1
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Dai J, Huang H, Wu L, Ding M, Zhu X. Protective Role of Vitamin D Receptor in Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo Model. FRONT BIOSCI-LANDMRK 2024; 29:389. [PMID: 39614452 DOI: 10.31083/j.fbl2911389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Vitamin D receptor (VDR) can prevent myocardial ischemia reperfusion injury (MIRI). Hence, we aimed to illuminate the effect of VDR on cerebral ischemia/reperfusion injury (CIRI). METHODS C57BL/6 mice and SK-N-SH cells were utilized to establish CIRI and cellular oxygen deprivation/reoxygenation (OGD/R) models. Mice were injected with 1 μg/kg Calcitriol or 1 μg/kg Paricalcitol (PC) and adenovirus-mediated VDR overexpression or knockdown plasmids. 2,3,5-triphenyl-tetrazolium chloride (TTC) and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure the brain infarct volume and the apoptosis of cerebral cells. SK-N-SH cells were treated with 5 mM N-acetyl-L-cysteine (NAC) and transfected with VDR knockdown plasmid. Flow cytometry and Cell Counting Kit-8 (CCK-8) assays were employed to assess the apoptosis and cell viability. Enzyme-Linked Immunosorbent Assay (ELISA), quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and Western blot were exploited to quantify the levels of reactive species oxygen (ROS), other oxidative stress-related factors, VDR and apoptosis-related factors. RESULTS The level of VDR in mouse cerebral tissue was elevated by CIRI (p < 0.001). CIRI-induced cerebral infarction (p < 0.001) and the apoptosis of cerebral cells (p < 0.001) in mice were mitigated by the activation of VDR. VDR overexpression abrogated while VDR silencing enhanced CIRI-induced infarction, oxidative stress and apoptosis of cerebral cells (p < 0.05). Furthermore, VDR silencing aggravated the oxidative stress and apoptosis in OGD/R-treated SK-N-SH cells (p < 0.05). NAC, a scavenger of oxidative stress, could reverse the effects of VDR silencing on apoptosis and oxidative stress in OGD/R-treated SK-N-SH cells (p < 0.01). CONCLUSION VDR alleviates the oxidative stress to protect against CIRI.
Collapse
Affiliation(s)
- Jie Dai
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haiyan Huang
- Department of General surgery, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, 226019 Nantong, Jiangsu, China
| | - Mei Ding
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| |
Collapse
|
3
|
Zaharia AL, Oprea VD, Coadă CA, Tutunaru D, Romila A, Stan B, Croitoru A, Ionescu AM, Lungu M. Serum Caspase-3 Levels as a Predictive Molecular Biomarker for Acute Ischemic Stroke. Int J Mol Sci 2024; 25:6772. [PMID: 38928477 PMCID: PMC11204031 DOI: 10.3390/ijms25126772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Caspases are key players in the apoptotic process and have been found to contribute to the pathogenesis of a variety of diseases, including neurological disorders such as ischemic stroke. This study aimed to investigate the serum levels of Caspase-3 in patients with acute ischemic stroke (AIS) and in control patients without ischemic events. Moreover, we explored any potential associations with the clinical outcomes of AIS. We enrolled 69 consecutive patients with clinical signs and symptoms of AIS in the presence of a negative CT scan who presented themselves at the Clinical Neurological Department from the Emergency Clinical Hospital of Galati within the first 24 h of symptom onset. The control group comprised 68 patients without cerebral ischemic pathologies. A comparison of the two groups showed significantly higher levels of caspase-3 at 24 and 48 h after hospital admission. No significant associations between caspase-3 levels and clinical features of AIS were seen. However, in a subgroup analysis conducted on patients with moderate/severe and severe stroke, lower levels of caspase-3 were associated with early mortality. Caspase-3 levels did not directly correlate with AIS severity or prognosis when considering all AIS patients. In patients with moderate to severe National Institute of Health Stroke Scale (NIHSS) scores, caspase-3 might be a prognostic indicator of early death. Further studies are required to confirm these results and further explore the mechanisms behind these findings.
Collapse
Affiliation(s)
- Andrei-Lucian Zaharia
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Violeta Diana Oprea
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Camelia Alexandra Coadă
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana Tutunaru
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Aurelia Romila
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Bianca Stan
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Ana Croitoru
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine and Pharmacy, Ovidius University of Constanța, 900470 Constanța, Romania;
| | - Mihaiela Lungu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania; (A.-L.Z.); (V.D.O.); (A.R.); (B.S.); (A.C.); (M.L.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| |
Collapse
|
4
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
5
|
Chen Y, Li X, Xiong Q, Du Y, Luo M, Yi L, Pang Y, Shi X, Wang YT, Dong Z. Inhibiting NLRP3 inflammasome signaling pathway promotes neurological recovery following hypoxic-ischemic brain damage by increasing p97-mediated surface GluA1-containing AMPA receptors. J Transl Med 2023; 21:567. [PMID: 37620837 PMCID: PMC10463885 DOI: 10.1186/s12967-023-04452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is believed to be a key mediator of neuroinflammation and subsequent secondary brain injury induced by ischemic stroke. However, the role and underlying mechanism of the NLRP3 inflammasome in neonates with hypoxic-ischemic encephalopathy (HIE) are still unclear. METHODS The protein expressions of the NLRP3 inflammasome including NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1) and interleukin-1β (IL-1β), the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) subunit, and the ATPase valosin-containing protein (VCP/p97), were determined by Western blotting. The interaction between p97 and AMPA glutamate receptor 1 (GluA1) was determined by co-immunoprecipitation. The histopathological level of hypoxic-ischemic brain damage (HIBD) was determined by triphenyltetrazolium chloride (TTC) staining. Polymerase chain reaction (PCR) and Western blotting were used to confirm the genotype of the knockout mice. Motor functions, including myodynamia and coordination, were evaluated by using grasping and rotarod tests. Hippocampus-dependent spatial cognitive function was measured by using the Morris-water maze (MWM). RESULTS We reported that the NLRP3 inflammasome signaling pathway, such as NLRP3, caspase-1 and IL-1β, was activated in rats with HIBD and oxygen-glucose deprivation (OGD)-treated cultured primary neurons. Further studies showed that the protein level of the AMPAR GluA1 subunit on the hippocampal postsynaptic membrane was significantly decreased in rats with HIBD, and it could be restored to control levels after treatment with the specific caspase-1 inhibitor AC-YVAD-CMK. Similarly, in vitro studies showed that OGD reduced GluA1 protein levels on the plasma membrane in cultured primary neurons, whereas AC-YVAD-CMK treatment restored this reduction. Importantly, we showed that OGD treatment obviously enhanced the interaction between p97 and GluA1, while AC-YVAD-CMK treatment promoted the dissociation of p97 from the GluA1 complex and consequently facilitated the localization of GluA1 on the plasma membrane of cultured primary neurons. Finally, we reported that the deficits in motor function, learning and memory in animals with HIBD, were ameliorated by pharmacological intervention or genetic ablation of caspase-1. CONCLUSION Inhibiting the NLRP3 inflammasome signaling pathway promotes neurological recovery in animals with HIBD by increasing p97-mediated surface GluA1 expression, thereby providing new insight into HIE therapy.
Collapse
Affiliation(s)
- Yuxin Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qian Xiong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Tian Wang
- Department of Medicine, Brain Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
6
|
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42:1777-1796. [PMID: 35765984 PMCID: PMC9536116 DOI: 10.1177/0271678x221111600] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andra L Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Kim SD, Kim M, Wu HH, Jin BK, Jeon MS, Song YS. Prunus cerasoides Extract and Its Component Compounds Upregulate Neuronal Neuroglobin Levels, Mediate Antioxidant Effects, and Ameliorate Functional Losses in the Mouse Model of Cerebral Ischemia. Antioxidants (Basel) 2021; 11:99. [PMID: 35052603 PMCID: PMC8773295 DOI: 10.3390/antiox11010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Prunus cerasoides (PC) has been reported to have antimicrobial and anti-inflammatory properties, but its potential as a neuroprotective agent in a mouse model of cerebral ischemia has not been explored. Considering neuroglobin (Ngb), an endogenous neuroprotective factor, as a novel approach to neuroprotection, in this study, Ngb promoter activity, Ngb expression changes, and antioxidant protection by PC extract (PCE) and PC component compounds (PCCs) were analyzed in oxygen-glucose deprivation (OGD)-treated neurons. In vivo analysis involved transient middle cerebral artery occlusion (tMCAO) in mice with pre- and post-treatment exposure to PCE. Following ischemic stroke induction, neurological behavior scores were obtained, and cellular function-related signals were evaluated in the ischemic infarct areas. In addition to PCE, certain component compounds from PCE also significantly increased Ngb levels and attenuated the intracellular ROS production and cytotoxicity seen with OGD in primary neurons. Administration of PCE reduced the infarct volume and improved neurological deficit scores in ischemic stroke mice compared with the vehicle treatment. Increased Ngb levels in infarct penumbra with PCE treatment were also accompanied by decreased markers of apoptosis (activated p38 and cleaved caspase-3). Our findings point to the benefits of Ngb-mediated neuroprotection via PCE and its antioxidant activity in an ischemic stroke model.
