1
|
Usman M, He G, Lu H. Experimental study on the mechanism of cerebral edema development and MM-MRI manifestation in burned rats. J Neuroradiol 2025; 52:101323. [PMID: 39961526 DOI: 10.1016/j.neurad.2025.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE The goal of this study was to investigate post-burn cerebral edema, establish its MM-MRI manifestation, and explore the underlying molecular mechanisms. METHODS Rats were randomly assigned to four groups (8h, 24h, 48h, and 72h post-burn) and subjected to thermal burns to induce skin injury, following the rat burn model. Treatment was administered based on Parkland's formula. At specific time points, rats were evaluated using MM-MRI sequences (T1 WI, T2 WI, T2 FLAIR, DWI, and ADC mapping) alongside histological analysis (H&E, TEM) and molecular techniques (IHC, IF, and WB). RESULTS All experimental groups exhibited significantly increased post-burn cerebral edema compared to the sham control group. While no significant changes were observed on T1WI, T2 WI, and T2 FLAIR images, post-burn cerebral edema was clearly visible on DWI and ADC maps in the region of interest (ROI) the basal ganglia. Histological analysis (H&E, TEM) corroborated these findings. Notably, all experimental groups (8h, 24h, 48h, and 72h) showed upregulated expression of AQP4 compared to controls, as evidenced by IHC, IF, and WB. Further, astrocyte end-feet and endothelial cells exhibited significant swelling may be due to AQP4 overexpression, leading to increased intracellular water content. CONCLUSION This study confirms the presence of post-burn cerebral edema in the early stages following burn trauma, might be mediated by AQP4, as supported by histological findings. Radiological results indicate that DWI and ADC mapping are sensitive methods for diagnosing and monitoring post-burn cerebral edema.
Collapse
Affiliation(s)
- Muhammad Usman
- Central Hospital Affiliated with Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China; Department of Anatomy, Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Guiqiong He
- Department of Anatomy, Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Hong Lu
- Department of Radiology, Central Hospital Affiliated to Chongqing University of Technology, Gonglian Yicun No. 1 Street Lijiatuo, Banan District, Chongqing 400054, PR China.
| |
Collapse
|
2
|
Tóth R, Szabó N, Törteli A, Kovács N, Horváth I, Szigeti K, Máthé D, Kincses TZ, Menyhárt Á, Farkas E. The paradoxical relationship of sensorimotor deficit and lesion volume in acute ischemic stroke. J Neuropathol Exp Neurol 2025:nlaf046. [PMID: 40272944 DOI: 10.1093/jnen/nlaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Understanding the relationship between the degree of neurological deficit and lesion volume is key to predicting outcomes in patients with acute ischemic stroke (AIS). Over the past 40 years, AIS research has relied on a perceived linear relationship between lesion volumes and neurological deficit. Here, we found that these variables do not show a relationship in a mouse model of AIS. Acute ischemic stroke was induced by transient (60 minutes) intraluminal microfilament occlusion of the middle cerebral artery in 15 male isoflurane (0.8%-1%)-anesthetized mice. Acute ischemic stroke-induced sensorimotor deficits were assessed daily for 72 hours using the Garcia Neuroscore Scale (GNS). Lesion size was estimated 72 hours after AIS using a rodent MRI system. Lesion sizes ranged from 17 to 130 mm3. In 3/15 mice (atypical cases: lesion <30 mm3 and GNS <11), small infarcts (14.6 ± 6.2 vs 51.7 ± 19.9 mm3, atypical vs typical) were associated with low GNS values at 72 hours (9 ± 2 vs 11 ± 2 pts; atypical vs typical). Consequently, we found no relationship between lesion size and GNS in this AIS model (R = 0.058). These results suggest that lesion size is not a reliable predictor of neurological outcome in AIS models.
Collapse
Affiliation(s)
- Réka Tóth
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, HCEMM Nonprofit Ltd, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Anna Törteli
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, HCEMM Nonprofit Ltd, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Noémi Kovács
- HCEMM-SU In Vivo Imaging Advanced Core Facility, Budapest, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- HCEMM-SU In Vivo Imaging Advanced Core Facility, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Zs Kincses
- Department of Radiology, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, HCEMM Nonprofit Ltd, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, HCEMM Nonprofit Ltd, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Ong E, Clottes P, Leon C, Guedouari H, Gallo-Bona N, Lo Grasso M, Motter L, Bolbos R, Ovize M, Nighogossian N, Wiart M, Paillard M. Mitochondria dysfunction, a potential cytoprotection target against ischemia-reperfusion injury in a mouse stroke model. Neurotherapeutics 2025; 22:e00549. [PMID: 39933968 PMCID: PMC12014409 DOI: 10.1016/j.neurot.2025.e00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
More than 50 % of patients undergoing mechanical thrombectomy (MT) for ischemic stroke have a poor functional outcome despite timely and successful angiographic reperfusion, highlighting the need for adjunctive treatments to reperfusion therapy. Mitochondria are key regulators of cell fate, by controlling cell bioenergetics via oxidative phosphorylation (OXPHOS) and cell death through the mitochondrial permeability transition pore (mPTP). Whether these two main mitochondrial functions are altered by reperfusion and could represent a new cytoprotective approach remains to be elucidated in mice. Swiss male mice underwent either permanent or transient middle cerebral artery occlusion (pMCAO or tMCAO), with neuroscore evaluation and multimodal imaging. The area at risk of necrosis was evaluated by per-occlusion dynamic contrast-enhanced ultrasound. Final infarct size was assessed at day 1 by MRI. Cortical mitochondrial isolation was subsequently performed to assess mPTP sensitivity by calcium retention capacity (CRC) and OXPHOS. A cytoprotective treatment targeting mitochondria, ciclosporine A (CsA), was tested in tMCAO, to mimick the clinical situation of patients treated with MT. Reperfusion after 60 min of ischemia improves neuroscores but does not significantly reduce infarct size or mitochondrial dysfunction compared to permanent ischemia. CsA treatment at reperfusion mitigates stroke outcome, decreases final infarct size and improves mitochondrial CRC and OXPHOS. Mitochondrial dysfunctions, i.e. reduced mPTP sensitivity and decreased oxygen consumption rates, were observed in pMCAO and tMCAO regardless of the reperfusion status. CsA improved mitochondrial functions when injected at reperfusion. These suggest that both mPTP opening and OXPHOS alterations are thus early but reversible hallmarks of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Elodie Ong
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Paul Clottes
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Christelle Leon
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Hala Guedouari
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Noelle Gallo-Bona
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Megane Lo Grasso
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Lucas Motter
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | - Michel Ovize
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Norbert Nighogossian
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Marlene Wiart
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France; CNRS, 69100 Villeurbanne, France
| | - Melanie Paillard
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France.
| |
Collapse
|
4
|
Lian J, Yang L, Tan H, Su S, Serrano Lopes L, Cheng F, Yan J, Fu Y, Fu W, Xie Z, Sun J, Zhang J, Tong Z, Gao Y, Han H. A novel neuroprotective method against ischemic stroke by accelerating the drainage of brain interstitial fluid. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2213-2223. [PMID: 39115728 DOI: 10.1007/s11427-024-2592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2024] [Indexed: 10/15/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1β, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.
Collapse
Affiliation(s)
- Jingge Lian
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Hanbo Tan
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Shaoyi Su
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Leonor Serrano Lopes
- Department of Informatics, Technical University of Munich, Garching, 80539, Germany
| | - Fangxiao Cheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Wanyi Fu
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaoheng Xie
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- NMPA Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, 100191, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Thomas DC, Oros-Peusquens AM, Schöneck M, Willuweit A, Abbas Z, Zimmermann M, Felder J, Celik A, Shah NJ. In Vivo Measurement of Rat Brain Water Content at 9.4 T MR Using Super-Resolution Reconstruction: Validation With Ex Vivo Experiments. J Magn Reson Imaging 2024; 60:161-172. [PMID: 37855368 DOI: 10.1002/jmri.29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Given that changes in brain water content are often correlated with disease, investigating water content non-invasively and in vivo could lead to a better understanding of the pathogenesis of several neurologic diseases. PURPOSE To adapt a super-resolution-based technique, previously developed for humans, to the rat brain and report in vivo high-resolution (HR) water content maps in comparison with ex vivo wet/dry methods. STUDY TYPE Prospective. ANIMAL MODEL Eight healthy male Wistar rats. FIELD STRENGTH/SEQUENCE 9.4-T, multi-echo gradient-echo (mGRE) sequence. ASSESSMENT Using super-resolution reconstruction (SRR), a HR mGRE image (200 μm isotropic) was reconstructed from three low-resolution (LR) orthogonal whole-brain images in each animal, which was followed by water content mapping in vivo. The animals were subsequently sacrificed, the brains excised and divided into five regions (front left, front right, middle left, middle right, and cerebellum-brainstem regions), and the water content was measured ex vivo using wet/dry measurements as the reference standard. The water content values of the in vivo and ex vivo methods were then compared for the whole brain and also for the different regions separately. STATISTICAL TESTS Friedman's non-parametric test was used to test difference between the five regions, and Pearson's correlation coefficient was used for correlation between in vivo and ex vivo measurements. A P-value <0.05 was considered statistically significant. RESULTS Water content values derived from in vivo MR measurements showed strong correlations with water content measured ex vivo at a regional level (r = 0.902). Different brain regions showed significantly different water content values. Water content values were highest in the frontal brain, followed by the midbrain, and lowest in the cerebellum and brainstem regions. DATA CONCLUSION An in vivo technique to achieve HR isotropic water content maps in the rat brain using SRR was adopted in this study. The MRI-derived water content values obtained using the technique showed strong correlations with water content values obtained using ex vivo wet/dry methods. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dennis C Thomas
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Michael Schöneck
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Zaheer Abbas
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Zimmermann
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Avdo Celik
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Zdunczyk A, Schumm L, Helgers SOA, Nieminen-Kelhä M, Bai X, Major S, Dreier JP, Hecht N, Woitzik J. Ketamine-induced prevention of SD-associated late infarct progression in experimental ischemia. Sci Rep 2024; 14:10186. [PMID: 38702377 PMCID: PMC11068759 DOI: 10.1038/s41598-024-59835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Spreading depolarizations (SDs) occur frequently in patients with malignant hemispheric stroke. In animal-based experiments, SDs have been shown to cause secondary neuronal damage and infarct expansion during the initial period of infarct progression. In contrast, the influence of SDs during the delayed period is not well characterized yet. Here, we analyzed the impact of SDs in the delayed phase after cerebral ischemia and the potential protective effect of ketamine. Focal ischemia was induced by distal occlusion of the left middle cerebral artery in C57BL6/J mice. 24 h after occlusion, SDs were measured using electrocorticography and laser-speckle imaging in three different study groups: control group without SD induction, SD induction with potassium chloride, and SD induction with potassium chloride and ketamine administration. Infarct progression was evaluated by sequential MRI scans. 24 h after occlusion, we observed spontaneous SDs with a rate of 0.33 SDs/hour which increased during potassium chloride application (3.37 SDs/hour). The analysis of the neurovascular coupling revealed prolonged hypoemic and hyperemic responses in this group. Stroke volume increased even 24 h after stroke onset in the SD-group. Ketamine treatment caused a lesser pronounced hypoemic response and prevented infarct growth in the delayed phase after experimental ischemia. Induction of SDs with potassium chloride was significantly associated with stroke progression even 24 h after stroke onset. Therefore, SD might be a significant contributor to delayed stroke progression. Ketamine might be a possible drug to prevent SD-induced delayed stroke progression.
