1
|
Kunchur MG, Mauch TJ, Parkanzky M, Rahilly LJ. A review of renal tubular acidosis. J Vet Emerg Crit Care (San Antonio) 2024; 34:325-355. [PMID: 39023331 DOI: 10.1111/vec.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To review the current scientific literature on renal tubular acidosis (RTA) in people and small animals, focusing on diseases in veterinary medicine that result in secondary RTA. DATA SOURCES Scientific reviews and original research publications on people and small animals focusing on RTA. SUMMARY RTA is characterized by defective renal acid-base regulation that results in normal anion gap hyperchloremic metabolic acidosis. Renal acid-base regulation includes the reabsorption and regeneration of bicarbonate in the renal proximal tubule and collecting ducts and the process of ammoniagenesis. RTA occurs as a primary genetic disorder or secondary to disease conditions. Based on pathophysiology, RTA is classified as distal or type 1 RTA, proximal or type 2 RTA, type 3 RTA or carbonic anhydrase II mutation, and type 4 or hyperkalemic RTA. Fanconi syndrome comprises proximal RTA with additional defects in proximal tubular function. Extensive research elucidating the genetic basis of RTA in people exists. RTA is a genetic disorder in the Basenji breed of dogs, where the mutation is known. Secondary RTA in human and veterinary medicine is the sequela of diseases that include immune-mediated, toxic, and infectious causes. Diagnosis and characterization of RTA include the measurement of urine pH and the evaluation of renal handling of substances that should affect acid or bicarbonate excretion. CONCLUSIONS Commonality exists between human and veterinary medicine among the types of RTA. Many genetic defects causing primary RTA are identified in people, but those in companion animals other than in the Basenji are unknown. Critically ill veterinary patients are often admitted to the ICU for diseases associated with secondary RTA, or they may develop RTA while hospitalized. Recognition and treatment of RTA may reverse tubular dysfunction and promote recovery by correcting metabolic acidosis.
Collapse
Affiliation(s)
| | - Teri Jo Mauch
- University of Nebraska Medical Center and Children's Hospital, Omaha, Nebraska, USA
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | - Louisa J Rahilly
- Cape Cod Veterinary Specialists, Buzzards Bay, Massachusetts, USA
| |
Collapse
|
2
|
The reduced myofilament responsiveness to calcium contributes to the negative force-frequency relationship in rat cardiomyocytes: role of reactive oxygen species and p-38 map kinase. Pflugers Arch 2017; 469:1663-1673. [DOI: 10.1007/s00424-017-2058-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
|
3
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
4
|
Wang HS, Chen Y, Vairamani K, Shull GE. Critical role of bicarbonate and bicarbonate transporters in cardiac function. World J Biol Chem 2014; 5:334-345. [PMID: 25225601 PMCID: PMC4160527 DOI: 10.4331/wjbc.v5.i3.334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H+, HCO3- is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3- and HCO3--transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl-/HCO3- exchangers and Na+/HCO3- cotransporters of the SLC4A and SLC26A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3 (AE3) is the major Cl-/HCO3- exchanger and plays a protective role in heart failure, and that Slc4a4 (NBCe1) is the major Na+/HCO3- cotransporter and affects action potential duration. In addition, previous studies show that HCO3- has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca2+. The importance of HCO3- in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca2+ transients, when switched from Hepes-buffered to HCO3-- buffered solutions. These studies demonstrate that HCO3- and HCO3--handling proteins play important roles in the regulation of cardiac function.
Collapse
|
5
|
Sowah D, Brown BF, Quon A, Alvarez BV, Casey JR. Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger. BMC Cardiovasc Disord 2014; 14:89. [PMID: 25047106 PMCID: PMC4120010 DOI: 10.1186/1471-2261-14-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl−/HCO3− exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. Methods AE3-deficient (ae3−/−) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3−/− and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM. Results ae3−/− mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3−/− cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3−/− mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3−/− cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3−/− cardiomyocytes. Conclusions These data reveal the importance of AE3-mediated Cl−/HCO3− exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
6
|
Prasad V, Lorenz JN, Lasko VM, Nieman ML, Al Moamen NJ, Shull GE. Loss of the AE3 Cl(-)/HCO(-) 3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart. Front Physiol 2013; 4:399. [PMID: 24427143 PMCID: PMC3875869 DOI: 10.3389/fphys.2013.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023] Open
Abstract
Cl(-)/HCO(-) 3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO(-) 3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl(-)/HCO(-) 3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO(-) 3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca(2+)-handling were observed, but Ca(2+)-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca(2+)-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure.
Collapse
Affiliation(s)
- Vikram Prasad
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - John N Lorenz
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Valerie M Lasko
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Michelle L Nieman
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Nabeel J Al Moamen
- Genetic Laboratory, Department of Pathology, Salmaniya Medical Complex Manama, Bahrain
| | - Gary E Shull
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
7
|
Aiello EA, De Giusti VC. Regulation of the cardiac sodium/bicarbonate cotransporter by angiotensin II: potential Contribution to structural, ionic and electrophysiological myocardial remodelling. Curr Cardiol Rev 2013; 9:24-32. [PMID: 23116057 PMCID: PMC3584305 DOI: 10.2174/157340313805076340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
The sodium/ bicarbonate cotransporter (NBC) is, with the Na+/H+ exchanger (NHE), an important alkalinizing mechanism that maintains cellular intracellular pH (pHi). In the heart exists at least three isoforms of NBC, one that promotes the co-influx of 1 molecule of Na+ per 1molecule of HCO3-(electroneutral isoform; nNBC) and two others that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO3- (electrogenic isoforms; eNBC). In addition, the eNBC generates an anionic repolarizing current that modulate the cardiac action potential (CAP), adding to such isoforms the relevance to modulate the electrophysiological function of the heart. Angiotensin II (Ang II) is one of the main hormones that regulate cardiac physiology. The alkalinizing mechanisms (NHE and NBC) are stimulated by Ang II, increasing pHi and intracellular Na+ concentration, which indirectly, due to the stimulation of the Na+/Ca2+ exchanger (NCX) operating in the reverse form, leads to an increase in the intracellular Ca2+ concentration. Interestingly, it has been shown that Ang II exhibits an opposite effect on NBC isoforms: it activates the nNBC and inhibits the eNBC. This inhibition generates a CAP prolongation, which could directly increase the intracellular Ca2+ concentration. The regulation of the intracellular Na+ and Ca2+ concentrations is crucial for the cardiac cellular physiology, but these ions are also involved in the development of cardiac hypertrophy and the damage produced by ischemia-reperfusion, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900, La Plata, Argentina.