Collapse
Affiliation(s)
- So-Dam Kim
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Minha Kim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Myung-Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
- Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Yun Seon Song
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
9
|
Pathipati P, Lecuyer M, Faustino J, Strivelli J, Phinney DG, Vexler ZS. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics 2021; 18:1939-1952. [PMID: 34235636 PMCID: PMC8609070 DOI: 10.1007/s13311-021-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Matthieu Lecuyer
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Joel Faustino
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | | | - Donald G Phinney
- Department of Molecular Medicine, Scripps Research Institute, Jupiter, FL, USA
| | - Zinaida S Vexler
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
10
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
11
|
Dong G, Li C, Hu Q, Wang Y, Sun J, Gao F, Yang M, Sun B, Mao L. Low-Dose IL-2 Treatment Affords Protection against Subarachnoid Hemorrhage Injury by Expanding Peripheral Regulatory T Cells. ACS Chem Neurosci 2021; 12:430-440. [PMID: 33476129 DOI: 10.1021/acschemneuro.0c00611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is considered a devastating disease, leaving survivors with lifelong neurological impairment. With increased knowledge that regulatory T cells (Tregs) provide protection against stroke, novel agents which could expand Treg populations have been assessed in terms of the potential clinical neuroprotection effect. Using a rat SAH model, we investigated the number variation of Tregs induced by SAH and the protective effect of low-dose interleukin-2 (IL-2) treatment on the SAH model. We observed that the number of peripheral Tregs significantly decreased soon after SAH, accompanying with reactivity recovery after 3 days. Our results also revealed that low-dose IL-2 treatment not only elevated Tregs numbers but significantly reduced neuronal injury and improved neurological functions up to 21 days (d) after SAH. Furthermore, compared with PBS-treatment group, cerebral proinflammatory factors and peripheral neutrophils were significantly suppressed by low-dose IL-2 after SAH. Therefore, the results suggest that low-dose IL-2 treatment is a novel and clinically feasible immunotherapy to improve long-term outcomes after SAH, perhaps via up-regulating Treg population to suppress neuroinflammation induced by SAH.
Collapse
Affiliation(s)
- Guoping Dong
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong 061000, China
| | - Cong Li
- College of Medical Information Enginerring, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Quan Hu
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Jingyi Sun
- Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Feng Gao
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mingfeng Yang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Baoliang Sun
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Leilei Mao
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
12
|
Wang M, Rong Y, Luo L. Neuroprotective effects of icariin in neonatal hypoxia-ischemic brain damage via its anti-apoptotic property. Childs Nerv Syst 2021; 37:39-46. [PMID: 32671530 DOI: 10.1007/s00381-020-04690-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neonatal hypoxic-ischemic brain damage (HIBD) is a brain disease that is caused by perinatal asphyxia. Icariin (ICA), which is an active component of Epimedii (a Chinese medicinal herb), has been verified to demonstrate a wide range of therapeutic effects, such as alleviating various kinds of brain injury. OBJECTIVE The current study aims to examine the neuroprotective effects of ICA on neonatal HIBD in mice. MATERIALS AND METHODS A modified version of the Rice-Vannucci method was performed to establish neonatal HIBD in 7-day-old mouse pups that were pretreated with ICA or vehicle. The infarct volume was measured, and behavioral tests were conducted to assess the protective effects of ICA on the neonatal brain and to evaluate functional recovery after injury. TUNEL staining was used to detect cell apoptosis, and the levels of cleaved caspase-3 and phosphorylated protein kinase B (Akt) were determined by using Western blot. RESULTS We showed that pretreatment with ICA could significantly reduce brain damage, improve neurobehavioral outcomes, and suppress apoptotic cell death following HI injury. ICA reversed the HI-induced reduction in phosphorylated Akt and activation of cleaved caspase-3. CONCLUSION The results demonstrate that ICA exerts potential neuroprotective effects on neonatal HIBD, which may be mediated by its anti-apoptotic activity.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Ying Rong
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Qiao S, Yang D, Li X, Li W, Zhang Y, Liu W. Silencing PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced neuronal apoptosis via activation of PI3K/AKT signaling in PC12 cells. Life Sci 2020; 265:118806. [PMID: 33249098 DOI: 10.1016/j.lfs.2020.118806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
AIMS Neuronal apoptosis acts as the pivotal pathogenesis of cerebral ischemia/reperfusion (I/R) injury after ischemic stroke. PAQR3 (progestin and adipoQ receptor family member 3) is a crucial player who participates in the regulation of cell death. We aim to explore the specific function and the underlying mechanism of PAQR3 in cerebral I/R induced neuronal injury. MAIN METHODS We established a mouse middle cerebral artery occlusion/reperfusion (MCAO/R) model and rat adrenal pheochromocytoma (PC12) cell oxygen-glucose deprivation/reperfusion (OGD/R) model to detect the expression and of PAQR3 after I/R treatment in vivo and in vitro. We used lentivirus to knockdown PAQR3 and investigated the function of PAQR3 in I/R induced neuronal apoptosis. KEY FINDINGS PAQR3 expression is markedly increased in the ischemic hemisphere of C57BL/6 mice and PC12 cells after I/R stimulation. Knockdown PAQR3 can attenuate neuronal apoptosis induced by I/R in PC12 cells and exerts neuroprotective effects. PAQR3 deficiency can significantly raise cell viability and suppress LDH leakage under I/R treatment. Silencing PAQR3 attenuates neuronal apoptosis remarkably with fewer TUNEL-positive cells and lower apoptosis rate under I/R treatment. Mechanistically, knockdown of PAQR3 can inhibit the apoptosis pathway through inducing anti-apoptotic proteins and inhibiting pro-apoptotic proteins. Besides, PI3K/AKT signaling suppression with LY294002 abolished the neuroprotective functions induced by silencing PAQR3. SIGNIFICANCE Our results elucidate that silencing PAQR3 can protect PC12 from OGD/R injury via activating PI3K/AKT pathway. And therefore, provide a novel therapeutic target for the prevention of cerebral I/R injury.
