1
|
Li B, Zeng B, Zeng P, Luo D, Yin F, Dong X, Peng Y, Xiang Y, Nie L, Li Y. Hippocampal-subfield macro- and microstructural changes in cerebral small vessel disease with mild cognitive impairment. J Affect Disord 2025; 384:12-22. [PMID: 40339711 DOI: 10.1016/j.jad.2025.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Hippocampal subregions demonstrate a selective vulnerability to vascular injury, with pathological processes extensively affecting both microstructural and macrostructural characteristics. This phenomenon elucidates the intricate relationship between hippocampal dysfunction, cognitive deficits, and depressive symptoms. The present study investigated microstructural and volumetric changes in hippocampal subregions among patients with cerebral small vessel disease (CSVD), and their correlation with cognitive function. METHOD A comprehensive neuroimaging and neuropsychological assessment was conducted on 169 participants, categorized into CSVD with mild cognitive impairment (MCI), CSVD without cognitive impairment (NCI), and healthy controls. An advanced multi-compartment diffusion (NODDI) model was employed to analyze hippocampal subregional characteristics. RESULTS Our findings revealed extensive hippocampal atrophy and microstructural abnormalities in CSVD patients, with the most pronounced changes observed in the cornu ammonis (CA) and dentate gyrus (DG) regions. Notably, orientation dispersion index (ODI) and free water fraction (FISO) demonstrated significant inter-group differences and exhibited broad correlations with cognitive performance. Notably, FISO metrics demonstrated more pronounced differences during early cognitive decline stages compared to volumetric analyses. LIMITATION The study lacked a dementia cohort, which could have provided deeper insights into progressive hippocampal pathological changes. CONCLUSION The hippocampus plays a critical role in cognitive decline associated with small vessel disease. NODDI can provide pathological correlation information across different cognitive stages, offering a new perspective for early identification of pathological changes related to cognitive impairment in cerebral small vessel disease.
Collapse
Affiliation(s)
- Binglan Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bang Zeng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Zeng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feiyue Yin
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Dong
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuling Peng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yayun Xiang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lisha Nie
- GE HealthCare MR Research, Beijing 100076, China
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Gu C, Kang X, Chen X, Sun Y, Li X. Intracerebroventricular infusion of secretoneurin inhibits neuronal NLRP3-Apoptosis pathway and preserves learning and memory after cerebral ischemia. Neurochem Int 2024; 178:105770. [PMID: 38761854 DOI: 10.1016/j.neuint.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Transient global cerebral ischemia (GCI) results in delayed neuronal death, primarily apoptosis, in the hippocampal CA1 subregion, which leads to severe cognitive deficits. While therapeutic hypothermia is an approved treatment for patients following cardiac arrest, it is associated with various adverse effects. Secretoneurin (SN) is an evolutionarily conserved neuropeptide generated in the brain, adrenal medulla and other endocrine tissues. In this study, SN was infused into the rat brain by intracerebroventricular injection 1 day after GCI, and we demonstrated that SN could significantly preserve spatial learning and memory in the Barnes maze tasks examined on days 14-17 after GCI. To further investigate underlying pathways involved, we demonstrated that, on day 5 after GCI, SN could significantly inhibit GCI-induced expression levels of Apoptosis Inducing Factor (AIF) and cleaved-PARP1, as well as neuronal apoptosis and synaptic loss in the hippocampal CA1 region. Additionally, SN could attenuate GCI-induced activation of both caspase-1 and caspase-3, and the levels of pro-inflammatory cytokines IL-1β and IL-18 in the CA1 region. Mechanically, we observed that treatment with SN effectively inhibited NLRP3 protein elevation and the bindings of NLRP3-ASC and ASC-caspase-1 in hippocampal neurons after GCI. In summary, our data indicate that SN could effectively attenuate NLRP3 inflammasome formation, as well as the activation of caspase-1 and -3, the production of pro-inflammatory cytokines, and ultimately the neuronal apoptotic loss induced by GCI. Potential neuronal pyroptosis, or caspase-1-dependent cell death, could also be involved in ischemic neuronal death, which needs further investigation.
Collapse
Affiliation(s)
- Caihong Gu
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China.
| | - Xiuwen Kang
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Xiaobing Chen
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Yan Sun
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China.
| |
Collapse
|
3
|
Marquez AM, Kosmopoulos M, Kalra R, Goslar T, Jaeger D, Gaisendrees C, Gutierrez A, Carlisle G, Alexy T, Gurevich S, Elliott AM, Steiner ME, Bartos JA, Seelig D, Yannopoulos D. Mild (34 °C) versus moderate hypothermia (24 °C) in a swine model of extracorporeal cardiopulmonary resuscitation. Resusc Plus 2024; 19:100745. [PMID: 39246406 PMCID: PMC11378253 DOI: 10.1016/j.resplu.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background The role of hypothermia in post-arrest neuroprotection is controversial. Animal studies suggest potential benefits with lower temperatures, but high-fidelity ECPR models evaluating temperatures below 30 °C are lacking. Objectives To determine whether rapid cooling to 24 °C initiated upon reperfusion reduces brain injury compared to 34 °C in a swine model of ECPR. Methods Twenty-four female pigs had electrically induced VF and mechanical CPR for 30 min. Animals were cannulated for VA-ECMO and cooled to either 34 °C for 4 h (n = 8), 24 °C for 1 h with rewarming to 34 °C over 3 h (n = 7), or 24 °C for 4 h without rewarming (n = 9). Cooling was initiated upon VA-ECMO reperfusion by circulating ice water through the oxygenator. Brain temperature and cerebral and systemic hemodynamics were continuously monitored. After four hours on VA-ECMO, brain tissue was obtained for examination. Results Target brain temperature was achieved within 30 min of reperfusion (p = 0.74). Carotid blood flow was higher in the 24 °C without rewarming group throughout the VA-ECMO period compared to 34 °C and 24 °C with rewarming (p < 0.001). Vasopressin requirement was higher in animals treated with 24 °C without rewarming (p = 0.07). Compared to 34 °C, animals treated with 24 °C with rewarming were less coagulopathic and had less immunohistochemistry-detected neurologic injury. There were no differences in global brain injury score. Conclusions Despite improvement in carotid blood flow and immunohistochemistry detected neurologic injury, reperfusion at 24 °C with or without rewarming did not reduce early global brain injury compared to 34 °C in a swine model of ECPR.
Collapse
Affiliation(s)
- Alexandra M Marquez
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Marinos Kosmopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rajat Kalra
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Tomaz Goslar
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Deborah Jaeger
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Christopher Gaisendrees
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Alejandra Gutierrez
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Carlisle
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tamas Alexy
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sergey Gurevich
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrea M Elliott
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marie E Steiner
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Demetris Yannopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Gao W, She J, Wang M, Li S, Chen X, Zhu R. Argon gas poisoning leading to persistent memory impairment: A 2-year case report. Medicine (Baltimore) 2024; 103:e38545. [PMID: 38875417 PMCID: PMC11175893 DOI: 10.1097/md.0000000000038545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
RATIONALE Argon gas poisoning is an often overlooked yet critical public health concern with the potential for severe and persistent neurological consequences. Current treatment protocols primarily focus on acute-phase management, but a comprehensive understanding of the long-term neurological effects remains incomplete. PATIENT CONCERNS A 22-year-old male worker was found unconscious in the furnace room of an argon production facility. After regaining consciousness, he presented with symptoms of dizziness, headache, fatigue, and irritability. Neurological examination revealed impairments in both recent and remote memory, notably pronounced short-term memory deficits and reduced arithmetic skills. DIAGNOSIS Argon gas poisoning, hypoxic encephalopathy, and mild hepatic and renal dysfunction. INTERVENTIONS Upon admission, symptomatic supportive measures included oxygen therapy via nasal cannula (3 L/min), daily hyperbaric oxygen therapy (1.5 ATA, 60 minutes), oral neurotrophic methylcobalamin (0.5 mg, 3 times daily), and intravenous vitamin C infusion (2 g daily) to scavenge oxygen free radicals. OUTCOME A 2-year telephone follow-up indicated persistent short-term memory impairment, particularly with memorizing numbers. In a memory test, he achieved a digit span forward of 5 but a digit span backward of 2, indicating impairment. Despite these challenges, his daily life and work performance remained largely unaffected. LESSON This case offers valuable insights into the biological mechanisms underlying prolonged neurological sequelae following asphyxiating gas exposure, specifically the persistent impairment of hippocampal function.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing She
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyang Wang
- Department of Neurology, Jimusaer County People’s Hospital, China
| | - Shuixian Li
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xingyu Chen
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Renjing Zhu
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurology, Jimusaer County People’s Hospital, China
| |
Collapse
|
5
|
Ziakova K, Kovalska M, Pilchova I, Dibdiakova K, Brodnanova M, Pokusa M, Kalenska D, Racay P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023; 60:6316-6329. [PMID: 37452223 PMCID: PMC10533597 DOI: 10.1007/s12035-023-03479-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
Collapse
Affiliation(s)
- Katarina Ziakova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Pilchova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic
| | - Maria Brodnanova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Pokusa
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic.