Collapse
Affiliation(s)
- A Zdunczyk
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - L Schumm
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S O A Helgers
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - X Bai
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - N Hecht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
- University Clinic for Neurosurgery, Marienstr. 11, 26121, Oldenburg, Germany.
| |
Collapse
|
7
|
Lai Y, Han J, Qiu D, Liu X, Sun K, Fan Y, Wang C, Zhang S. The protective effects of methylene blue on astrocytic swelling after cerebral ischemia-reperfusion injuries are mediated by Aquaporin-4 and metabotropic glutamate receptor 5 activation. Heliyon 2024; 10:e29483. [PMID: 38644842 PMCID: PMC11031768 DOI: 10.1016/j.heliyon.2024.e29483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.
Collapse
Affiliation(s)
- Yu Lai
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Jie Han
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Dongxian Qiu
- Department of Dermatology, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Xinyan Liu
- Medical Insurance Division, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Kan Sun
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Yuzhu Fan
- Department of Endocrinology, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Chunliang Wang
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Song Zhang
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
8
|
Ister R, Sternak M, Škokić S, Gajović S. suMRak: a multi-tool solution for preclinical brain MRI data analysis. Front Neuroinform 2024; 18:1358917. [PMID: 38595906 PMCID: PMC11002116 DOI: 10.3389/fninf.2024.1358917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is invaluable for understanding brain disorders, but data complexity poses a challenge in experimental research. In this study, we introduce suMRak, a MATLAB application designed for efficient preclinical brain MRI analysis. SuMRak integrates brain segmentation, volumetry, image registration, and parameter map generation into a unified interface, thereby reducing the number of separate tools that researchers may require for straightforward data handling. Methods and implementation All functionalities of suMRak are implemented using the MATLAB App Designer and the MATLAB-integrated Python engine. A total of six helper applications were developed alongside the main suMRak interface to allow for a cohesive and streamlined workflow. The brain segmentation strategy was validated by comparing suMRak against manual segmentation and ITK-SNAP, a popular open-source application for biomedical image segmentation. Results When compared with the manual segmentation of coronal mouse brain slices, suMRak achieved a high Sørensen-Dice similarity coefficient (0.98 ± 0.01), approaching manual accuracy. Additionally, suMRak exhibited significant improvement (p = 0.03) when compared to ITK-SNAP, particularly for caudally located brain slices. Furthermore, suMRak was capable of effectively analyzing preclinical MRI data obtained in our own studies. Most notably, the results of brain perfusion map registration to T2-weighted images were shown, improving the topographic connection to anatomical areas and enabling further data analysis to better account for the inherent spatial distortions of echoplanar imaging. Discussion SuMRak offers efficient MRI data processing of preclinical brain images, enabling researchers' consistency and precision. Notably, the accelerated brain segmentation, achieved through K-means clustering and morphological operations, significantly reduces processing time and allows for easier handling of larger datasets.
Collapse
Affiliation(s)
- Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Sternak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Namestnikova DD, Cherkashova EA, Gumin IS, Chekhonin VP, Yarygin KN, Gubskiy IL. Estimation of the Ischemic Lesion in the Experimental Stroke Studies Using Magnetic Resonance Imaging (Review). Bull Exp Biol Med 2024; 176:649-657. [PMID: 38733482 DOI: 10.1007/s10517-024-06086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 05/13/2024]
Abstract
In translational animal study aimed at evaluation of the effectiveness of innovative methods for treating cerebral stroke, including regenerative cell technologies, of particular importance is evaluation of the dynamics of changes in the volume of the cerebral infarction in response to therapy. Among the methods for assessing the focus of infarction, MRI is the most effective and convenient tool for use in preclinical studies. This review provides a description of MR pulse sequences used to visualize cerebral ischemia at various stages of its development, and a detailed description of the MR semiotics of cerebral infarction. A comparison of various methods for morphometric analysis of the focus of a cerebral infarction, including systems based on artificial intelligence for a more objective measurement of the volume of the lesion, is also presented.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I S Gumin
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
10
|
Pham J, Ng FC. Novel advanced imaging techniques for cerebral oedema. Front Neurol 2024; 15:1321424. [PMID: 38356883 PMCID: PMC10865379 DOI: 10.3389/fneur.2024.1321424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral oedema following acute ischemic infarction has been correlated with poor functional outcomes and is the driving mechanism of malignant infarction. Measurements of midline shift and qualitative assessment for herniation are currently the main CT indicators for cerebral oedema but have limited sensitivity for small cortical infarcts and are typically a delayed sign. In contrast, diffusion-weighted (DWI) or T2-weighted magnetic resonance imaging (MRI) are highly sensitive but are significantly less accessible. Due to the need for early quantification of cerebral oedema, several novel imaging biomarkers have been proposed. Based on neuroanatomical shift secondary to space-occupying oedema, measures such as relative hemispheric volume and cerebrospinal fluid displacement are correlated with poor outcomes. In contrast, other imaging biometrics, such as net water uptake, T2 relaxometry and blood brain barrier permeability, reflect intrinsic tissue changes from the influx of fluid into the ischemic region. This review aims to discuss quantification of cerebral oedema using current and developing advanced imaging techniques, and their role in predicting clinical outcomes.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Radiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix C. Ng
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine at Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Pham J, Gan C, Dabboucy J, Stella DL, Dowling R, Yan B, Bush S, Williams C, Mitchell PJ, Desmond P, Thijs V, Asadi H, Brooks M, Maingard J, Jhamb A, Pavlin-Premrl D, Campbell BC, Ng FC. Occult contrast retention post-thrombectomy on 24-h follow-up dual-energy CT: Associations and impact on imaging analysis. Int J Stroke 2023; 18:1228-1237. [PMID: 37260232 DOI: 10.1177/17474930231182018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Following reperfusion treatment in ischemic stroke, computed tomography (CT) imaging at 24 h is widely used to assess radiological outcomes. Even without visible hyperattenuation, occult angiographic contrast may persist in the brain and confound Hounsfield unit-based imaging metrics, such as net water uptake (NWU). AIMS We aimed to assess the presence and factors associated with retained contrast post-thrombectomy on 24-h imaging using dual-energy CT (DECT), and its impact on the accuracy of NWU as a measure of cerebral edema. METHODS Consecutive patients with anterior circulation large vessel occlusion who had post-thrombectomy DECT performed 24-h post-treatment from two thrombectomy stroke centers were retrospectively studied. NWU was calculated by interside comparison of HUs of the infarct lesion and its mirror homolog. Retained contrast was quantified by the difference in NWU values with and without adjustment for iodine. Patients with visible hyperdensities from hemorrhagic transformation or visible contrast retention and bilateral infarcts were excluded. Cerebral edema was measured by relative hemispheric volume (rHV) and midline shift (MLS). RESULTS Of 125 patients analyzed (median age 71 (IQR = 61-80), baseline National Institutes of Health Stroke Scale (NIHSS) 16 (IQR = 9.75-21)), reperfusion (defined as extended-Thrombolysis-In-Cerebral-Infarction 2b-3) was achieved in 113 patients (90.4%). Iodine-subtracted NWU was significantly higher than unadjusted NWU (17.1% vs 10.8%, p < 0.001). In multivariable median regression analysis, increased age (p = 0.024), number of passes (p = 0.006), final infarct volume (p = 0.023), and study site (p = 0.021) were independently associated with amount of retained contrast. Iodine-subtracted NWU correlated with rHV (rho = 0.154, p = 0.043) and MLS (rho = 0.165, p = 0.033) but unadjusted NWU did not (rHV rho = -0.035, p = 0.35; MLS rho = 0.035, p = 0.347). CONCLUSIONS Angiographic iodine contrast is retained in brain parenchyma 24-h post-thrombectomy, even without visually obvious hyperdensities on CT, and significantly affects NWU measurements. Adjustment for retained iodine using DECT is required for accurate NWU measurements post-thrombectomy. Future quantitative studies analyzing CT after thrombectomy should consider occult contrast retention.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Calvin Gan
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jasmin Dabboucy
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Damien L Stella
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Richard Dowling
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bernard Yan
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Bush
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Cameron Williams
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Patricia Desmond
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Vincent Thijs
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Division of Stroke, Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia
| | - Hamed Asadi
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Mark Brooks
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Julian Maingard
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Ash Jhamb
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Davor Pavlin-Premrl
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce Cv Campbell
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Felix C Ng
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Schuhmann MK, Langhauser F, Zimmermann L, Bellut M, Kleinschnitz C, Fluri F. Dimethyl Fumarate Attenuates Lymphocyte Infiltration and Reduces Infarct Size in Experimental Stroke. Int J Mol Sci 2023; 24:15540. [PMID: 37958527 PMCID: PMC10648192 DOI: 10.3390/ijms242115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.