Collapse
Affiliation(s)
- Shanshan Qiao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Dexin Yang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Xiaofeng Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
14
|
Zhao F, Bai R, Li J, Feng X, Jiao S, Wuken S, Ge F, Zhang Q, Zhou X, Tu P, Chai X. Meconopsis horridula Hook. f. & Thomson extract and its alkaloid oleracein E exert cardioprotective effects against acute myocardial ischaemic injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112893. [PMID: 32387233 DOI: 10.1016/j.jep.2020.112893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Meconopsis horridula Hook. f. & Thomson (MH) is a traditional Tibetan medicine used to promote blood circulation, remove bruises, remove stasis and relieve chest pain which benefit to cardiovascular diseases. Oleracein E (OE), a major tetrahydroisoquinoline alkaloid, can be isolated from MH ethanol extract. The antioxidant and anti-apoptotic effects of OE have been reported by previous pharmacological research. The objective of this article was to investigate the cardioprotective effects of MH extract and OE in an ICR mouse of acute myocardial ischaemic injury. A left anterior descending (LAD) artery ligation mouse model of AMI was established. In vivo, cardiac function after MH and OE treatment was determined through measurement of EF, FS, LVEDd, and LVEDs by echocardiography. The levels of SOD, MDA, CK-MB and LDH in serum were also detected. A TUNEL assay was used to verify apoptosis. Changes in collagen deposition and inflammatory cell infiltration in ischemic myocardial tissue were observed by histopathological examination. In vitro, H9c2 cells were pre-treated with OE for 6 h, and then cultured in serum-free medium with H2O2 for 2 h. CCK8 assay measured cell viability, and flow cytometry determined apoptosis levels and ROS content. The mechanism was explored by western blotting. These results showed that MH and OE significantly affected acute myocardial ischaemia by improving cardiac function and that OE downregulated the expression of related proteins in the MAPK signalling pathway. These findings provide substantial evidence of MH may applicate in clinic, and indicate that such medicines have potential value for the treatment of ischaemia-induced heart disease.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruifeng Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shungang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shana Wuken
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuxing Ge
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaochun Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingyun Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020; 24:8918-8929. [PMID: 32657030 PMCID: PMC7417697 DOI: 10.1111/jcmm.15641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia‐ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN‐induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro‐inflammatory and anti‐inflammatory responses, blood‐brain barrier maintenance and anti‐apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Sheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Matheson R, Chida K, Lu H, Clendaniel V, Fisher M, Thomas A, Lo EH, Selim M, Shehadah A. Neuroprotective Effects of Selective Inhibition of Histone Deacetylase 3 in Experimental Stroke. Transl Stroke Res 2020; 11:1052-1063. [PMID: 32016769 DOI: 10.1007/s12975-020-00783-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 3 (HDAC3) has been implicated as neurotoxic in several neurodegenerative conditions. However, the role of HDAC3 in ischemic stroke has not been thoroughly explored. We tested the hypothesis that selective inhibition of HDAC3 after stroke affords neuroprotection. Adult male Wistar rats (n = 8/group) were subjected to 2 h of middle cerebral artery occlusion (MCAO), and randomly selected animals were treated intraperitoneally twice with either vehicle (1% Tween 80) or a selective HDAC3 inhibitor (RGFP966, 10 mg/kg) at 2 and 24 h after MCAO. Long-term behavioral tests were performed up to 28 days after MCAO. Another set of rats (n = 7/group) were sacrificed at 3 days for histological analysis. Immunostaining for HDAC3, acetyl-Histone 3 (AcH3), NeuN, TNF-alpha, toll-like receptor 4 (TLR4), cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), Akt, and TUNEL were performed. Selective HDAC3 inhibition improved long-term functional outcome (p < 0.05) and reduced infarct volume (p < 0.0001). HDAC3 inhibition increased levels of AcH3 in the ischemic brain (p = 0.016). Higher levels of AcH3 were significantly correlated with better neurological scores and smaller infarct volumes (r = 0.74, p = 0.002; r = 0.6, p = 0.02, respectively). The RGFP966 treatment reduced apoptosis-TUNEL+, cleaved caspase-3+, and cleaved PARP+ cells-and neuroinflammation-TNF-alpha+ and TLR4+ cells-in the ischemic border compared to vehicle control (p < 0.05). The RGFP966 treatment also increased Akt expression in the ipsilateral cortex (p < 0.001). Selective HDAC3 inhibition after stroke improves long-term neurological outcome and decreases infarct volume. The neuroprotective effects of HDAC3 inhibition are associated with a reduction in apoptosis and inflammation and upregulation of the Akt pathway.
Collapse
Affiliation(s)
- Rudy Matheson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Kohei Chida
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Hui Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Xuan Wu Hospital/Capital Medical University, Xicheng district, Beijing, 100053, People's Republic of China
| | - Victoria Clendaniel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ajith Thomas
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Magdy Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Varga DP, Szabó Í, Varga VÉ, Menhyárt Á, M Tóth O, Kozma M, Bálint AR, Krizbai IA, Bari F, Farkas E. The antagonism of prostaglandin FP receptors inhibits the evolution of spreading depolarization in an experimental model of global forebrain ischemia. Neurobiol Dis 2020; 137:104780. [PMID: 31991249 DOI: 10.1016/j.nbd.2020.104780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous, recurrent spreading depolarizations (SD) are increasingly more appreciated as a pathomechanism behind ischemic brain injuries. Although the prostaglandin F2α - FP receptor signaling pathway has been proposed to contribute to neurodegeneration, it has remained unexplored whether FP receptors are implicated in SD or the coupled cerebral blood flow (CBF) response. We set out here to test the hypothesis that FP receptor blockade may achieve neuroprotection by the inhibition of SD. Global forebrain ischemia/reperfusion was induced in anesthetized rats by the bilateral occlusion and later release of the common carotid arteries. An FP receptor antagonist (AL-8810; 1 mg/bwkg) or its vehicle were administered via the femoral vein 10 min later. Two open craniotomies on the right parietal bone served the elicitation of SD with 1 M KCl, and the acquisition of local field potential. CBF was monitored with laser speckle contrast imaging over the thinned parietal bone. Apoptosis and microglia activation, as well as FP receptor localization were evaluated with immunohistochemistry. The data demonstrate that the antagonism of FP receptors suppressed SD in the ischemic rat cerebral cortex and reduced the duration of recurrent SDs by facilitating repolarization. In parallel, FP receptor antagonism improved perfusion in the ischemic cerebral cortex, and attenuated hypoemic CBF responses associated with SD. Further, FP receptor antagonism appeared to restrain apoptotic cell death related to SD recurrence. In summary, the antagonism of FP receptors (located at the neuro-vascular unit, neurons, astrocytes and microglia) emerges as a promising approach to inhibit the evolution of SDs in cerebral ischemia.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Írisz Szabó
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Viktória É Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Ákos Menhyárt
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Orsolya M Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Mihály Kozma
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary
| | - Armand R Bálint
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - István A Krizbai
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary; Institute of Life Sciences, Vasile Goldis Western University; Revolutiei Blvd n°94, Arad 310025, Romania
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary.
| |
Collapse
|
18
|
Wang Z, Han Y, Tian S, Bao J, Wang Y, Jiao J. Lupeol Alleviates Cerebral Ischemia-Reperfusion Injury in Correlation with Modulation of PI3K/Akt Pathway. Neuropsychiatr Dis Treat 2020; 16:1381-1390. [PMID: 32581541 PMCID: PMC7276199 DOI: 10.2147/ndt.s237406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM This study aimed to investigate the effect and mechanism of lupeol on cerebral ischemia-reperfusion injury in rats. METHODS The effects of lupeol on cerebral infarction, cerebral water content, neurological symptoms and cerebral blood flow in rats were evaluated. Nissl staining was carried out to assess the neuronal damage of ischemic brain after I/R in rats. Apoptosis of ischemic brain neurons after I/R was detected by TUNEL staining. Western blotting was carried out to detect the effects of lupeol on the expression of p-PDK1, p-Akt, pc-Raf, p-BAD, cleaved caspase-3 and p-PTEN. RESULTS Lupeol significantly increased cerebral blood flow after I/R in rats, reduced brain water content and infarct volume, and decreased neurological function scores. It significantly reduced neuronal damage after I/R in rats, and significantly reduced neuronal cell loss. PI3K inhibitor (LY294002) can eliminate the effect of lupeol on I/R in rats. In addition, lupeol significantly increased the protein expression of p-PDK1, p-Akt, pc-Raf, p-BAD, and down-regulated the expression of cleaved caspase-3. LY294002 reversed the effects of lupeol on the expression of PI3K/Akt signaling pathway-related proteins and cleaved caspase-3 after I/R in rats. CONCLUSION Lupeol had significant neuroprotective effects on brain I/R injury and neuronal apoptosis, and its mechanism may be related to the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Yanfen Han
- Department of Internal Medicine-Neurology, The Affiliated Hospital of Sergeant School of Army Medical University, Shijiazhuang City, Hebei Province 050000, People's Republic of China
| | - Shujuan Tian
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Junqiang Bao
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Yahui Wang
- Department of Rehabilitation, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Junping Jiao
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| |
Collapse
|
19
|
Chan SJ, Zhao H, Hayakawa K, Chai C, Tan CT, Huang J, Tao R, Hamanaka G, Arumugam TV, Lo EH, Yu VCK, Wong PH. Modulator of apoptosis-1 is a potential therapeutic target in acute ischemic injury. J Cereb Blood Flow Metab 2019; 39:2406-2418. [PMID: 30132384 PMCID: PMC6893981 DOI: 10.1177/0271678x18794839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1-/- primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1-/- mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1-/- mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore
| | - Hui Zhao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Kazuhide Hayakawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chou Chai
- Neurodegeneration Laboratory, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Jiawen Huang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Ran Tao
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Gen Hamanaka
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Eng H Lo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Chun Kong Yu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - PeterTsun-Hon Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
21
|
Xing P, Ma K, Wu J, Long W, Wang D. Protective effect of polysaccharide peptide on cerebral ischemia‑reperfusion injury in rats. Mol Med Rep 2018; 18:5371-5378. [PMID: 30365125 PMCID: PMC6236317 DOI: 10.3892/mmr.2018.9579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the protective effects and regulatory mechanism of polysaccharide peptide (PSP) were investigated in rats with cerebral ischemia-reperfusion (IR) injury. Neuroblastoma N2a cells were divided into five groups: Negative control; IR injury; PSP low dose treatment; PSP middle dose treatment; and PSP high dose treatment. In vitro, the cell viability was detected by an MTT assay. ELISA was performed to determine the activity of lactate dehydrogenase (LDH) and caspase-3. A cerebral IR injury model in vivo was established, and hematoxylin and eosin (H&E) staining, western blotting, neurological deficit score and cerebral infarction were assessed. The cell viability was markedly improved following treatment with PSP and the activity of LDH and caspase-3 was decreased following PSP administration (P<0.05). The in vivo studies determined that the neurological deficit score and cerebral infarction volume were reduced with the concentration of PSP increasing between 150 and 250 mg/kg. The H&E staining indicated that PSP was able to protect the nerve cells against the cerebral IR injury. In addition, PSP upregulated the decreased silent information regulator protein 1, peroxisome proliferator-activated receptor γ coactivator-1α and apoptosis regulator B-cell lymphoma 2 expression induced by cerebral IR injury. The protein expression level of caspase-3 and apoptosis regulator apoptosis regulator Bcl-2-like protein 4 was downregulated following PSP administration. These results suggested that PSP may improve nerve cell viability, enhance the neuroprotective role in cerebral IR injury and provide a novel approach for the treatment of cerebral IR injury.