| |
Collapse
|
6
|
Thong-Asa W, Puenpha K, Lairaksa T, Saengjinda S. Neuroprotective effects of betanin in mice with cerebral ischemia-reperfusion injury. Exp Anim 2023; 72:336-345. [PMID: 36754417 PMCID: PMC10435356 DOI: 10.1538/expanim.22-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral ischemia reperfusion (IR) injury as found in stroke is a complex and heterogeneous disorder and closely related to disability and death. Today, nutraceuticals and protective therapy to increase neuronal integrity and prevent pathological complication are common. We investigated the neuroprotective effect of betanin against cerebral IR injury in mice. Forty male institute of cancer research (ICR) mice were divided into Sham-veh, IR-veh, IR-Bet50 and IR-Bet100 groups. After 2 weeks of oral administration of normal saline (vehicle; veh) or 50 mg/kg or 100 mg/kg of betanin (Bet), mice were subjected to IR induction using 30-min bilateral common carotid artery occlusion, followed by 24 h of reperfusion. Brain infarction, oxidative status, cortical and hippocampal neurons and white matter pathologies were evaluated. Results showed that IR significantly increases brain infarction, Cornus Ammonis 1 (CA1) hippocampal and corpus callosum (CC) and internal capsule (IC) white matter degeneration (P<0.05). Brain oxidative status revealed significant elevation of malondialdehyde (MDA) together with a significant decrease in catalase (CAT) activity, induced by IR (P<0.05). Pretreatment with betanin 100 mg/kg led to a significant reduction in brain infarction and MDA, CA1 hippocampus, CC and IC white matter degeneration. Betanin also led to a significant increase in CAT activity (P<0.05), with enhancing effect on reduced glutathione levels (GSH, P<0.05). The present study revealed the neuroprotective efficacy of betanin against IR injury in mice's brains, including its inhibition of lipid peroxidation, and boosting of GSH and CAT activity.
Collapse
Affiliation(s)
- Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao Chatuchak, Bangkok, Thailand 10900, Bangkok, Thailand
| | - Kanthaporn Puenpha
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao Chatuchak, Bangkok, Thailand 10900, Bangkok, Thailand
| | - Thannaporn Lairaksa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao Chatuchak, Bangkok, Thailand 10900, Bangkok, Thailand
| | - Siriwipha Saengjinda
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao Chatuchak, Bangkok, Thailand 10900, Bangkok, Thailand
| |
Collapse
|
7
|
Neuroprotective effects of carnosine in a mice stroke model concerning oxidative stress and inflammatory response. J Neurol Sci 2023; 447:120608. [PMID: 36906993 DOI: 10.1016/j.jns.2023.120608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a natural dipeptide with multiple neuroprotective properties. Previous studies have advertised that carnosine scavenges free radicals and displays anti-inflammatory activity. However, the underlying mechanism and the efficacies of its pleiotropic effect on prevention remained obscure. In this study, we aimed to investigate the anti-oxidative, anti-inflammative, and anti-pyroptotic effects of carnosine in the transient middle cerebral artery occlusion (tMCAO) mouse model. After a daily pre-treatment of saline or carnosine (1000 mg / kg / day) for 14 days, mice (n = 24) were subjected to tMCAO for 60 min and continuously treated with saline or carnosine for additional 1 and 5 days after reperfusion. The administration of carnosine significantly decreased infarct volume 5 days after the tMCAO (*p < 0.05) and effectively suppressed the expression of 4-HNE, 8-OHdG, Nitrotyrosine 5 days, and RAGE 5 days after tMCAO. Moreover, the expression of IL-1β was also significantly suppressed 5 days after tMCAO. Our present findings demonstrated that carnosine effectively relieves oxidative stress caused by ischemic stroke and significantly attenuates neuroinflammatory responses related to IL-1β, suggesting that carnosine can be a promising therapeutic strategy for ischemic stroke.
Collapse
|
8
|
Zhang W, Han B, Zhang H, Fu R, Lu Y, Zhang G. Integrated transcriptomic and metabolomic analysis of cortical neurons reveals dysregulated lipid metabolism, enhanced glycolysis and activated HIF-1 signaling pathways in acute hypoxia. Heliyon 2023; 9:e14949. [PMID: 37025787 PMCID: PMC10070144 DOI: 10.1016/j.heliyon.2023.e14949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The brain is the main oxygen-consuming organ and is vulnerable to ischemic shock or insufficient blood perfusion. Brain hypoxia has a persistent and detrimental effect on resident neurons. Previous studies have identified alterations in genes and metabolites in ischemic brain shock by single omics, but the adaptive systems that neurons use to cope with hypoxia remain uncovered. In the present study, we constructed an acute hypoxia model and performed a multi-omics analysis from RNA-sequencing and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics on exploring potentially differentially expressed genes (DEGs) and metabolites (DEMs) in primary cortical neurons under severe acute hypoxic conditions. The TUNEL assay showed acute hypoxia-induced apoptosis in cortical neurons. Omics analysis identified 564 DEGs and 46 DEMs categorized in the Kyoto encyclopedia of genes and genomes (KEGG) database. Integrative pathway analysis highlighted that dysregulated lipid metabolism, enhanced glycolysis, and activated HIF-1 signaling pathways could regulate neuron physiology and pathophysiology under hypoxia. These findings may help us understand the transcriptional and metabolic mechanisms by which cortical neurons respond to hypoxia and identify potential targets for neuron protection.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Bo Han
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Huijun Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Rao Fu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yinzhong Lu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Corresponding author. Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Rd 720, Shanghai 200336, China.
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Corresponding author. Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Rd 1111, Shanghai 200336, China.
| |
Collapse
|
9
|
Kaya D, Micili SC, Kizmazoglu C, Mucuoglu AO, Buyukcoban S, Ersoy N, Yilmaz O, Isik AT. Allopurinol attenuates repeated traumatic brain injury in old rats: A preliminary report. Exp Neurol 2022; 357:114196. [PMID: 35931122 DOI: 10.1016/j.expneurol.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) is an overlooked cause of morbidity, which was shown to accelerate inflammation, oxidative stress, and neuronal cell loss and is associated with spatial learning and memory impairments and some psychiatric disturbances in older adults. However, there is no effective treatment in order to offer a favorable outcome encompassing a good recovery after TBI in older adults. Hence, the present study aimed to investigate the histological and neurobehavioral effects of Allopurinol (ALL) in older rats that received repeated TBI (rTBI). For this purpose, a weight-drop rTBI model was used on old male Wistar rats. Rats received 5 repeated TBI/sham injuries 24 h apart and were treated with saline or Allopurinol 100 mg/kg, i.p. each time. They were randomly assigned to three groups: control group (no injury); rTBI group (received 5 rTBI and treated with saline); rTBI+ALL group (received 5 rTBI and treated with Allopurinol). Then, half of the animals from each group were sacrificed on day 6 and the remaining animals were assessed with Open field, Elevated plus maze and Morris Water Maze test. Basic neurological tasks were evaluated with neurological assessment protocol every other day until after the 19th day from the last injury. Brain sections were processed for neuronal cell count in the hippocampus (CA1), dentate gyrus (DG), and prefrontal cortex (PC). Also, an immunohistochemical assay was performed to determine NeuN, iNOS, and TNFα levels in the brain regions. The number of neurons was markedly reduced in CA1, GD, and PC in rats receiving saline compared to those receiving allopurinol treatment. Immunohistochemical analysis showed marked induction of iNOS and TNFα expression in the brain tissues which were reduced after allopurinol at 6 and 19 days post-injury. Also, ALL-treated rats demonstrated a remarkable induce in NeuN expression, indicating a reduction in rTBI-induced neuronal cell death. In neurobehavioral analyses, time spent in closed arms, in the corner of the open field, swimming latency, and distance were impaired in injured rats; however, all of them were significantly improved by allopurinol therapy. To sum up, this study demonstrated that ALL may mitigate rTBI-induced damage in aged rats, which suggests ALL as a potential therapeutic strategy for the treatment of recurrent TBI.