| | | |
Collapse
|
8
|
Vargas LA, Díaz RG, Swenson ER, Pérez NG, Álvarez BV. Inhibition of carbonic anhydrase prevents the Na(+)/H(+) exchanger 1-dependent slow force response to rat myocardial stretch. Am J Physiol Heart Circ Physiol 2013; 305:H228-37. [PMID: 23709596 DOI: 10.1152/ajpheart.00055.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Myocardial stretch is an established signal that leads to hypertrophy. Myocardial stretch induces a first immediate force increase followed by a slow force response (SFR), which is a consequence of an increased Ca(2+) transient that follows the NHE1 Na(+)/H(+) exchanger activation. Carbonic anhydrase II (CAII) binds to the extreme COOH terminus of NHE1 and regulates its transport activity. We aimed to test the role of CAII bound to NHE1 in the SFR. The SFR and changes in intracellular pH (pHi) were evaluated in rat papillary muscle bathed with CO2/HCO3(-) buffer and stretched from 92% to 98% of the muscle maximal force development length for 10 min in the presence of the CA inhibitor 6-ethoxzolamide (ETZ, 100 μM). SFR control was 120 ± 3% (n = 8) of the rapid initial phase and was fully blocked by ETZ (99 ± 4%, n = 6). The SFR corresponded to a maximal increase in pHi of 0.18 ± 0.02 pH units (n = 4), and pHi changes were blocked by ETZ (0.04 ± 0.04, n = 6), as monitored by epifluorescence. NHE1/CAII physical association was examined in the SFR by coimmunoprecipitation, using muscle lysates. CAII immunoprecipitated with an anti-NHE1 antibody and the CAII immunoprecipitated protein levels increased 58 ± 9% (n = 6) upon stretch of muscles, assessed by immunoblots. The p90(RSK) kinase inhibitor SL0101-1 (10 μM) blocked the SFR of heart muscles after stretch 102 ± 2% (n = 4) and reduced the binding of CAII to NHE1, suggesting that the stretch-induced phosphorylation of NHE1 increases its binding to CAII. CAII/NHE1 interaction constitutes a component of the SFR to heart muscle stretch, which potentiates NHE1-mediated H(+) transport in the myocardium.
Collapse
Affiliation(s)
- Lorena A Vargas
- Centro de Investigaciones Cardiovasculares, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | |
Collapse
|
9
|
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. J Mol Cell Cardiol 2013; 61:51-9. [PMID: 23602948 DOI: 10.1016/j.yjmcc.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
10
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
11
|
Functional Characterization of Transmembrane Intracellular pH Regulators and Mechanism of Alcohol-induced Intracellular Acidosis in Human Umbilical Cord Blood Stem Cell–Like Cells. J Cardiovasc Pharmacol 2011; 58:589-601. [DOI: 10.1097/fjc.0b013e3182300228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
De Giusti VC, Orlowski A, Aiello EA. Angiotensin II inhibits the electrogenic Na+/HCO3- cotransport of cat cardiac myocytes. J Mol Cell Cardiol 2010; 49:812-8. [PMID: 20692267 DOI: 10.1016/j.yjmcc.2010.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 01/12/2023]
Abstract
The Na(+)/HCO(3)(-) cotransporter (NBC) plays an important role in intracellular pH (pH(i)) regulation in the heart. In the myocardium co-exist the electrogenic (eNBC) and electroneutral (nNBC) isoforms of NBC. We have recently reported that angiotensin II (Ang II) stimulated total NBC activity during the recovery from intracellular acidosis through a reactive oxygen species (ROS) and ERK-dependent pathway. In the present work we focus our attention on eNBC. In order to study the activity of the eNBC in isolation, we induced a membrane potential depolarization by increasing extracellular K(+) [K(+)](o) from 4.5 to 45 mM (K(+) pulse). This experimental protocol enhanced eNBC driving force leading to intracellular alkalization (0.19 ± 0.008, n=6; data expressed as an increase of pH(i) units after 14 min of applying the K(+) pulse). This alkalization was completely abrogated by the NBC blocker S0859 (-0.004 ± 0.016*, n=5; * indicates p<0.05 vs control) but not by the Na(+)/H(+) exchanger blocker HOE642 (0.185 ± 0.04, n=4), indicating that we are exclusively measuring eNBC. The K(+) pulse induced alkalization was canceled by 100 nM Ang II (-0.008 ± 0.018*; n=5). This inhibitory effect was prevented when the myocytes were incubated with losartan (AT(1) receptor blocker, 0.18 ± 0.02; n=4) or SB202190 (p38 MAP kinase inhibitor, 0.25 ± 0.06; n=5). Neither chelerythrine (PKC inhibitor, -0.06 ± 0.04*; n=4), nor U0126 (ERK inhibitor, -0.07 ± 0.04*; n=4) nor MPG (ROS scavenger, -0.02 ± 0.05*; n=8) affected the Ang II-induced inhibition of eNBC. The inhibitory action of Ang II on eNBC was corroborated with perforated patch-clamp experiments, since no impact of the current produced by eNBC on action potential repolarization was observed in the presence of Ang II. In conclusion, we propose that Ang II, binding to AT(1) receptors, exerts an inhibitory effect on eNBC activity in a p38 kinase-dependent manner.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | |
Collapse
|
13
|
Role of reactive oxygen species (ROS) in angiotensin II-induced stimulation of the cardiac Na+/HCO3- cotransport. J Mol Cell Cardiol 2009; 47:716-22. [PMID: 19646989 DOI: 10.1016/j.yjmcc.2009.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 01/12/2023]
Abstract
The sarcolemmal Na+/HCO3- cotransporter (NBC) plays an important role in intracellular pH (pH(i)) regulation in the heart. In the present work we studied, in isolated cat ventricular myocytes, the role of Angiotensin II (Ang II) and reactive oxygen species (ROS) production as potential activators of the NBC. pH(i) was measured in single cells in a medium with HCO3- using the fluorescent pH indicator BCECF. The NH4+ pulse method was used to induce an intracellular acid load and the acid efflux (JH) in the presence of the Na+/H+ exchanger blocker HOE642 (10 microM) was calculated as indicator of NBC activity. The following JH data are presented at pH(i) of 6.8 (* and # indicate p<0.05 after ANOVA vs. control and Ang II, respectively). The basal JH (1.03+/-0.12 mM/min, n=11) was significantly increased in the presence of 100 nM Ang II (1.70+/-0.15 mM/min, n=8*). This effect of Ang II was abolished when we added to the extracellular solution 2 mM MPG (ROS scavenger; 0.80+/-0.08 mM/min, n=11#), 300 microM apocynin (NADPH oxidase blocker; 0.80+/-0.13 mM/min, n=6#), 500 microM 5-hydroxidecanoate (mitochondrial ATP dependent K+ channel, mK(ATP), blocker; 0.97+/-0.21 mM/min, n=9#), or the inhibitor of the MAP kinase ERK pathway U0126 (10 microM; 0.56+/-0.18 mM/min, n=6#). We also determined the phosphorylation of ERK during the first min of acidosis and we detected that Ang II significantly enhanced the ERK phosphorylation levels, an effect that was cancelled by scavenging ROS with MPG. In conclusion, we propose that Ang II enhances the production of ROS through the activation of the NADPH oxidase, which in turn triggers mK(ATP) opening and mitochondrial ROS production ("ROS-induced ROS-release mechanism"). Finally, these mitochondrial ROS stimulate the ERK pathway, leading to the activation of the NBC.
