1
|
Cao W, Song Y, Bai X, Yang B, Li L, Wang X, Wang Y, Chang W, Chen Y, Wang Y, Chen J, Gao P, Jiao L, Xu X. Systemic-inflammatory indices and clinical outcomes in patients with anterior circulation acute ischemic stroke undergoing successful endovascular thrombectomy. Heliyon 2024; 10:e31122. [PMID: 38778990 PMCID: PMC11109896 DOI: 10.1016/j.heliyon.2024.e31122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background There is a lack of comprehensive profile assessment on complete blood count (CBC)-derived systemic-inflammatory indices, and their correlations with clinical outcome in patients with anterior circulation acute ischemic stroke (AIS) who achieved successful recanalization by endovascular thrombectomy (EVT). Methods Patients with anterior circulation AIS caused by large vessel occlusion (AIS-LVO) were retrospectively screened from December 2018 to December 2022. Systemic-inflammatory indices including ratios of neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte (PLR), and platelet-to-neutrophil (PNR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate inflammation systemic index (AISI) on admission and the first day post-EVT were calculated. Their correlations with symptomatic intracranial hemorrhage (sICH) and unfavorable 90-day functional outcome (modified Rankin Scale score of 3-6) were analyzed. Results A total of 482 patients [65 (IQR, 56-72) years; 33 % female] were enrolled, of which 231 (47.9 %) had unfavorable 90-day outcome and 50 (10.4 %) developed sICH. Day 1 neutrophil and monocyte counts, NLR, MLR, PLR, SII, SIRI, and AISI were increased, while lymphocyte and PNR were decreased compared to their admission levels. In multivariate analyses, neutrophil count, NLR, SII, and AISI on day 1 were independently associated with 90-day functional outcome. Moreover, day 1 neutrophil count, NLR, MLR, PLR, PNR, SII, and SIRI were independently linked to the occurrence of sICH. No admission variables were identified as independent risk factors for patient outcomes. Conclusion CBC-derived systemic-inflammatory indices measured on the first day after successful EVT are predictive of 90-day functional outcome and the sICH occurrence in patients with anterior circulation AIS-LVO.
Collapse
Affiliation(s)
- Wenbo Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
- Jinan Hospital of Xuanwu Hospital, Capital Medical University, 5106 Jingshi Road, Jinan, Shandong, 250100, China
| | - Yiming Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
- Jinan Hospital of Xuanwu Hospital, Capital Medical University, 5106 Jingshi Road, Jinan, Shandong, 250100, China
| | - Xinyu Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Yuxin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Wenxuan Chang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Yanfei Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Yabing Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Peng Gao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
- Jinan Hospital of Xuanwu Hospital, Capital Medical University, 5106 Jingshi Road, Jinan, Shandong, 250100, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
- Jinan Hospital of Xuanwu Hospital, Capital Medical University, 5106 Jingshi Road, Jinan, Shandong, 250100, China
| |
Collapse
|
2
|
Xiao CY, Ma YH, Zhao YL, Liu JY, Tan L. Association of peripheral immunity and cerebral small vessel disease in older adults without dementia: A longitudinal study. Neurobiol Aging 2024; 137:55-61. [PMID: 38422799 DOI: 10.1016/j.neurobiolaging.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
This study explored the associations between peripheral immunity with cerebral small vessel diseases. Older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative were investigated. Peripheral blood was obtained, and magnetic resonance imaging was performed to measure cerebral microbleeds (CMB), lacunar infarctions (LI), and white matter hyperintensities (WMH). Multivariable-adjusted regression models, linear mixed-effects models, and the Spearman correlations were used to evaluate the associations. At baseline, individuals with greater neutrophils (odds ratio [OR] =1.10, 95% confidence interval [CI] 1.00-1.20, p=0.042) and monocytes (OR=1.12, 95% CI 1.02-1.22, p=0.016) had higher WMH volume. On the contrary, a higher lymphocyte-to-monocyte ratio (LMR) was related to lower WMH volume (OR=0.91, 95% CI 0.82-1.00, p=0.041). Longitudinally, higher neutrophils (ρ=0.084, p=0.049) and NLR (ρ=0.111, p=0.009) predicted accelerated progression of WMH volume, while a greater LMR (ρ=-0.101, p=0.018) was linked to slower growth of WMH volume. Nevertheless, associations between peripheral immunity with CMB or LI were not observed at baseline and follow-up. Our study found that peripheral immune indexes could serve as convenient noninvasive biomarkers of WMH.
Collapse
Affiliation(s)
- Chu-Yun Xiao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Zhang Y, Zeng H, Zhou H, Li J, Wang T, Guo Y, Cai L, Hu J, Zhang X, Chen G. Predicting the Outcome of Patients with Aneurysmal Subarachnoid Hemorrhage: A Machine-Learning-Guided Scorecard. J Clin Med 2023; 12:7040. [PMID: 38002653 PMCID: PMC10671848 DOI: 10.3390/jcm12227040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) frequently causes long-term disability, but predicting outcomes remains challenging. Routine parameters such as demographics, admission status, CT findings, and blood tests can be used to predict aSAH outcomes. The aim of this study was to compare the performance of traditional logistic regression with several machine learning algorithms using readily available indicators and to generate a practical prognostic scorecard based on machine learning. Eighteen routinely available indicators were collected as outcome predictors for individuals with aSAH. Logistic regression (LR), random forest (RF), support vector machines (SVMs), and fully connected neural networks (FCNNs) were compared. A scorecard system was established based on predictor weights. The results show that machine learning models and a scorecard achieved 0.75~0.8 area under the curve (AUC) predicting aSAH outcomes (LR 0.739, RF 0.749, SVM 0.762~0.793, scorecard 0.794). FCNNs performed best (~0.95) but lacked interpretability. The scorecard model used only five factors, generating a clinically useful tool with a total cutoff score of ≥5, indicating poor prognosis. We developed and validated machine learning models proven to predict outcomes more accurately in individuals with aSAH. The parameters found to be the most strongly predictive of outcomes were NLR, lymphocyte count, monocyte count, hypertension status, and SEBES. The scorecard system provides a simplified means of applying predictive analytics at the bedside using a few key indicators.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Jingbo Li
- Department of Neurointensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tingting Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Yinghan Guo
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Lingxin Cai
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Junwen Hu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| | - Xiaotong Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- College of Electrical Engineering, Zhejiang University, Hangzhou 310020, China
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310020, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310016, China
| |
Collapse
|
4
|
Qiang YX, Deng YT, Zhang YR, Wang HF, Zhang W, Dong Q, Feng JF, Cheng W, Yu JT. Associations of blood cell indices and anemia with risk of incident dementia: A prospective cohort study of 313,448 participants. Alzheimers Dement 2023; 19:3965-3976. [PMID: 37102212 DOI: 10.1002/alz.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Low hemoglobin and anemia are associated with cognitive impairment and Alzheimer's disease (AD). However, the associations of other blood cell indices with incident dementia risk and the underlined mechanisms are unknown. METHODS Three hundred thirteen thousand four hundred forty-eight participants from the UK Biobank were included. Cox and restricted cubic spline models were used to investigate linear and non-linear longitudinal associations. Mendelian randomization analysis was used to identify causal associations. Linear regression models were used to explore potential mechanisms driven by brain structures. RESULTS During a mean follow-up of 9.03 years, 6833 participants developed dementia. Eighteen indices were associated with dementia risk regarding erythrocytes, immature erythrocytes, and leukocytes. Anemia was associated with a 56% higher risk of developing dementia. Hemoglobin and red blood cell distribution width were causally associated with AD. Extensive associations exist between most blood cell indices and brain structures. DISCUSSION These findings consolidated associations between blood cells and dementia. HIGHLIGHT Anemia was associated with 56% higher risk for all-cause dementia. Hematocrit percentage, mean corpuscular volume, platelet crit, and mean platelet volume had U-shaped associations with incident dementia risk. Hemoglobin (HGB) and red blood cell distribution width had causal effects on Alzheimer's risk. HGB and anemia were associated with brain structure alterations.
Collapse
Affiliation(s)
- Yi-Xuan Qiang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Loan JJM, Al-Shahi Salman R, McColl BW, Hardingham GE. Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage. Biomolecules 2022; 12:1438. [PMID: 36291647 PMCID: PMC9599325 DOI: 10.3390/biom12101438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH.