Collapse
Affiliation(s)
- Derya Kaya
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey.
| | - Serap Cilaker Micili
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ceren Kizmazoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ali Osman Mucuoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Sibel Buyukcoban
- Dokuz Eylul University Faculty of Medicine, Department of Anaesthesiology and Reanimation, İzmir, Turkey
| | - Nevin Ersoy
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Osman Yilmaz
- Dokuz Eylul University Health Sciences Institute, Department of Laboratory Animal Science, Izmir, Turkey
| | - Ahmet Turan Isik
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey
| |
Collapse
|
10
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
11
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
12
|
Danková M, Domoráková I, Fagová Z, Stebnický M, Mechírová E. Induction of ischemic tolerance by remote perconditioning or postconditioning as neuroprotective strategy for spinal cord motor neurons. Life Sci 2021; 283:119789. [PMID: 34256043 DOI: 10.1016/j.lfs.2021.119789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
AIMS The study is focused on the investigation of the mechanisms leading to ischemic tolerance acquisition in the spinal cord neurons via application of non-invasive method of remote conditioning. MATERIAL AND METHODS We have verified the possibility of neuroprotection of spinal cord in rabbit by using remote perconditioning (PerC) applied during last 12 min of spinal cord ischemia (SC-ischemia) or postconditioning (PostC) applied after 1st (early) or 3rd (late) h of reperfusion. Spinal cord ischemia was induced by occlusion of the aorta below the left renal artery for 20 min. Reperfusion period was 24 or 72 h. Remote conditioning was induced by compression of left forelimb with a tourniquet in 3 cycles of 2 min of ischemia, each followed by 2 min of reperfusion. Damaged neurons were detected by Fluoro Jade B method and the modified Tarlov score was used for functional assessment. KEY FINDINGS The remote conditioning significantly attenuated degeneration of motor neurons in all remote conditioned groups versus both SC-ischemia groups. We detected significant changes in number of Hsp70 positive motor neurons. At 72time point, in the group with remote late PostC we observed significant increase (p < 0.001) of Hsp70 positive motor neurons versus SC- ischemia group and sham control. There was a trend towards improvement of hindlimbs movement. SIGNIFICANCE This study showed the effectiveness of remote conditioning as a neuroprotective strategy, evidenced by induction of ischemic tolerance leading to decrease of motor neuron degeneration.
Collapse
Affiliation(s)
- Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic
| | - Iveta Domoráková
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Stebnický
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic; Pavol Jozef Šafárik University, Faculty of Medicine, 2nd Department of Surgery and L. Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovak Republic.
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| |
Collapse
|
13
|
Wang J, Zhang Q, Lu Y, Dong Y, Dhandapani KM, Brann DW, Yu RK. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia. J Neurochem 2021; 158:737-752. [PMID: 34133773 DOI: 10.1111/jnc.15455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023]
Abstract
Gangliosides, the major sialic-acid containing glycosphingolipids in the mammalian brain, play important roles in brain development and neural functions. Here, we show that the b-series ganglioside GD3 and its biosynthetic enzyme, GD3-synthase (GD3S), were up-regulated predominantly in the microglia of mouse hippocampus from 2 to 7 days following global cerebral ischemia (GCI). Interestingly, GD3S knockout (GD3S-KO) mice exhibited decreased hippocampal neuronal loss following GCI, as compared to wild-type (WT) mice. While comparable levels of astrogliosis and microglial proliferation were observed between WT and GD3S-KO mice, the phagocytic capacity of the GD3S-KO microglia was significantly compromised after GCI. At 2 and 4 days following GCI, the GD3S-KO microglia demonstrated decreased amoebic morphology, reduced neuronal material engulfment, and lower expression of the phagolysosome marker CD68, as compared to the WT microglia. Finally, by using a microglia-primary neuron co-culture model, we demonstrated that the GD3S-KO microglia isolated from mouse brains at 2 days after GCI are less neurotoxic to co-cultured hippocampal neurons than the WT-GCI microglia. Moreover, the percentage of microglia with engulfed neuronal elements in the co-cultured wells was also significantly decreased in the GD3S-KO mice after GCI. Interestingly, the impaired phagocytic capacity of GD3S-KO microglia could be partially restored by pre-treatment with exogenous ganglioside GD3. Altogether, this study provides functional evidence that ganglioside GD3 regulates phagocytosis by microglia in an ischemic stroke model. Our data also suggest that the GD3-linked microglial phagocytosis may contribute to the mechanism of delayed neuronal death following ischemic brain injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Feng T, Hu X, Fukui Y, Tadokoro K, Bian Z, Morihara R, Yamashita T, Abe K. Neuroprotective effects of Scallop-derived plasmalogen in a mouse model of ischemic stroke. Brain Res 2021; 1766:147516. [PMID: 33991494 DOI: 10.1016/j.brainres.2021.147516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Scallop-derived plasmalogen (sPlas) has both anti-oxidative and anti-inflammation activities, but its efficacy has not been investigated in ischemic stroke models where oxidative stress, inflammation, and neurovascular unit (NVU) damage accelerates pathophysiological progression. Therefore, in the present study, we aimed to assess the neuroprotective effects of sPlas in ischemic stroke by using a transient middle cerebral artery occlusion (tMCAO) mouse model. After the pretreatment of vehicle or sPlas (10 mg/kg/day) for 14 days, adult male mice were subjected to tMCAO for 60 min, then continuously treated with vehicle or sPlas during reperfusion and for an additional 5 days. The administration of sPlas significantly improved motor deficits (corner and rotarod tests, *p < 0.05 vs vehicle), enhanced serum antioxidative activity (OXY-adsorbent and d-ROMs tests, *p < 0.05 vs vehicle), reduced infarction volume (*p < 0.05 vs vehicle), decreased the expression of two oxidative stress markers, 4-HNE (*p < 0.05 vs vehicle) and 8-OHdG (*p < 0.05 vs vehicle), decreased the expression of pro-inflammatory markers Iba-1 (**p < 0.01 vs vehicle), IL-1β (**p < 0.01 vs vehicle), and TNF-α (**p < 0.01 vs vehicle), and alleviated NVU damage (collagen IV, MMP9, and GFAP/collagen IV, *p < 0.05 vs vehicle). Our present findings are the first to demonstrate the neuroprotective effects of sPlas on acute ischemic stroke mice at 5 d after tMCAO via anti-oxidative stress, anti-inflammation, and improvement of NVU damage, suggesting the potential of sPlas in preventing and treating ischemic stroke.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
15
|
Neuroprotective Effects of Salicin in a Gerbil Model of Transient Forebrain Ischemia by Attenuating Oxidative Stress and Activating PI3K/Akt/GSK3β Pathway. Antioxidants (Basel) 2021; 10:antiox10040629. [PMID: 33924188 PMCID: PMC8074613 DOI: 10.3390/antiox10040629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3β pathway.
Collapse
|
16
|
Kılıç E, Çağlayan B, Caglar Beker M. Physiological and pharmacological roles of melatonin in the pathophysiological components of cellular injury after ischemic stroke. Turk J Med Sci 2020; 50:1655-1664. [PMID: 32962330 PMCID: PMC7672349 DOI: 10.3906/sag-2008-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Apart from its metabolic or physiological functions, melatonin has a potent cytoprotective activity in the physiological and pathological conditions. It is synthetized by the pineal gland and released into the blood circulation but particularly cerebrospinal fluid in a circadian manner. It can also easily diffuse through cellular membranes due its small size and lipophilic structure. Its cytoprotective activity has been linked to its potent free radical scavenger activity with the desirable characteristics of a clinically- reliable antioxidant. Melatonin detoxifies oxygen and nitrogen-based free radicals and oxidizing agents, including the highly toxic hydroxyl-and peroxynitrite radicals, initiating cellular damage. However, the cytoprotective activity of melatonin is complex and cannot be solely limited to its free radical scavenger activity. It regulates cellular signaling pathways through receptor– dependent and independent mechanisms. Most of these downstream molecules, such as PI3K/AKT pathway components, also contribute to the cytoprotective effects of melatonin. In this term, melatonin is a promising molecule for the treatment of neurodegenerative disorders, such as ischemic stroke, which melatonin reduces ischemic brain injury in animal models of ischemic stroke. It regulates also circadian rhythm proteins after ischemic stroke, playing roles in cellular survival. In this context, present article summarizes the possible role of melatonin in the pathophysiological events after ischemic stroke.