Collapse
Affiliation(s)
- Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Lena Zimmermann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Maximilian Bellut
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| |
Collapse
|
13
|
An J, Wendt L, Wiese G, Herold T, Rzepka N, Mueller S, Koch SP, Hoffmann CJ, Harms C, Boehm-Sturm P. Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images. Sci Rep 2023; 13:13341. [PMID: 37587160 PMCID: PMC10432383 DOI: 10.1038/s41598-023-39826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely used for ischemic stroke lesion detection in mice. A challenge is that lesion segmentation often relies on manual tracing by trained experts, which is labor-intensive, time-consuming, and prone to inter- and intra-rater variability. Here, we present a fully automated ischemic stroke lesion segmentation method for mouse T2-weighted MRI data. As an end-to-end deep learning approach, the automated lesion segmentation requires very little preprocessing and works directly on the raw MRI scans. We randomly split a large dataset of 382 MRI scans into a subset (n = 293) to train the automated lesion segmentation and a subset (n = 89) to evaluate its performance. We compared Dice coefficients and accuracy of lesion volume against manual segmentation, as well as its performance on an independent dataset from an open repository with different imaging characteristics. The automated lesion segmentation produced segmentation masks with a smooth, compact, and realistic appearance that are in high agreement with manual segmentation. We report dice scores higher than the agreement between two human raters reported in previous studies, highlighting the ability to remove individual human bias and standardize the process across research studies and centers.
Collapse
Affiliation(s)
- Jeehye An
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Leo Wendt
- Scalable Minds GmbH, Potsdam, Germany
| | | | | | | | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany.
| |
Collapse
|
14
|
Srakočić S, Gorup D, Kutlić D, Petrović A, Tarabykin V, Gajović S. Reactivation of corticogenesis-related transcriptional factors BCL11B and SATB2 after ischemic lesion of the adult mouse brain. Sci Rep 2023; 13:8539. [PMID: 37237015 DOI: 10.1038/s41598-023-35515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to characterize expression of corticogenesis-related transcription factors BCL11B and SATB2 after brain ischemic lesion in the adult mice, and to analyze their correlation to the subsequent brain recovery. Ischemic brain lesion was induced by transient middle cerebral artery occlusion followed by reperfusion, and the animals with ischemic lesion were compared to the sham controls. Progression of the brain damage and subsequent recovery was longitudinally monitored structurally, by magnetic resonance imaging, and functionally, by neurological deficit assessment. Seven days after the ischemic injury the brains were isolated and analyzed by immunohistochemistry. The results showed higher expression in the brain of both, BCL11B and SATB2 in the animals with ischemic lesion compared to the sham controls. The co-expression of both markers, BCL11B and SATB2, increased in the ischemic brains, as well as the co-expression of BCL11B with the beneficial transcriptional factor ATF3 but not its co-expression with detrimental HDAC2. BCL11B was mainly implicated in the ipsilateral and SATB2 in the contralateral brain hemisphere, and their level in these regions correlated with the functional recovery rate. The results indicate that the reactivation of corticogenesis-related transcription factors BCL11B and SATB2 is beneficial after brain ischemic lesion.
Collapse
Affiliation(s)
- Sanja Srakočić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Dunja Gorup
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
- Universität Zürich, Universitätspital Zürich, Zürich, Switzerland
| | - Dominik Kutlić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Ante Petrović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience, University of Nizhny Novgorod, Pr. Gagarina 24, Nizhny Novgorod, Russia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Dhir N, Jain A, Sharma AR, Sharma S, Mahendru D, Patial A, Malik D, Prakash A, Attri SV, Bhattacharyya S, Das Radotra B, Medhi B. Rat BM-MSCs secretome alone and in combination with stiripentol and ISRIB, ameliorated microglial activation and apoptosis in experimental stroke. Behav Brain Res 2023; 449:114471. [PMID: 37146724 DOI: 10.1016/j.bbr.2023.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stroke, a devastating neurological emergency, is the leading cause of worldwide mortality and functional disability. Combining novel neuroprotective drugs offers a way to improve the stroke intervention outcomes. In the present era, the combination therapy has been proposed as a plausible strategy to target multiple mechanisms and enhance the treatment efficacy to rescue stroke induced behavioral abnormalities and neuropathological damage. In the current study, we have investigated the neuroprotective effect of stiripentol (STP) and trans integrated stress response inhibitor (ISRIB) alone and in combination with rat bone marrow derived mesenchymal stem cells (BM-MSCs) secretome in an experimental model of stroke. MATERIALS & METHODS Stroke was induced in male Wistar rats (n=92) by temporary middle cerebral artery occlusion (MCAO). Three investigational agents were selected including STP (350mg/kg; i.p.), trans ISRIB (2.5mg/kg; i.p.) and rat BM-MSCs secretome (100µg/kg; i.v). Treatment was administered at 3 hrs post MCAO, in four doses with a 12 hrs interval. Post MCAO, neurological deficits, brain infarct, brain edema, BBB permeability, motor functional and memory deficits were assessed. Molecular parameters: oxidative stress, pro inflammatory cytokines, synaptic protein markers, apoptotic protein markers and histopathological damage were assessed. RESULTS STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, significantly improved neurological, motor function and memory deficits along with significant reduction in pyknotic neurons in the brain of post MCAO rats. These results were correlating with significant reduction in pro-inflammatory cytokines, microglial activation and apoptotic markers in the brain of drug treated post MCAO rats. CONCLUSION STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, might be considered as potential neuroprotective agents in the acute ischemic stroke (AIS) management. DATA AVAILABILITY STATEMENT Data will be made available on reasonable request.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Sunil Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Dhruv Mahendru
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ajay Patial
- Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Savita Verma Attri
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
16
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
17
|
Dhir N, Jain A, Sharma AR, Prakash A, Radotra BD, Medhi B. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling. Metab Brain Dis 2023; 38:1177-1192. [PMID: 36847967 DOI: 10.1007/s11011-023-01183-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The protein kinase R-like endoplasmic reticulum kinase/eukaryotic initiation factor 2ɑ (PERK/eIF2α), the branch of unfolded protein response (UPR), is responsible for transient arrest in translation to counter the enhanced levels of misfolded or unfolded proteins in the endoplasmic reticulum (ER) following any acute condition. In neurological disorders, overactivation of PERK-P/eIF2-P signaling, leads to a prolonged decline in global protein synthesis resulting in synaptic failure and neuronal death. Our study has shown, PERK/ATF4/CHOP pathway gets activated following cerebral ischemia in rats. We have further demonstrated, PERK inhibitor, GSK2606414 ameliorates ischemia induced neuronal damage by preventing additional neuronal loss, minimizing brain infarct, reducing brain edema, and preventing neurological symptoms from appearing. GSK2606414 was found to improve the neurobehavioral deficits and reduce the pyknotic neurons in ischemic rats. Also, it decreased glial activation and apoptotic protein mRNA expression while enhanced the synaptic protein mRNA expression in rat brain following cerebral ischemia. In conclusion, our findings suggest that PERK/ATF4/CHOP activation play a vital role in cerebral ischemia. Thus, PERK inhibitor, GSK2606414 might be a potential neuroprotective agent in cerebral ischemia.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
18
|
Automatic Cerebral Hemisphere Segmentation in Rat MRI with Ischemic Lesions via Attention-based Convolutional Neural Networks. Neuroinformatics 2023; 21:57-70. [PMID: 36178571 PMCID: PMC9931784 DOI: 10.1007/s12021-022-09607-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with ischemic lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connections that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In conclusion, our method, publicly available at https://github.com/jmlipman/MedicDeepLabv3Plus , yielded excellent results in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.
Collapse
|
19
|
KOZLER P, MAREŠOVÁ D, POKORNÝ J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol Res 2022; 71:S277-S283. [PMID: 36647915 PMCID: PMC9906661 DOI: 10.33549/physiolres.934996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema - increased brain water content (BWC) - needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.
Collapse
Affiliation(s)
- Petr KOZLER
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana MAREŠOVÁ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav POKORNÝ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Blocking P2X7 by intracerebroventricular injection of P2X7-specific nanobodies reduces stroke lesions. J Neuroinflammation 2022; 19:256. [PMID: 36224611 PMCID: PMC9559872 DOI: 10.1186/s12974-022-02601-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/25/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. METHODS Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1β release after incubation with the P2X7-specific nbs. RESULTS Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1β release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. CONCLUSION Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.