Collapse
Affiliation(s)
- James J. M. Loan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - Barry W. McColl
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
6
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
8
|
Rachfalska N, Putowski Z, Krzych ŁJ. Distant Organ Damage in Acute Brain Injury. Brain Sci 2020; 10:E1019. [PMID: 33371363 PMCID: PMC7767338 DOI: 10.3390/brainsci10121019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Acute brain injuries pose a great threat to global health, having significant impact on mortality and disability. Patients with acute brain injury may develop distant organ failure, even if no systemic diseases or infection is present. The severity of non-neurologic organs' dysfunction depends on the extremity of the insult to the brain. In this comprehensive review we sought to describe the organ-related consequences of acute brain injuries. The clinician should always be aware of the interplay between central nervous system and non-neurological organs, that is constantly present. Cerebral injury is not only a brain disease, but also affects the body as whole, and thus requires holistic therapeutical approach.
Collapse
Affiliation(s)
| | | | - Łukasz J. Krzych
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (N.R.); (Z.P.)
| |
Collapse
|
9
|
Wang Y, Zhao H, Yang X, Mu M, Zong H, Luo L, Xing M. Excessive Cu 2+ deteriorates arsenite-induced apoptosis in chicken brain and resulting in immunosuppression, not in homeostasis. CHEMOSPHERE 2020; 239:124758. [PMID: 31514009 DOI: 10.1016/j.chemosphere.2019.124758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Trace elements such as copper (Cu) and arsenic (As) are two of the major contaminants and well-known inducers of cognitive deficits and neurobehavioral changes. This study evaluated the immunotoxicity of their individual or combined exposure on different brain regions in chickens. Consequently, nuclear damage and organelle lesions, especially mitochondria were observed under Cu or/and As stress, in which positive regulation of key proteins, dynamin-related protein 1 (Drp1), Cytochrome C (Cyt c), BCL2-associated X (Bax), Caspases 3 and P53 was detected by qRCR and Western blot analyses, indicating disturbed mitochondrial dynamic equilibrium and apoptosis execution. In addition, qRCR analysis confirmed the involvement of cytokines secreted by different populations of helper T cells, indicative of cellular immunity. Gene expression studies showed marked up regulation of Th1/Th17 cytokines along with heat shock protein (HSP) 70, a synergism was noted in co-administration group. Interesting, lower apoptosis index was noted in brainstem compared to cerebrum and cerebellum. An intense immunosuppression and heat shock response against Cu or/and As was also seen in cerebrum and cerebellum but not in brainstem. In conclusion, our study suggests a synergistic neurotoxicity in chickens under Cu and As exposure. These findings provide a basic understanding of mitochondrial abnormality-initiated neuropathology in response to environmental pollutant mixtures, suggesting an adaptive response to the frangibility of the central nerve system.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Vocational College of Science and Trade, Guangzhou, PR China
| | - Liyang Luo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
10
|
Li XM, Wang XY, Feng XW, Shao MM, Liu WF, Ma QQ, Wang EP, Chen J, Shao B. Serum interleukin-33 as a novel marker for long-term prognosis and recurrence in acute ischemic stroke patients. Brain Behav 2019; 9:e01369. [PMID: 31397082 PMCID: PMC6749472 DOI: 10.1002/brb3.1369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Interleukin-33, a newly identified member of interleukin-1 family, had been confirmed to play a crucial role in regulating inflammatory responses in various disease. However, the exact role of interleukin-33 in the disease process of acute ischemic stroke still remains unclear. This study aims to demonstrate the relationship between interleukin-33 levels and long-term functional outcome as well as ischemic stroke recurrence. METHODS Three hundred and four first-ever acute ischemic stroke patients were recruited and basic information and history of all subjects taken within 72 hr on admission. The functional outcome was estimated by Barthel index. The multivariate logistic regression was used to analyze the prognosis, while the Cox proportional hazard model was applied to assess the recurrence risk. RESULTS Out of 304 subjects, 259 patients successfully completed scheduled two-year follow-up. We found that higher interleukin-33 levels correlated positively with better prognosis as compared with those with lower interleukin-33 levels who presented with poorer outcome (62.45 ± 20.50 ng/ml vs. 51.58 ± 19.16 ng/ml, p < .001). After adjustment of all confounders, interleukin-33 was associated with the one-year prognosis with an adjusted odds ratio of 0.956 (95% confidence interval, 0.937-0.976, p < .001). Furthermore, interleukin-33 levels were also closely related to recurrent ischemic stroke with an adjusted hazard ratio of 0.979 (95% confidence interval, 0.961-0.997, p = .025). CONCLUSIONS IL-33 can be used to predict the long-term outcomes and ischemic stroke recurrence in first-ever acute ischemic stroke patients.
Collapse
Affiliation(s)
- Xian-Mei Li
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yang Wang
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Wen Feng
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Meng Shao
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Fang Liu
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qin-Qin Ma
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - En-Pei Wang
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bei Shao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Yao H, Zhang Y, Shu H, Xie B, Tao Y, Yuan Y, Shang Y, Yuan S, Zhang J. Hyperforin Promotes Post-stroke Neuroangiogenesis via Astrocytic IL-6-Mediated Negative Immune Regulation in the Ischemic Brain. Front Cell Neurosci 2019; 13:201. [PMID: 31133816 PMCID: PMC6514137 DOI: 10.3389/fncel.2019.00201] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Hyperforin has been shown to be capable of promoting angiogenesis and functional recovery after ischemic stroke in our previous study. However, the exact mechanisms involved are not fully elucidated. In this study, adult male mice were subjected to 60-min transient middle cerebral artery occlusion followed by reperfusion for 28 days. Hyperforin was administrated to MCAO mice every 24 h for 2 weeks starting at 14 days post-ischemia (dpi). Then flow cytometry, quantitative Real-time PCR (RT-qPCR), western blotting, immunohistochemistry, and functional assays were performed to explore the molecular mechanisms in vivo and in vitro. Our data showed that hyperforin increased astrocytic interleukin (IL)-6 in the ischemic hemisphere via TLR4 at 28 dpi. The astrocytic IL-6 was essential to the promoting effects of hyperforin on the neural precursor cells proliferation, neuronal differentiation, angiogenesis, and functional recovery after stroke. Furthermore, hyperforin promoted the infiltration of regulatory T cells (Tregs) to the ischemic hemisphere and increased Tregs-derived cytokine IL-10 and transforming growth factor-β (TGF-β) in a manner that was dependent on astrocytic IL-6. Astrocytic IL-6 was critical to the role of hyperforin in promoting the infiltration of T-helper (Th) type 2 cells to the ischemic hemisphere and Th2-derived cytokine IL-4, relative to Th1 and Th1-derived cytokine interferon-γ (IFN-γ), which decreased during stroke recovery. After depletion of CD25+ Tregs, the promoting effects of hyperforin on post-stroke neurogenesis was attenuated. Moreover, blockade of IL-4 and TGF-β abrogated the promoting role of hyperforin in post-stroke neurogenesis, angiogenesis and functional recovery. Our results reveal a previously uncharacterized role of astrocytic IL-6-mediated negative immune regulation in the promoting effects of hyperforin on post-stroke neurovascular regeneration and functional recovery.