Collapse
Affiliation(s)
- Ertuğrul Kılıç
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Berrak Çağlayan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Department of Medical Biology, International School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
17
|
Zhang G, Lu Y, Yang L, Dong Y, Wen J, Xu J, Zhang Q. Methylene blue post-treatment improves hypoxia-ischemic recovery in a neonatal rat model. Neurochem Int 2020; 139:104782. [PMID: 32628986 DOI: 10.1016/j.neuint.2020.104782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
Recent work suggested that methylene blue (MB) has beneficial effects in a variety of neurological disorders, while its role in neonatal hypoxic-ischemic (HI) encephalopathy is still unclear. The current study was designed to investigate the effects of MB on HI-induced brain damage and its underlying mechanisms. The results showed that MB treatment can strongly attenuate HI-induced brain loss and neuronal damage in the cortex and hippocampus of neonatal rats. Further mechanistic analysis suggested that MB treatment was able to significantly reduce blood-brain barrier disruption after HI insult. In addition, MB profoundly inhibited microglia and astrocyte activation and the pro-inflammatory cytokines production in neonatal cortex and hippocampus after HI. Further, MB treatment resulted in dramatic suppression of oxidative damage, as evidenced by robustly decreased DHE and protein carbonyls levels in HI brain. Moreover, MB strongly preserved mitochondrial function by repressing HI-induced mitochondrial fragmentation, and the following neuronal death in cortex and hippocampus. Finally, behavioral tests revealed that MB significantly improved the spatial reference memory and motor coordination of neonatal HI rats. Taken together, these findings demonstrate that the mechanisms behind neuroprotective actions of methylene blue are multifactorial, including suppression of oxidative stress and neuroinflammation, restoration of mitochondrial function, as well as attenuation of blood-brain barrier disruption. Our study might provide further directions for MB as a promising option in neonatal HI encephalopathy therapy.
Collapse
Affiliation(s)
- Guangwei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jin Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer's disease, Parkinson's disease, Huntington's disease. Mitochondrion 2020; 55:14-47. [PMID: 32828969 DOI: 10.1016/j.mito.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial abnormalities in the brain are considered early pathological changes in neurogenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). The mitochondrial dysfunction in the brain can be induced by toxic proteins, including amyloid-beta (Aβ), phosphorylated tau, alpha-synuclein (α-syn) and mutant huntingtin (mtHTT). These proteins cause mitochondrial genome damage, increased oxidative stress, decreased mitochondrial membrane permeability, and diminished ATP production. Consequently, synaptic dysfunction, synaptic loss, neuronal apoptosis, and ultimately cognitive impairment are exhibited. Therefore, the restoration of mitochondrial abnormalities in the brain is an alternative intervention to delay the progression of neurodegenerative diseases in addition to reducing the level of toxic proteins, especially Aβ, and restored synaptic dysfunction by interventions. Here we comprehensively review mitochondrial alterations in the brain of neurodegenerative models, specifically AD, PD and HD, from both in vitro and in vivo studies. Additionally, the correlation between mitochondrial changes, cognitive function, and disease progression from in vivo studies is described. This review also summarizes interventions that possibly attenuate mitochondrial abnormalities in AD, PD and HD models from both in vitro and in vivo studies. This may lead to the introduction of novel therapies that target on brain mitochondria to delay the progression of AD, PD and HD.
Collapse
|
19
|
Rashad S, Saigusa D, Yamazaki T, Matsumoto Y, Tomioka Y, Saito R, Uruno A, Niizuma K, Yamamoto M, Tominaga T. Metabolic basis of neuronal vulnerability to ischemia; an in vivo untargeted metabolomics approach. Sci Rep 2020; 10:6507. [PMID: 32300196 PMCID: PMC7162929 DOI: 10.1038/s41598-020-63483-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the root causes of neuronal vulnerability to ischemia is paramount to the development of new therapies for stroke. Transient global cerebral ischemia (tGCI) leads to selective neuronal cell death in the CA1 sub-region of the hippocampus, while the neighboring CA3 sub-region is left largely intact. By studying factors pertaining to such selective vulnerability, we can develop therapies to enhance outcome after stroke. Using untargeted liquid chromatography-mass spectrometry, we analyzed temporal metabolomic changes in CA1 and CA3 hippocampal areas following tGCI in rats till the setting of neuronal apoptosis. 64 compounds in CA1 and 74 in CA3 were found to be enriched and statistically significant following tGCI. Pathway analysis showed that pyrimidine and purine metabolism pathways amongst several others to be enriched after tGCI in CA1 and CA3. Metabolomics analysis was able to capture very early changes following ischemia. We detected 6 metabolites to be upregulated and 6 to be downregulated 1 hour after tGCI in CA1 versus CA3. Several metabolites related to apoptosis and inflammation were differentially expressed in both regions after tGCI. We offer a new insight into the process of neuronal apoptosis, guided by metabolomic profiling that was not performed to such an extent previously.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Takahiro Yamazaki
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
HMGB1 Translocation in Neurons after Ischemic Insult: Subcellular Localization in Mitochondria and Peroxisomes. Cells 2020; 9:cells9030643. [PMID: 32155899 PMCID: PMC7140507 DOI: 10.3390/cells9030643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box-1 (HMGB1), a nonhistone chromatin DNA-binding protein, is released from neurons into the extracellular space under ischemic, hemorrhagic, and traumatic insults. However, the details of the time-dependent translocation of HMGB1 and the subcellular localization of HMGB1 through the release process in neurons remain unclear. In the present study, we examined the subcellular localization of HMGB1 during translocation of HMGB1 in the cytosolic compartment using a middle cerebral artery occlusion and reperfusion model in rats. Double immunofluorescence microscopy revealed that HMGB1 immunoreactivities were colocalized with MTCO1(mitochondrially encoded cytochrome c oxidase I), a marker of mitochondria, and catalase, a marker of peroxisomes, but not with Rab5/Rab7 (RAS-related GTP-binding protein), LC3A/B (microtubule-associated protein 1 light chain 3), KDEL (KDEL amino acid sequence), and LAMP1 (Lysosomal Associated Membrane Protein 1), which are endosome, phagosome, endoplasmic reticulum, and lysosome markers, respectively. Immunoelectron microscopy confirmed that immune-gold particles for HMGB1 were present inside the mitochondria and peroxisomes. Moreover, HMGB1 was found to be colocalized with Drp1 (Dynamin-related protein 1), which is involved in mitochondrial fission. These results revealed the specific subcellular localization of HMGB1 during its release process under ischemic conditions.