Collapse
|
21
|
Singh D, Wasan H, Reeta KH. Preclinical Stroke Research and Translational Failure: A Bird's Eye View on Preventable Variables. Cell Mol Neurobiol 2022; 42:2003-2017. [PMID: 33786698 PMCID: PMC11421600 DOI: 10.1007/s10571-021-01083-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Despite achieving remarkable success in understanding the cellular, molecular and pathophysiological aspects of stroke, translation from preclinical research has always remained an area of debate. Although thousands of experimental compounds have been reported to be neuro-protective, their failures in clinical setting have left the researchers and stakeholders in doldrums. Though the failures described have been excruciating, they also give us a chance to refocus on the shortcomings. For better translational value, evidences from preclinical studies should be robust and reliable. Preclinical study design has a plethora of variables affecting the study outcome. Hence, this review focusses on the factors to be considered for a well-planned preclinical study while adhering to guidelines with emphasis on the study design, commonly used animal models, their limitations with special attention on various preventable attritions including comorbidities, aged animals, time of dosing, outcome measures and physiological variables along with the concept of multicentric preclinical randomized controlled trials. Here, we provide an overview of a panorama of practical aspects, which could be implemented, so that a well-defined preclinical study would result in a neuro-protectant with better translational value.
Collapse
Affiliation(s)
- Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
22
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
23
|
Thangameeran SIM, Pang CY, Lee CH, Tsai ST, Hu WF, Liew HK. Experimental animal models and evaluation techniques in intracerebral hemorrhage. Tzu Chi Med J 2022; 35:1-10. [PMID: 36866349 PMCID: PMC9972928 DOI: 10.4103/tcmj.tcmj_119_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal type of cerebral stroke without effective therapy. Although clinical trials with various surgeries have been conducted, none have improved clinical outcomes compared to the current medical management for ICH. Several ICH animal models, including autologous blood injection, collagenase injection, thrombin injection, and microballoon inflation methods, have been developed to elucidate the underlying mechanisms of ICH-induced brain injury. These models could also be used for discovering new therapy for ICH preclinically. We summarize the existing ICH animal models and the evaluation parameters used to measure the disease outcomes. We conclude that these models, resembling the different aspects of ICH pathogenesis, have their advantages and disadvantages. None of the current models closely represent the severity of ICH seen in clinical settings. More appropriate models are needed to streamline ICH's clinical outcomes and be used for validating newly developed treatment protocols.
Collapse
Affiliation(s)
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan,Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Hui Lee
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Fen Hu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Hock-Kean Liew, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
24
|
Sun C, Lin L, Yin L, Hao X, Tian J, Zhang X, Ren Y, Li C, Yang Y. Acutely Inhibiting AQP4 With TGN-020 Improves Functional Outcome by Attenuating Edema and Peri-Infarct Astrogliosis After Cerebral Ischemia. Front Immunol 2022; 13:870029. [PMID: 35592320 PMCID: PMC9110854 DOI: 10.3389/fimmu.2022.870029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Background Ischemic stroke is one of the leading causes of human death and disability. Brain edema and peri-infarct astrocyte reactivity are crucial pathological changes, both involving aquaporin-4 (AQP4). Studies revealed that acute inhibition of AQP4 after stroke diminishes brain edema, however, its effect on peri-infarct astrocyte reactivity and the subacute outcome is unclear. And if diffusion-weighted imaging (DWI) could reflect the AQP4 expression patterns is uncertain. Methods Rats were subjected to middle cerebral artery occlusion (MCAO) and allocated randomly to TGN 020-treated and control groups. One day after stroke, brain swelling and lesion volumes of the rats were checked using T2-weighted imaging (T2-WI). Fourteen days after stroke, the rats successively underwent neurological examination, T2-WI and DWI with standard b-values and ultra-high b-values, apparent diffusion coefficient (ADC) was calculated correspondingly. Finally, the rats’ brains were acquired and used for glial fibrillary acidic protein (GFAP) and AQP4 immunoreactive analysis. Results At 1 day after stroke, the TGN-020-treated animals exhibited reduced brain swelling and lesion volumes compared with those in the control group. At 14 days after stroke, the TGN-020-treated animals showed fewer neurological function deficits and smaller lesion volumes. In the peri-infarct region, the control group showed evident astrogliosis and AQP4 depolarization, which were reduced significantly in the TGN-020 group. In addition, the ultra-high b-values of ADC (ADCuh) in the peri-infarct region of the TGN-020 group was higher than that of the control group. Furthermore, correlation analysis revealed that peri-infarct AQP4 polarization correlated negatively with astrogliosis extent, and ADCuh correlated positively with AQP4 polarization. Conclusion We found that acutely inhibiting AQP4 using TGN-020 promoted neurological recovery by diminishing brain edema at the early stage and attenuating peri-infarct astrogliosis and AQP4 depolarization at the subacute stage after stroke. Moreover, ADCuh could reflect the AQP4 polarization.
Collapse
Affiliation(s)
- Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyi Lin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lekang Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Tian
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Corti F, Ristori E, Rivera-Molina F, Toomre D, Zhang J, Mihailovic J, Zhuang ZW, Simons M. Syndecan-2 selectively regulates VEGF-induced vascular permeability. NATURE CARDIOVASCULAR RESEARCH 2022; 1:518-528. [PMID: 36212522 PMCID: PMC9544384 DOI: 10.1038/s44161-022-00064-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/06/2022] [Indexed: 02/03/2023]
Abstract
Vascular endothelial growth factor (VEGF)- driven increase in vascular permeability is a key feature of many disease states associated with inflammation and ischemic injury, contributing significantly to morbidity and mortality in these settings. Despite its importance, no specific regulators that preferentially control VEGF-dependent increase in permeability versus its other biological activities, have been identified. Here we report that a proteoglycan Syndecan-2 (Sdc2) regulates the interaction between a transmembrane phosphatase DEP1 and VEGFR2 by controlling cell surface levels of DEP1. In the absence of Sdc2 or the presence of an antibody that blocks Sdc2-DEP1 interaction, increased plasma membrane DEP1 levels promote selective dephosphorylation of the VEGFR2 Y951 site that is involved in permeability control. Either an endothelial-specific Sdc2 deletion or a treatment with an anti-Sdc2 antibody result in a highly significant reduction in stroke size due to a decrease in intracerebral edema.
Collapse
Affiliation(s)
- F Corti
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - E Ristori
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - F Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - D Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - J Zhang
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - J Mihailovic
- Department of Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Z W Zhuang
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M Simons
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
26
|
Ng FC, Yassi N, Sharma G, Brown SB, Goyal M, Majoie CBLM, Jovin TG, Hill MD, Muir KW, Saver JL, Guillemin F, Demchuk AM, Menon BK, San Roman L, White P, van der Lugt A, Ribo M, Bracard S, Mitchell PJ, Davis SM, Sheth KN, Kimberly WT, Campbell BCV. Correlation Between Computed Tomography-Based Tissue Net Water Uptake and Volumetric Measures of Cerebral Edema After Reperfusion Therapy. Stroke 2022; 53:2628-2636. [PMID: 35450438 DOI: 10.1161/strokeaha.121.037073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral edema after large hemispheric infarction is associated with poor functional outcome and mortality. Net water uptake (NWU) quantifies the degree of hypoattenuation on unenhanced-computed tomography (CT) and is increasingly used to measure cerebral edema in stroke research. Hemorrhagic transformation and parenchymal contrast staining after thrombectomy may confound NWU measurements. We investigated the correlation of NWU measured postthrombectomy with volumetric markers of cerebral edema and association with functional outcomes. METHODS In a pooled individual patient level analysis of patients presenting with anterior circulation large hemispheric infarction (core 80-300 mL or Alberta Stroke Program Early CT Score ≤5) in the HERMES (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke trials) data set, cerebral edema was defined as the volumetric expansion of the ischemic hemisphere expressed as a ratio to the contralateral hemisphere(rHV). NWU and midline-shift were compared with rHV as the reference standard on 24-hour follow-up CT, adjusted for hemorrhagic transformation and the use of thrombectomy. Association between edema markers and day 90 functional outcomes (modified Rankin Scale) was assessed using ordinal logistic regression. RESULTS Overall (n=144), there was no correlation between NWU and rHV (rs=0.055, P=0.51). In sub-group analyses, a weak correlation between NWU with rHV was observed after excluding patients with any degree of hemorrhagic transformation (rs=0.211, P=0.015), which further improved after excluding thrombectomy patients (rs=0.453, P=0.001). Midline-shift correlated strongly with rHV in all sub-group analyses (rs>0.753, P=0.001). Functional outcome at 90 days was negatively associated with rHV (adjusted common odds ratio, 0.46 [95% CI, 0.32-0.65]; P<0.001) and midline-shift (adjusted common odds ratio, 0.85 [95% CI, 0.78-0.92]; P<0.001) but not NWU (adjusted common odds ratio, 1.00 [95% CI, 0.97-1.03]; P=0.84), adjusted for age, baseline National Institutes of Health Stroke Scale, and thrombectomy. Prognostic performance of NWU improved after excluding patients with hemorrhagic transformation and thrombectomy (adjusted odds ratio, 0.90 [95% CI, 0.80-1.02]; P=0.10). CONCLUSIONS NWU correlated poorly with conventional markers of cerebral edema and was not associated with clinical outcome in the presence of hemorrhagic transformation and thrombectomy. Measuring NWU postthrombectomy requires validation before implementation into clinical research. At present, the use of NWU should be limited to baseline CT, or follow-up CT only in patients without hemorrhagic transformation or treatment with thrombectomy.
Collapse
Affiliation(s)
- Felix C Ng
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.).,Austin Health, Heidelberg, Australia (F.C.N.)
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia (N.Y.)
| | - Gagan Sharma
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | | | - Mayank Goyal
- Department of Radiology, University of Calgary, Foothills Hospital, AB, Canada (M.G.)