Collapse
Affiliation(s)
- Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanfa Tao
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yin Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
van der Willik KD, Fani L, Rizopoulos D, Licher S, Fest J, Schagen SB, Ikram MK, Ikram MA. Balance between innate versus adaptive immune system and the risk of dementia: a population-based cohort study. J Neuroinflammation 2019; 16:68. [PMID: 30927918 PMCID: PMC6441146 DOI: 10.1186/s12974-019-1454-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Immunity has been suggested to be important in the pathogenesis of dementia. However, the contribution of innate versus adaptive immunity in the development of dementia is not clear. In this study, we aimed to investigate (1) the association between components of innate immunity (granulocytes and platelets) and adaptive immunity (lymphocytes) with risk of dementia and (2) the association between their derived ratios (granulocyte-to-lymphocyte ratio [GLR], platelet-to-lymphocyte ratio [PLR], and systemic immune-inflammation index [SII]), reflecting the balance between innate and adaptive immunity, with risk of dementia. Methods Blood cell counts were measured repeatedly between 2002 and 2015 in dementia-free participants of the prospective population-based Rotterdam Study. Participants were followed-up for dementia until 1 January 2016. Joint models were used to determine the association between granulocyte, platelets, and lymphocyte counts, and their derived ratios with risk of dementia. Results Of the 8313 participants (mean [standard deviation] age 61.1 [7.4] years, 56.9% women), 664 (8.0%) developed dementia during a median follow-up of 8.6 years. Doubling of granulocyte and platelet counts tended to be associated with an increased risk of dementia (HR [95%CI] 1.22 [0.89–1.67] and 1.45 [1.07–1.95], respectively). Doubling of the derived ratios GLR, PLR, and SII were all associated with an increased dementia risk (HR [95%CI] 1.26 [1.03–1.53], 1.27 [1.05–1.53], and 1.15 [0.98–1.34], respectively). Conclusions GLR, PLR, and SII are associated with an increased risk of dementia in the general population. This supports the role of an imbalance in the immune system towards innate immunity in the pathogenesis of dementia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1454-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly D van der Willik
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.,Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Silvan Licher
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Jesse Fest
- Department of Surgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Autoimmunity in acute ischemic stroke and the role of blood-brain barrier: the dark side or the light one? Front Med 2019; 13:420-426. [PMID: 30929189 DOI: 10.1007/s11684-019-0688-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
This article presents a synopsis of the current data on the mechanisms of blood-brain barrier (BBB) alteration and autoimmune response in acute ischemic stroke. Most researchers confirm the relationship between the severity of immunobiochemical changes and clinical outcome of acute ischemic stroke. Ischemic stroke is accompanied by aseptic inflammation, which alters the brain tissue and exposes the co-stimulatory molecules of the immune system and the neuronal antigens. To date, BBB is not considered the border between the immune system and central nervous system, and the local immune subsystems are found within and behind the BBB. BBB disruption contributes to the leakage of brain autoantigens and induction of secondary autoimmune response to neuronal antigens and long-term inflammation. Glymphatic system function is altered and jeopardized both in hemorrhagic and ischemic stroke types. The receptors of innate immunity (toll-like receptor-2 and toll-like receptor-4) are also involved in acute ischemia-reperfusion injury. Immune response is related to the key processes of blood clotting and fibrinolysis. At the same time, the stroke-induced immune activation may promote reparation phenomena in the brain. Subsequent research on the reduction of the acute ischemic brain injury through the target regulation of the immune response is promising.
Collapse
|
14
|
Drieu A, Levard D, Vivien D, Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther Adv Neurol Disord 2018; 11:1756286418789854. [PMID: 30083232 PMCID: PMC6066814 DOI: 10.1177/1756286418789854] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
So far, intravenous tissue-type plasminogen activator (tPA) and mechanical
removal of arterial blood clot (thrombectomy) are the only available treatments
for acute ischemic stroke. However, the short therapeutic window and the lack of
specialized stroke unit care make the overall availability of both treatments
limited. Additional agents to combine with tPA administration or thrombectomy to
enhance efficacy and improve outcomes associated with stroke are needed.
Stroke-induced inflammatory processes are a response to the tissue damage due to
the absence of blood supply but have been proposed also as key contributors to
all the stages of the ischemic stroke pathophysiology. Despite promising results
in experimental studies, inflammation-modulating treatments have not yet been
translated successfully into the clinical setting. This review will (a) describe
the timing of the stroke immune pathophysiology; (b) detail the immune responses
to stroke sift-through cell type; and (c) discuss the pitfalls on the
translation from experimental studies to clinical trials testing the therapeutic
pertinence of immune modulators.
Collapse
Affiliation(s)
- Antoine Drieu
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Damien Levard
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Denis Vivien
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France Pathophysiology and Imaging of Neurological Disorders, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Marina Rubio
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Boulevard Henri Becquerel BP 5229, Caen Cedex, 14000, France
| |
Collapse
|
15
|
Wang AH, Ma Q, Wang X, Xu GH. Protective effects of beef decoction rich in carnosine on cerebral ischemia injury by permanent middle cerebral artery occlusion in rats. Exp Ther Med 2017; 15:1321-1329. [PMID: 29399121 PMCID: PMC5774539 DOI: 10.3892/etm.2017.5524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation has a role in the cerebral injury induced by ischemia and the present study aimed to determine the mechanism of the protective effect of beef decoction (BD) with carnosine against it. A rat model of permanent middle cerebral artery occlusion was established using a suture method in the vehicle and each of the BD groups. In experiment 1, 72 Sprague Dawley (SD) rats were randomly divided into three groups: Sham, vehicle and BD-treated group. Rats in the BD group were given 600 mg/kg BD by oral gavage for 1, 3 and 7 days. The sham and vehicle group rats received an equivalent amount of normal saline. In experiment 2, 60 SD rats were randomly divided into six groups: Sham-operated I, sham-operated II, vehicle, low-dose BD, medium-dose BD and high-dose BD group. Rats in the low-, medium- and high-dose BD groups were given BD at the dose of 200, 400 and 600 mg/kg, respectively, by oral gavage for 7 days. Rats in the sham-operated II group were given 600 mg/kg BD. Rats in the sham-operated I group and vehicle group were given the same volume of normal saline by oral gavage. The body weight, neurological deficits and infarct volume were recorded at 1, 3 and 7 days after the operation. Furthermore, the effect of different doses of BD on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-4 (IL-4) levels in peripheral blood was measured at 7 days. BD-treated rats showed less neurological deficits and a smaller infarct volume at 7 days. BD at 400 and 600 mg/kg significantly decreased the infarct volume in rats. At 600 mg/kg BD, a decline in IL-6, TNF-α, IFN-γ and an increase in IL-4 expression was observed in the BD groups, while no difference in body weight and neurological dysfunction was detected. In conclusion, BD is a neuroprotective agent that may be used as a supplement treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ai-Hong Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qian Ma
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xin Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Gui-Hua Xu
- Department of Chinese Medicine Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
16
|
O'Connell GC, Treadway MB, Petrone AB, Tennant CS, Lucke-Wold N, Chantler PD, Barr TL. Peripheral blood AKAP7 expression as an early marker for lymphocyte-mediated post-stroke blood brain barrier disruption. Sci Rep 2017; 7:1172. [PMID: 28446746 PMCID: PMC5430856 DOI: 10.1038/s41598-017-01178-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 01/26/2023] Open
Abstract
Our group recently identified 16 genes whose peripheral blood expression levels are differentially regulated in acute ischemic stroke. The purpose of this study was to determine whether the early expression levels of any of these 16 genes are predictive for post-stroke blood brain barrier (BBB) disruption. Transcriptional expression levels of candidate genes were measured in peripheral blood sampled from ischemic stroke patients at emergency department admission, and BBB permeability was assessed at 24 hour follow up via perfusion-weighted imaging. Early heightened expression levels of AKAP7, a gene encoding a protein kinase A-binding scaffolding molecule, were significantly associated with BBB disruption 24 hours post-hospital admission. We then determined that AKAP7 is predominantly expressed by lymphocytes in peripheral blood, and strongly co-expressed with ITGA3, a gene encoding the adhesion molecule integrin alpha 3. Subsequent in vitro experiments revealed that heightened expression of AKAP7 and ITGA3 in primary human lymphocytes is associated with a highly adherent phenotype. Collectively, our results suggest that AKAP7 expression levels may have clinical utility as a prognostic biomarker for post-stroke BBB complications, and are likely elevated early in patients who later develop post-stroke BBB disruption due to the presence of an invasive lymphocyte population in the peripheral blood.
Collapse
Affiliation(s)
- Grant C O'Connell
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.
| | - Madison B Treadway
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Ashley B Petrone
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Connie S Tennant
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Noelle Lucke-Wold
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Taura L Barr
- Valtari Bio Incorporated, Morgantown, West Virginia, USA
| |
Collapse
|
17
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Abstract
Stroke induces a local inflammatory reaction and a plethora of innate immune responses in the brain where antigen-presenting cells become prominent. However, to date, it is still unclear whether antigen presentation is relevant to the neuropathological and functional outcome of stroke. Stroke does not trigger overt autoimmune reactions, but neural antigens have been found in lymphoid tissues of patient with stroke and it is unknown whether they promote tolerance or immune reactions that under certain conditions might contribute to the functional worsening observed in some patients. Autoantibodies to neural molecules have also been reported in patients with stroke, but the subclass of antibodies is important for their function, and the contribution of such findings to stroke outcome is not yet clear. Notably, stroke induces immunodepression highlighted by a transient lymphopenia, lymphoid organ atrophy, and monocyte deactivation. While these effects might reduce the chances of autoreactivity, they increase the risk of infection in patients with stroke and most frequently in those with severe stroke. Therefore any potential brain protective effect of stroke-induced immunodepression by attenuating or preventing lymphocyte-mediated brain damage is confounded by stroke severity and an increased incidence of infections. Systemic inflammation due to a number of comorbidities that are frequent in patients with stroke is also associated to a poor outcome. Herein, we review some relevant findings regarding the identification of neural antigens in stroke and discuss their potential contribution to the functional outcome of stroke.