Collapse
|
14
|
Vaughan-Jones RD, Spitzer KW, Swietach P. Intracellular pH regulation in heart. J Mol Cell Cardiol 2008; 46:318-31. [PMID: 19041875 DOI: 10.1016/j.yjmcc.2008.10.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/11/2008] [Indexed: 12/14/2022]
Abstract
Intracellular pH (pHi) is an important modulator of cardiac excitation and contraction, and a potent trigger of electrical arrhythmia. This review outlines the intracellular and membrane mechanisms that control pHi in the cardiac myocyte. We consider the kinetic regulation of sarcolemmal H+, OH- and HCO3- transporters by pH, and by receptor-coupled intracellular signalling systems. We also consider how activity of these pHi effector proteins is coordinated spatially in the myocardium by intracellular mobile buffer shuttles, gap junctional channels and carbonic anhydrase enzymes. Finally, we review the impact of pHi regulatory proteins on intracellular Ca2+ signalling, and their participation in clinical disorders such as myocardial ischaemia, maladaptive hypertrophy and heart failure. Such multiple effects emphasise the fundamental role that pHi regulation plays in the heart.
Collapse
Affiliation(s)
- Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, Parks Road, OX1 3PT, UK.
| | | | | |
Collapse
|
15
|
Abstract
Investigation of the physiological functions and possible pathological roles of Na(+)/HCO(3)(-) co-transport in the heart has been hampered by uncertainty over the molecular identity of cardiac Na(+)/HCO(3)(-) co-transporter(s) and the absence of selective pharmacological inhibitors. In their paper published in this issue, Ch'en and colleagues describe the extensive characterization of S0859 as a high-affinity inhibitor of Na(+)/HCO(3)(-) co-transport in cardiac myocytes (Ch'en et al., 2008). The availability of S0859 provides a powerful new tool to investigate the (patho)physiological significance of Na(+)/HCO(3)(-) co-transport in the heart and other tissues.
Collapse
Affiliation(s)
- M Avkiran
- King's College London, Cardiovascular Division, St Thomas' Hospital, London, UK.
| |
Collapse
|
16
|
Piermarini PM, Choi I, Boron WF. Cloning and characterization of an electrogenic Na/HCO3− cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 2007; 292:C2032-45. [PMID: 17267543 DOI: 10.1152/ajpcell.00544.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The squid giant axon is a classic model system for understanding both excitable membranes and ion transport. To date, a Na+-driven Cl-HCO3− exchanger, sqNDCBE—related to the SLC4 superfamily and cloned from giant fiber lobe cDNA—is the only HCO3−-transporting protein cloned and characterized from a squid. The goal of our study was to clone and characterize another SLC4-like cDNA. We used degenerate PCR to obtain a partial cDNA clone (squid fiber clone 3, SF3), which we extended in both the 5′ and 3′ directions to obtain the full-length open-reading frame. The predicted amino-acid sequence of SF3 is similar to sqNDCBE, and a phylogenetic analysis of the membrane domains indicates that SF3 clusters with electroneutral Na+-coupled SLC4 transporters. However, when we measure pHi and membrane potential—or use two-electrode voltage clamping to measure currents—on Xenopus oocytes expressing SF3, the oocytes exhibit the characteristics of an electrogenic Na/HCO3− cotransporter, NBCe. That is, exposure to extracellular CO2/HCO3− not only causes a fall in pHi, followed by a robust recovery, but also causes a rapid hyperpolarization. The current-voltage relationship is also characteristic of an electrogenic NBC. The pHi recovery and current require HCO3− and Na+, and are blocked by DIDS. Furthermore, neither K+ nor Li+ can fully replace Na+ in supporting the pHi recovery. Extracellular Cl− is not necessary for the transporter to operate. Therefore, SF3 is an NBCe, representing the first NBCe characterized from an invertebrate.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
17
|
Villa-Abrille MC, Petroff MGV, Aiello EA. The electrogenic Na+/HCO3- cotransport modulates resting membrane potential and action potential duration in cat ventricular myocytes. J Physiol 2006; 578:819-29. [PMID: 17138608 PMCID: PMC2151338 DOI: 10.1113/jphysiol.2006.120170] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Perforated whole-cell configuration of patch clamp was used to determine the contribution of the electrogenic Na+/HCO3- cotransport (NBC) on the shape of the action potential in cat ventricular myocytes. Switching from Hepes to HCO3- buffer at constant extracellular pH (pH(o)) hyperpolarized resting membrane potential (RMP) by 2.67 +/- 0.42 mV (n = 9, P < 0.05). The duration of action potential measured at 50% of repolarization time (APD50) was 35.8 +/- 6.8% shorter in the presence of HCO3- than in its absence (n = 9, P < 0.05). The anion blocker SITS prevented and reversed the HCO3- -induced hyperpolarization and shortening of APD. In addition, no HCO3- -induced hyperpolarization and APD shortening was observed in the absence of extracellular Na+. Quasi-steady-state currents were evoked by 8 s duration voltage-clamped ramps ranging from -130 to +30 mV. A novel component of SITS-sensitive current was observed in the presence of HCO3-. The HCO3- -sensitive current reversed at -87 +/- 5 mV (n = 7), a value close to the expected reversal potential of an electrogenic Na+/HCO3- cotransport with a HCO3-:Na+ stoichiometry ratio of 2: 1. The above results allow us to conclude that the cardiac electrogenic Na+/HCO3- cotransport has a relevant influence on RMP and APD of cat ventricular cells.
Collapse
Affiliation(s)
- María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, 60 y 120, La Plata 1900, Argentina
| | | | | |
Collapse
|
18
|
Kemi OJ, Arbo I, Høydal MA, Loennechen JP, Wisløff U, Smith GL, Ellingsen Ø. Reduced pH and contractility in failing rat cardiomyocytes. Acta Physiol (Oxf) 2006; 188:185-93. [PMID: 17054658 DOI: 10.1111/j.1748-1716.2006.01621.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To determine whether reduced cardiomyocyte contractility in heart failure is associated with reduced intracellular pH (pH(i)). Involvement of the Na(+)/H(+) exchanger and the H(+)/K(+) ATPase were investigated with specific blockers. METHODS Myocardial infarction and subsequent heart failure in Sprague-Dawley rats were induced by chronic occlusion of the left coronary artery. 6 weeks post-ligation, contractility (cell shortening) and pH(i) (BCECF fluorescence) were recorded in freshly dissociated cardiomyocytes during 2-10 Hz electrical stimulation, with or without either Na(+)/H(+) exchanger or H(+)/K(+) ATPase inhibition. RESULTS Elevated end-diastolic and reduced peak systolic pressures confirmed heart failure. Increased heart weights (20-30%; P < or = 0.01) and cardiomyocyte lengths and widths (22-25%; P < or = 0.01) confirmed substantial cardiac hypertrophy. In myocytes isolated from sham operated rats, a positive staircase response occurred with stimulation rates from 2 to 7 Hz; further increases in stimulation rate up to 10 Hz reduced contractility. In contrast, pH(i) fell progressively over the entire stimulation range. In failing myocytes, pH(i) was consistently 0.07 pH units lower and contractility 40% lower (P < or = 0.01) than sham control values; the shape of the contractility staircase remained similar to controls. At all stimulation frequencies, Na(+)/H(+) exchanger inhibition reduced pH(i) by 0.05 pH units (P < or = 0.01) and contractility by 22% (P < or = 0.05) in cardiomyocytes from the heart failure group. A significantly smaller decrease of pH(i) and reduction in contractility was observed after inhibition of Na(+)/H(+) exchanger (10 micro m HOE694) in sham myocytes. H(+)/K(+) ATPase inhibition (100 micro m SCH28080) had no effect on pH(i). CONCLUSION Reduced pH(i) is accompanied by reduced cardiomyocyte contractility in isolated myocytes from post-MI heart failure. The data suggest compensatory Na(+)/H(+) exchanger activation in heart failure, whereas H(+)/K(+) ATPase does not appear to contribute significantly to pH(i) maintenance.