Collapse
|
21
|
Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, Sato K, Takemoto M, Hishikawa N, Ohta Y, Abe K. Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab 2020; 40:214-224. [PMID: 30375939 PMCID: PMC6928553 DOI: 10.1177/0271678x18810617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major pathways to degrade misfolded proteins that accumulate under pathological conditions. When UPS is overloaded, the degeneration pathway may switch to autophagy to remove excessive misfolded proteins. However, it is still unclear whether and how this switch occurs during cerebral ischemia. In the present study, transient middle cerebral artery occlusion (tMCAO) resulted in accelerated ubiquitin-positive protein aggregation from 0.5 h of reperfusion in mice brain after 10, 30 or 60 min of tMCAO. In contrast, significant reduction of p62 and induction of LC3-II were observed, peaking at 24 h of reperfusion after 30 and 60 min tMCAO. Western blot analyses showed an increase of BAG3 and HDAC6 at 1 or 24 h of reperfusion that was dependent on the ischemic period. In contract, BAG1 decreased at 24 h of reperfusion after 10, 30 or 60 min of tMCAO after double immunofluorescent colocalization of ubiquitin, HSP70, p62 and BAG3. These data suggest that a switch from UPS to autophagy occurred between 10 and 30 min of cerebral ischemia depending on the BAG1/BAG3 ratio and level of HDAC6.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
22
|
Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, Mohamed N, Shuid AN. Recent Advances in Nanoencapsulation Systems Using PLGA of Bioactive Phenolics for Protection against Chronic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4962. [PMID: 31817699 PMCID: PMC6950714 DOI: 10.3390/ijerph16244962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Plant-derived polyphenolic compounds have gained widespread recognition as remarkable nutraceuticals for the prevention and treatment of various disorders, such as cardiovascular, neurodegenerative, diabetes, osteoporosis, and neoplastic diseases. Evidence from the epidemiological studies has suggested the association between long-term consumption of diets rich in polyphenols and protection against chronic diseases. Nevertheless, the applications of these phytochemicals are limited due to its low solubility, low bioavailability, instability, and degradability by in vivo and in vitro conditions. Therefore, in recent years, newer approaches have been attempted to solve the restrictions related to their delivery system. Nanoencapsulation of phenolic compounds with biopolymeric nanoparticles could be a promising strategy for protection and effective delivery of phenolics. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers that has attracted considerable attention due to its attractive properties. In this review, our main goal is to cover the relevant recent studies that explore the pharmaceutical significance and therapeutic superiority of the advance delivery systems of phenolic compounds using PLGA-based nanoparticles. A summary of the recent studies implementing encapsulation techniques applied to polyphenolic compounds from plants confirmed that nanoencapsulation with PLGA nanoparticles is a promising approach to potentialize their therapeutic activity.
Collapse
Affiliation(s)
- Rohanizah Abdul Rahim
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Putri Ayu Jayusman
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
| | - Norliza Muhammad
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
| | - Fairus Ahmad
- Anatomy Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia;
| | - Norfilza Mokhtar
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia;
| | - Isa Naina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
| | - Norazlina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
| | - Ahmad Nazrun Shuid
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (I.N.M.)
| |
Collapse
|
23
|
Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: Targeting Mitochondrial Dynamics and Functions. Mol Neurobiol 2019; 56:1852-1869. [PMID: 29951942 PMCID: PMC6310117 DOI: 10.1007/s12035-018-1191-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Hypothermia is currently the only approved therapy for global cerebral ischemia (GCI) after cardiac arrest; however, it unfortunately has multiple adverse effects. As a noninvasive procedure, photobiomodulation (PBM) therapy has emerged as a potential novel treatment for brain injury. PBM involves the use of low-level laser light therapy to influence cell behavior. In this study, we evaluated the therapeutic effects of PBM treatment with an 808-nm diode laser initiated 6 h after GCI. It was noted that PBM dose-dependently protected against GCI-induced neuronal death in the vulnerable hippocampal CA1 subregion. Functional assessments demonstrated that PBM markedly preserved both short-term (a week) and long-term (6 months) spatial learning and memory function following GCI. Further mechanistic studies revealed that PBM post-treatment (a) preserved healthy mitochondrial dynamics and suppressed substantial mitochondrial fragmentation of CA1 neurons, by reducing the detrimental Drp1 GTPase activity and its interactions with adaptor proteins Mff and Fis1 and by balancing mitochondrial targeting fission and fusion protein levels; (b) reduced mitochondrial oxidative damage and excessive mitophagy and restored mitochondrial overall health status and preserved mitochondrial function; and (c) suppressed mitochondria-dependent apoptosome formation/caspase-3/9 apoptosis-processing activities. Additionally, we validated, in an in vitro ischemia model, that cytochrome c oxidase served as a key PBM target for mitochondrial function preservation and neuroprotection. Our findings suggest that PBM serves as a promising therapeutic strategy for the functional recovery after GCI, with mechanisms involving PBM's preservation on mitochondrial dynamics and functions and the inhibition of delayed apoptotic neuronal death in GCI.
Collapse
Affiliation(s)
- Ruimin Wang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Wenli Zhang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Zhang G, Ge M, Han Z, Wang S, Yin J, Peng L, Xu F, Zhang Q, Dai Z, Xie L, Li Y, Si J, Ma K. Wnt/β-catenin signaling pathway contributes to isoflurane postconditioning against cerebral ischemia-reperfusion injury and is possibly related to the transforming growth factorβ1/Smad3 signaling pathway. Biomed Pharmacother 2019; 110:420-430. [DOI: 10.1016/j.biopha.2018.11.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023] Open
|
25
|
Huang Y, Ohta Y, Shang J, Li X, Liu X, Shi X, Feng T, Yamashita T, Sato K, Takemoto M, Hishikawa N, Suzuki E, Hasumi K, Abe K. Reduction of Ischemia Reperfusion-Related Brain Hemorrhage by Stachybotrys Microspora Triprenyl Phenol-7 in Mice With Antioxidant Effects. J Stroke Cerebrovasc Dis 2018; 27:3521-3528. [PMID: 30201460 DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stachybotrys microspora triprenyl phenol-7 (SMTP-7) has both thrombolytic and anti-inflammatory effects, but its neuroprotective effects on cerebral ischemia are still unclear. The present study assessed the antioxidative and neurovascular unit (NVU) protective effects of SMTP-7 using transient middle cerebral artery occlusion (tMCAO) mice. METHODS After 60 minutes tMCAO, 0.9% NaCl, tissue-type plasminogen activator (tPA), SMTP-7 or tPA + SMTP-7 was intravenously administrated through subclavian vein just before the reperfusion, and these mice were examined at 24 hours after reperfusion. We histologically assessed the hemorrhage and expressive changes of antioxidative markers in brains. RESULTS SMTP-7 treatment showed a similar antithrombotic effect to tPA, but significantly decreased the hemorrhage volumes and the number of 4-HNE, 3-NT and 8-OHdG positive cells, meanwhile, ameliorated the decrease of collagen IV in the ischemic brains. However, tPA + SMTP-7 treatment did not decrease hemorrhage volumes nor showed NVU protective effect. CONCLUSIONS The present study suggested that SMTP-7 provided therapeutic benefits for ischemic stroke through antioxidative and NVU protective effects unlike tPA alone or tPA + SMTP-7.
Collapse
Affiliation(s)
- Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xianghong Li
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Tokyo, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan.
| |
Collapse
|
26
|
Alves CAPF, Gonçalves FG, Grieb D, Lucato LT, Goldstein AC, Zuccoli G. Neuroimaging of Mitochondrial Cytopathies. Top Magn Reson Imaging 2018; 27:219-240. [PMID: 30086109 DOI: 10.1097/rmr.0000000000000173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondrial diseases are a complex and heterogeneous group of genetic disorders that occur as a result of either nuclear DNA or mitochondrial DNA pathogenic variants, leading to a decrease in oxidative phosphorylation and cellular energy (ATP) production. Increasing knowledge about molecular, biochemical, and genetic abnormalities related to mitochondrial dysfunction has expanded the neuroimaging phenotypes of mitochondrial disorders. As a consequence of this growing field, the imaging recognition patterns of mitochondrial cytopathies are continually evolving. In this review, we describe the main neuroimaging characteristics of pediatric mitochondrial diseases, ranging from classical to more recent and challenging features. Due to the increased knowledge about the imaging findings of mitochondrial cytopathies, the pediatric neuroradiologist plays a crucial role in the diagnosis and evaluation of these patients.
Collapse
Affiliation(s)
| | | | - Dominik Grieb
- Department of Radiology and Neuroradiology, Sana Kliniken Duisburg, Germany
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clínicas- HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Amy C Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Giulio Zuccoli
- Department of Radiology, University of Pittsburgh School of Medicine, Director of Pediatric Neuroradiology, Children Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
27
|
Therapeutic Effects of Pretreatment with Tocovid on Oxidative Stress in Postischemic Mice Brain. J Stroke Cerebrovasc Dis 2018; 27:2096-2105. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
|
28
|
Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats. Ann Thorac Surg 2018; 105:1523-1530. [DOI: 10.1016/j.athoracsur.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
|
29
|
Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats. Behav Pharmacol 2018; 28:214-222. [PMID: 28257293 DOI: 10.1097/fbp.0000000000000297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.