Collapse
Affiliation(s)
- Francesc Miró-Mur
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Xabier Urra
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Angel Chamorro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | - Anna M Planas
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
19
|
Sergeeva SP, Savin AA, Litvitskiy PF. [A role of the Fas system in the pathogenesis of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:3-8. [PMID: 27296794 DOI: 10.17116/jnevro2016116323-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Fas system can promote several biological effects due to their activation after ischemic stroke: apoptosis, inflammation, proliferation, differentiation. Fas interacts with adapter proteins activating a number of signaling pathways, including MAPK, NFKB, JNK, ERK, phosphorylation of cytoskeletal proteins, and caspase-dependent apoptosis. Fas expressed by neuronal progenitor cells from the subventricular zone does not induce apoptosis in healthy adult humans. During motion and differentiation of these cells, Fas regulates their morphological structure by the phosphorylation/dephosphorylation of cytoskeletal elements. An increase in the Fas and Fas ligand expression is observed in response to stroke injury. Fas responsible not only for cell death and inflammation but also for neuronal plasticity which occupies a central place in the processes of sanogenesis.
Collapse
Affiliation(s)
- S P Sergeeva
- Sechenov First Moscow State Medical University, Moscow
| | - A A Savin
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow
| | | |
Collapse
|
20
|
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M, Solito E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51:212-222. [PMID: 26321046 DOI: 10.1016/j.bbi.2015.08.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood-brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.
Collapse
Affiliation(s)
- E Maggioli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S McArthur
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Biomedical Sciences, Faculty of Science & Technology, University of Westminster, New Cavendish Street, London W1W 6UW, UK
| | - C Mauro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Kieswich
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D H M Kusters
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands; Department of Pathology, University of Michigan Health System, 109 Zina Pitcher Place, 4062 BSRB, Ann Arbor, MI 48109-2200, United States
| | - C P M Reutelingsperger
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands
| | - M Yaqoob
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - E Solito
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
21
|
Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol 2015; 14:693-701. [PMID: 26707403 DOI: 10.1038/cmi.2015.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a common cause of infant death. The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells (PD-MSCs) in HIBD treatment. Seven-day-old rat pups were randomly divided into HIBD, PD-MSC, fibroblast, and control groups. Forty-eight hours after HIBD induction, cells at a density of 5 × 104 cells/10 µl were injected into the cerebral tissue in the PD-MSC and fibroblast groups. The TNF-α, interleukin- 17 (IL-17), interferon-γ (IFN-γ), and IL-10 levels were detected through quantitative real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Regulatory T cell (Tregs) populations were detected through flow cytometry, and forkhead box P3 (Foxp3) was measured through western blot analysis. Behavioral tests and gross and pathological examinations showed that PD-MSC treatment exerted significantly stronger neuroprotective effects than the other treatments. The expression levels of pro-inflammatory cytokines were substantially upregulated after HI injury. Compared with fibroblast treatment, PD-MSC treatment inhibited the production of pro-inflammatory cytokines and increased the production of IL-10 in the ischemic hemispheres and peripheral blood serum (all P < 0.01). Flow cytometry results showed a notable increase in the number of Tregs within the spleen of the HIBD group. Moreover, the number of Tregs and the Foxp3 expression levels were higher in the PD-MSC treatment group than in the HIBD and fibroblast groups (all P < 0.01). Our research suggests that the mechanism of PD-MSC treatment for HIBD partially involves inflammatory response suppression.
Collapse
|
22
|
ZHANG YUQIN, ZHANG SHENGNAN, LI HUANG, HUANG MEI, XU WEI, CHU KEDAN, CHEN LIDIAN, CHEN XIANWEN. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury. Mol Med Rep 2015; 12:988-94. [PMID: 25815894 PMCID: PMC4438940 DOI: 10.3892/mmr.2015.3515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD.
Collapse
Affiliation(s)
- YUQIN ZHANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - SHENGNAN ZHANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - HUANG LI
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - MEI HUANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - WEI XU
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - KEDAN CHU
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - LIDIAN CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - XIANWEN CHEN
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
23
|
Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 2015; 46:1681-9. [PMID: 25922503 DOI: 10.1161/strokeaha.115.009099] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The blood-brain barrier (BBB) is a selectively permeable cerebrovascular endothelial barrier that maintains homeostasis between the periphery and the central nervous system. BBB disruption is a consequence of ischemic stroke and BBB permeability can be altered by infection/inflammation, but the complex cellular and molecular changes that result in this BBB alteration need to be elucidated to determine mechanisms. METHODS Infection mimic (lipopolysaccharide) challenge on infarct volume, BBB permeability, infiltrated neutrophils, and functional outcomes after murine transient middle cerebral artery occlusion in vivo; mitochondrial evaluation of cerebrovascular endothelial cells challenged by lipopolysaccharide in vitro; pharmacological inhibition of mitochondria on BBB permeability in vitro and in vivo; the effects of mitochondrial inhibitor on BBB permeability, infarct volume, and functional outcomes after transient middle cerebral artery occlusion. RESULTS We report here that lipopolysaccharide worsens ischemic stroke outcome and increases BBB permeability after transient middle cerebral artery occlusion in mice. Furthermore, we elucidate a novel mechanism that compromised mitochondrial function accounts for increased BBB permeability as evidenced by: lipopolysaccharide-induced reductions in oxidative phosphorylation and subunit expression of respiratory chain complexes in cerebrovascular endothelial cells, a compromised BBB permeability induced by pharmacological inhibition of mitochondrial function in cerebrovascular endothelial cells in vitro and in an in vivo animal model, and worsened stroke outcomes in transient middle cerebral artery occlusion mice after inhibition of mitochondrial function. CONCLUSIONS We concluded that mitochondria are key players in BBB permeability. These novel findings suggest a potential new therapeutic strategy for ischemic stroke by endothelial cell mitochondrial regulation.
Collapse
Affiliation(s)
- Danielle N Doll
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Heng Hu
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Jiahong Sun
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Sara E Lewis
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - James W Simpkins
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Xuefang Ren
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown.
| |
Collapse
|
24
|
Molnar T, Peterfalvi A, Szereday L, Pusch G, Szapary L, Komoly S, Bogar L, Illes Z. Deficient leucocyte antisedimentation is related to post-stroke infections and outcome. J Clin Pathol 2015; 61:1209-13. [PMID: 18955576 DOI: 10.1136/jcp.2008.059840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Patients with stroke are more susceptible to infections, suggesting possible deficiencies of early immune responses, particularly of leucocytes. AIMS To serially examine leucocyte antisedimentation rate (LAR), a simple test to detect activation of leucocytes, and correlate it with S100beta, procalcitonin and outcome in patients with acute ischaemic events. METHODS Venous blood samples were taken from 61 healthy volunteers and 49 patients with acute ischaemic events (acute ischaemic stroke (AIS), n = 38; transient ischaemic attack (TIA), n = 11) within 6 hours, at 24 and 72 hours after onset of symptoms. RESULTS LAR was significantly higher in acute ischaemic events compared to controls within 6 hours after onset of stroke regardless of post-stroke infections. In addition, the increase of LAR was delayed and attenuated in TIA in contrast to AIS. A deficiency in early increase of LAR was associated with post-stroke infections and a poor outcome, measured by the Glasgow Outcome Scale in AIS. There was a positive correlation between LAR and S100beta at 72 hours after the onset of ischaemic stroke. Increased levels of S100beta at 24 and 72 hours after stroke were associated with poor outcome. CONCLUSIONS An early activation of leucocytes indicated by an increase of LAR is characteristic of acute ischaemic cerebrovascular events. A delayed and ameliorated leucocyte activation represented by LAR is characteristic of TIA in contrast to stroke. Deficient early activation predisposes to post-stroke infections related to poor outcome. In addition, the extent of tissue injury correlates with the magnitude of innate immune responses.