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, the Netherlands (C.B.L.M.M.)
| | - Tudor G Jovin
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ (T.G.J.)
| | - Michael D Hill
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Keith W Muir
- Institute of Neuroscience & Psychology, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (K.W.M.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at the University of California, Los Angeles, California Stanford Stroke Center, Stanford University (J.L.S.)
| | - Francis Guillemin
- Clinical Investigation Centre-Clinical Epidemiology INSERM 1433, University of Lorraine and University Hospital of Nancy, France (F.G.)
| | - Andrew M Demchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Bijoy K Menon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Luis San Roman
- Department of Radiology, Hospital Clínic, Barcelona, Spain (L.S.R.)
| | - Philip White
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom (P.W.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands (A.v.d.L.)
| | - Marc Ribo
- Department of Neurology, Hospital Vall d'Hebron, Barcelona, Spain (M.R.)
| | - Serge Bracard
- Department of Diagnostic and Interventional Neuroradiology, Université de Lorraine, Inserm, IADI, CHRU Nancy, France (S.B.)
| | - Peter J Mitchell
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (P.J.M.)
| | - Stephen M Davis
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | - Kevin N Sheth
- Department of Neurology, Yale New Haven Hospital, CT (K.N.S.)
| | - W Taylor Kimberly
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston (W.T.K.)
| | - Bruce C V Campbell
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | | |
Collapse
|
27
|
Review of net water uptake in the management of acute ischemic stroke. Eur Radiol 2022; 32:5517-5524. [DOI: 10.1007/s00330-022-08658-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
|
28
|
Chovsepian A, Berchtold D, Winek K, Mamrak U, Ramírez Álvarez I, Dening Y, Golubczyk D, Weitbrecht L, Dames C, Aillery M, Fernandez‐Sanz C, Gajewski Z, Dieterich M, Janowski M, Falkai P, Walczak P, Plesnila N, Meisel A, Pan‐Montojo F. A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium-Mediated Excitotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103265. [PMID: 34904402 PMCID: PMC8811841 DOI: 10.1002/advs.202103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Indexed: 06/09/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Daniel Berchtold
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Katarzyna Winek
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: Edmond and Lily Safra Center for Brain SciencesHebrew University of JerusalemJerusalem9190401Israel
| | - Uta Mamrak
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
| | - Inés Ramírez Álvarez
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Yanina Dening
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
| | | | - Luis Weitbrecht
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Claudia Dames
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Marine Aillery
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: SeppicÎle‐de‐FranceLa Garenne‐Colombes92250France
| | - Celia Fernandez‐Sanz
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
- Present address:
Present address: Center for Translational MedicineDepartment of MedicineThomas Jefferson UniversityPhiladelphiaPA19107USA
| | - Zdzislaw Gajewski
- Center for Translational MedicineWarsaw University of Life SciencesWarsaw02‐787Poland
| | - Marianne Dieterich
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Miroslaw Janowski
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Peter Falkai
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Piotr Walczak
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Andreas Meisel
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Francisco Pan‐Montojo
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| |
Collapse
|
29
|
Schumm L, Lemale CL, Major S, Hecht N, Nieminen-Kelhä M, Zdunczyk A, Kowoll CM, Martus P, Thiel CM, Dreier JP, Woitzik J. Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke. J Cereb Blood Flow Metab 2022; 42:121-135. [PMID: 34427143 PMCID: PMC8721769 DOI: 10.1177/0271678x211039628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Collapse
Affiliation(s)
- Leonie Schumm
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Martus
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Liston TE, Hama A, Boltze J, Poe RB, Natsume T, Hayashi I, Takamatsu H, Korinek WS, Lechleiter JD. Adenosine A1R/A3R (Adenosine A1 and A3 Receptor) Agonist AST-004 Reduces Brain Infarction in a Nonhuman Primate Model of Stroke. Stroke 2021; 53:238-248. [PMID: 34802248 DOI: 10.1161/strokeaha.121.036396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with A1R/A3R (adenosine A1 and A3 receptor) agonists in rodent models of acute ischemic stroke results in significantly reduced lesion volume, indicating activation of adenosine A1R or A3R is cerebroprotective. However, dosing and timing required for cerebroprotection has yet to be established, and whether adenosine A1R/A3R activation will lead to cerebroprotection in a gyrencephalic species has yet to be determined. METHODS The current study used clinical study intervention timelines in a nonhuman primate model of transient, 4-hour middle cerebral artery occlusion to investigate a potential cerebroprotective effect of the dual adenosine A1R/A3R agonist AST-004. Bolus and then 22 hours intravenous infusion of AST-004 was initiated 2 hours after transient middle cerebral artery occlusion. Primary outcome measures included lesion volume, lesion growth kinetics, penumbra volume as well as initial pharmacokinetic-pharmacodynamic relationships measured up to 5 days after transient middle cerebral artery occlusion. Secondary outcome measures included physiological parameters and neurological function. RESULTS Administration of AST-004 resulted in rapid and statistically significant decreases in lesion growth rate and total lesion volume. In addition, penumbra volume decline over time was significantly less under AST-004 treatment compared with vehicle treatment. These changes correlated with unbound AST-004 concentrations in the plasma and cerebrospinal fluid as well as estimated brain A1R and A3R occupancy. No relevant changes in physiological parameters were observed during AST-004 treatment. CONCLUSIONS These findings suggest that administration of AST-004 and combined A1R/A3R agonism in the brain are efficacious pharmacological interventions in acute ischemic stroke and warrant further clinical evaluation.
Collapse
Affiliation(s)
- Theodore E Liston
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | - Aldric Hama
- Hamamatsu Pharma Research Inc, Japan (A.H., I.H., T.N., H.T.)
| | - Johannes Boltze
- Department of Neuroscience, University of Warwick, United Kingdom (J.B.)
| | - Russell B Poe
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | | | - Ikuo Hayashi
- Hamamatsu Pharma Research Inc, Japan (A.H., I.H., T.N., H.T.)
| | | | - William S Korinek
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio (J.D.L.)
| |
Collapse
|
31
|
Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M, Michalski D. The Cytoskeletal Elements MAP2 and NF-L Show Substantial Alterations in Different Stroke Models While Elevated Serum Levels Highlight Especially MAP2 as a Sensitive Biomarker in Stroke Patients. Mol Neurobiol 2021; 58:4051-4069. [PMID: 33931805 PMCID: PMC8280005 DOI: 10.1007/s12035-021-02372-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
In the setting of ischemic stroke, the neurofilament subunit NF-L and the microtubule-associated protein MAP2 have proven to be exceptionally ischemia-sensitive elements of the neuronal cytoskeleton. Since alterations of the cytoskeleton have been linked to the transition from reversible to irreversible tissue damage, the present study investigates underlying time- and region-specific alterations of NF-L and MAP2 in different animal models of focal cerebral ischemia. Although NF-L is increasingly established as a clinical stroke biomarker, MAP2 serum measurements after stroke are still lacking. Therefore, the present study further compares serum levels of MAP2 with NF-L in stroke patients. In the applied animal models, MAP2-related immunofluorescence intensities were decreased in ischemic areas, whereas the abundance of NF-L degradation products accounted for an increase of NF-L-related immunofluorescence intensity. Accordingly, Western blot analyses of ischemic areas revealed decreased protein levels of both MAP2 and NF-L. The cytoskeletal alterations are further reflected at an ultrastructural level as indicated by a significant reduction of detectable neurofilaments in cortical axons of ischemia-affected areas. Moreover, atomic force microscopy measurements confirmed altered mechanical properties as indicated by a decreased elastic strength in ischemia-affected tissue. In addition to the results from the animal models, stroke patients exhibited significantly elevated serum levels of MAP2, which increased with infarct size, whereas serum levels of NF-L did not differ significantly. Thus, MAP2 appears to be a more sensitive stroke biomarker than NF-L, especially for early neuronal damage. This perspective is strengthened by the results from the animal models, showing MAP2-related alterations at earlier time points compared to NF-L. The profound ischemia-induced alterations further qualify both cytoskeletal elements as promising targets for neuroprotective therapies.
Collapse
Affiliation(s)
- Bianca Mages
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, Leipzig University, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
32
|
Kaiser EE, Poythress J, Scheulin KM, Jurgielewicz BJ, Lazar NA, Park C, Stice SL, Ahn J, West FD. An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model. Neural Regen Res 2021; 16:842-850. [PMID: 33229718 PMCID: PMC8178783 DOI: 10.4103/1673-5374.297079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.
Collapse
Affiliation(s)
- Erin E. Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - J.C. Poythress
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Kelly M. Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Brian J. Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Nicole A. Lazar
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Cheolwoo Park
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke. Brain Behav Immun 2021; 93:277-287. [PMID: 33388423 DOI: 10.1016/j.bbi.2020.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
RATIONALE Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.
Collapse
|
34
|
Broocks G, Jafarov H, McDonough R, Austein F, Meyer L, Bechstein M, van Horn N, Nawka MT, Schön G, Fiehler J, Kniep H, Hanning U. Relationship between the degree of recanalization and functional outcome in acute ischemic stroke is mediated by penumbra salvage volume. J Neurol 2021; 268:2213-2222. [PMID: 33486602 PMCID: PMC8179901 DOI: 10.1007/s00415-021-10410-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The presence of metabolically viable brain tissue that may be salvageable with rapid cerebral blood flow restoration is the fundament rationale for reperfusion therapy in patients with large vessel occlusion stroke. The effect of endovascular treatment (EVT) on functional outcome largely depends on the degree of recanalization. However, the relationship of recanalization degree and penumbra salvage has not yet been investigated. We hypothesized that penumbra salvage volume mediates the effect of thrombectomy on functional outcome. METHODS 99 acute anterior circulation stroke patients who received multimodal CT and underwent thrombectomy with resulting partial to complete reperfusion (modified thrombolysis in cerebral infarction scale (mTICI) ≥ 2a) were retrospectively analyzed. Penumbra volume was quantified on CT perfusion and penumbra salvage volume (PSV) was calculated as difference of penumbra and net infarct growth from admission to follow-up imaging. RESULTS In patients with complete reperfusion (mTICI ≥ 2c), the median PSV was significantly higher than the median PSV in patients with partial or incomplete (mTICI 2a-2b) reperfusion (median 224 mL, IQR: 168-303 versus 158 mL, IQR: 129-225; p < 0.01). A higher degree of recanalization was associated with increased PSV (+ 63 mL per grade, 95% CI: 17-110; p < 0.01). Higher PSV was also associated with improved functional outcome (OR/mRS shift: 0.89; 95% CI: 0.85-0.95, p < 0.0001). CONCLUSIONS PSV may be an important mediator between functional outcome and recanalization degree in EVT patients and could serve as a more accurate instrument to compare treatment effects than infarct volumes.