Collapse
|
30
|
Pastuszko P, Schears GJ, Kubin J, Wilson DF, Pastuszko A. Granulocyte colony-stimulating factor significantly decreases density of hippocampal caspase 3-positive nuclei, thus ameliorating apoptosis-mediated damage, in a model of ischaemic neonatal brain injury. Interact Cardiovasc Thorac Surg 2017; 25:600-605. [PMID: 28962511 DOI: 10.1093/icvts/ivx047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Ischaemic brain injury is a major complication in patients undergoing surgery for congenital heart disease, with the hippocampus being a particularly vulnerable region. We hypothesized that neuronal injury resulting from cardiopulmonary bypass and associated circulatory arrest is ameliorated by pretreatment with granulocyte colony-stimulating factor (G-CSF), a cytokine and an anti-apoptotic neurotrophic factor. METHODS In a model of ischaemic brain injury, 4 male newborn piglets were anaesthetized and subjected to deep hypothermic circulatory arrest (DHCA) (cooled to 18°C, DHCA maintained for 60 min, rewarmed and recovered for 8-9 h), while 4 animals received G-CSF (34 µg/kg, intravenously) 2 h prior to the DHCA procedure. At the end of each experiment, the animals were perfused with a fixative, the hippocampus was extracted, cryoprotected, cut and the brain sections were immunoprocessed for activated caspase 3, a pro-apoptotic factor. Immunopositive neuronal nuclei were counted in multiple counting boxes (440 × 330 µm) centred on the CA1 or CA3 hippocampal regions and their mean numbers compared between the different treatment groups and regions. RESULTS G-CSF pretreatment resulted in significantly lower counts of caspase 3-positive nuclei per counting box in both the CA1 [52.2 ± 9.3 (SD) vs 61.6 ± 8.4, P < 0.001] and CA3 (41.2 ± 6.9 vs 60.4 ± 16.4, P < 0.00002) regions of the hippocampus as compared to DHCA groups. The effects of G-CSF were significant for pyramidal cells of both regions and for interneurons in the CA3 region. CONCLUSIONS In an animal model of ischaemic brain injury, G-CSF reduces neuronal injury in the hippocampus, thus potentially having beneficial effect on neurologic outcomes.
Collapse
Affiliation(s)
- Peter Pastuszko
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, The Ward Family Heart Center, Kansas City, MO, USA
| | | | - Joanna Kubin
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - David F Wilson
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Anna Pastuszko
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Hosaka Y, Inoshita T, Shiba-Fukushima K, Cui C, Arano T, Imai Y, Hattori N. Reduced TDP-43 Expression Improves Neuronal Activities in a Drosophila Model of Perry Syndrome. EBioMedicine 2017. [PMID: 28625517 PMCID: PMC5514405 DOI: 10.1016/j.ebiom.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinsonian Perry syndrome, involving mutations in the dynein motor component dynactin or p150Glued, is characterized by TDP-43 pathology in affected brain regions, including the substantia nigra. However, the molecular relationship between p150Glued and TDP-43 is largely unknown. Here, we report that a reduction in TDP-43 protein levels alleviates the synaptic defects of neurons expressing the Perry mutant p150G50R in Drosophila. Dopaminergic expression of p150G50R, which decreases dopamine release, disrupts motor ability and reduces the lifespan of Drosophila. p150G50R expression also causes aggregation of dense core vesicles (DCVs), which contain monoamines and neuropeptides, and disrupts the axonal flow of DCVs, thus decreasing synaptic strength. The above phenotypes associated with Perry syndrome are improved by the removal of a copy of Drosophila TDP-43 TBPH, thus suggesting that the stagnation of axonal transport by dynactin mutations promotes TDP-43 aggregation and interferes with the dynamics of DCVs and synaptic activities. Fly model of Perry syndrome exhibits motor disturbance and impaired dopamine release. Perry mutation in dynactin produces aggregation of dense core vesicles (DCVs) in axons and disrupts axonal flux of DCVs. Removal of a copy of the TDP-43 gene improves retrograde flux of DCVs.
Parkinsonian Perry syndrome (PS), caused by mutations in a component of the retrograde transport complex, Dynactin, is pathologically characterized by the accumulation of an RNA-binding protein, TDP-43, in affected neurons. The neuronal accumulation of TDP-43 is observed in various neurodegenerative diseases including amyotrophic lateral sclerosis and Alzheimer's disease. We report that decreased TDP-43 expression improves defects in the axonal transport of dense core vesicles and in the dopamine release in a Drosophila PS model. This study provides insight into the possibility that a transient decrease in TDP-43 in neurons may be a promising therapeutic approach for treating neurodegenerative disorders associated with TDP-43 pathology, including PS.
Collapse
Affiliation(s)
- Yuka Hosaka
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Changxu Cui
- Department of Research for Parkinson's Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taku Arano
- Center for Genomic and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
32
|
Neuroprotective Effects of a Novel Antioxidant Mixture Twendee X in Mouse Stroke Model. J Stroke Cerebrovasc Dis 2017; 26:1191-1196. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/31/2022] Open
|
33
|
Dong F, Yao R, Yu H, Liu Y. Neuroprotection of Ro25-6981 Against Ischemia/Reperfusion-Induced Brain Injury via Inhibition of Autophagy. Cell Mol Neurobiol 2017; 37:743-752. [PMID: 27456026 PMCID: PMC11482226 DOI: 10.1007/s10571-016-0409-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the neuroprotective effect of Ro25-6981 against cerebral ischemia/reperfusion injury. Ro25-6981 alone or in combination with rapamycin was intracerebroventricularly administered to rats which suffered transient forebrain ischemia inducing by 4-vessel occlusion and reperfusion. Nissl staining was used to determine the survival of CA1 pyramidal cells of the hippocampus, while immunohistochemistry was performed to measure neuron-specific enolase (NSE) expression. The expression of autophagy-related proteins, such as microtubule-associated protein l light chain 3 (LC3), Beclin 1, and sequestosome 1 (p62), was assessed by immunoblotting. Nissl staining showed that neuronal damage was reduced in the hippocampal CA1 pyramidal layer in rats that received Ro25-6981. The protective effect of Ro25-6981 was dose-dependent, with a significant effect in the middle-dose range. The expression of NSE increased after Ro25-6981 treatment. Ro25-6981 significantly decreased LC3II (which is membrane bound) and Beclin 1, and increased p62. In addition, Ro25-6981 decreased rapamycin-induced neuronal damage and excessive activation of autophagy after I/R. Taken together, the results suggest that Ro25-6981 could suppress ischemic brain injury by regulating autophagy-related proteins during ischemia/reperfusion.
Collapse
Affiliation(s)
- Fuxing Dong
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ruiqin Yao
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Hongli Yu
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Combination Treatment with Methylene Blue and Hypothermia in Global Cerebral Ischemia. Mol Neurobiol 2017; 55:2042-2055. [PMID: 28271403 DOI: 10.1007/s12035-017-0470-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
Therapeutic hypothermia (TH) is the most potent therapeutic strategy for global cerebral ischemia (GCI), usually induced by cardiac arrest. TH has been shown both to suppress the delayed neuronal cell death in the vulnerable hippocampal CA1 subregion and to improve neurological outcomes in experimental animals after GCI. However, given the multiple adverse effects resulting from TH, application of such a therapy is typically limited. In recent years, methylene blue (MB) has emerged as a potential therapeutic drug for the treatment of neurodegenerative diseases. In this study, we investigated the beneficial effects of mild TH combined with MB treatment after GCI. We report that both the neuronal survival in the hippocampal CA1 region and the hippocampus-dependent spatial learning and memory in the combined treatment animals were enhanced compared to those in the single treatment animals. Mechanistic studies revealed that combined TH and MB treatment significantly attenuated mitochondrial dysfunction induced by GCI in the hippocampus CA1 region. The combined treatment also markedly suppressed GCI-induced reactive gliosis and inflammation and reduced oxidative stress while enhancing the antioxidant capacity of hippocampal CA1 neurons. Finally, combining TH and MB synergistically attenuated the intrinsic cytochrome c/caspase-3 apoptotic pathway induced by GCI. Our results suggest that TH and MB act synergistically to protect the ischemic brain and suppress cognitive impairment caused by GCI.
Collapse
|
35
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
36
|
Nakano M, Tamura Y, Yamato M, Kume S, Eguchi A, Takata K, Watanabe Y, Kataoka Y. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci Rep 2017; 7:42041. [PMID: 28195192 PMCID: PMC5307324 DOI: 10.1038/srep42041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/06/2017] [Indexed: 11/10/2022] Open
Abstract
NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.