Collapse
Affiliation(s)
- O J Kemi
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
19
|
Vaughan-Jones RD, Villafuerte FC, Swietach P, Yamamoto T, Rossini A, Spitzer KW. pH-Regulated Na(+) influx into the mammalian ventricular myocyte: the relative role of Na(+)-H(+) exchange and Na(+)-HCO Co-transport. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S134-S140. [PMID: 16686668 DOI: 10.1111/j.1540-8167.2006.00394.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the heart, intracellular Na(+) concentration (Na(+) (i)) is a controller of intracellular Ca(2+) signaling, and hence of key aspects of cell contractility and rhythm. Na(+) (i) will be influenced by variation in Na(+) influx. In the present work, we consider one source of Na(+) influx, sarcolemmal acid extrusion. Acid extrusion is accomplished by sarcolemmal H(+) and HCO(3) (-) transporters that import Na(+) ions while exporting H(+) or importing HCO(3) (-). The capacity of this system to import Na(+) is enormous, up to four times the maximum capacity of the Na(+)-K(+) ATPase to extrude Na(+) ions from the cell. In this review we consider the role of Na(+)-H(+) exchange (NHE) and Na(+)-HCO(3) (-)co-transport (NBC) in mediating Na(+) influx into cardiac myocytes. We consider, in particular, the role of NBC, as so little is known about Na(+) influx through this transporter. We show that both proteins mediate significant Na(+) influx and that although, in the ventricular myocyte, NBC-mediated Na(+) influx is less than through NHE, the proportions may be altered under a variety of conditions, including exposure to catecholamines, membrane depolarization, and interference with activity of the enzyme, carbonic anhydrase.
Collapse
|
20
|
Tsai CS, Loh SH, Jin JS, Hong GJ, Lin HT, Chiung CS, Chang CY. Effects of alcohol on intracellular pH regulators and electromechanical parameters in human myocardium. Alcohol Clin Exp Res 2005; 29:1787-95. [PMID: 16269908 DOI: 10.1097/01.alc.0000183512.31705.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Disturbances in intracellular pH (pHi) of the heart can trigger major changes in the strength and rhythm of the heartbeat. It is well known that two extruders, Na+/H+ exchange (NHE) and Na+/HCO3- symporter (NHS), and a monocarboxylic acid transporter (MCT) are involved in acid-equivalent extruding in the human heart. Drinking alcohol has been proven to affect blood pressure and heart contractility and, sometimes, causes cardiac arrhythmia. To assess the effects of alcohol on pHi regulators and electromechanical parameters, various concentrations of alcohol were superfused into human myocardium in the present study. METHODS Human atrial myocardium was obtained from hearts of patients undergoing corrective cardiac surgery. Institutional rules for the protection of human subjects were observed. In the whole study, pHi was measured by an epifluorescent, ratiometric microspectrofluorimetry technique with the dye BCECF, while electrophysiological experiments were performed by traditional micropipette. NHE and NHS activities were measured after pHi recovery from intracellular acidosis induced by NH4Cl prepulse, while MCT activity was measured by a lactate adding/removing technique. RESULTS In pHi experiments, we demonstrated that alcohol could induce a biphasic, concentration-dependent (30-1000 mM) pHi change (i.e., alkalosis after acidosis) in human atrium in HEPES-buffered Tyrode solution. To a smaller extent, similar results were found when the superfusate was replaced by HCO3- -buffered Tyrode solution. NHE activity was increased by a moderate concentration of alcohol (30 mM), while it was inhibited in a concentration-dependent manner by higher concentrations of alcohol (>100 mM). On the contrary, 30-1000 mM alcohol increased the activity of NHS in a concentration-dependent manner. Surprisingly, MCT activity was not affected by alcohol. In electromechanical experiments, we found that alcohol (30-1000 mM) had a notable concentration-dependent inhibitory effect on the contractile force, while higher concentrations of alcohol (>100 mM) decreased the action potential amplitude, upstroke velocity, duration of repolarization, and force of contractions in a concentration-dependent way. All these alcohol-induced pHi changes and electromechanical inhibitions were reversible. CONCLUSIONS To our knowledge, this study provides the first evidence that alcohol can affect pHi in human myocardial tissue by changing the activity of acid extruders (i.e., NHE and NHS).
Collapse
Affiliation(s)
- Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Neihu, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ten Hove M, Nederhoff MGJ, Van Echteld CJA. Relative contributions of Na+/H+exchange and Na+/HCO3−cotransport to ischemic Nai+overload in isolated rat hearts. Am J Physiol Heart Circ Physiol 2005; 288:H287-92. [PMID: 15319198 DOI: 10.1152/ajpheart.01102.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+/H+exchanger (NHE) and/or the Na+/HCO3−cotransporter (NBC) were blocked during ischemia in isolated rat hearts. Intracellular Na+concentration ([Na+]i), intracellular pH (pHi), and energy-related phosphates were measured by using simultaneous23Na and31P NMR spectroscopy. Hearts were subjected to 30 min of global ischemia and 30 min of reperfusion. Cariporide (3 μM) or HCO3−-free HEPES buffer was used, respectively, to block NHE, NBC, or both. End-ischemic [Na+]iwas 320 ± 18% of baseline in HCO3−-perfused, untreated hearts, 184 ± 6% of baseline when NHE was blocked, 253 ± 19% of baseline when NBC was blocked, and 154 ± 6% of baseline when both NHE and NBC were blocked. End-ischemic pHiwas 6.09 ± 0.06 in HCO3−-perfused, untreated hearts, 5.85 ± 0.02 when NHE was blocked, 5.81 ± 0.05 when NBC was blocked, and 5.70 ± 0.01 when both NHE and NBC were blocked. NHE blockade was cardioprotective, but NBC blockade and combined blockade were not, the latter likely due to a reduction in coronary flow, because omission of HCO3−under conditions of NHE blockade severely impaired coronary flow. Combined blockade of NHE and NBC conserved intracellular H+load during reperfusion and led to massive Na+influx when blockades were lifted. Without blockade, both NHE and NBC mediate acid-equivalent efflux in exchange for Na+influx during ischemia, NHE much more than NBC. Blockade of either one does not affect the other.