Collapse
Affiliation(s)
- T Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Interleukin-33 ameliorates ischemic brain injury in experimental stroke through promoting Th2 response and suppressing Th17 response. Brain Res 2015; 1597:86-94. [DOI: 10.1016/j.brainres.2014.12.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/16/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022]
|
26
|
Zhu W, Dotson AL, Libal NL, Lapato AS, Bodhankar S, Offner H, Alkayed NJ. Recombinant T-cell receptor ligand RTL1000 limits inflammation and decreases infarct size after experimental ischemic stroke in middle-aged mice. Neuroscience 2014; 288:112-9. [PMID: 25556831 DOI: 10.1016/j.neuroscience.2014.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 12/21/2014] [Indexed: 01/26/2023]
Abstract
We have previously demonstrated that recombinant T-cell receptor ligand 1000 (RTL1000) reduces infarct size and improves long-term functional recovery after experimental stroke in young transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). In this study, we determined the effect of RTL1000 on infarct size in 12-month-old middle-aged DR2-Tg mice, and investigated its mechanism of action. Twelve-month-old male DR2-Tg mice underwent 60min of intraluminal reversible middle cerebral artery occlusion (MCAO). Vehicle or RTL1000 was injected 4, 24, 48 and 72h after MCAO. Cortical, striatal and total hemispheric infarcts were measured 96h after stroke. Spleen and brain tissues were collected 96h after stroke for immunological analysis. Our data showed that RTL1000 significantly reduced infarct size 96h after MCAO in middle-aged male DR2-Tg mice. RTL1000 decreased the number of activated monocytes/microglia cells (CD11b(+)CD45(hi)) and CD3(+) T cells in the ischemic hemisphere. RTL1000 also reduced the percentage of total T cells and inflammatory neutrophils in the spleen. These findings suggest that RTL1000 protects against ischemic stroke in middle-aged male mice by limiting post-ischemic inflammation.
Collapse
Affiliation(s)
- W Zhu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - A L Dotson
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Neuroimmunology Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | - N L Libal
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - A S Lapato
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Neuroimmunology Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | - S Bodhankar
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Neuroimmunology Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | - H Offner
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Neuroimmunology Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | - N J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
27
|
Preclinical evaluation of recombinant T cell receptor ligand RTL1000 as a therapeutic agent in ischemic stroke. Transl Stroke Res 2014; 6:60-8. [PMID: 25270354 DOI: 10.1007/s12975-014-0373-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
Recombinant T cell Receptor Ligand 1000 (RTL1000), a partial human major histocompatibility complex (MHC) molecule coupled to a human myelin peptide, reduces infarct size after experimental stroke in HLA-DRB1*1502 transgenic (DR2-Tg) mice. In this study, we characterized the therapeutic time window of opportunity for RTL1000; we explored the efficacy of a single dose of RTL1000 administration and determined if RTL1000 affords long-term neurobehavioral functional improvement after ischemic stroke. Male DR2-Tg mice underwent 60 min of intraluminal reversible middle cerebral artery occlusion (MCAO). RTL1000 or vehicle was injected 4, 6, or 8 h after MCAO, followed by three daily injections. In the single-dose study, one-time injection of RTL1000 was applied 4 h after MCAO. Cortical, striatal, and hemispheric infarct sizes were measured 24 or 96 h after stroke. Behavioral testing, including neuroscore evaluation, open field, paw preference, and novel object recognition, was performed up to 28 days after stroke. Our data showed that RTL1000 significantly reduced the infarct size 96 h after MCAO when the first injection was given at 4 and 6 h, but not 8 h, after the onset of stroke. A single dose of 400 or 100 μg RTL1000 also significantly reduced the infarct size 24 h after MCAO. Behavioral testing showed that RTL1000 treatment used 4 h after MCAO improved long-term cognitive outcome 28 days after stroke. Taken together, RTL1000 protects against acute injury if applied within a 6-h time window and improves long-term functional recovery after experimental stroke in DR2-Tg mice.
Collapse
|
28
|
Fathali N, Ostrowski RP, Hasegawa Y, Lekic T, Tang J, Zhang JH. Splenic immune cells in experimental neonatal hypoxia-ischemia. Transl Stroke Res 2014; 4:208-19. [PMID: 23626659 DOI: 10.1007/s12975-012-0239-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroimmune processes contribute to hypoxic-ischemic damage in the immature brain and may play a role in the progression of particular variants of neonatal encephalopathy. The present study was designed to elucidate molecular mediators of interactions between astrocytes, neurons and infiltrating peripheral immune cells after experimental neonatal hypoxia-ischemia (HI). Splenectomy was performed on postnatal day-7 Sprague-Dawley rats 3 days prior to HI surgery; in which the right common carotid artery was permanently ligated followed by 2 hours of hypoxia (8% O2). Quantitative analysis showed that natural killer (NK) and T cell expression was reduced in spleen but increased in the brain following HI. Elevations in cyclooxygenase-2 (COX-2) expression after HI by immune cells promoted interleukin-15 expression in astrocytes and infiltration of inflammatory cells to site of injury; additionally, down-regulated the pro-survival protein, phosphoinositide-3-kinase, resulting in caspase-3 mediated neuronal death. The removal of the largest pool of peripheral immune cells in the body by splenectomy, COX-2 inhibitors, as well as rendering NK cells inactive by CD161 knockdown, significantly ameliorated cerebral infarct volume at 72 hours, diminished body weight loss and brain and systemic organ atrophy, and reduced neurobehavioral deficits at 3 weeks. Herein we demonstrate with the use of surgical approach (splenectomy), with pharmacological loss-gain function approach using COX-2 inhibitors/agonists, as well as with NK cell-type specific siRNA that after neonatal HI, the infiltrating peripheral immune cells may modulate downstream targets of cell death and neuroinflammation by COX-2 regulated signals.
Collapse
Affiliation(s)
- Nancy Fathali
- Department of Human Anatomy and Pathology, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
Recombinant T cell receptor ligand treatment improves neurological outcome in the presence of tissue plasminogen activator in experimental ischemic stroke. Transl Stroke Res 2014; 5:612-7. [PMID: 24953050 DOI: 10.1007/s12975-014-0348-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 11/27/2022]
Abstract
RTL1000 is a partial human MHC molecule coupled to a human myelin peptide. We previously demonstrated that RTL1000 was protective against experimental ischemic stroke in HLA-DR2 transgenic (DR2-Tg) mice. Since thrombolysis with recombinant tissue plasminogen activator (t-PA) is a standard therapy for stroke, we determined if RTL1000 efficacy is altered when combined with t-PA in experimental stroke. Male DR2-Tg mice underwent 60 min of intraluminal middle cerebral artery occlusion (MCAO). t-PA or vehicle was infused intravenously followed by either a single or four daily subcutaneous injections of RTL1000 or vehicle. Infarct size was measured by 2, 3, 5-triphenyltetrazolium chloride staining at 24 or 96 h of reperfusion. Our data showed that t-PA alone reduced infarct size when measured at 24 h but not at 96 h after MCAO. RTL1000 alone reduced infarct size both at 24 and 96 h after MCAO. Combining RTL1000 with t-PA did not alter its ability to reduce infarct size at either 24 or 96 h after MCAO and provides additional protection in t-PA treated mice at 24 h after ischemic stroke. Taken together, RTL1000 treatment alone improves outcome and provides additional protection in t-PA-treated mice in experimental ischemic stroke.
Collapse
|
30
|
Pullagurla SR, Witek MA, Jackson JM, Lindell MAM, Hupert ML, Nesterova IV, Baird AE, Soper SA. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis. Anal Chem 2014; 86:4058-65. [PMID: 24650222 PMCID: PMC4004188 DOI: 10.1021/ac5007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We report the design and performance
of a polymer microfluidic
device that can affinity select multiple types of biological cells
simultaneously with sufficient recovery and purity to allow for the
expression profiling of mRNA isolated from these cells. The microfluidic
device consisted of four independent selection beds with curvilinear
channels that were 25 μm wide and 80 μm deep and were
modified with antibodies targeting antigens specifically expressed
by two different cell types. Bifurcated and Z-configured device geometries
were evaluated for cell selection. As an example of the performance
of these devices, CD4+ T-cells and neutrophils were selected from
whole blood as these cells are known to express genes found in stroke-related
expression profiles that can be used for the diagnosis of this disease.
CD4+ T-cells and neutrophils were simultaneously isolated with purities
>90% using affinity-based capture in cyclic olefin copolymer (COC)
devices with a processing time of ∼3 min. In addition, sufficient
quantities of the cells could be recovered from a 50 μL whole
blood input to allow for reverse transcription-polymerase chain reaction
(RT-PCR) following cell lysis. The expression of genes from isolated
T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR.
The modification and isolation procedures demonstrated here can also
be used to analyze other cell types as well where multiple subsets
must be interrogated.