Collapse
Affiliation(s)
- Masayuki Nakano
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuhisa Tamura
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masanori Yamato
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Satoshi Kume
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Asami Eguchi
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kumi Takata
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Pathophysiological and Health Science Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yosky Kataoka
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
37
|
Lan X, Zhang X, Zhou GP, Wu CX, Li C, Xu XH. Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury. Neural Regen Res 2017; 12:409-416. [PMID: 28469655 PMCID: PMC5399718 DOI: 10.4103/1673-5374.202944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury. To further identify the involved mechanisms, we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method. At 30 minutes before model establishment, p38 MAPK blocker SB20358 was injected into the left lateral ventricles. At 1.5 hours after model establishment, electroacupuncture was administered at acupoints of Chize (LU5), Hegu (LI4), Zusanli (ST36), and Sanyinjiao (SP6) for 20 minutes in the affected side. Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores, but no significant differences were determined among different interventional groups. Hematoxylin-eosin staining also showed reduced brain tissue injuries. Compared with the SB20358 group, the cells were regularly arranged, the structures were complete, and the number of viable neurons was higher in the SB20358 + electroacupuncture group. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay showed a decreased apoptotic index in each group, with a significant decrease in the SB20358 + electroacupuncture group. Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group. There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group. These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway. A time period of 3 days could promote the repair of ischemic cerebral nerves.
Collapse
Affiliation(s)
- Xiao Lan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Zhang
- College of Acupuncture, Moxibustion and Tuina, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guo-Ping Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chun-Xiao Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chun Li
- College of Acupuncture, Moxibustion and Tuina, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiu-Hong Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Yuan W, Chen Q, Zeng J, Xiao H, Huang ZH, Li X, Lei Q. 3'-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regen Res 2017; 12:235-241. [PMID: 28400805 PMCID: PMC5361507 DOI: 10.4103/1673-5374.200807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein (an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage.
Collapse
Affiliation(s)
- Wa Yuan
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Qin Chen
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jing Zeng
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hai Xiao
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhi-Hua Huang
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Xiao Li
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Qiong Lei
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
39
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
40
|
Sanganalmath SK, Gopal P, Parker JR, Downs RK, Parker JC, Dawn B. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem 2016; 426:111-127. [PMID: 27896594 DOI: 10.1007/s11010-016-2885-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the "no-flow" period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Richard K Downs
- Division of Neuroradiology, Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Joseph C Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
41
|
Lee RH, Couto E Silva A, Lerner FM, Wilkins CS, Valido SE, Klein DD, Wu CY, Neumann JT, Della-Morte D, Koslow SH, Minagar A, Lin HW. Interruption of perivascular sympathetic nerves of cerebral arteries offers neuroprotection against ischemia. Am J Physiol Heart Circ Physiol 2016; 312:H182-H188. [PMID: 27864234 DOI: 10.1152/ajpheart.00482.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Sympathetic nervous system activity is increased after cardiopulmonary arrest, resulting in vasoconstrictor release from the perivascular sympathetic nerves of cerebral arteries. However, the pathophysiological function of the perivascular sympathetic nerves in the ischemic brain remains unclear. A rat model of global cerebral ischemia (asphyxial cardiac arrest, ACA) was used to investigate perivascular sympathetic nerves of cerebral arteries via bilateral decentralization (preganglionic lesion) of the superior cervical ganglion (SCG). Decentralization of the SCG 5 days before ACA alleviated hypoperfusion and afforded hippocampal neuroprotection and improved functional outcomes. These studies can provide further insights into the functional mechanism(s) of the sympathetic nervous system during ischemia. NEW & NOTEWORTHY Interruption of the perivascular sympathetic nerves can alleviate CA-induced hypoperfusion and neuronal cell death in the CA1 region of the hippocampus to enhance functional learning and memory.
Collapse
Affiliation(s)
- Reggie H Lee
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Alexandre Couto E Silva
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Francesca M Lerner
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Carl S Wilkins
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida
| | - Stephen E Valido
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Daniel D Klein
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Celeste Y Wu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | - David Della-Morte
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Systems Medicine, University of Rome Tor Vergata; and.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Stephen H Koslow
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Hung Wen Lin
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida; .,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
42
|
Ulbrich F, Kaufmann KB, Meske A, Lagrèze WA, Augustynik M, Buerkle H, Ramao CC, Biermann J, Goebel U. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS One 2016; 11:e0165182. [PMID: 27764224 PMCID: PMC5072679 DOI: 10.1371/journal.pone.0165182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/08/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Ischemia and reperfusion injury may induce apoptosis and lead to sustained tissue damage and loss of function, especially in neuronal organs. While carbon monoxide is known to exert protective effects after various harmful events, the mechanism of carbon monoxide releasing molecules in neuronal tissue has not been investigated yet. We hypothesize that the carbon monoxide releasing molecule (CORM) ALF-186, administered after neuronal ischemia-reperfusion injury (IRI), counteracts retinal apoptosis and its involved signaling pathways and consecutively reduces neuronal tissue damage. METHODS IRI was performed in rat´s retinae for 1 hour. The water-soluble CORM ALF-186 (10 mg/kg) was administered intravenously via a tail vein after reperfusion. After 24 and 48 hours, retinal tissue was harvested to analyze mRNA and protein expression of Bcl-2, Bax, Caspase-3, ERK1/2, p38 and JNK. Densities of fluorogold pre-labeled retinal ganglion cells (RGC) were analyzed 7 days after IRI. Immunohistochemistry was performed on retinal cross sections. RESULTS ALF-186 significantly reduced IRI mediated loss of RGC. ALF-186 treatment differentially affected mitogen-activated protein kinases (MAPK) phosphorylation: ALF-186 activated p38 and suppressed ERK1/2 phosphorylation, while JNK remained unchanged. Furthermore, ALF-186 treatment affected mitochondrial apoptosis, decreasing pro-apoptotic Bax and Caspase-3-cleavage, but increasing anti-apoptotic Bcl-2. Inhibition of p38-MAPK using SB203580 reduced ALF-186 mediated anti-apoptotic effects. CONCLUSION In this study, ALF-186 mediated substantial neuroprotection, affecting intracellular apoptotic signaling, mainly via MAPK p38. CORMs may thus represent a promising therapeutic alternative treating neuronal IRI.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai B. Kaufmann
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Meske
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf A. Lagrèze
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Augustynik
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carlos C. Ramao
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Oeiras, Portugal
| | - Julia Biermann
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, Zhu L, Liu TCY, Cohen RM, Zhang Q. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 2016; 49:165-182. [PMID: 27815990 DOI: 10.1016/j.neurobiolaging.2016.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/12/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022]
Abstract
Beta amyloid (Aβ) is well accepted to play a central role in the pathogenesis of Alzheimer's disease (AD). The present work evaluated the therapeutic effects of low-level laser irradiation (LLI) on Aβ-induced neurotoxicity in rat hippocampus. Aβ 1-42 was injected bilaterally to the hippocampus CA1 region of adult male rats, and 2-minute daily LLI treatment was applied transcranially after Aβ injection for 5 consecutive days. LLI treatment suppressed Aβ-induced hippocampal neurodegeneration and long-term spatial and recognition memory impairments. Molecular studies revealed that LLI treatment: (1) restored mitochondrial dynamics, by altering fission and fusion protein levels thereby suppressing Aβ-induced extensive fragmentation; (2) suppressed Aβ-induced collapse of mitochondrial membrane potential; (3) reduced oxidized mitochondrial DNA and excessive mitophagy; (4) facilitated mitochondrial homeostasis via modulation of the Bcl-2-associated X protein/B-cell lymphoma 2 ratio and of mitochondrial antioxidant expression; (5) promoted cytochrome c oxidase activity and adenosine triphosphate synthesis; (6) suppressed Aβ-induced glucose-6-phosphate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activity; (7) enhanced the total antioxidant capacity of hippocampal CA1 neurons, whereas reduced the oxidative damage; and (8) suppressed Aβ-induced reactive gliosis, inflammation, and tau hyperphosphorylation. Although development of AD treatments has focused on reducing cerebral Aβ levels, by the time the clinical diagnosis of AD or mild cognitive impairment is made, the brain is likely to have already been exposed to years of elevated Aβ levels with dire consequences for multiple cellular pathways. By alleviating a broad spectrum of Aβ-induced pathology that includes mitochondrial dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, and tau pathology, LLI could represent a new promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ningjun Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Md Ejaz Ahmed
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Robert M Cohen
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
44
|
Intranasal Delivery of a Caspase-1 Inhibitor in the Treatment of Global Cerebral Ischemia. Mol Neurobiol 2016; 54:4936-4952. [PMID: 27520275 DOI: 10.1007/s12035-016-0034-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Caspase-1 is an enzyme implicated in neuroinflammation, a critical component of many diseases that affect neuronal degeneration. However, it is unknown whether a caspase-1 inhibitor can modify apoptotic neuronal damage incurred during transient global cerebral ischemia (GCI) and whether intranasal administration of a caspase-1 inhibitor is an effective treatment following GCI. The present study was conducted to examine the potential efficiency of post-ischemic intranasal administration of the caspase-1 inhibitor Boc-D-CMK in a 4-vessel occlusion model of GCI in the rat. Herein, we show that intranasal Boc-D-CMK readily penetrated the central nervous system, subsequently inhibiting caspase-1 activity, decreasing mitochondrial dysfunction, and attenuating caspase-3-dependent apoptotic pathway in ischemia-vulnerable hippocampal CA1 region. Further investigation regarding the mechanisms underlying Boc-D-CMK's neuroprotective effects revealed marked inhibition of reactive gliosis, as well as reduction of the neuroinflammatory response via inhibition of the downstream pro-inflammatory cytokine production. Intranasal Boc-D-CMK post-treatment also significantly enhanced the numbers of NeuN-positive cells while simultaneously decreasing the numbers of TUNEL-positive and PARP1-positive cells in hippocampal CA1. Correspondingly, behavioral tests showed that deteriorations in spatial learning and memory performance, and long-term recognition memory following GCI were significantly improved in the Boc-D-CMK post-treated animals. In summary, the current study demonstrates that the caspase-1 inhibitor Boc-D-CMK coordinates anti-inflammatory and anti-apoptotic actions to attenuate neuronal death in the hippocampal CA1 region following GCI. Furthermore, our data suggest that pharmacological inhibition of caspase-1 is a promising neuroprotective strategy to target ischemic neuronal injury and functional deficits following transient GCI.