Collapse
Affiliation(s)
- Michiel Ten Hove
- Interuniversity Cardiology, Institute of the Netherlands, Utrecht, The Netherlands
| | | | | |
Collapse
|
22
|
Yamamoto T, Swietach P, Rossini A, Loh SH, Vaughan-Jones RD, Spitzer KW. Functional diversity of electrogenic Na+-HCO3- cotransport in ventricular myocytes from rat, rabbit and guinea pig. J Physiol 2004; 562:455-75. [PMID: 15550467 PMCID: PMC1665517 DOI: 10.1113/jphysiol.2004.071068] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Na(+)-HCO(3)(-) cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO(3)(-) : 1Na(+); coupling coefficient N= 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO(3)(-) : 1Na(+); N= 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pH(i) while hyperpolarization decreased it, effects seen only in CO(2)/HCO(3)(-)-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pH(i) changes were rat > guinea pig approximately rabbit. Tonic depolarization (-140 mV to -0 mV) accelerated NBC-mediated pH(i) recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pH(i) was +0.52 +/- 0.05 pA pF(-1) (rat, n= 5), +0.26 +/- 0.05 pA pF(-1) (guinea pig, n= 5) and +0.10 +/- 0.03 pA pF(-1) (rabbit, n= 9), with reversal potentials near -100 mV, consistent with N= 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pH(i)-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pH(i) recovery was associated with a rise of [Na(+)](i) at a rate approximately 25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between N= 1 and N= 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity.
Collapse
Affiliation(s)
- Taku Yamamoto
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Bicarbonate is not freely permeable to membranes. Yet, bicarbonate must be moved across membranes, as part of CO2 metabolism and to regulate cell pH. Mammalian cells ubiquitously express bicarbonate transport proteins to facilitate the transmembrane bicarbonate flux. These bicarbonate transporters, which function by different transport mechanisms, together catalyse transmembrane bicarbonate movement. Recent advances have allowed the identification of several new bicarbonate transporter genes. Bicarbonate transporters cluster into two separate families: (i) the anion exachanger (AE) family of Cl-/HCO3- exchangers is related in sequence to the NBC family of Na+/HCO3- cotransporters and the Na(+)-dependent Cl/HCO3- exchangers and (ii) some members of the SLC26a family of sulfate transporters will also transport bicarbonate but are not related in sequence to the AE/NBC family of transporters. This review summarizes our understanding of the mammalian bicarbonate transporter superfamily.
Collapse
Affiliation(s)
- Deborah Sterling
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
24
|
Vaughan-Jones RD, Spitzer KW. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochem Cell Biol 2003; 80:579-96. [PMID: 12440699 DOI: 10.1139/o02-157] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.
Collapse
|
25
|
Bril A. [Ion transporters and cardiovascular diseases: pH control or modulation of intracellular calcium concentration]. Ann Cardiol Angeiol (Paris) 2003; 52:41-51. [PMID: 12710294 DOI: 10.1016/s0003-3928(02)00182-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regulation of the intracellular pH is under tight control by several ion transport systems including the sodium-proton exchanger, the sodium-bicarbonate cotransporter and the chlore-bicarbonate anion exchanger. While the activation of the anion exchange induces a cellular acidification, both the sodium-proton exchanger and the sodium-bicarbonate cotransporter are responsible for a protection against acidosis by extruding protons or importing bicarbonate. These transporters are transmembrane proteins whose activity is regulated by several mechanisms including phosphorylation, calcium binding and which are involved in several pathophysiologic processes such as ischemia, hypertrophy and arrhythmias. Recent studies suggest that the activation of these transporters during various diseases induces an increase in intracellular calcium concentration. Therefore, inhibiting these transporters could represent novel therapeutic strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- A Bril
- Laboratoire de physiopathologie et pharmacologie cardiovasculaires expérimentales, IFR 100, facultés de médecine et pharmacie, 7, boulevard Jeanne-d'Arc, BP 87900, 21079 Dijon, France.
| |
Collapse
|
26
|
Xu J, Wang Z, Barone S, Petrovic M, Amlal H, Conforti L, Petrovic S, Soleimani M. Expression of the Na+-HCO-3 cotransporter NBC4 in rat kidney and characterization of a novel NBC4 variant. Am J Physiol Renal Physiol 2003; 284:F41-50. [PMID: 12388414 DOI: 10.1152/ajprenal.00055.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of the present studies was to examine the renal distribution and functional properties of Na(+)-HCO(3)(-) cotransporter type 4 (NBC4), the latest NBC isoform to be identified. Zonal distribution studies in rat kidney by Northern blot hybridization and RT-PCR demonstrated that NBC4 is highly abundant in the outer medulla and cortex but is low in the inner medulla. Nephron segment distribution studies indicated that NBC4 is predominantly expressed in the medullary and cortical thick ascending limb of the loop of Henle. Using specific primers on the basis of the published sequence (GenBank accession no. AF-207661), a full-length NBC4 variant was cloned from human liver and examined. The sequence of this variant (called NBC4e) is shorter by 86 amino acids vs. the published sequence. Xenopus laevis oocytes injected with the full-length NBC4e cRNA were compared with NBC1-expressing oocytes. Although exposure of NBC1-expressing oocytes to CO(2)/HCO(3)(-) resulted in immediate hyperpolarization, the NBC4-expressing oocytes did not show any alteration in membrane potential. NBC activity in oocytes, assayed as the Na(+)-dependent, HCO(3)(-)-mediated intracellular pH recovery from acidosis, indicated that NBC4 is a DIDS-inhibitable NBC. We propose that NBC4 is expressed in the thick ascending limb of the loop of Henle and mediates cellular HCO(3)(-) uptake in this segment.
Collapse
Affiliation(s)
- Jie Xu
- Division of Nephrology, Department of Medicine, University of Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sandmann S, Kaschina E, Blume A, Kruse ML, Unger T. Bradykinin B1 and B2 receptors differentially regulate cardiac Na+-H+ exchanger, Na+-Ca2+ exchanger and Na+-HCO3- symporter. Eur J Pharmacol 2003; 458:3-16. [PMID: 12498901 DOI: 10.1016/s0014-2999(02)02656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bradykinin B(1) and B(2) receptors are up-regulated in the infarcted myocardium, and both receptors are involved in the regulation of intracellular pH and Ca(2+). The present study investigated the role of bradykinin B(1) and B(2) receptors in the regulation of Na(+)-H(+) exchanger (NHE-1), Na(+)-Ca(2+) exchanger (NCE-1) and Na(+)-HCO(3)(-) symporter (NBC-1) in the infarcted myocardium. NHE-1, NCE-1 and NBC-1 mRNA expression was determined by Northern blot analysis and the protein levels by Western blot analysis. Measurements were performed 1, 7 and 14 days after induction of myocardial infarction. Localization of NHE-1, NCE-1 and NBC-1 within the myocardium was studied using confocal microscopy. Cardiac morphology was measured in picrosiris-red-stained hearts. Rats were treated with placebo, the bradykinin B(2) receptor antagonist icatibant (0.5 mg/kg/day) or the bradykinin B(1) receptor antagonist des-Arg(9)-[Leu(8)]bradykinin (1 mg/kg/day). Treatment was started 1 week prior to surgery and continued until 1, 7 and 14 days post infarction. NHE-1, NCE-1 and NBC-1 mRNA expression and protein levels were increased 1 day and reached maximum values on day 7 post infarction. NHE-1 was localized in the plasma membrane, NCE-1 in the membrane of the sarcoplasmatic reticulum and NBC-1 near the Z-line. Icatibant reduced NHE-1 and inhibited NCE-1 mRNA- and protein up-regulation, while des-Arg(9)-[Leu(8)]bradykinin had no effect on NHE-1 and NCE-1 expression and translation. Transcriptional and translational up-regulation of NBC-1 was unaffected by the bradykinin B(1) and B(2) receptor antagonists. Icatibant, but not des-Arg(9)-[Leu(8)]bradykinin, limited infarct size and reduced left ventricular dilation, septal thickening and interstitial fibrosis post infarction. Bradykinin B(2) receptors are involved in transcriptional and translational regulation of NHE-1 and NCE-1 in the ischemic myocardium. Chronic B(2) receptor blockade might exert an anti-ischemic effect via limitation of NHE-1-mediated acidosis and NCE-1-mediated Ca(2+)-overload.
