marie-Line Garron
- CNRS UMR 5048, Centre de Biochimie Structurale, F34090, Montpellier, France; INSERM UMR 554, 29 Rue de Navacelles, F34090, Montpellier, France
| | - J. Tyler Roseman
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yanghui Xing
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Collin E. Davidson
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Stefan T. Arold
- CNRS UMR 5048, Centre de Biochimie Structurale, F34090, Montpellier, France; INSERM UMR 554, 29 Rue de Navacelles, F34090, Montpellier, France
| | - Richard T. Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
- To whom correspondence should be addressed:
| |
Collapse
|
47
|
Birukova AA, Chatchavalvanich S, Oskolkova O, Bochkov VN, Birukov KG. Signaling pathways involved in OxPAPC-induced pulmonary endothelial barrier protection. Microvasc Res 2007; 73:173-81. [PMID: 17292425 PMCID: PMC1934559 DOI: 10.1016/j.mvr.2006.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 12/20/2006] [Indexed: 11/27/2022]
Abstract
Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th Street, CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Maeda A, Ozaki YI, Sivakumaran S, Akiyama T, Urakubo H, Usami A, Sato M, Kaibuchi K, Kuroda S. Ca2+ -independent phospholipase A2-dependent sustained Rho-kinase activation exhibits all-or-none response. Genes Cells 2006; 11:1071-83. [PMID: 16923126 DOI: 10.1111/j.1365-2443.2006.01001.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sustained contraction of cells depends on sustained Rho-associated kinase (Rho-kinase) activation. We developed a computational model of the Rho-kinase pathway to understand the systems characteristics. Thrombin-dependent in vivo transient responses of Rho activation and Ca2+ increase could be reproduced in silico. Low and high thrombin stimulation induced transient and sustained phosphorylation, respectively, of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) in vivo. The transient phosphorylation of MLC and MYPT1 could be reproduced in silico, but their sustained phosphorylation could not. This discrepancy between in vivo and in silico in the sustained responses downstream of Rho-kinase indicates that a missing pathway(s) may be responsible for the sustained Rho-kinase activation. We found, experimentally, that the sustained phosphorylation of MLC and MYPT1 exhibit all-or-none responses. Bromoenol lactone, a specific inhibitor of Ca2+ -independent phospholipase A2 (iPLA2), inhibited sustained phosphorylation of MLC and MYPT1, which indicates that sustained Rho-kinase activation requires iPLA2 activity. Thus, the systems analysis of the Rho-kinase pathway identified a novel iPLA2-dependent mechanism of the sustained Rho-kinase activation, which exhibits an all-or-none response.
Collapse
Affiliation(s)
- Akio Maeda
- Undergraduate Program for Bioinformatics and Systems Biology, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Su G, Hodnett M, Wu N, Atakilit A, Kosinski C, Godzich M, Huang XZ, Kim JK, Frank JA, Matthay MA, Sheppard D, Pittet JF. Integrin alphavbeta5 regulates lung vascular permeability and pulmonary endothelial barrier function. Am J Respir Cell Mol Biol 2006; 36:377-86. [PMID: 17079779 PMCID: PMC1899321 DOI: 10.1165/rcmb.2006-0238oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased lung vascular permeability is an important contributor to respiratory failure in acute lung injury (ALI). We found that a function-blocking antibody against the integrin alphavbeta5 prevented development of lung vascular permeability in two different models of ALI: ischemia-reperfusion in rats (mediated by vascular endothelial growth factor [VEGF]) and ventilation-induced lung injury (VILI) in mice (mediated, at least in part, by transforming growth factor-beta [TGF-beta]). Knockout mice homozygous for a null mutation of the integrin beta5 subunit were also protected from lung vascular permeability in VILI. In pulmonary endothelial cells, both the genetic absence and blocking of alphavbeta5 prevented increases in monolayer permeability induced by VEGF, TGF-beta, and thrombin. Furthermore, actin stress fiber formation induced by each of these agonists was attenuated by blocking alphavbeta5, suggesting that alphavbeta5 regulates induced pulmonary endothelial permeability by facilitating interactions with the actin cytoskeleton. These results identify integrin alphavbeta5 as a central regulator of increased pulmonary vascular permeability and a potentially attractive therapeutic target in ALI.
Collapse
Affiliation(s)
- George Su
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Laboratory of Surgical Research, Department of Anesthesia, and Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The G-protein-coupled receptor (GPCR)-kinase-interacting proteins 1 and 2 (GIT1 and GIT2) are ubiquitous multidomain proteins involved in diverse cellular processes. They traffic between three distinct cellular compartments (cytoplasmic complexes, focal adhesions and the cell periphery) through interactions with proteins including ARF, Rac1 and Cdc42 GTPases, p21-activated kinase (PAK), PAK-interacting exchange factor (PIX), the kinase MEK1, phospholipase Cgamma (PLCgamma) and paxillin. GITs and PIX cooperate to form large oligomeric complexes to which other proteins are transiently recruited. Activation of Rac1 and Cdc42 drives association of PAK with these oligomers, which unmasks the paxillin-binding site in GITs that recruits them to focal complexes. There, they regulate cytoskeletal dynamics by feedback inhibition of Rac1. GITs also participate in receptor internalization by regulating membrane trafficking between the plasma membrane and endosomes, targeting ARF GTPases through their ARF GTPase-activating protein (ARF-GAP) activity. Furthermore, GITs act as scaffolds to control spatial activation of several signaling molecules. Finally, recent results suggest pathogenic roles for GIT proteins in Huntington's disease and HIV infection.
Collapse
Affiliation(s)
- Ryan J Hoefen
- Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|