Collapse
Affiliation(s)
- Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Hashim Jafarov
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rosalie McDonough
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Friederike Austein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lukas Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Noel van Horn
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Marie Teresa Nawka
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Helge Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
35
|
Spellicy SE, Scheulin KM, Baker EW, Jurgielewicz BJ, Kinder HA, Waters ES, Grimes JA, Stice SL, West FD. Semi-Automated Cell and Tissue Analyses Reveal Regionally Specific Morphological Alterations of Immune and Neural Cells in a Porcine Middle Cerebral Artery Occlusion Model of Stroke. Front Cell Neurosci 2021; 14:600441. [PMID: 33551749 PMCID: PMC7862775 DOI: 10.3389/fncel.2020.600441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in 3838 measured IBA1+ parameters, 3438 GFAP+ parameters, 3238 NeuN+ parameters, 3138 FactorVIII+ parameters, and 2838 DCX+ parameters were observed in stroked vs. non-stroked animals. Principal component analysis (PCA) and correlation analyses demonstrated that stroke-induced significant and predictable morphological changes that demonstrated strong relationships between IBA1+, GFAP+, and NeuN+ areas. Ultimately, this unbiased, semi-automated HCI and CellProfiler histopathological analysis approach revealed regional and cell specific morphological signatures of immune and neural cells after stroke in a highly translational porcine model. These identified features can provide information of disease pathogenesis and evolution with high resolution, as well as be used in therapeutic screening applications.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Medical College of Georgia, University System of Georgia MD/Ph.D. Program, Augusta, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States.,Aruna Bio Inc., Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
36
|
Sneed SE, Scheulin KM, Kaiser EE, Fagan MM, Jurgielewicz BJ, Waters ES, Spellicy SE, Duberstein KJ, Platt SR, Baker EW, Stice SL, Kinder HA, West FD. Magnetic Resonance Imaging and Gait Analysis Indicate Similar Outcomes Between Yucatan and Landrace Porcine Ischemic Stroke Models. Front Neurol 2021; 11:594954. [PMID: 33551956 PMCID: PMC7859633 DOI: 10.3389/fneur.2020.594954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
The Stroke Therapy Academic Industry Roundtable (STAIR) has recommended that novel therapeutics be tested in a large animal model with similar anatomy and physiology to humans. The pig is an attractive model due to similarities in brain size, organization, and composition relative to humans. However, multiple pig breeds have been used to study ischemic stroke with potentially differing cerebral anatomy, architecture and, consequently, ischemic stroke pathologies. The objective of this study was to characterize brain anatomy and assess spatiotemporal gait parameters in Yucatan (YC) and Landrace (LR) pigs pre- and post-stroke using magnetic resonance imaging (MRI) and gait analysis, respectively. Ischemic stroke was induced via permanent middle cerebral artery occlusion (MCAO). MRI was performed pre-stroke and 1-day post-stroke. Structural and diffusion-tensor sequences were performed at both timepoints and analyzed for cerebral characteristics, lesion diffusivity, and white matter changes. Spatiotemporal and relative pressure gait measurements were collected pre- and 2-days post-stroke to characterize and compare acute functional deficits. The results from this study demonstrated that YC and LR pigs exhibit differences in gross brain anatomy and gait patterns pre-stroke with MRI and gait analysis showing statistical differences in the majority of parameters. However, stroke pathologies in YC and LR pigs were highly comparable post-stroke for most evaluated MRI parameters, including lesion volume and diffusivity, hemisphere swelling, ventricle compression, caudal transtentorial and foramen magnum herniation, showing no statistical difference between the breeds. In addition, post-stroke changes in velocity, cycle time, swing percent, cadence, and mean hoof pressure showed no statistical difference between the breeds. These results indicate significant differences between pig breeds in brain size, anatomy, and motor function pre-stroke, yet both demonstrate comparable brain pathophysiology and motor outcomes post-stroke. The conclusions of this study suggest pigs of these different breeds generally show a similar ischemic stroke response and findings can be compared across porcine stroke studies that use different breeds.
Collapse
Affiliation(s)
- Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Simon R Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | | | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Aruna Bio, Inc., Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| |
Collapse
|
37
|
Castaneda-Vega S, Katiyar P, Russo F, Patzwaldt K, Schnabel L, Mathes S, Hempel JM, Kohlhofer U, Gonzalez-Menendez I, Quintanilla-Martinez L, Ziemann U, la Fougere C, Ernemann U, Pichler BJ, Disselhorst JA, Poli S. Machine learning identifies stroke features between species. Am J Cancer Res 2021; 11:3017-3034. [PMID: 33456586 PMCID: PMC7806470 DOI: 10.7150/thno.51887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Identification and localization of ischemic stroke (IS) lesions is routinely performed to confirm diagnosis, assess stroke severity, predict disability and plan rehabilitation strategies using magnetic resonance imaging (MRI). In basic research, stroke lesion segmentation is necessary to study complex peri-infarction tissue changes. Moreover, final stroke volume is a critical outcome evaluated in clinical and preclinical experiments to determine therapy or intervention success. Manual segmentations are performed but they require a specialized skill set, are prone to inter-observer variation, are not entirely objective and are often not supported by histology. The task is even more challenging when dealing with large multi-center datasets, multiple experimenters or large animal cohorts. On the other hand, current automatized segmentation approaches often lack histological validation, are not entirely user independent, are often based on single parameters, or in the case of complex machine learning methods, require vast training datasets and are prone to a lack of model interpretation. Methods: We induced IS using the middle cerebral artery occlusion model on two rat cohorts. We acquired apparent diffusion coefficient (ADC) and T2-weighted (T2W) images at 24 h and 1-week after IS induction. Subsets of the animals at 24 h and 1-week post IS were evaluated using histology and immunohistochemistry. Using a Gaussian mixture model, we segmented voxel-wise interactions between ADC and T2W parameters at 24 h using one of the rat cohorts. We then used these segmentation results to train a random forest classifier, which we applied to the second rat cohort. The algorithms' stroke segmentations were compared to manual stroke delineations, T2W and ADC thresholding methods and the final stroke segmentation at 1-week. Volume correlations to histology were also performed for every segmentation method. Metrics of success were calculated with respect to the final stroke volume. Finally, the trained random forest classifier was tested on a human dataset with a similar temporal stroke on-set. Manual segmentations, ADC and T2W thresholds were again used to evaluate and perform comparisons with the proposed algorithms' output. Results: In preclinical rat data our framework significantly outperformed commonly applied automatized thresholding approaches and segmented stroke regions similarly to manual delineation. The framework predicted the localization of final stroke regions in 1-week post-stroke MRI with a median Dice similarity coefficient of 0.86, Matthew's correlation coefficient of 0.80 and false positive rate of 0.04. The predicted stroke volumes also strongly correlated with final histological stroke regions (Pearson correlation = 0.88, P < 0.0001). Lastly, the stroke region characteristics identified by our framework in rats also identified stroke lesions in human brains, largely outperforming thresholding approaches in stroke volume prediction (P<0.01). Conclusion: Our findings reveal that the segmentation produced by our proposed framework using 24 h MRI rat data strongly correlated with the final stroke volume, denoting a predictive effect. In addition, we show for the first time that the stroke imaging features can be directly translated between species, allowing identification of acute stroke in humans using the model trained on animal data. This discovery reduces the gap between the clinical and preclinical fields, unveiling a novel approach to directly co-analyze clinical and preclinical data. Such methods can provide further biological insights into human stroke and highlight the differences between species in order to help improve the experimental setups and animal models of the disease.
Collapse
|
38
|
Weitbrecht L, Berchtold D, Zhang T, Jagdmann S, Dames C, Winek K, Meisel C, Meisel A. CD4 + T cells promote delayed B cell responses in the ischemic brain after experimental stroke. Brain Behav Immun 2021; 91:601-614. [PMID: 33002634 DOI: 10.1016/j.bbi.2020.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
CD4+ T lymphocytes are key mediators of tissue damage after ischemic stroke. However, their infiltration kinetics and interactions with other immune cells in the delayed phase of ischemia remain elusive. We hypothesized that CD4+ T cells facilitate delayed autoreactive B cell responses in the brain, which have been previously linked to post-stroke cognitive impairment (PSCI). Therefore, we treated myelin oligodendrocyte glycoprotein T cell receptor transgenic 2D2 mice of both sexes with anti-CD4 antibody following 60-minute middle cerebral artery occlusion and assessed lymphocyte infiltration for up to 72 days. Anti-CD4-treatment eliminated CD4+ T cells from the circulation and ischemic brain for 28 days and inhibited B cell infiltration into the brain, particularly in animals with large infarcts. Absence of CD4+ T cells did not influence infarct maturation or survival. Once the CD4+ population recovered in the periphery, both CD4+ T and B lymphocytes entered the infarct site forming follicle-like structures. Additionally, we provide further evidence for PSCI that could be attenuated by CD4 depletion. Our findings demonstrate that CD4+ T cells are essential in delayed B cell infiltration into the ischemic brain after stroke. Importantly, lymphocyte infiltration after stroke is a long-lasting process. As CD4 depletion improved cognitive functions in an experimental set-up, these findings set the stage to elaborate more specific immune modulating therapies in treating PSCI.