Collapse
Affiliation(s)
- Pengcheng Xing
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Ke Ma
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Jun Wu
- ICU, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Wei Long
- Department of Geriatric Medicine, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Donglian Wang
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| |
Collapse
|
22
|
Lefevre S, Stecyk JAW, Torp MK, Løvold LY, Sørensen C, Johansen IB, Stensløkken KO, Couturier CS, Sloman KA, Nilsson GE. Re-oxygenation after anoxia induces brain cell death and memory loss in the anoxia-tolerant crucian carp. ACTA ACUST UNITED AC 2018; 220:3883-3895. [PMID: 29093186 DOI: 10.1242/jeb.165118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023]
Abstract
Crucian carp (Carassius carassius) survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year. Finally, a behavioural experiment was used to assess the ability to learn and remember how to navigate in a maze to find food, before and after exposure to anoxia and re-oxygenation. The number of TUNEL-positive cells in the telencephalon increased after 1 day of re-oxygenation following 7 days of anoxia, indicating increased cell death. However, there were no consistent changes in whole-brain expression of caspase 3 in either laboratory-exposed or naturally exposed fish, indicating that cell death might occur via caspase-independent pathways or necrosis. Re-oxygenated crucian carp appeared to have lost the memory of how to navigate in a maze (learnt prior to anoxia exposure), while the ability to learn remained intact. PCNA mRNA was elevated after re-oxygenation, indicating increased neurogenesis. We conclude that anoxia tolerance involves not only protection from damage but also repair after re-oxygenation.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Jonathan A W Stecyk
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - May-Kristin Torp
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Lisa Y Løvold
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christina Sørensen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ida B Johansen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kåre-Olav Stensløkken
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christine S Couturier
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, PA1 2BE, UK
| | - Göran E Nilsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
23
|
Effect of Combination Therapy with Neuroprotective and Vasoprotective Agents on Cerebral Ischemia. Can J Neurol Sci 2018; 45:325-331. [DOI: 10.1017/cjn.2018.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractBecause most tested drugs are active against only one of the damaging processes associated with stroke, other mechanisms may cause cellular death. Thus, a combination of protective agents targeting different pathophysiological mechanisms may obtain better effects than a single agent. The major objective of this study was to investigate the effect of combination therapy with vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) after controlled ischemic brain injury in rabbits.Methods:Animals were randomly assigned to one of the following groups: sham group, saline-treated control group or NGF+VEGF-treated group. Animals received an intracerebral microinjection of VEGF and NGF or saline at 5 or 8 hours after ischemia. The two specified time points of administration were greater than or equal to the existing therapeutic time window for monoterapy with VEGF or NGF alone (3 or 5 hours of ischemia). Infarct volume, water content, neurological deficits, neural cell apoptosis and the expression of caspase-3 and Bcl-2 were measured.Results:Compared with saline-treated controls, the combination therapy of VEGF and NGF significantly reduced infarct volume, water content, neural cell apoptosis and the expression of caspase-3, up-regulated the expression of Bcl-2 and improved functional recovery (bothp<0.01) when administered 5 or 8 hours after ischemia. The earlier the administration the better the neuroprotection.Conclusions:These results showed that the combination therapy with VEGF and NGF provided neuroprotective effects. In addition, the time window of combination treatment should be at least 8 hours after ischemia, which was wider than monotherapy.RÉSUMÉ:Les effets d’une polythérapie combinant agents neuro-protecteurs et agents vasoprotecteurs dans les cas d’ischémie cérébrale.Contexte:Étant donné que la plupart des médicaments préalablement testés tendent à n’agir contre seulement un des processus de dommage associés aux AVC, il est possible que d’autres processus entraînent une mort cellulaire. À cet effet, il se pourrait qu’une combinaison d’agents protecteurs ciblant divers mécanismes physiopathologiques permette d’obtenir de meilleurs résultats qu’un simple agent. Après avoir suscité de façon contrôlée des lésions cérébrales ischémiques chez des lapins, l’objectif principal de la présente étude a donc été de se pencher sur l’impact d’une polythérapie combinant la protéine dite « facteur de croissance de l’endothélium vasculaire » (ou « VEGF » en anglais) avec le « facteur de croissance des nerfs » (ou « NGF » en anglais).Méthodes:Les animaux ont été attribués au hasard à l’un des groupes suivants : ceux ayant reçu un traitement fictif ; ceux, du groupe témoin, ayant bénéficié d’un traitement à base de solution saline ; et finalement ceux ayant été traités au moyen des VEGF et NGF. À noter que les lapins ont reçu une micro-injection intracérébrale de VEGF et de NGF ou de solution saline 5 heures ou 8 heures à la suite de leur AVC. Ces deux délais d’administration des VEGF et NGF sont équivalents ou supérieurs aux délais actuels d’administration des VEGF ou NGF à titre de monothérapie (3 heures ou 5 heures à la suite d’un AVC). Tant le volume des infarctus, le contenu en eau, les déficits neurologiques ainsi causés, l’apoptose des neurones que l’expression des protéases caspase 3 et des protéines Bcl-2 ont été mesurés.Résultats:Si on la compare au traitement à base de solution saline administré au groupe témoin, la polythérapie à base de VEGF et de NGF, lorsqu’administrée 5 heures ou 8 heures à la suite de l’AVC, a su réduire de façon notable le volume des infarctus, le contenu en eau, l’apoptose des neurones et l’expression des protéases caspase 3. Elle a également permis de réguler à la hausse l’expression des protéines Bcl-2 en plus d’entraîner une amélioration de la récupération fonctionnelle (p< 0,01 pour ces deux aspects). Ainsi donc, plus tôt l’on opte pour cette polythérapie, meilleure sera la neuroprotection encourue.Conclusions:Ces résultats démontrent que la polythérapie à base de VEGF et de NGF procure des effets neuroprotecteurs. Quant au délai d’administration de ce traitement combinatoire, il devrait être d’au moins 8 heures à la suite d’un AVC, ce qui est plus élevé que la monothérapie.