Collapse
Affiliation(s)
- Steffen Sandmann
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel, Germany.
| | | | | | | | | |
Collapse
|
28
|
Loh SH, Jin JS, Tsai CS, Chao CM, Chiung CS, Chen WH, Lin CI, Chuang CC, Wei J. Functional evidence for intracellular acid extruders in human ventricular myocardium. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:277-84. [PMID: 12230804 DOI: 10.2170/jjphysiol.52.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intracellular pH (pH(i)) is a major homeostatic system within the cell. Changes in pH(i) exert great influence on cardiac contractility and rhythm. Both the housekeeping Na+ - H+ exchanger (NHE) and the Na+ - HCO3- symporter (NHS) have been confirmed as major transporters for the active acid extrusion mechanism in animal cardiomyocytes. However, whether the NHE and NHS functionally coexist in human ventricular cardiomyocytes remains unclear. We therefore examined the mechanism of pH(i) recovery following an NH4Cl-induced intracellular acidosis in the human ventricular myocardium. The pH(i) was monitored by microspectrofluorimetry by the use of intracellular 2',7'-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein (BCECF)-fluorescence. HOE 694 (30 microM), a specific NHE inhibitor could block pH(i) recovery from induced intracellular acidosis completely in nominally HCO3- -free HEPES Tyrode solution, but it only partially inhibited the pH(i) recovery in 5% CO2/HCO3- Tyrode solution. In 5% CO2/HCO3- Tyrode solution, the addition of HOE 694 together with DIDS (an NHS inhibitor) or the removal of [Na+](o) could entirely inhibit the acid extrusion. We conclude for the first time that two different acid extruders, HCO3- -independent and -dependent, were most likely the NHE and NHS, respectively, that functionally coexisted in the human ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Shih-Hurng Loh
- Department of Pharmacology, National Defense Medical Center, Cheng-Hsin General Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Loh SH, Chen WH, Chiang CH, Tsai CS, Lee GC, Jin JS, Cheng TH, Chen JJ. Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter. J Biomed Sci 2002; 9:198-205. [PMID: 12065894 DOI: 10.1007/bf02256066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.
Collapse
Affiliation(s)
- Shih-Hurng Loh
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sandmann S, Yu M, Kaschina E, Blume A, Bouzinova E, Aalkjaer C, Unger T. Differential effects of angiotensin AT1 and AT2 receptors on the expression, translation and function of the Na+-H+ exchanger and Na+-HCO3- symporter in the rat heart after myocardial infarction. J Am Coll Cardiol 2001; 37:2154-65. [PMID: 11419902 DOI: 10.1016/s0735-1097(01)01287-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES This study investigated the role of angiotensin receptor subtype 1 (AT1) and angiotensin receptor subtype 2 (AT2) in the regulation of Na+-H+ exchanger (NHE) and Na+-HCO3 symporter (NBC) in the infarcted myocardium. BACKGROUND The cardiac renin-angiotensin system is activated after myocardial infarction (MI), and both angiotensin AT1 and AT2 receptors are upregulated in the myocardium. METHODS Na+-H+ exchanger isoform-1 and NBC-1 gene expression were determined by reverse transcription polymerase chain reaction and Northern blot analysis; protein levels by Western blot analysis; and activity by measurement of H+ transport in left ventricular (LV) free wall, interventricular septum (IS) and right ventricle (RV) after induction of MI. Rats were treated with placebo, the angiotensin-converting enzyme inhibitor ramipril (1 mg/kg/day), the AT1 receptor antagonist valsartan (10 mg/kg/day) or the AT2 receptor antagonist PD 123319 (30 mg/kg/day). Treatment was started seven days before surgery. RESULTS Na+-H+ exchanger isoform-1 and NBC-1 messenger RNA (mRNA) expression and protein levels were increased twofold in the LV free wall after MI, whereas no changes were observed in the IS and RV. Na+-dependent H+ flux was increased in the LV free wall. Ramipril inhibited mRNA and protein upregulation of both transporters. Valsartan inhibited the upregulation of NHE-1 mRNA and protein but had no effect on NBC-1 mRNA expression and translation. In contrast, PD 123319 abolished the upregulation of NBC-1 mRNA and protein but had no effect on NHE-1 upregulation. Ramipril and valsartan prevented post-MI increase in NHE-1 activity, whereas ramipril and PD 123319 decreased NBC-1 activity. CONCLUSIONS Angiotensin II via its AT1 and AT2 receptors differentially controls transcriptional and translational regulation as well as the activity of NHE-1 and NBC-1 in the ischemic myocardium and contributes to the control of pH regulation in cardiac tissue.
Collapse
Affiliation(s)
- S Sandmann
- Institute of Pharmacology, University of Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang Z, Conforti L, Petrovic S, Amlal H, Burnham CE, Soleimani M. Mouse Na+: HCO3- cotransporter isoform NBC-3 (kNBC-3): cloning, expression, and renal distribution. Kidney Int 2001; 59:1405-14. [PMID: 11260402 DOI: 10.1046/j.1523-1755.2001.0590041405.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Na+:HCO3- cotransporters mediate the transport of HCO3- into or out of the cell. We recently reported the partial cloning and characterization of a new human Na+:HCO3- cotransporter (referred to as NBC-3 or kNBC-3). The purpose of the present studies was to clone the mouse kNBC-3 and to examine its properties and expression in the kidney. METHODS Using primers from human kNBC-3 cDNA and 5' and 3' rapid amplification cDNA end polymerase chain reaction (RACE PCR), the mouse kNBC-3 full-length cDNA was cloned from inner medullary collecting duct (mIMCD-3) cells. The tissue distribution and functional properties of NBC-3 was determined using established methods. RESULTS The coding region of the mouse kNBC-3 has 1089 amino acids and shows 73 and 56% identity to human NBC-2 and NBC-1, respectively. The renal distribution of kNBC-3 demonstrated a unique expression pattern: Whereas kNBC-1 is predominantly expressed in the cortex and is absent in the inner medulla, kNBC-3 shows an intense expression level in the inner medulla and is absent in the cortex. Expression studies in oocytes indicated that NBC-3 mediates Na-dependent HCO3- cotransport. Electrophysiological experiments demonstrated that unlike kNBC-1, which is electrogenic, kNBC-3 is electroneutral. CONCLUSIONS Based on its distribution and electroneutrality, we propose that kNBC-3 mediates the transport of HCO3- into the cells.