Collapse
Affiliation(s)
- Luis Weitbrecht
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Daniel Berchtold
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Tian Zhang
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Sandra Jagdmann
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Claudia Dames
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Katarzyna Winek
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Christian Meisel
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Andreas Meisel
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
39
|
Pedragosa J, Miró-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruíz-Jaén F, Ponsaerts P, Pasparakis M, Planas AM. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cereb Blood Flow Metab 2020; 40:S98-S116. [PMID: 32151226 PMCID: PMC7687030 DOI: 10.1177/0271678x20909055] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Miró-Mur
- Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Fundació Clínic, Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Justicia
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Ruíz-Jaén
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
40
|
Zhang H, Liu J, Liu Y, Su C, Fan G, Lu W, Feng L. Hypertonic saline improves brain edema resulting from traumatic brain injury by suppressing the NF-κB/IL-1β signaling pathway and AQP4. Exp Ther Med 2020; 20:71. [PMID: 32963601 PMCID: PMC7490798 DOI: 10.3892/etm.2020.9199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/17/2020] [Indexed: 12/05/2022] Open
Abstract
Although hypertonic saline (HS) has been extensively applied to treat brain edema in the clinic, the precise mechanism underlying its function remains poorly understood. Therefore, the aim of the present study was to investigate the therapeutic mechanism of HS in brain edema in terms of aquaporins and inflammatory factors. In the present study, traumatic brain injury (TBI) was established in male adult Sprague-Dawley rats, which were continuously administered 10% HS by intravenous injection for 2 days. In addition, brain edema and brain water content were detected by MRI and wet/dry ratio analysis and histological examination, respectively. Immunohistochemical staining for albumin and western blotting for occludin, zonula occludens-1 and claudin-5 was performed to evaluate the integrity of the blood-brain barrier. Aquaporin 4 (AQP4) expression was also analyzed using western blotting and reverse transcription-quantitative PCR, whilst interleukin (IL)-1β and NF-κB levels were measured using ELISA. It was demonstrated that HS treatment significantly reduced brain edema in TBI rats and downregulated AQP4 expression in cerebral cortical tissues around the contusion site. In addition, IL-1β and NF-κB levels were found to be downregulated after 10% HS treatment. Therefore, results from the present study suggested that HS may protect against brain edema induced by TBI by modulating the expression levels of AQP4, NF-κB and IL-1β.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jun Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yunzhen Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Gaoyang Fan
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Wenpeng Lu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
41
|
Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia 2020; 61:2811-2824. [PMID: 33063874 DOI: 10.1111/epi.16715] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize neocortical onset status epilepticus (SE) in the C57BL/6J mouse. METHODS We induced SE by administering homocysteine 16-18 hours after cobalt (Co) implantation. SE was monitored by video and electroencephalography (EEG). We evaluated brain structure with magnetic resonance imaging (MRI). Neurodegeneration was evaluated 72 hours after SE using Fluoro-Jade C staining. RESULTS Cobalt triggered seizures in a dose-dependent manner (median effective dose, ED50 = 0.78 mg) and the latency to peak seizure frequency shortened with increased dose. Animals developed SE after homocysteine administration. SE began with early intermittent focal seizures, consisting of frontal onset rhythmic spike-wave discharges manifested as focal dystonia with clonus. These focal seizures then evolved into generalized continuous convulsive activity. Behavioral manifestations of SE included tonic stiffening, bilateral limb clonus, and bilateral tonic-clonic movements, which were accompanied by generalized rhythmic spike-wave discharges on EEG. After prolonged seizures, animals became comatose with intermittent bilateral myoclonic seizures or jerks. During this period, EEG showed seizures interspersed with generalized periodic discharges on a suppressed background. MRI obtained when animals were in a coma revealed edema, midline shift in frontal lobe around the Co implantation site, and ventricular effacement. Fluoro-Jade C staining revealed neurodegeneration in the cortex, amygdala, and thalamus. SIGNIFICANCE We have developed a mouse model of severe, refractory cortical-onset SE, consisting of convulsions merging into a coma, EEG patterns of cortical seizures, and injury, with evidence of widespread neocortical edema and damage. This model replicates many features of acute seizures and SE resulting from traumatic brain injury, subarachnoid, and lobar hemorrhage.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
42
|
Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study. Sci Rep 2020; 10:16874. [PMID: 33037284 PMCID: PMC7547701 DOI: 10.1038/s41598-020-74046-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Reperfusion is the only existing strategy for patients with acute ischemic stroke, however it causes further brain damage itself. A feasible therapy targeting reperfusion injury is remote ischemic conditioning (RIC). This was a two-centre, randomized, blinded international study, using translational imaging endpoints, aimed to examine the neuroprotective effects of RIC in ischemic stroke model. 80 male rats underwent 90-min middle cerebral artery occlusion. RIC consisted of 4 × 5 min cycles of left hind limb ischemia. The primary endpoint was infarct size measured on T2-weighted MRI at 24 h, expressed as percentage of the area-at-risk. Secondary endpoints were: hemispheric space-modifying edema, infarct growth between per-occlusion and 24 h MRI, neurofunctional outcome measured by neuroscores. 47 rats were included in the analysis after applying pre-defined inclusion criteria. RIC significantly reduced infarct size (median, interquartile range: 19% [8%; 32%] vs control: 40% [17%; 59%], p = 0.028). This effect was still significant after adjustment for apparent diffusion coefficient lesion size in multivariate analysis. RIC also improved neuroscores (6 [3; 8] vs control: 9 [7; 11], p = 0.032). Other secondary endpoints were not statistically different between groups. We conclude that RIC in the setting of acute ischemic stroke in rats is safe, reduces infarct size and improves functional recovery.
Collapse
|
43
|
Arnold SA, Platt SR, Gendron KP, West FD. Imaging Ischemic and Hemorrhagic Disease of the Brain in Dogs. Front Vet Sci 2020; 7:279. [PMID: 32528985 PMCID: PMC7266937 DOI: 10.3389/fvets.2020.00279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Strokes, both ischemic and hemorrhagic, are the most common underlying cause of acute, non-progressive encephalopathy in dogs. In effect, substantial information detailing the underlying causes and predisposing factors, affected vessels, imaging features, and outcomes based on location and extent of injury is available. The features of canine strokes on both computed tomography (CT) and magnetic resonance imaging (MRI) have been described in numerous studies. This summary article serves as a compilation of these various descriptions. Drawing from the established and emerging stroke evaluation sequences used in the investigation of strokes in humans, this summary describes all theoretically available sequences. Particular detail is given to logistics of image acquisition, description of imaging findings, and each sequence's advantages and disadvantages. As the imaging features of both forms of strokes are highly representative of the underlying pathophysiologic stages in the hours to months following stroke onset, the descriptions of strokes at various stages are also discussed. It is unlikely that canine strokes can be diagnosed within the same rapid time frame as human strokes, and therefore the opportunity for thrombolytic intervention in ischemic strokes is unattainable. However, a thorough understanding of the appearance of strokes at various stages can aid the clinician when presented with a patient that has developed a stroke in the days or weeks prior to evaluation. Additionally, investigation into new imaging techniques may increase the sensitivity and specificity of stroke diagnosis, as well as provide new ways to monitor strokes over time.
Collapse
Affiliation(s)
- Susan A Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Simon R Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Karine P Gendron
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| |
Collapse
|
44
|
Juenemann M, Braun T, Schleicher N, Yeniguen M, Schramm P, Gerriets T, Ritschel N, Bachmann G, Obert M, Schoenburg M, Kaps M, Tschernatsch M. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci 2020; 11:48-59. [PMID: 33312715 PMCID: PMC7702138 DOI: 10.1515/tnsci-2020-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022] Open
Abstract
Objective This study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO). Methods One hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography. Results In the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment. Conclusions Single-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.
Collapse
Affiliation(s)
- Martin Juenemann
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tobias Braun
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Nadine Schleicher
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Mesut Yeniguen
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Patrick Schramm
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tibo Gerriets
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| | - Nouha Ritschel
- Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Georg Bachmann
- Department of Radiology, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Martin Obert
- Department of Radiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Markus Schoenburg
- Department of Cardiac Surgery, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| |
Collapse
|
45
|
Cui LL, Zhang Y, Chen ZY, Su YY, Liu Y, Boltze J. Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neurosci Ther 2020; 26:829-836. [PMID: 32374521 PMCID: PMC7366744 DOI: 10.1111/cns.13381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
AIMS To investigate the relationship between peripheral leukocyte dynamics and the outcome of large hemispheric infarction (LHI) patients. METHODS Patients with acute LHI admitted to the neuro-intensive care unit of Xuanwu Hospital from 2013 to 2017 were prospectively enrolled and followed up for 6 months after LHI. RESULTS A total of 84 LHI patients were included, 38 patients suffered brain herniation and 20 patients died from stroke. Compared to patients with benign course, LHI patients with fatal outcome showed larger infarcts and more severe brain edema (P < .01), as well as increased WBC and neutrophil counts throughout the first week after stroke (P < .05). Correlation analysis revealed that neutrophil counts on D2 after LHI positively correlated with infarct and edema volumes measured from CT/MRI (R2 = 0.22 and R2 = 0.15, P < .01) and negatively correlated with Glasgow Coma Scale (ρ = -0.234, P < .05). Patients with D2 neutrophils > 7.14 × 109 /L had higher risk of brain herniation [odds ratio (OR) = 7.5, 95% CI: 2.0-28.1, P = .001], and patients with D2 neutrophils > 7.79 × 109 /L had a higher risk of death (OR = 5.8, 95% CI: 1.2-27.0, P = .015). CONCLUSION Early peripheral neutrophil count after stroke relates to infarct size and the fatal outcome of LHI patients, which might help guiding acute LHI management such as reduction of intracranial pressure and potential antiinflammatory therapy in the future.