Collapse
|
45
|
Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, Zhang G, Yang L, Li J, Du X, Zhang Q, Xu X. Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice. Mol Neurobiol 2016; 54:4551-4559. [PMID: 27379735 DOI: 10.1007/s12035-016-9983-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT. Depression models in space restriction mice and Abelson helper integration site-1 (Ahi1) knockout (KO) mice were employed in this work. Our results revealed that LLLT effectively improved depression-like behaviors, in the two depression mice models, by decreasing immobility duration in behavioral despair tests. In addition, ATP biosynthesis and the level of mitochondrial complex IV expression and activity were significantly elevated in prefrontal cortex (PFC) following LLLT. Intriguingly, LLLT has no effects on ATP content and mitochondrial complex I-IV levels in other tested brain regions, hippocampus and hypothalamus. As a whole, these findings shed light on a novel strategy of transcranial LLLT on depression improvement by ameliorating neurotransmitter abnormalities and promoting mitochondrial function in PFC. The present work provides concrete groundwork for further investigation of LLLT for depression treatment.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Xiaobo Guo
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Yong Yang
- Department of Psychiatry, Guangji Hospital, Suzhou City, Jiangsu, 215000, China
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China
| | - Gaocai Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Lingli Yang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, Suzhou City, 215028, China
| | - Xiangdong Du
- Department of Psychiatry, Guangji Hospital, Suzhou City, Jiangsu, 215000, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China. .,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China.
| |
Collapse
|
46
|
Tiu C, Terecoasă EO, Grecu N, Dorobăţ B, Marinescu AN, Băjenaru OA. Transient Global Amnesia After Cerebral Angiography With Iomeprol: A Case Report. Medicine (Baltimore) 2016; 95:e3590. [PMID: 27175660 PMCID: PMC4902502 DOI: 10.1097/md.0000000000003590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transient global amnesia is now considered a very rare complication of cerebral angiography. Various etiological mechanisms have been suggested to account for this complication, but no consensus has been reached yet. This case report documents one of the few reported cases of cerebral angiography-related transient global amnesia associated with magnetic resonance imaging (MRI) evidence of unilateral hippocampal ischemia, most probably as a consequence of a transient reduction in regional hippocampal blood flow. However, the possibility of a direct neurotoxic effect of the nonionic contrast media Iomeprol on the Cornu ammonis - field 1 neurons cannot be firmly ruled out.We describe the case of a 54-year-old woman admitted to our department for left upper limb weakness with acute onset 8 days before. The brain computed tomography (CT) scan performed at admission revealed subacute ischemic lesions in the right watershed superficial territories and a right thalamic lacunar infarct. Diagnostic digital subtraction cerebral angiography was performed 4 days after admission with the nonionic contrast media Iomeprol. A few minutes after completion of the procedure, the patient developed symptoms suggestive for transient global amnesia. The brain MRI performed 22 hours after the onset of symptoms demonstrated increased signal within the lateral part of the right hippocampus on the diffusion-weighted imaging (DWI) sequences, associated with a corresponding reduction in the apparent diffusion coefficient (ADC) and increased signal on the fluid-attenuated inversion recovery (FLAIR) sequences, consistent with acute hippocampal ischemia and several T2/FLAIR hyperintensities in the right watershed superficial territories and in the right thalamus, corresponding to the lesions already identified on the CT scan performed at admission. A follow-up MRI, performed 2 months later, demonstrated the disappearance of the increased signal within the right hippocampus on the DWI, T2/FLAIR, and ADC sequences.The precise mechanism of transient global amnesia related to cerebral angiography is still unclear, and further studies aimed to determine the definite pathophysiology of this syndrome and consequently to establish specific preventive measures are needed. Although the condition itself is considered to be self-limited, the long-term prognosis and the risk of recurrence in the cases where subsequent angiographic procedures are performed are not established yet.
Collapse
Affiliation(s)
- Cristina Tiu
- From the Stroke Unit, Department of Neurology (CT, EOT, NG, OAB), University Emergency Hospital Bucharest; "Carol Davila" University of Medicine and Pharmacy (CT, EOT, ANM, OAB); Department of Interventional Neuroradiology (BD); and Department of Radiology (ANM), University Emergency Hospital Bucharest, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
47
|
Miyawaki S, Imai H, Hayasaka T, Masaki N, Ono H, Ochi T, Ito A, Nakatomi H, Setou M, Saito N. Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia. Neuroscience 2016; 322:66-77. [DOI: 10.1016/j.neuroscience.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
|
48
|
Simon F, Oberhuber A. Ischemia and reperfusion injury of the spinal cord: experimental strategies to examine postischemic paraplegia. Neural Regen Res 2016; 11:414-5. [PMID: 27127475 PMCID: PMC4829001 DOI: 10.4103/1673-5374.179050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Florian Simon
- Clinic for Vascular- and Endovascular Surgery, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Oberhuber
- Clinic for Vascular- and Endovascular Surgery, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
49
|
Hye Kim I, Lee JC, Ha Park J, Hyeon Ahn J, Cho JH, Hui Chen B, Na Shin B, Chun Yan B, Rueol Ryu D, Hong S, Hwi Cho J, Lyul Lee Y, Kim YM, Cho BR, Won MH. Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurol Res 2016; 38:210-9. [DOI: 10.1179/1743132815y.0000000098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Yang X, Hei C, Liu P, Song Y, Thomas T, Tshimanga S, Wang F, Niu J, Sun T, Li PA. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia. Int J Biol Sci 2015; 11:1424-35. [PMID: 26681922 PMCID: PMC4672000 DOI: 10.7150/ijbs.12930] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022] Open
Abstract
The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage.
Collapse
Affiliation(s)
- Xiao Yang
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China ; 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Changhun Hei
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA ; 3. Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 75004, China
| | - Ping Liu
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA ; 4. Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yaozu Song
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Taylor Thomas
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Sylvie Tshimanga
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Feng Wang
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Jianguo Niu
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Tao Sun
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - P Andy Li
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|