Collapse
|
24
|
Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit Rev Clin Lab Sci 2018; 55:294-328. [DOI: 10.1080/10408363.2018.1461190] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, Kifissia, Athens, Greece
| | | | - Maria Chondrogianni
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
25
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 771] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
26
|
Chen X, Hovanesian V, Naqvi S, Lim YP, Tucker R, Donahue JE, Stopa EG, Stonestreet BS. Systemic infusions of anti-interleukin-1β neutralizing antibodies reduce short-term brain injury after cerebral ischemia in the ovine fetus. Brain Behav Immun 2018; 67:24-35. [PMID: 28780000 PMCID: PMC5696097 DOI: 10.1016/j.bbi.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/27/2023] Open
Abstract
Perinatal hypoxic-ischemic reperfusion (I/R)-related brain injury is a leading cause of neurologic morbidity and life-long disability in children. Infants exposed to I/R brain injury develop long-term cognitive and behavioral deficits, placing a large burden on parents and society. Therapeutic strategies are currently not available for infants with I/R brain damage, except for hypothermia, which can only be used in full term infants with hypoxic-ischemic encephalopathy (HIE). Moreover, hypothermia is only partially protective. Pro-inflammatory cytokines are key contributors to the pathogenesis of perinatal I/R brain injury. Interleukin-1β (IL-1β) is a critical pro-inflammatory cytokine, which has been shown to predict the severity of HIE in infants. We have previously shown that systemic infusions of mouse anti-ovine IL-1β monoclonal antibody (mAb) into fetal sheep resulted in anti-IL-1β mAb penetration into brain, reduced I/R-related increases in IL-1β expression and blood-brain barrier (BBB) dysfunction in fetal brain. The purpose of the current study was to examine the effects of systemic infusions of anti-IL-1β mAb on short-term I/R-related parenchymal brain injury in the fetus by examining: 1) histopathological changes, 2) apoptosis and caspase-3 activity, 3) neuronal degeneration 4) reactive gliosis and 5) myelin basic protein (MBP) immunohistochemical staining. The study groups included non-ischemic controls, placebo-treated ischemic, and anti-IL-1β mAb treated ischemic fetal sheep at 127days of gestation. The systemic intravenous infusions of anti-IL-1β mAb were administered at fifteen minutes and four hours after in utero brain ischemia. The duration of each infusion was two hours. Parenchymal brain injury was evaluated by determining pathological injury scores, ApopTag® positive cells/mm2, caspase-3 activity, Fluoro-Jade B positive cells/mm2, glial fibrillary acidic protein (GFAP) and MBP staining in the brains of fetal sheep 24h after 30min of ischemia. Treatment with anti-IL-1β mAb reduced (P<0.05) the global pathological injury scores, number of apoptotic positive cells/mm2, and caspase-3 activity after ischemia in fetal sheep. The regional pathological scores and Fluoro-Jade B positive cells/mm2 did not differ between the placebo- and anti-IL-1β mAb treated ischemic fetal sheep. The percent of the cortical area stained for GFAP was lower (P<0.05) in the placebo ischemic treated than in the non-ischemic group, but did not differ between the placebo- and anti-IL-1β mAb treated ischemic groups. MBP immunohistochemical expression did not differ among the groups. In conclusion, infusions of anti-IL-1β mAb attenuate short-term I/R-related histopathological tissue injury, apoptosis, and reduce I/R-related increases in caspase-3 activity in ovine fetal brain. Therefore, systemic infusions of anti-IL-1β mAb attenuate short-term I/R-related parenchymal brain injury in the fetus.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - Virginia Hovanesian
- Core Research Laboratories, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Syed Naqvi
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | | | - Richard Tucker
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - John E. Donahue
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Edward G. Stopa
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Barbara S. Stonestreet
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| |
Collapse
|
27
|
Ye X, Ding J, Chen Y, Dong J. Adenovirus-mediated artificial miRNA targetting fibrinogen-like protein 2 attenuates the severity of acute pancreatitis in mice. Biosci Rep 2017; 37:BSR20170964. [PMID: 29054965 PMCID: PMC5700271 DOI: 10.1042/bsr20170964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/10/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Severe acute pancreatitis (SAP) remains to be challenging for its unpredictable inflammatory progression from acute pancreatitis to SAP. Apoptosis is an important pathology of SAP. Fibrinogen-like protein 2 (FGL2) has been reported to be involved in apoptosis. The present study aimed to explore the therapeutic effect of an adenovirus-mediated artificial miRNA targetting FGL2 (Ad-FGL2-miRNA) in taurocholate-induced murine pancreatitis models. Sodium taurocholate was retrogradely injected into the biliopancreatic ducts of the C57/BL mice to induce SAP. FGL2 expression was measured with reverse transcription-PCR, Western blotting, and immunohistochemical staining. ELISA was used to detect the activity of amylase and the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In addition, the mRNA levels of TNF-α and IL-1β were also detected. Finally, apoptosis was assessed by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling (TUNEL) method and Western blotting. Ad-FGL2-miRNA significantly suppressed FGL2 expression and alleviated pancreatic injury. Also, Ad-FGL2-miRNA markedly inhibited a post-SAP increase in the activation of TNF-α and IL-1β. Finally, pretreatment with Ad-FGL2-miRNA ameliorated apoptosis at the early stage of SAP by modulating cleaved caspase-3 and therefore played a protective role. These results indicated that FGL2 might be a promising target for attenuating the severity of SAP and adenovirus-mediated artificial miRNAs targetting FGL2 represented a potential therapeutic approach for the treatment of SAP.
Collapse
Affiliation(s)
- Xiaohua Ye
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Jin Ding
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Jiayue Dong
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
28
|
Lin H, Satizabal C, Xie Z, Yang Q, Huan T, Joehanes R, Wen C, Munson PJ, Beiser A, Levy D, Seshadri S. Whole blood gene expression and white matter Hyperintensities. Mol Neurodegener 2017; 12:67. [PMID: 28923099 PMCID: PMC5604498 DOI: 10.1186/s13024-017-0209-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background White matter hyperintensities (WMH) are an important biomarker of cumulative vascular brain injury and have been associated with cognitive decline and an increased risk of dementia, stroke, depression, and gait impairments. The pathogenesis of white matter lesions however, remains uncertain. The characterization of gene expression profiles associated with WMH might help uncover molecular mechanisms underlying WMH. Methods We performed a transcriptome-wide association study of gene expression profiles with WMH in 3248 participants from the Framingham Heart Study using the Affymetrix Human Exon 1.0 ST Array. Results We identified 13 genes that were significantly associated with WMH (FDR < 0.05) after adjusting for age, sex and blood cell components. Many of these genes are involved in inflammation-related pathways. Conclusion Thirteen genes were significantly associated with WMH. Our study confirms the hypothesis that inflammation might be an important factor contributing to white matter lesions. Future work is needed to explore if these gene products might serve as potential therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s13024-017-0209-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA. .,Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, B-616, Boston, MA, 02118, USA.
| | - Claudia Satizabal
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Neurology, Boston University School of Medicine, 72 East Concord Street, B-602, Boston, MA, 02118, USA
| | - Zhijun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tianxiao Huan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Roby Joehanes
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institute of Health, Bethesda, MD, USA.,Hebrew Senior Life, 1200 Centre Street Room #609, Boston, MA, 02131, USA
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institute of Health, Bethesda, MD, USA
| | - Alexa Beiser
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Neurology, Boston University School of Medicine, 72 East Concord Street, B-602, Boston, MA, 02118, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Sudha Seshadri
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA. .,Department of Neurology, Boston University School of Medicine, 72 East Concord Street, B-602, Boston, MA, 02118, USA.
| |
Collapse
|
29
|
Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, Glushakov AV. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 2017; 3:87-108. [PMID: 30276309 PMCID: PMC6126261 DOI: 10.4103/bc.bc_27_16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Andriy A Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Laboratory of Pharmacometabolomics and Companion Diagnostics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
- Banyan Biomarkers, Inc., Alachua, 32615, USA
| | | |
Collapse
|
30
|
Jin Q, Cai Y, Li S, Liu H, Zhou X, Lu C, Gao X, Qian J, Zhang J, Ju S, Li C. Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability. Theranostics 2017; 7:884-898. [PMID: 28382161 PMCID: PMC5381251 DOI: 10.7150/thno.18219] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022] Open
Abstract
Thrombolysis has been a standard treatment for ischemic stroke. However, only 2-7% patients benefit from it because the thrombolytic agent has to be injected within 4.5 h after the onset of symptoms to avoid the increasing risk of intracerebral hemorrhage. As the only clinically approved neuroprotective drug, edaravone (EDV) rescues ischemic brain tissues by eradicating over-produced reactive oxygen species (ROS) without the limitation of therapeutic time-window. However, EDV's short circulation half-life and inadequate cerebral uptake attenuate its therapeutic efficacy. Here we developed an EDV-encapsulated agonistic micelle (EDV-AM) to specifically deliver EDV into brain ischemia by actively tuning blood-brain barrier (BBB) permeability. The EDV-AM actively up-regulated endothelial monolayer permeability in vitro. HPLC studies showed that EDV-AM delivered more EDV into brain ischemia than free EDV after intravenous injection. Magnetic resonance imaging also demonstrated that EDV-AM more rapidly salvaged ischemic tissue than free EDV. Diffusion tensor imaging indicated the highest efficiency of EDV-AM in accelerating axonal remodeling in the ipsilesional white matter and improving functional behaviors of ischemic stroke models. The agonistic micelle holds promise to improve the therapeutic efficiency of ischemic stroke patients who miss the thrombolytic treatment.