Collapse
Affiliation(s)
- Z Wang
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, and the Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
32
|
Soleimani M, Burnham CE. Physiologic and molecular aspects of the Na+:HCO3- cotransporter in health and disease processes. Kidney Int 2000; 57:371-84. [PMID: 10652014 DOI: 10.1046/j.1523-1755.2000.00857.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Approximately 80% of the filtered load of HCO3- is reabsorbed in the proximal tubule via a process of active acid secretion by the luminal membrane. The major mechanism for the transport of HCO3- across the basolateral membrane is via the electrogenic Na+:3HCO3- cotransporter (NBC). Recent molecular cloning experiments have identified the existence of three NBC isoforms (NBC-1, NBC-2, and NBC-3).1 Functional and molecular studies indicate the presence of all three NBC isoforms in the kidney. All are presumed to mediate the cotransport of Na+ and HCO3- under normal conditions and may be functionally altered in certain pathophysiologic states. Specifically, NBC-1 may be up-regulated in metabolic acidosis and potassium depletion and in response to glucocorticoid excess and may be down-regulated in response to HCO3- loading or alkalosis. Recent studies provide molecular evidence indicating the expression of NBC-1 in pancreatic duct cells. NBC is activated by cystic fibrosis transmembrane conductance regulator (CFTR) and plays an important role in HCO3- secretion in the agonist-stimulated state in pancreatic duct cells. The purpose of this review is to summarize recent functional and molecular studies on the regulation of NBCs in physiologic and pathophysiologic states. Possible signals responsible for the regulation of NBCs in these conditions are examined. Furthermore, the possible role of this transporter in acid-base disorders (such as proximal renal tubular acidosis) is discussed.
Collapse
Affiliation(s)
- M Soleimani
- Department of Medicine, University of Cincinnati, and the Veterans Affairs Medical Center, Cincinnati, Ohio 45267-0585, USA.
| | | |
Collapse
|
33
|
Sciortino CM, Romero MF. Cation and voltage dependence of rat kidney electrogenic Na(+)-HCO(-)(3) cotransporter, rkNBC, expressed in oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F611-23. [PMID: 10516286 DOI: 10.1152/ajprenal.1999.277.4.f611] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we reported the cloning and expression of the rat renal electrogenic Na(+)-HCO(-)(3) cotransporter (rkNBC) in Xenopus oocytes [M. F. Romero, P. Fong, U. V. Berger, M. A. Hediger, and W. F. Boron. Am. J. Physiol. 274 (Renal Physiol. 43): F425-F432, 1998]. Thus far, all NBC cDNAs are at least 95% homologous. Additionally, when expressed in oocytes the NBCs are 1) electrogenic, 2) Na(+) dependent, 3) HCO(-)(3) dependent, and 4) inhibited by stilbenes such as DIDS. The apparent HCO(-)(3):Na(+) coupling ratio ranges from 3:1 in kidney to 2:1 in pancreas and brain to 1:1 in the heart. This study investigates the cation and voltage dependence of rkNBC expressed in Xenopus oocytes to better understand NBC's apparent tissue-specific physiology. Using two-electrode voltage clamp, we studied the cation specificity, Na(+) dependence, and the current-voltage (I-V) profile of rkNBC. These experiments indicate that K(+) and choline do not stimulate HCO(-)(3)-sensitive currents via rkNBC, and Li(+) elicits only 3 +/- 2% of the total Na(+) current. The Na(+) dose response studies show that the apparent affinity of rkNBC for extracellular Na(+) ( approximately 30 mM [Na(+)](o)) is voltage and HCO(-)(3) independent, whereas the rkNBC I-V relationship is Na(+) dependent. At [Na(+)](o) v(max) (96 mM), the I-V response is approximately linear; both inward and outward Na(+)-HCO(-)(3) cotransport are observed. In contrast, only outward cotransport occurs at low [Na(+)](o) (<1 mM [Na(+)](o)). All rkNBC currents are inhibited by extracellular application of DIDS, independent of voltage and [Na(+)](o). Using ion-selective microelectrodes, we monitored intracellular pH and Na(+) activity. We then calculated intracellular [HCO(-)(3)] and, with the observed reversal potentials, calculated the stoichiometry of rkNBC over a range of [Na(+)](o) values from 10 to 96 mM at 10 and 33 mM [HCO(-)(3)](o). rkNBC stoichiometry is 2 HCO(-)(3):1 Na(+) over this entire Na(+) range at both HCO(-)(3) concentrations. Our results indicate that rkNBC is highly selective for Na(+), with transport direction and magnitude sensitive to [Na(+)](o) as well as membrane potential. Since the rkNBC protein alone in oocytes exhibits a stoichiometry of less than the 3 HCO(-)(3):1 Na(+) thought necessary for HCO(-)(3) reabsorption by the renal proximal tubule, a control mechanism or signal that alters its in vivo function is hypothesized.
Collapse
Affiliation(s)
- C M Sciortino
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
34
|
Kusnier CF, Kotsias BA. Effects of DIDS, a disulfonic stilbene derivative, on chloride movements in toad skeletal muscles. Life Sci 1999; 65:271-7. [PMID: 10447212 DOI: 10.1016/s0024-3205(99)00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to investigate the characteristics of the movement of Cl- ions in toad skeletal muscles we decided to study the relative membrane permeabilities of chloride and nitrate and the effects of DIDS (4,4'-diisothyocyanatostilbene-2,2'-disulphonate) upon the hyperpolarizations produced in muscle fibers when chloride or nitrate ions rapidly replace impermeant sulphate ions in the external solution. For experiments where membrane potential changes were recorded in response to sudden changes in extracellular solutions, small bundles from the semitendinosus muscles were used. We showed that DIDS reduced in a reversible manner the Cl- permeability (pCl) in toad skeletal muscle fibers. The results supporting this conclusion were the following. First, a diminished hyperpolarization in response to a sudden exposure of the fibers to a solution containing Cl-. In these experiments DIDS reduced the pCl/pK ratio to 5.5 from a control value of 12. Second, a smaller transient of the resting potential when [Cl]o was changed from 120 to 30 mM and vice versa.
Collapse
Affiliation(s)
- C F Kusnier
- Instituto de Investigaciones Médicas Alfredo Lanari-UBA, Buenos Aires, Argentina
| | | |
Collapse
|
35
|
Tokuno T, Watanabe M, Imaizumi Y. Effects of lactate on intracellular pH and hypercontracture during simulated ischemia and reperfusion in cardiac ventricular myocytes of the guinea pig. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:343-50. [PMID: 10496335 DOI: 10.1254/jjp.80.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of lactate on changes in intracellular pH (pHi) and contractility during simulated ischemia and reperfusion were examined in single myocytes of the guinea pig cardiac ventricle. The conditions of simulated ischemia were produced by the exchange of perfusion medium from the standard one oxygenated with 95% O2-5% CO2 gas (pH 7.4) to one containing no glucose, 8 mM K+, and 0-30 mM sodium-D,L-lactate and was gassed with 90% argon - 10% CO2 (pH 6.6). The pHi was decreased by the simulated ischemia from approx. 7.3 to approx. 6.9 regardless of lactate concentration, while the rate of pHi decrease was increased by lactate in a concentration-dependent manner. The contraction induced by electrical stimulation disappeared faster in the presence of lactate. The incidence of irreversible hypercontracture of myocytes was significantly reduced by 20-30 mM lactate. The overshoot of pHi to approx. 7.7 and excess contractions were induced by withdrawal of lactate during the reperfusion, but not observed when lactate was continuously present. The recovery of normal contractility during reperfusion was facilitated by lactate. It can be concluded that lactate added to or removed from the perfusion medium increases the rate of pHi change under the simulated ischemia and reperfusion, respectively, and that the continuous presence of lactate reduces cell injury under these conditions.