Collapse
Affiliation(s)
- Swathi R Pullagurla
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Benedek G, Zhu W, Libal N, Casper A, Yu X, Meza-Romero R, Vandenbark AA, Alkayed NJ, Offner H. A novel HLA-DRα1-MOG-35-55 construct treats experimental stroke. Metab Brain Dis 2014; 29:37-45. [PMID: 24122483 PMCID: PMC3975671 DOI: 10.1007/s11011-013-9440-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023]
Abstract
Chemoattraction of leukocytes into the brain after induction of middle cerebral artery occlusion (MCAO) increases the lesion size and worsens disease outcome. Our previous studies demonstrated that partial MHC class II constructs can reverse this process. However, the potential application of pMHC to human stroke is limited by the need to rapidly match recipient MHC class II with the β1 domain of the pMHC construct. We designed a novel recombinant protein comprised of the HLA-DRα1 domain linked to MOG-35-55 peptide but lacking the β1 domain found in pMHC and treated MCAO after 4 h reperfusion in humanized DR2 mice. Infarct volumes were quantified after 96 h reperfusion and immune cells from the periphery and CNS were evaluated for expression of CD74 and other cell surface, cytokine and pathway markers. This study demonstrates that four daily treatments with DRα1-MOG-35-55 reduced infarct size by 40 % in the cortex, striatum and hemisphere, inhibited the migration of activated CD11b+CD45high cells from the periphery to the brain and reversed splenic atrophy. Furthermore, DRα1-MOG-35-55 bound to CD74 on monocytes and blocked both binding and downstream signaling of macrophage migration inhibition factor (MIF) that may play a key role in infarct development. The novel DRα1-MOG-35-55 construct is highly therapeutic in experimental stroke and could be given to all patients at least 4 h after stroke onset without the need for tissue typing due to universal expression of DRα1 in humans.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Amanda Casper
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Xiaolin Yu
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA. Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
32
|
Abraham R, Verfaillie CM. Neural differentiation and support of neuroregeneration of non-neural adult stem cells. PROGRESS IN BRAIN RESEARCH 2013. [PMID: 23186708 DOI: 10.1016/b978-0-444-59544-7.00002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although it is well established that neural stem cells (NSCs) or neural stem/progenitor cells differentiated from pluripotent stem cells can generate neurons, astrocytes, and oligodendrocytes, a number of other cell populations are also being considered for therapy of central nervous system disorders. Here, we describe the potential of (stem) cells from other postnatal tissues, including bone marrow, (umbilical cord) blood, fat tissue, or dental pulp, which themselves do not (robustly) generate neural progeny. However, these non-neuroectoderm derived cell populations appear to capable of inducing endogenous neurogenesis and angiogenesis. As these "trophic" effects are also, at least partly, responsible for some of the beneficial effects seen when NSC are grafted in the brain, these non-neuroectodermal cells may exert beneficial effects when used to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Rojin Abraham
- Stem Cell Institute, KU Leuven, Onderwijs & Navorsing V, Leuven, Belgium
| | | |
Collapse
|
33
|
Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 2013; 28:375-86. [PMID: 23640015 PMCID: PMC3737266 DOI: 10.1007/s11011-013-9413-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/22/2013] [Indexed: 01/12/2023]
Abstract
Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (μMT(-/-)) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to μMT(-/-)mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 h of reperfusion. Compared to vehicle-treated controls, the IL-10(+) B-cell-replenished μMT(-/-)mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic.
Collapse
Affiliation(s)
- Sheetal Bodhankar
- Neuroimmunology Research, VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Yingxin Chen
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie J. Murphy
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
34
|
Ayer RE, Ostrowski RP, Sugawara T, Ma Q, Jafarian N, Tang J, Zhang JH. Statin-induced T-lymphocyte modulation and neuroprotection following experimental subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:259-66. [PMID: 22890678 DOI: 10.1007/978-3-7091-1192-5_46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Statins influence immune system activities through mechanisms independent of their lipid-lowering properties. T cells can be subdivided based on cytokine secretion patterns into two subsets: T-helper cells type 1 (Th1) and type 2 (Th2). Independent laboratory studies have shown statins to be potent inducers of a Th2 switch in immune cell response and be neuroprotective in several models of central nervous system (CNS) disease. This study was the first to evaluate the immune modulating effects of statins in subarachnoid hemorrhage (SAH). METHODS Simvastatin was administered to rats intraperitoneally in two dosages (1 and 20 mg/kg) 30 min after the induction of SAH using endovascular perforation. Neurological scores were assessed 24 h later. Animals were then sacrificed, and samples of cortex and brain stem were tested for expression of the T-regulatory cell cytokine transforming growth factor (TGF) β1, as well as interleukin (IL) 1β, a proinflammatory cytokine associated with Th1 immune responses. The presence of TGF-β1 secreting T cells was evaluated with the use of brain slices. RESULTS SAH significantly impaired neurological function in all SAH groups (treated and untreated) versus sham. Animals treated with high-dose simvastatin had less neurological impairment than both untreated and low-dose groups. Cortical and brain-stem levels of TGF-β1 were significantly elevated following SAH in the high-dose group. IL-1β was significantly elevated following the induction of SAH but was inhibited by high-dose simvastatin. Double-labeled fluorescent immunohistochemical data demonstrated the presence of lymphocytes in the subarachnoid and perivascular spaces following SAH. Expression of TGF-β1 by lymphocytes was markedly increased following treatment with high-dose simvastatin. CONCLUSION The present study elucidated the potential role of a Th2 immune switch in statin provided neuroprotection following SAH.
Collapse
Affiliation(s)
- Robert E Ayer
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, Meisel A, Nitsch R, Meisel C, Brandt C, Brandt C. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab 2013; 33:37-47. [PMID: 22968321 PMCID: PMC3597367 DOI: 10.1038/jcbfm.2012.128] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3(EGFP) transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3(+) Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4(+) cells depleted of Foxp3(+) Tregs into RAG1(-/-) mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25(+) Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.
Collapse
Affiliation(s)
- Tobias Stubbe
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H. Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis 2012; 27:487-93. [PMID: 22618587 PMCID: PMC3427715 DOI: 10.1007/s11011-012-9317-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 02/02/2023]
Abstract
Recent evidence emphasizes B-cells as a major regulatory cell type that plays an important role in limiting the pathogenic effects of ischemic stroke. The aim of the current study was to extend this initial observation to specifically examine the infiltration of regulatory B-cells and to determine if the effect of B-cells to limit the inflammatory response to cerebral ischemia is mediated by their action centrally or peripherally. Our data demonstrate the increased presence of a regulatory B-cell subset in the affected hemisphere of wild-type mice after middle cerebral artery occlusion (MCAO). We further explored the use of a novel method of stereotaxic cell delivery to bypass the blood brain barrier (BBB) and introduce CD19(+) B-cells directly into the striatum as compared to peripheral administration of B-cells. Infarct volumes after 60 minutes of MCAO and 48 hours of reperfusion were determined in B-cell deficient μMT( -/- ) mice with and without replacement of either B-cells or medium. Infarct size was significantly decreased in cerebral cortex after intrastriatal transfer of 100,000 B-cells to μMT(-/-) mice vs. controls, with a comparable effect on infarct size as obtained by 50 million B-cells transferred intraperitoneally. These findings support the hypothesis that B-cells play a protective role against ischemic brain injury, and suggest that B-cells may serve as a novel therapeutic agent for modulating the immune response in central nervous system inflammation after stroke.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Sheetal Bodhankar
- Neuroimmunology Research, R&D31, Portland VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie J. Murphy
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D31, Portland VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Sr. Research Career Scientist, Research Service, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Neuroimmunology Research, R&D31, Portland VA Medical Center, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
37
|
Bellavance MA, Rivest S. The neuroendocrine control of the innate immune system in health and brain diseases. Immunol Rev 2012; 248:36-55. [PMID: 22725953 DOI: 10.1111/j.1600-065x.2012.01129.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune reaction takes place in the brain during immunogenic challenges, injury, and disease. Such a response is highly regulated by numerous anti-inflammatory mechanisms that may directly affect the ultimate consequences of such a reaction within the cerebral environment. The neuroendocrine control of this innate immune system by glucocorticoids is critical for the delicate balance between cell survival and damage in the presence of inflammatory mediators. Glucocorticoids play key roles in regulating the expression of inflammatory genes, and they also have the ability to modulate numerous functions that may ultimately lead to brain damage or repair after injury. Here we review these mechanisms and discuss data supporting both neuroprotective and detrimental roles of the neuroendocrine control of innate immunity.