Collapse
Affiliation(s)
- Qu Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Sihan Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Haoran Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Xingyu Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Chunqiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200041, P. R. China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
31
|
Chip S, Fernández-López D, Li F, Faustino J, Derugin N, Vexler ZS. Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke. Brain Behav Immun 2017; 60:270-281. [PMID: 27836669 PMCID: PMC7909718 DOI: 10.1016/j.bbi.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
The pathophysiology of neonatal stroke and adult stroke are distinct in many aspects, including the inflammatory response. We previously showed endogenously protective functions of microglial cells in acute neonatal stroke. We asked if galectin-3 (Gal3), a pleotropic molecule that mediates interactions between microglia/macrophages and the extracellular matrix (ECM), plays a role in early injury after transient middle cerebral occlusion (tMCAO) in postnatal day 9-10 mice. Compared to wild type (WT) pups, in Gal3 knockout pups injury was worse and cytokine/chemokine production altered, including further increase of MIP1α and MIP1β levels and reduced IL6 levels 72h after tMCAO. Lack of Gal3 did not affect morphological transformation or proliferation of microglia but markedly attenuated accumulation of CD11b+/CD45med-high cells after injury, as determined by multi-color flow cytometry. tMCAO increased expression of αV and β3 integrin subunits in CD11b+/CD45low microglial cells and cells of non-monocyte lineage (CD11b-/CD45-), but not in CD11b+/CD45med-high cells within injured regions of WT mice or Gal3-/- mice. αV upregulated in areas occupied and not occupied by CD68+ cells, most prominently in the ECM, lining blood vessels, with expanded αV coverage in Gal3-/- mice. Cumulatively, these data show that lack of Gal3 worsens subchronic injury after neonatal focal stroke, likely by altering the neuroinflammatory milieu, including an imbalance between pro- and anti-inflammatory molecules, effects on microglial activation, and deregulation of the composition of the ECM.
Collapse
Affiliation(s)
| | | | | | | | | | - Zinaida S. Vexler
- Corresponding author at: University California San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158-0663, USA. (Z.S. Vexler)
| |
Collapse
|
32
|
He F, Peng Y, Yang Z, Ge Z, Tian Y, Ma T, Li H. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats. Int J Biol Sci 2017; 13:179-188. [PMID: 28255270 PMCID: PMC5332872 DOI: 10.7150/ijbs.17716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.
Collapse
Affiliation(s)
- Feixiang He
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China.; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yuchen Peng
- Battalion 4 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zilu Ge
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Huang L, Zhao F, Qu Y, Zhang L, Wang Y, Mu D. Animal models of hypoxic-ischemic encephalopathy: optimal choices for the best outcomes. Rev Neurosci 2017; 28:31-43. [PMID: 27559689 DOI: 10.1515/revneuro-2016-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.
Collapse
Affiliation(s)
- Lan Huang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 3Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death Dis 2016; 7:e2484. [PMID: 27882949 PMCID: PMC5260881 DOI: 10.1038/cddis.2016.290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
SUMO-specific protease 1 (SENP1) deconjugates SUMO from modified proteins. Although post-ischemic activation of SUMO conjugation was suggested to be neuroprotective against ischemia/reperfusion (I/R) injury, the function of SENP1 in this process remained unclear. Here we show that transient middle cerebral artery occlusion in mice followed by 6, 12 and 24 h reperfusion significantly enhanced SENP1 levels in the affected brain area, independent of transcription. Consistent with the increase in SENP1, the levels of SUMO1-conjugated proteins were decreased by I/R in cortical neurons of control littermate mice, but unchanged in that of animals with conditional ablation of SENP1 gene from adult principal neurons, the SENP1flox/flox:CamKIIα-Cre (SENP1 cKO) mice. The SENP1 cKO mice exhibited a significant increase in infarct volume in the cerebral cortex and more severe motor impairment in response to I/R as compared with the control littermates. Cortical neurons from I/R-injured SENP1 cKO mice became more apoptotic than that from control littermates, as indicated by both TUNEL staining and caspase-3 activation. Overexpression of SENP1 in somatosensory cortices of adult wild-type (WT) mice suppressed I/R-induced neuronal apoptosis. We conclude that SENP1 plays a neuroprotective role in I/R injury by inhibiting apoptosis through decreasing SUMO1 conjugation. These findings reveal a novel mechanism of neuroprotection by protein desumoylation, which may help develop new therapies for mitigating brain injury associated with ischemic stroke.
Collapse
|
35
|
Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L, Yu SP. Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol 2016; 27:480-498. [PMID: 27514013 DOI: 10.1111/bpa.12425] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at least some types of ischemic strokes.
Collapse
Affiliation(s)
- Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Ying-Ying Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Department of Neurology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Department of Neurology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| |
Collapse
|
36
|
van Velthoven CT, Dzietko M, Wendland MF, Derugin N, Faustino J, Heijnen CJ, Ferriero DM, Vexler ZS. Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J Neurosci Res 2016; 95:1225-1236. [PMID: 27781299 DOI: 10.1002/jnr.23954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cindy T van Velthoven
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Mark Dzietko
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Michael F Wendland
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Nikita Derugin
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joel Faustino
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
37
|
Yu Z, Wan Y, Liu Y, Yang J, Li L, Zhang W. Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. PHARMACEUTICAL BIOLOGY 2016; 54:2026-2032. [PMID: 26911246 DOI: 10.3109/13880209.2016.1139601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Curcumin is widely used in China and India as a traditional herb but additional work is required to ascertain the folkloric claim of its antitumour and antioxidant activities. Objective The present study determines the antitumour effect of curcumin against SKOV3 cell growth. Materials and methods SKOV3 cells were incubated with curcumin (0, 20, 30 and 40 μM) for 72 h. The antiproliferative activity and the apoptosis rate were measured by MTT and flow cytometry. Expression of PI3K, T-Akt and p-Akt proteins was measured by western blotting. Results The administration of curcumin (0, 20, 30 and 40 μM) inhibits SKOV3 cell growth (IC50 value= 24.8 μM) and increased apoptosis (32.5 and 85.7%). The activity of SKOV3 cell invasion (98.2 and 19.4%) was also decreased by curcumin administration (p < 0.05). Results of western blot analysis confirmed that the expression of p-Akt protein was decreased by curcumin (p < 0.05). It was also found that a high dose of curcumin (40 μM) can cause stronger antitumour activity (80.4%). Conclusion Our results suggest that the curcumin induced SKOV3 apoptosis via modulation of the PI3K/Akt-signalling pathway.
Collapse
Affiliation(s)
- Zeshun Yu
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Yingjun Wan
- b Department of Oncology , Binzhou PEOPLE'S Hospital , Shandong , China
| | - Yanni Liu
- c Department of Gynecology , Binzhou Medical University Hospital , Shandong , China
| | - Jing Yang
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Lei Li
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Weiming Zhang
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| |
Collapse
|
38
|
Kim YS, Yoo A, Son JW, Kim HY, Lee YJ, Hwang S, Lee KY, Lee YJ, Ayata C, Kim HH, Koh SH. Early Activation of Phosphatidylinositol 3-Kinase after Ischemic Stroke Reduces Infarct Volume and Improves Long-Term Behavior. Mol Neurobiol 2016; 54:5375-5384. [DOI: 10.1007/s12035-016-0063-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
39
|
Larpthaveesarp A, Georgevits M, Ferriero DM, Gonzalez FF. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis 2016; 93:57-63. [PMID: 27142685 DOI: 10.1016/j.nbd.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a major cause of neonatal morbidity, often with delayed diagnosis and with no accepted therapeutic options. The purpose of this study is to investigate the efficacy of delayed initiation of multiple dose erythropoietin (EPO) therapy in improving histological and behavioral outcomes after early transient ischemic stroke. METHODS 32 postnatal day 10 (P10) Sprague-Dawley rats underwent sham surgery or transient middle cerebral artery occlusion (tMCAO) for 3h, resulting in injury involving the striatum and parieto-temporal cortex. EPO (1000U/kg per dose×3 doses) or vehicle was administered intraperitoneally starting one week after tMCAO (at P17, P20, and P23). At four weeks after tMCAO, sensorimotor function was assessed in these four groups (6 vehicle-sham, 6 EPO-sham, 10 vehicle-tMCAO and 10 EPO-tMCAO) with forepaw preference in cylinder rearing trials. Brains were then harvested for hemispheric volume and Western blot analysis. RESULTS EPO-tMCAO animals had significant improvement in forepaw symmetry in cylinder rearing trials compared to vehicle-tMCAO animals, and did not differ from sham animals. There was also significant preservation of hemispheric brain volume in EPO-tMCAO compared to vehicle-tMCAO animals. No differences in ongoing cell death at P17 or P24 were noted by spectrin cleavage in either EPO-tMCAO or vehicle-tMCAO groups. CONCLUSIONS These results suggest that delayed EPO therapy improves both behavioral and histological outcomes at one month following transient neonatal stroke, and may provide a late treatment alternative for early brain injury.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States
| | - Margaret Georgevits
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States; Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
40
|
Progesterone in the treatment of neonatal arterial ischemic stroke and acute seizures: Role of BDNF/TrkB signaling. Neuropharmacology 2016; 107:317-328. [PMID: 27039043 DOI: 10.1016/j.neuropharm.2016.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Abstract
Neonatal stroke is among the top ten causes of childhood death and permanent disability in survivors, but no safe and effective acute treatments exist. To advance understanding of its neuroprotective mechanisms, we examined the effects of progesterone (PROG) on local and systemic inflammation (IL-1β, IL-6, TNFα), brain derived neurotrophic factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling, vascular damage (vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)), acute behavioral seizures and brain infarction size following neonatal arterial ischemic stroke in mice. CD1 mouse pups (postnatal day 12, mixed gender) received permanent unilateral right common carotid ligation (pUCCL) or sham surgery. Pups showing seizure activity during the first hour post-pUCCL were randomly assigned to receive PROG (8 mg/kg) or vehicle injections. PROG treatment significantly (p < 0.05) reduced seizure occurrence by ∼44% compared to vehicle and attenuated the expression of pro-inflammatory cytokines in serum and brain at different time-points. PROG differentially regulated the expression of BDNF and TrkB and the activity of VEGF and MMP-9 over the 7d period. Permanent UCCL resulted in severe hemispheric damage measured at 7 days post-pUCCL but PROG treatment produced a significant (p < 0.05) reduction in infarct volume (∼70%) compared to vehicle. A gender-based comparison of data revealed significantly greater seizure activity in males compared to females. However, we did not observe significant sex differences on any other markers of the injury at this early stage of development. PROG treatment is neuroprotective through a number of signaling pathways and can be beneficial in treating neonatal arterial ischemic stroke in CD1 mice.