Collapse
Affiliation(s)
- Li-Li Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhong-Yun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying-Ying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yawu Liu
- Department of Neurology and Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
46
|
A novel approach to treatment of thromboembolic stroke in mice: Redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Exp Neurol 2020; 330:113336. [PMID: 32360283 DOI: 10.1016/j.expneurol.2020.113336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
Neutrophils are considered key participants in post-ischemic stroke inflammation. They are the first white blood cells to arrive in ischemic brain and their presence in the brain tissue positively correlates with post-ischemic injury severity. CXCL1 is a neutrophil attractant chemokine and the present study evaluates whether redirecting neutrophil migration using a peripherally implanted CXCL1-soaked sponge can reduce brain inflammation and improve outcomes in a novel mouse model of thromboembolic (TE) stroke. TE stroke was induced by injection of a platelet-rich microemboli suspension into the internal carotid artery of adult C57BL/6 male mice. The model induced neuroinflammation that was associated with increases in multiple brain and serum cytokines/chemokines at the mRNA and protein levels, including very marked increases in CXCL1. In other groups of animals, an absorbable sterile hemostatic sponge, previously immersed in either saline (0.9%NaCl) or CXCL1, was implanted into subcutaneous pockets formed in the inguinal region on the left and right side following stroke surgery. Mice implanted with the sponge soaked with CXCL1 had significantly reduced neuroinflammation and infarct size after TE stroke compared to mice implanted with the sponge soaked with 0.9%NaCl. There was also reduced mortality and improved neurological deficits in the TE stroke + CXCL1 sponge group compared to the TE stroke +0.9%NaCl sponge group. In conclusion: redirecting bloodstream leukocytes toward a peripherally-implanted neutrophil chemokine CXCL1-soaked sponge improves outcomes in a novel mouse model of thromboembolic stroke. The present findings suggest a novel therapeutic strategy for patients with acute stroke.
Collapse
|
47
|
Pénzes M, Túrós D, Máthé D, Szigeti K, Hegedűs N, Rauscher AÁ, Tóth P, Ivic I, Padmanabhan P, Pál G, Dobolyi Á, Gyimesi M, Málnási-Csizmadia A. Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics 2020; 10:5341-5356. [PMID: 32373216 PMCID: PMC7196296 DOI: 10.7150/thno.42077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Acute ischemic stroke treatment faces an unresolved obstacle as capillary reperfusion remains insufficient after thrombolysis and thrombectomy causing neuronal damage and poor prognosis. Hypoxia-induced capillary constriction is mediated by actomyosin contraction in precapillary smooth muscle cells (SMCs) therefore smooth muscle myosin-2 could be an ideal target with potentially high impact on reperfusion of capillaries. Methods: The myosin-2 inhibitor para-aminoblebbistatin (AmBleb) was tested on isolated human and rat arterioles to assess the effect of AmBleb on vasodilatation. Transient middle cerebral artery occlusion (MCAO) was performed on 38 male Wistar rats followed by local administration of AmBleb into the ischemic brain area. Development of brain edema and changes in cerebrovascular blood flow were assessed using MRI and SPECT. We also tested the neurological deficit scores and locomotor asymmetry of the animals for 3 weeks after the MCAO operation. Results: Our results demonstrate that AmBleb could achieve full relaxation of isolated cerebral arterioles. In living animals AmBleb recovered cerebral blood flow in 32 out of the 65 affected functional brain areas in MCAO operated rats, whereas only 8 out of the 67 affected areas were recovered in the control animals. Animals treated with AmBleb also showed significantly improved general and focal deficit scores in neurological functional tests and showed significantly ameliorated locomotor asymmetry. Conclusion: Direct inhibition of smooth muscle myosin by AmBleb in pre-capillary SMCs significantly contribute to the improvement of cerebral blood reperfusion and brain functions suggesting that smooth muscle myosin inhibition may have promising potential in stroke therapies as a follow-up treatment of physical or chemical removal of the occluding thrombus.
Collapse
|
48
|
Broocks G, Hanning U, Faizy TD, Scheibel A, Nawabi J, Schön G, Forkert ND, Langner S, Fiehler J, Gellißen S, Kemmling A. Ischemic lesion growth in acute stroke: Water uptake quantification distinguishes between edema and tissue infarct. J Cereb Blood Flow Metab 2020; 40:823-832. [PMID: 31072174 PMCID: PMC7168794 DOI: 10.1177/0271678x19848505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Infarct growth from the early ischemic core to the total infarct lesion volume (LV) is often used as an outcome variable of treatment effects, but can be overestimated due to vasogenic edema. The purpose of this study was (1) to assess two components of early lesion growth by distinguishing between water uptake and true net infarct growth and (2) to investigate potential treatment effects on edema-corrected net lesion growth. Sixty-two M1-MCA-stroke patients with acute multimodal and follow-up CT (FCT) were included. Ischemic lesion growth was calculated by subtracting the initial CTP-derived ischemic core volume from the LV in the FCT. To determine edema-corrected net lesion growth, net water uptake of the ischemic lesion on FCT was quantified and subtracted from the volume of uncorrected lesion growth. The mean lesion growth without edema correction was 20.4 mL (95% CI: 8.2-32.5 mL). The mean net lesion growth after edema correction was 7.3 mL (95% CI: -2.1-16.7 mL; p < 0.0001). Lesion growth was significantly overestimated due to ischemic edema when determined in early-FCT imaging. In 18 patients, LV was lower than the initial ischemic core volume by CTP. These apparently "reversible" core lesions were more likely in patients with shorter times from symptom onset to imaging and higher recanalization rates.
Collapse
Affiliation(s)
- Gabriel Broocks
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias D Faizy
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra Scheibel
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jawed Nawabi
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and
Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, Hotchkiss Brain
Institute, University of Calgary, Calgary, Canada
| | - Soenke Langner
- Department of Neuroradiology, University of
Rostock, Rostock, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional
Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Kemmling
- Department of Neuroradiology, University
Hospital Schleswig-Holstein, Luebeck, Germany
- Department of Neurology, University Hospital
Münster, Münster, Germany
| |
Collapse
|
49
|
Effects of nicorandil on neurobehavioral function, BBB integrity, edema and stereological parameters of the brain in the sub-acute phase of stroke in a rat model. J Biosci 2020. [DOI: 10.1007/s12038-020-0021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Broocks G, Hanning U, Flottmann F, Schönfeld M, Faizy TD, Sporns P, Baumgart M, Leischner H, Schön G, Minnerup J, Thomalla G, Fiehler J, Kemmling A. Clinical benefit of thrombectomy in stroke patients with low ASPECTS is mediated by oedema reduction. Brain 2020; 142:1399-1407. [PMID: 30859191 DOI: 10.1093/brain/awz057] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/14/2022] Open
Abstract
The impact of endovascular vessel recanalization on patients with a low initial Alberta Stroke Program Early Computer Tomography Score (ASPECTS) is still uncertain. We hypothesized that vessel recanalization leads to an improvement in mortality and degree of disability by reducing brain oedema and malignant mass effect. In this multicentre observational study, patients with acute ischaemic stroke due to large vessel occlusion in the anterior circulation and an ASPECTS of ≤ 5 were analysed. Patients were assembled into two groups: successful vessel recanalization (thrombolysis in cerebral infarctions, TICI scale 2b/3) or persistent vessel occlusion (no endovascular procedure or TICI scale 0-2a). Observers were blinded to clinical data. Net water uptake within brain infarct, a quantitative biomarker based on CT densitometry, was used to quantify oedema in admission and follow-up CT and Δ-water uptake was calculated as difference between water uptake at both time points. Occurrence of malignant infarctions and secondary parenchymal haemorrhage was documented. Furthermore, modified Rankin scale score at 90 days was used for functional outcome. We included 117 patients admitted between March 2015 and August 2017 in three German stroke centres: 71 with persistent vessel occlusion and 46 with successful recanalization. The mean water uptake in the admission imaging was not different between both groups: 10.0% (±4.8) in patients with persistent vessel occlusion and 9.0% (±4.8) in patients with vessel recanalization (P = 0.4). After follow-up CT, the mean Δ-water uptake was 16.0% (±7.5) in patients with persistent vessel occlusion and 8.0% (±5.7) in patients with vessel recanalization (P < 0.001). Successful reperfusion was independently associated with a lowered Δ-water uptake of 8.0% (95% confidence interval, CI: -10.5 to -5.3%; P < 0.001) and lowered modifed Rankin scale score after 90 days of 1.5 (95% CI: -2.2 to -0.8; P < 0.001). The prevalence of malignant infarctions was 44.3% in patients with persistent vessel occlusion and 26.1% in patients with vessel recanalization. There was no significant difference for secondary haemorrhage in both groups (P = 0.7). In conclusion, successful recanalization in patients with low initial ASPECTS resulted in a significant reduction of oedema formation and was associated with a decreased prevalence of malignant infarctions and an improvement of clinical outcome.
Collapse
Affiliation(s)
- Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Schönfeld
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Djamsched Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Sporns
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Michael Baumgart
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Minnerup
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Kemmling
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neuroradiology, University Hospital Schleswig-Holstein, Luebeck, Germany.,Department of Neuroradiology, University Hospital Münster, Münster, Germany
| |
Collapse
|