Collapse
Affiliation(s)
- Marc-André Bellavance
- Laboratory of Endocrinology and Genomics, CHUQ Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | | |
Collapse
|
38
|
Zhang Y, Wei X, Liu L, Liu S, Wang Z, Zhang B, Fan B, Yang F, Huang S, Jiang F, Chen YH, Yi F. TIPE2, a novel regulator of immunity, protects against experimental stroke. J Biol Chem 2012; 287:32546-55. [PMID: 22859306 DOI: 10.1074/jbc.m112.348755] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The inflammatory responses accompanying stroke are recognized to contribute to secondary ischemic injury. TIPE2 is a very recently identified negative regulator of inflammation that maintains immune homeostasis. However, it is unknown whether TIPE2 is expressed in the brain and contributes to the regulation of cerebral diseases. In this study, we explored the potential roles of TIPE2 in cerebral ischemia/reperfusion injury. TIPE2(-/-) mice were used to assess whether TIPE2 provides neuroprotection following cerebral ischemia/reperfusion induced by middle cerebral artery occlusion (MCAO), and in vitro primary cerebral cell cultures were used to investigate the expression and regulation of TIPE2. Our results show that genetic ablation of the Tipe2 gene significantly increased the cerebral volume of infarction and neurological dysfunction in mice subjected to MCAO. Flow cytometric analysis revealed more infiltrating macrophages, neutrophils, and lymphocytes in the ischemic hemisphere of TIPE2(-/-) mice. The responses to inflammatory cytokines and chemokines were significantly increased in TIPE2(-/-) mouse brain after MCAO. We further observed that TIPE2 was highly induced in WT mice after cerebral ischemia and was expressed mainly in microglia/macrophages, but not in neurons and astrocytes. Finally, we found that regulation of TIPE2 expression was associated with NADPH oxidase activity. These findings demonstrate, for the first time, that TIPE2 is involved in the pathogenesis of stroke and suggest that TIPE2 plays an essential role in a signal transduction pathway that links the inflammatory immune response to specific conditions after cerebral ischemia. Targeting TIPE2 may be a new therapeutic strategy for stroke treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hou SZ, Li Y, Zhu XL, Wang ZY, Wang X, Xu Y. Ameliorative effects of Diammonium Glycyrrhizinate on inflammation in focal cerebral ischemic-reperfusion injury. Brain Res 2012; 1447:20-7. [DOI: 10.1016/j.brainres.2012.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 12/15/2022]
|
40
|
Niu FN, Zhang X, Hu XM, Chen J, Chang LL, Li JW, Liu Z, Cao W, Xu Y. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behav Immun 2012; 26:61-71. [PMID: 21802508 DOI: 10.1016/j.bbi.2011.07.235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 01/10/2023] Open
Abstract
Inflammation is an important contributing mechanism in ischemic brain injury. The current study elucidates a previously unexplored role of Fas ligand (FasL) in post-stroke inflammatory responses that is independent of its well-known effect in triggering apoptosis. Focal cerebral ischemia was induced for 2 h by right middle cerebral artery occlusion (MCAO) in FasL mutant (gld) and wild-type mice. FasL mutation profoundly reduced brain damage and improved neurological performance from 6 to 72 h after ischemic stroke. The production of inflammatory cytokines in the brain was attenuated in gld mice after ischemia in the absence of dramatic change in inflammatory cell apoptosis. FasL mutation attenuated the recruitment of peripheral inflammatory cells (neutrophil) and inhibited the activation of residential glial cells (microglia and astrocyte). FasL mutation reduced CD8(+) T cells and turned the Th1/Th2 balance towards Th2 in the brain and peripheral blood after cerebral ischemia. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of lipopolysaccharide (LPS) were also attenuated in gld mice. Moreover, the soluble FasL (sFasL) and phospho-SAPK/JNK were decreased in gld mice, suggesting that the inflammatory role of FasL in experimental stroke might relate to sFasL and the c-Jun N-terminal kinase (JNK) signaling pathway. Taken together, our data suggest a novel role of FasL in the damaging inflammatory responses associated with cerebral ischemia. Neutralization of FasL may be a novel therapeutic strategy to suppress post-stroke inflammation and improve the long-term outcomes of stroke.
Collapse
Affiliation(s)
- Feng-nan Niu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yi T, Fogal B, Hao Z, Tobiasova Z, Wang C, Rao DA, Al-Lamki RS, Kirkiles-Smith NC, Kulkarni S, Bradley JR, Bothwell ALM, Sessa WC, Tellides G, Pober JS. Reperfusion injury intensifies the adaptive human T cell alloresponse in a human-mouse chimeric artery model. Arterioscler Thromb Vasc Biol 2011; 32:353-60. [PMID: 22053072 DOI: 10.1161/atvbaha.111.239285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Perioperative nonimmune injuries to an allograft can decrease graft survival. We have developed a model for studying this process using human materials. METHODS AND RESULTS Human artery segments were transplanted as infrarenal aortic interposition grafts into an immunodeficient mouse host, allowed to "heal in" for 30 days, and then retransplanted into a second mouse host. To induce a reperfusion injury, the healed-in artery segments were incubated for 3 hours under hypoxic conditions ex vivo before retransplantation. To induce immunologic rejection, the animals receiving the retransplanted artery segment were adoptively transferred with human peripheral blood mononuclear cells or purified T cells from a donor allogeneic to the artery 1 week before surgery. To compare rejection of injured versus healthy tissues, these manipulations were combined. Results were analyzed ex vivo by histology, morphometry, immunohistochemistry, and mRNA quantitation or in vivo by ultrasound. Our results showed that reperfusion injury, which otherwise heals with minimal sequelae, intensifies the degree of allogeneic T cell-mediated injury to human artery segments. CONCLUSIONS We developed a new human-mouse chimeric model demonstrating interactions of reperfusion injury and alloimmunity using human cells and tissues that may be adapted to study other forms of nonimmune injury and other types of adaptive immune responses.
Collapse
Affiliation(s)
- Tai Yi
- Department of Immunobiology, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520-8089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Strecker JK, Minnerup J, Gess B, Ringelstein EB, Schäbitz WR, Schilling M. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PLoS One 2011; 6:e25863. [PMID: 22031820 PMCID: PMC3198727 DOI: 10.1371/journal.pone.0025863] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/13/2011] [Indexed: 12/22/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1), a chemokine secreted by neurons and astrocytes following stroke is known to aggravate ischemia-related damage. Previous studies revealed that MCP-1-deficient mice develop smaller infarcts and have an improved neurological outcome, whereas mice overexpressing MCP-1 show worsened brain damage and impaired neurological function. The aim of the present study was to elucidate the molecular background of the enhanced recovery in MCP-1-deficient mice after stroke. For this purpose, we (1) performed expression analyses on crucial post-stroke related inflammatory genes in MCP-1-deficient mice compared to wildtype controls, (2) analyzed a possible impact of MCP-1 on astrocyte activation (3) investigated the cellular origin of respective inflammatory cytokines and (4) analyzed the impact of MCP-1 secretion on the migration of both neutrophil granulocytes and T-cells. Here we report that MCP-1-deficiency leads to a shift towards a less inflammatory state following experimental occlusion of the middle cerebral artery including an impaired induction of interleukin-6, interleukin-1β and granulocyte-colony stimulating factor expression as well as a subsequent diminished influx of hematogenous cells. Additionally, MCP-1-deficient mice developed smaller infarcts 36 hours after experimental stroke. Investigations revealed no differences in transcription of tumor necrosis factor-α and astrogliosis 12 and 36 hours after onset of ischemia. These novel results help to understand post ischemic, inflammatory mechanisms and might give further arguments towards therapeutical interventions by modulation of MCP-1 expression in post stroke inflammation.