Collapse
|
41
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Xu B, Xiao AJ, Chen W, Turlova E, Liu R, Barszczyk A, Sun CLF, Liu L, Tymianski M, Feng ZP, Sun HS. Neuroprotective Effects of a PSD-95 Inhibitor in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2015; 53:5962-5970. [PMID: 26520452 DOI: 10.1007/s12035-015-9488-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
Abstract
The postsynaptic density-95 inhibitor NA-1 uncouples NMDA glutamate receptors from downstream neurotoxic signaling pathways without affecting normal glutamate receptor function. NA-1 attenuates NMDA receptor-mediated neuronal cell death after stroke in multiple models and species. However, its efficacy in providing neuroprotection in models of neonatal hypoxic-ischemic brain injury has not yet been tested. In this study, a modified version of the Rice-Vannucci method for the induction of neonatal hypoxic-ischemic brain injury was performed on postnatal day 7 mouse pups. Animals received a single dose of NA-1 intraperitoneally either before or after right common carotid artery occlusion. All experiments were performed in a blinded manner. Infarct volumes were measured 1 and 7 days after the injury, while behavioral tests were conducted 1, 3, and 7 days after injury. Administration of NA-1 before right common carotid artery occlusion or immediately after ischemia significantly reduced infarct volume and improved neurobehavioral outcomes 1, 3, and 7 days post-injury. The neuroprotection and improvement in neurobehavioral outcomes conferred by NA-1 in this mouse neonatal hypoxic-ischemic injury model imply that NA-1 will be effective in reducing neonatal stroke damage and thus could potentially serve as a therapeutic drug for prevention or treatment of neonatal stroke.
Collapse
Affiliation(s)
- Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Ai-Jiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Rui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Christopher L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Ling Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Michael Tymianski
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8. .,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8. .,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
43
|
Mechanisms of neurodegeneration after severe hypoxic-ischemic injury in the neonatal rat brain. Brain Res 2015; 1629:94-103. [PMID: 26485031 DOI: 10.1016/j.brainres.2015.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Apoptosis is implicated in mild-moderate ischemic injury. Cell death pathways in the severely ischemic brain are not characterized. We sought to determine the role of apoptosis in the severely ischemic immature brain. METHODS Seven-day old rats were randomly assigned to mild-moderate or severe cerebral hypoxia-ischemia (HI) group. After ligating the right common carotid artery, animals were subjected to hypoxia for 90min in the mild-moderate HI or 180min in the severe HI. The core and peri-infarct area were measured in H&E stained brain sections using NIS Elements software. Brain sections were processed for caspase-3, AIF and RIP3 immuno-staining. Number of positive cells were counted and compared between the two groups. RESULTS The core constituted a significantly higher proportion of the ischemic lesion in the severely compared to the moderately injured brain (P<0.04) up to 7 days post-injury. Apoptotic cell death was significantly higher (P<0.05) in the core than the peri-infarct of the severe HI brain. In the peri-infarct area of severe HI, AIF-induced cell death increased over time and caspase-3 and AIF equally mediated neuronal death. Necroptosis was significantly higher (P=0.02) in the peri-infarct of the severe HI lesion compared to the moderate HI lesion. In males, but not in females, apoptosis was higher in moderate compared to severe HI. CONCLUSIONS Caspase-independent cell death plays an important role in severe ischemic injury. Injury severity, timing of intervention post-injury and sex of the animal are important determinants in designing neuroprotective intervention for the severely ischemic immature brain.
Collapse
|
44
|
Zhao P, Zhou R, Li HN, Yao WX, Qiao HQ, Wang SJ, Niu Y, Sun T, Li YX, Yu JQ. Oxymatrine attenuated hypoxic-ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death. Neurochem Int 2015; 89:17-27. [PMID: 26120022 DOI: 10.1016/j.neuint.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/02/2023]
Abstract
Oxymatrine (OMT), an active constituent of Chinese herb Sophora flavescens Ait, has been proved to possess anti-tumor, anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Previous study has demonstrated that OMT had protective roles on multiple in vitro and in vivo brain injury models including regulation of apoptosis-related proteins caspase-3, Bax and Bcl-2. In this study, we investigated whether this protective effect could apply to neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with the left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37 °C. In sham group rats, neither ligation nor hypoxia was performed. After two successive days intraperitoneal injection with OMT (30, 60 and 120 mg/kg), Nimodipine (1 mg/kg), and saline, brain infarct volume was estimated, histomorphology changes were performed by hematoxylin-eosin (HE) staining as well as electron microscopy. In addition, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), as well as production of malondialdehyde (MDA) were assayed in ipsilateral hemisphere homogenates to evaluate the redox status after hypoxic-ischemic. Expression of apoptosis-related proteins Caspase-3, Bax and Bcl-2 in brain were analyzed by western-blot analysis and immunofluorescence. Administration of OMT significantly decreased brain infarct volume and the percentage of injured cells, and ameliorated histopathology and morphological injury as well. Furthermore, OMT obviously increased the activities of SOD, GSH-Px, CAT and T-AOC, and decreased MDA content. Western-blot analysis showed a marked decrease in Caspase-3 expression and increase in the ratio of Bcl-2/Bax after OMT (120 mg/kg) post-treatment as compared with hypoxic-ischemic group. These results suggest that OMT exerts a neuroprotective effect against hypoxic-ischemic brain damage in neonatal rats, which is likely to be mediated through increasing anti-oxidant enzyme activities and inhibiting cell death.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Ning Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Qi Qiao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Shu-Jing Wang
- Medical Sci-tech Research Center, Ningxia Medical University, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
45
|
Chung KS, An HJ, Cheon SY, Kwon KR, Lee KH. Bee venom suppresses testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response and apoptosis. Exp Biol Med (Maywood) 2015; 240:1656-63. [PMID: 26085572 DOI: 10.1177/1535370215590823] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
Benign prostatic hyperplasia (BPH), which is a common disorder in aging men, involves inflammation that is associated with an imbalance between cell proliferation and cell death. Because current BPH drug treatments have undesirable side effects, the development of well-tolerated and effective alternative medicines to treat BPH is of interest. Bee venom (BV) has been used in traditional medicine to treat conditions, such as arthritis and rheumatism, and pain. Although inflammation has been associated with BPH and BV has strong anti-inflammatory effects, the effects of BV on BPH are not fully understood. Therefore, in this study, we evaluated the efficacy of BV against testosterone-induced BPH in rats. BV decreased prostate weight compared to the untreated group. In addition, BV suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. Furthermore, BV significantly decreased the levels of the apoptotic suppressors, Bcl-2 and Bcl-xL, and increased the levels of the proapoptotic factors, Bax and caspase-3 activation. These results suggested that BV suppressed the development of BPH and has good potential as a treatment for BPH.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmacology, College of Oriental Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Oriental Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Se-Yun Cheon
- Department of Pharmacology, College of Oriental Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Ki-Rok Kwon
- Ginseng&Venom, Sngji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Kwang-Ho Lee
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| |
Collapse
|
46
|
Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CLF, Britto LRG, Feng ZP, Sun HS. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 2015; 8:11. [PMID: 25761704 PMCID: PMC4337201 DOI: 10.1186/s13041-015-0102-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our previous study found that suppression of TRPM7 reduced neuronal death in adult rat ischemic brain injury. It was reported that carvacrol blocked TRPM7 and attenuated brain injury in an adult rat MCAO model. The effects of carvacrol on neonatal stroke remain unknown. This study investigated the effects of carvacrol on neuronal injury and behavioral impairment after hypoxia-ischemia in neonatal mice and the potential signaling pathway underlying these effects. RESULTS Carvacrol inhibited TRPM7 current in HEK293 cells over-expressing TRPM7 and TRPM7-like current in hippocampal neurons in a dose-dependent manner. Carvacrol (>200 μM) reduced OGD-induced neuronal injury in cortical neurons. 24 hours after HI, TRPM7 protein level in the ipsilateral hemisphere was significantly higher than in the contralateral hemisphere. Carvacrol (30 and 50 mg/kg) pre-treatment reduced brain infarct volume 24 hours after HI in a dose-dependent manner. Carvacrol pre-treatment also improved neurobehavioral outcomes. Furthermore, animals pre-treated with carvacrol had fewer TUNEL-positive cells in the brain compared to vehicle-treated animals 3 days after HI. Carvacrol pre-treatment also increased Bcl-2/Bax and p-Akt/t-Akt protein ratios and decreased cleaved caspase-3 protein expression 24 hours after HI. CONCLUSIONS Carvacrol pre-treatment protects against neonatal hypoxic-ischemic brain injury by reducing brain infarct volume, promoting pro-survival signaling and inhibiting pro-apoptotic signaling, as well as improving behavioral outcomes. The neuroprotective effect may be mediated by the inhibition of TRPM7 channel function. Carvacrol is a potential drug development target for the treatment of neonatal stroke.