Collapse
Affiliation(s)
- T Tokuno
- Department of Pharmacology & Therapeutics, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | |
Collapse
|
36
|
Amlal H, Burnham CE, Soleimani M. Characterization of Na+/HCO-3 cotransporter isoform NBC-3. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F903-13. [PMID: 10362779 DOI: 10.1152/ajprenal.1999.276.6.f903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na+-HCO-3 cotransporters mediate the transport of HCO-3 into or out of the cell. Two Na+-HCO-3 cotransporters (NBC) have been identified previously, which are referred to as NBC-1 and NBC-2. A cDNA library from uninduced human NT-2 cells was screened with an NBC-2 cDNA probe. Several clones were identified and isolated. Sequence analysis of these clones identified a partial coding region (2 kb) of a novel NBC (called here NBC-3), which showed 53% and 72% identity with NBC-1 and NBC-2, respectively. Northern blot analysis revealed that NBC-3 encodes a 4.4-kb mRNA with a tissue distribution pattern distinct from NBC-1 and NBC-2. NBC-3 is highly expressed in brain and spinal column, with moderate levels in trachea, thyroid, and kidney. In contrast with NBC-1, NBC-3 shows low levels of expression in pancreas and kidney cortex. In the kidney, NBC-3 expression is predominantly limited to the medulla. Cultured mouse inner medullary collecting duct (mIMCD-3) cells showed high levels of NBC-1 and low levels of NBC-3 mRNA expression. Subjecting the mutagenized mIMCD-3 cells to sublethal acid stress decreased the mRNA expression of NBC-1 by approximately 90% but increased the Na+-dependent HCO-3 cotransport activity by approximately 7-fold (as assayed by DIDS-sensitive, Na+-dependent, HCO-3-mediated intracellular pH recovery). This increase was associated with approximately 5.5-fold enhancement of NBC-3 mRNA levels. NBC showed significant affinity for Li+ in the mutant but not the parent mIMCD-3 cells. On the basis of the widespread distribution of NBC-3, we propose that this isoform is likely involved in cell pH regulation by transporting HCO-3 from blood to the cell. We further propose that enhanced expression of NBC-3 in severe acid stress could play an important role in cell survival by mediating the influx of HCO-3 into the cells.
Collapse
Affiliation(s)
- H Amlal
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | |
Collapse
|
37
|
Aiello EA, Petroff MG, Mattiazzi AR, Cingolani HE. Evidence for an electrogenic Na+-HCO3- symport in rat cardiac myocytes. J Physiol 1998; 512 ( Pt 1):137-48. [PMID: 9729624 PMCID: PMC2231183 DOI: 10.1111/j.1469-7793.1998.137bf.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1. The perforated whole-cell configuration of patch clamp and the pH fluorescent indicator SNARF were used to determine the electrogenicity of the Na+-HCO3- cotransport in isolated rat ventricular myocytes. 2. Switching from Hepes buffer to HCO3- buffer at constant extracellular pH (pHo) hyperpolarized the resting membrane potential (RMP) by 2.9 +/- 0.4 mV (n = 9, P < 0.05). In the presence of HCO3-, the anion blocker SITS depolarized RMP by 2.6 +/- 0.5 mV (n = 5, P < 0.05). No HCO3--induced hyperpolarization was observed in the absence of extracellular Na+. The duration of the action potential measured at 50 % of repolarization time (APD50) was 29.2 +/- 6.1 % shorter in the presence of HCO3- than in its absence (n = 6, P < 0.05). 3. Quasi-steady-state currents were evoked by voltage-clamped ramps ranging from -130 to +30 mV, during 8 s. The development of a novel component of Na+-dependent and Cl--independent steady-state outward current was observed in the presence of HCO3-. The reversal potential (Erev) of the Na+-HCO3- cotransport current (INa,Bic) was measured at four different levels of extracellular Na+. A HCO3-:Na+ ratio compatible with a stoichiometry of 2:1 was detected. INa,Bic was also studied in isolation in standard whole-cell experiments. Under these conditions, INa,Bic reversed at -96.4 +/- 1.9 mV (n = 5), being consistent with the influx of 2 HCO3- ions per Na+ ion through the Na+-HCO3- cotransporter. 4. In the presence of external HCO3-, after 10 min of depolarizing the membrane potential (Em) with 45 mM extracellular K+, a significant intracellular alkalinization was detected (0.09 +/- 0. 03 pH units; n = 5, P < 0.05). No changes in pHi were observed when the myocytes were pre-treated with the anion blocker DIDS (0.001 +/- 0.024 pH units; n = 5, n.s.), or when exposed to Na+-free solutions (0.003 +/- 0.037 pH units; n = 6, n.s.). 5. The above results allow us to conclude that the cardiac Na+-HCO3- cotransport is electrogenic and has an influence on RMP and APD of rat ventricular cells.
Collapse
Affiliation(s)
- E A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | | | | | | |
Collapse
|
38
|
Amlal H, Wang Z, Burnham C, Soleimani M. Functional characterization of a cloned human kidney Na+:HCO3- cotransporter. J Biol Chem 1998; 273:16810-5. [PMID: 9642239 DOI: 10.1074/jbc.273.27.16810] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional properties of a cloned human kidney Na+:HCO3- cotransporter (NBC-1) were studied in cultured HEK-293 cells that were transiently transfected with NBC-1 cDNA. The Na+:HCO3- cotransporter activity was assayed as the Na+ and HCO3-dependent pHi recovery from intracellular acidosis with the use of the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. In acid-loaded cells and in the presence of amiloride (to block Na+/H+ exchange), switching to a Na+-containing solution (115 mM) resulted in rapid pHi recovery only in the presence of HCO3-. This recovery was completely abolished by 300 microM 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid. Replacing the Na+ with Li+ (115 mM) caused significant HCO3--dependent, DIDS-sensitive pHi recovery from intracellular acidosis, with Li+ showing lower affinity than Na+. Potassium (K+) had no affinity for the Na+:HCO3- cotransporter. The Na+-dependent HCO3- cotransport was abolished in the presence of 0.2 mM harmaline. The Na+:HCO3- cotransporter could also function in Na+:OH- cotransport mode, although only at high external pH (7.8). Based on functional similarities with the mammalian kidney experiments, we propose that NBC-1 is the proximal tubule Na+:HCO3- cotransporter.
Collapse
Affiliation(s)
- H Amlal
- Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA
| | | | | | | |
Collapse
|