Collapse
|
43
|
Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 2011; 31:8556-63. [PMID: 21653859 DOI: 10.1523/jneurosci.1623-11.2011] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Evaluation of infarct volumes and infiltrating immune cell populations in mice after middle cerebral artery occlusion (MCAO) strongly implicates a mixture of both pathogenic and regulatory immune cell subsets in stroke pathogenesis and recovery. Our goal was to evaluate the contribution of B cells to the development of MCAO by comparing infarct volumes and functional outcomes in wild-type (WT) versus B-cell-deficient μMT(-/-) mice. The results clearly demonstrate larger infarct volumes, higher mortality, more severe functional deficits, and increased numbers of activated T cells, macrophages, microglial cells, and neutrophils in the affected brain hemisphere of MCAO-treated μMT(-/-) versus WT mice. These MCAO-induced changes were completely prevented in B-cell-restored μMT(-/-) mice after transfer of highly purified WT GFP(+) B cells that were detected in the periphery, but not the CNS. In contrast, transfer of B cells from IL-10(-/-) mice had no effect on infarct volume when transferred into μMT(-/-) mice. These findings strongly support a previously unrecognized activity of IL-10-secreting WT B cells to limit infarct volume, mortality rate, recruitment of inflammatory cells, and functional neurological deficits 48 h after MCAO. Our novel observations are the first to implicate IL-10-secreting B cells as a major regulatory cell type in stroke and suggest that enhancement of regulatory B cells might have application as a novel therapy for this devastating neurologic condition.
Collapse
|
44
|
Dressel A. Is stroke etiology a determining factor for the pattern of secondary immune alterations? Cerebrovasc Dis 2011; 32:123. [PMID: 21709410 DOI: 10.1159/000329528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Alexander Dressel
- Department of Neurology, Ernst Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
45
|
Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol 2011; 589:4147-55. [PMID: 21708907 DOI: 10.1113/jphysiol.2011.209718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain responds to noxious stimulation with protective signalling. Over the last decades, a number of experimental strategies have been established to study endogenous brain protection. Pre-, per-, post- and remote 'conditioning' are now widely used to unravel the underlying mechanisms of endogenous neuroprotection. Some of these strategies are currently being tested in clinical trials to protect the human brain against anticipated damage or to boost protective responses during or after injury. Here we summarize the principles of 'conditioning' research and current efforts to translate this knowledge into effective treatment of patients. Conditioning to induce protected brain states provides an experimental window into endogenous brain protection and can lead to the discovery of drugs mimicking the effects of conditioning. Mechanisms of endogenous brain tolerance can be activated through a wide variety of stimuli that signal 'danger' to the brain. These danger signals lead to the induction of regulator and effector mechanisms, which suppress death and induce survival pathways, decrease metabolism, as well as increase substrate delivery. We conclude that preclinical research on endogenous brain protection has greatly benefited from conditioning strategies, but that clinical applications are challenging, and that we should not prematurely rush into ill-designed and underpowered clinical trials.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (CSB), Department of Neurology and Experimental Neurology, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
46
|
Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10:471-80. [PMID: 21511199 DOI: 10.1016/s1474-4422(11)70066-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the second most common cause of death worldwide and a major cause of acquired disability in adults. Despite tremendous progress in understanding the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed, with the exception of thrombolysis, which only benefits a small proportion of patients. Systemic and local immune responses have important roles in causing stroke and are implicated in the primary and secondary progression of ischaemic lesions, as well as in repair, recovery, and overall outcome after a stroke. However, potential therapeutic targets in the immune system and inflammatory responses have not been well characterised. Development of novel and effective therapeutic strategies for stroke will require further investigation of these pathways in terms of their temporal profile (before, during, and after stroke) and risk-to-benefit therapeutic ratio of modulating them.
Collapse
Affiliation(s)
- Richard Macrez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, UMR CNRS 6232 Ci-NAPs, Cyceron, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, Bauer H, Sommer C, Veltkamp R. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One 2011; 6:e21312. [PMID: 21701599 PMCID: PMC3119049 DOI: 10.1371/journal.pone.0021312] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/25/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The contribution of neuroinflammation and specifically brain lymphocyte invasion is increasingly recognised as a substantial pathophysiological mechanism after stroke. FTY720 is a potent treatment for primary neuroinflammatory diseases by inhibiting lymphocyte circulation and brain immigration. Previous studies using transient focal ischemia models showed a protective effect of FTY720 but did only partially characterize the involved pathways. We tested the neuroprotective properties of FTY720 in permanent and transient cortical ischemia and analyzed the underlying neuroimmunological mechanisms. METHODOLOGY/PRINCIPAL FINDINGS FTY720 treatment resulted in substantial reduction of circulating lymphocytes while blood monocyte counts were significantly increased. The number of histologically and flow cytometrically analyzed brain invading T- and B lymphocytes was significantly reduced in FTY720 treated mice. However, despite testing a variety of treatment protocols, infarct volume and behavioural dysfunction were not reduced 7d after permanent occlusion of the distal middle cerebral artery (MCAO). Additionally, we did not measure a significant reduction in infarct volume at 24 h after 60 min filament-induced MCAO, and did not see differences in brain edema between PBS and FTY720 treatment. Analysis of brain cytokine expression revealed complex effects of FTY720 on postischemic neuroinflammation comprising a substantial reduction of delayed proinflammatory cytokine expression at 3d but an early increase of IL-1β and IFN-γ at 24 h after MCAO. Also, serum cytokine levels of IL-6 and TNF-α were increased in FTY720 treated animals compared to controls. CONCLUSIONS/SIGNIFICANCE In the present study we were able to detect a reduction of lymphocyte brain invasion by FTY720 but could not achieve a significant reduction of infarct volumes and behavioural dysfunction. This lack of neuroprotection despite effective lymphopenia might be attributed to a divergent impact of FTY720 on cytokine expression and possible activation of innate immune cells after brain ischemia.
Collapse
Affiliation(s)
- Arthur Liesz
- Department of Neurology, University Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. ACTA ACUST UNITED AC 2011; 134:704-20. [PMID: 21354973 DOI: 10.1093/brain/awr008] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibility to bacterial infections. Gene silencing of the endothelial very late antigen-4 counterpart vascular cell adhesion molecule-1 by in vivo small interfering RNA injection resulted in an equally potent reduction of infarct volume and post-ischaemic neuroinflammation. Furthermore, very late antigen-4-inhibition effectively reduced the post-ischaemic vascular cell adhesion molecule-1 upregulation, suggesting an additional cross-signalling between invading leukocytes and the cerebral endothelium. Dissecting the specific impact of leukocyte subpopulations showed that invading T cells, via their humoral secretion (interferon-γ) and immediate cytotoxic mechanisms (perforin), were the principal pathways for delayed post-ischaemic tissue injury. Thus, targeting T lymphocyte-migration represents a promising therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Arthur Liesz
- Department of Neurology, University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shichita T, Muto G, Yoshimura A. T lymphocyte function in the delayed phase of ischemic brain injury. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Felger JC, Abe T, Kaunzner UW, Gottfried-Balckmore A, Gal-Toth J, McEwen BS, Iadecola C, Bulloch K. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 2010; 24:724-37. [PMID: 19914372 PMCID: PMC2885548 DOI: 10.1016/j.bbi.2009.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 12/25/2022] Open
Abstract
The immune response to stroke is comprised of inflammatory and regulatory processes. One cell type involved in both innate and adaptive immunity is the dendritic cell (DC). A DC population residing in the healthy brain (bDC) was identified using a transgenic mouse expressing enhanced yellow fluorescent protein (EYFP) under the promoter for the DC marker, CD11c (CD11c/EYFP Tg). To determine if bDC are involved in the immune response to cerebral ischemia, transient (40 min) middle cerebral artery occlusion (MCAO) followed by 6, 24, or 72 h reperfusion was conducted in CD11c/EYFP Tg mice. Our results demonstrated that DC accumulated in the ischemic hemisphere at 24 h post-MCAO-reperfusion, particularly in the border region of the infarct where T lymphocytes accrued. To distinguish resident bDC from the infiltrating peripheral DC, radiation chimeras [1. wild type (WT) hosts restored with CD11c/EYFP Tg bone marrow (BM) or 2. CD11c/EYFP Tg hosts restored with WT BM] were generated and examined by immunocytochemistry. These data confirmed that DC populating the core of the infarct at 72 h were of peripheral origin, whereas those in the border region were comprised primarily of resident bDC. The brain resident (CD45 intermediate) cells of CD11c/EYFP Tg mice were analyzed by flow cytometry. Compared to microglia, bDC displayed increased major histocompatibility class II (MHC II) and co-stimulatory molecules following MCAO-reperfusion. High levels of MHC II and the co-stimulatory molecule CD80 on bDC at 72 h corresponded to peak lymphocyte infiltration, and suggested a functional interaction between these two immune cell populations.
Collapse
Affiliation(s)
- Jennifer C. Felger
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Takato Abe
- Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
| | - Ulrike W. Kaunzner
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | | | - Judit Gal-Toth
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Costantino Iadecola
- Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
| | - Karen Bulloch
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065
| |
Collapse
|