Collapse
Affiliation(s)
- Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Pharmacology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Aijiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Ling Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Xiaoyan Fang
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Rui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Xiao Zhong
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Christopher L F Sun
- Faculty of Applied Science & Engineering, University of Toronto, Toronto, M5S 1A4, Canada.
| | - Luiz R G Britto
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Department of Pharmacology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| |
Collapse
|
47
|
Zhao HW, Li YW, Feng R, Yu JB, Li J, Zhang Y, Li JC, Wang YX. TGF-β/Smad2/3 signal pathway involves in U251 cell proliferation and apoptosis. Gene 2015; 562:76-82. [PMID: 25701598 DOI: 10.1016/j.gene.2015.02.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
TGF-β/Smad2/3 signal pathway is regarded as a central regulator in various tumors, but its roles in brain cancer therapy remain unknown. In this study, we identify that the TGF-β/Smad2/3 signal pathway is activated in human brain glioma cells; inhibitor (SB203580) and siRNA against Smad2/3 quickly inhibited the phosphorylation of Smad2 and 3, expression of its major downstream gene, Ki-67, arrested cells in the G2/M phase and induced apoptosis of cells. The findings suggest that TGF-β/Smad2/3 pathway plays a key role in U251 cell growth and metastasis, which suggests its potential role in the molecular therapy of brain cancer.
Collapse
Affiliation(s)
- Hong-wei Zhao
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Treatment of Tianjin City, Tianjin 300060, China
| | - Yan-Wei Li
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ren Feng
- Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin 300100, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China.
| | - Jin-Cheng Li
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Treatment of Tianjin City, Tianjin 300060, China
| | - Ya-Xin Wang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| |
Collapse
|
48
|
Clowry GJ, Basuodan R, Chan F. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy? Front Neurol 2014; 5:258. [PMID: 25538677 PMCID: PMC4255621 DOI: 10.3389/fneur.2014.00258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
Collapse
Affiliation(s)
- Gavin John Clowry
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Reem Basuodan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
49
|
Li T, Liu Y, Li G, Wang X, Zeng Z, Cai S, Li F, Chen Z. Polydatin attenuates ipopolysaccharide-induced acute lung injury in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8401-8410. [PMID: 25674204 PMCID: PMC4314025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Anti-inflammatory and anti-apoptotic effects of polydatin (PD) have been demonstrated in our previous studies. Recently, we have found that PD treatment can ameliorate burn-induced acute lung injury (ALI). In the present study, we hypothesized that PD may provide protective effect against LPS-induced ALI through reducing inflammation and apoptosis. Rats were respectively pretreated with PD at doses of 15, 30 and 45 mg/kg weight, followed by intratracheal administration of lipopolysaccharide (LPS). LPS-challenged rats exhibited significant lung injury characterized by the deterioration of histopathology, pulmonary microvascular hyperpermeability, wet-to-dry weight ratio, and oxygenation index, which was attenuated by PD (30 and 45 mg/kg) treatment. Moreover, PD (30 and 45 mg/kg) treatment inhibited LPS-induced inflammatory response, as evidenced by the downregulation of lung myeloperoxidase activity, total cells and PMNs in bronchoalveolar lavage fluid, and the systemic levels of the pro-inflammatory cytokines. Furthermore, PD (30 and 45 mg/kg) treatment remarkably improved LPS-induced increase in TUNEL (deoxynucleotidyl transferase dUTP nick end labeling) staining-positive cells, caspase 3 activity, Bax over-expression and Bcl-2 down-expression. In conclusion, these results demonstrate that PD (30 and 45 mg/kg) treatment attenuates LPS-induced ALI through reducing lung inflammation and apoptosis.
Collapse
Affiliation(s)
- Tao Li
- Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Institute of Translation MedicineChenzou 423000, Hunan Province, China
| | - Youtan Liu
- Department of Anesthesiology, The University of Hongkong Shenzhen HospitalShenzhen 518053, China
| | - Guicheng Li
- Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Institute of Translation MedicineChenzou 423000, Hunan Province, China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Institute of Translation MedicineChenzou 423000, Hunan Province, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
- Department of Pathophysiology, Southern Medical University, Guangdong Key Lab of Shock and Microcirculation ResearchGuangzhou 510515, Guangdong Province, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Fengyun Li
- Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Institute of Translation MedicineChenzou 423000, Hunan Province, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| |
Collapse
|
50
|
Zheng S, Bai YY, Changyi Y, Gao X, Zhang W, Wang Y, Zhou L, Ju S, Li C. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models. Adv Healthc Mater 2014; 3:1909-18. [PMID: 24898608 DOI: 10.1002/adhm.201400159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Indexed: 12/25/2022]
Abstract
Ischemic stroke accounts for 80% strokes and originates from a reduction of cerebral blood flow (CBF) after vascular occlusion. For treatment, the first action is to restore CBF by thrombolytic agent recombinant tissue-type plasminogen activator (rt-PA). Although rt-PA benefits clinical outcome, its application is limited by short therapeutic time window and risk of brain hemorrhage. Different to thrombolytic agents, neuroprotectants reduce neurological injuries by blocking ischemic cascade events such as excitotoxicity and oxidative stress. Nano-neuroprotectants demonstrate higher therapeutic effect than small molecular analogues due to their prolonged circulation lifetime and disrupted blood-brain barrier (BBB) in ischemic region. Even enhanced BBB permeability in ischemic territories is verified, the pore size of ischemic vasculatures determining how large and how efficient the therapeutics can pass is barely studied. In this work, nanoprobes (NPs) with different diameters are developed. In vivo multimodal imaging indicates that NP uptakes in ischemic region depended on their diameters and the pore size upper limit of ischemic vasculatures is determined as 10-11 nm. Additionally, penumbra defined as salvageable ischemic tissues performed a higher BBB permeability than infarct core. This work provides a guideline for developing nano-neuroprotectants by taking advantage of the locally enhanced BBB permeability in ischemic brain tissues.
Collapse
Affiliation(s)
- Shuyan Zheng
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Ying-Ying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Yinzhi Changyi
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Wenqing Zhang
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Lu Zhou
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| |
Collapse
|