1
|
Son MJ, Lee GY, Kim JT, Zhou Y, Kwon JW, Choi J, Park K, Lee J, Ko Y, Qiu S, Kim JH, Lee HJ. The combination of Korean Sajabal mugwort ( Artemisia princeps Pampanini) and green tea ( Camellia sinensis) extracts and that of their major constituents improved blood flow in vitro and in vivo. Food Sci Biotechnol 2025; 34:1725-1735. [PMID: 40151613 PMCID: PMC11937464 DOI: 10.1007/s10068-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 03/29/2025] Open
Abstract
This study aimed to evaluate the effects of Korean Sajabal mugwort extract (SME), green tea extract (GTE), and their optimized combination on improving blood flow. We first found that SME and GTE significantly suppressed TNF-α-induced ICAM-1 expression and enhanced endothelial nitric oxide synthase (eNOS) activation in EA.hy926 endothelial cells. Based on synergistic effects on regulation of IκBα, the mixture of SME and GTE at 9:1 ratio was determined as the optimal combination, and it also suppressed integrin LFA-1 expression, reducing leukocyte-endothelial cell interactions. The major components of SME (eupatilin and jaceosidin) and GTE (EGCG) were quantified, and their effects were consistent with the extracts. Furthermore, the mixture alleviated pulmonary vein occlusion, and decreased mRNA levels of ICAM-1, VCAM-1, P-selectin, and E-selectin in aortic tissue in collagen/epinephrine-induced thrombosis rat model. Taken together, the SME and GTE mixture effectively improved blow flow and may be a potent agent for preventing thrombosis and atherosclerosis.
Collapse
Affiliation(s)
- Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, 17546 Republic of Korea
| | - Ga Yeon Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, 17546 Republic of Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, 17546 Republic of Korea
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Jung Won Kwon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, 17546 Republic of Korea
| | - Jeongyoon Choi
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Kyungsuk Park
- R&D Center, CINNAMON LAB Co. Ltd, Seoul, 06628 Republic of Korea
| | - Jungmin Lee
- R&D Center, CINNAMON LAB Co. Ltd, Seoul, 06628 Republic of Korea
| | - Yujin Ko
- R&D Center, CINNAMON LAB Co. Ltd, Seoul, 06628 Republic of Korea
- Department of Clinical Nutrition, Graduate School of Clinical Biohealth, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Shuai Qiu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Jong Hun Kim
- Department of Food Science and Biotechnology and Institute for Basic Sciences, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, 17546 Republic of Korea
| |
Collapse
|
2
|
Ranjbar J, Gibbins JM, Roe J, Roach P, Yang Y, Harper AG. A humanised thrombus-on-a-chip model utilising tissue-engineered arterial constructs: A method to reduce and replace mice used in thrombosis and haemostasis research. F1000Res 2025; 14:110. [PMID: 40191150 PMCID: PMC11971621 DOI: 10.12688/f1000research.158910.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 04/09/2025] Open
Abstract
The study of in vivo thrombus formation has principally been performed using intravital microscopy in mice and other species. These have allowed us to visualise the molecular and cellular processes that regulate thrombus formation inside the body. However current in vivo arterial thrombosis models are difficult to standardise between labs and frequently produce results that do not reliably translate successfully in human clinical trials. Here we provide a step-by-step description with accompanying video tutorials to demonstrate how to produce a 3D humanised thrombus-on-a-chip model, which uses perfusion of fluorescently-labelled human blood over a mechanically-injured human tissue engineered arterial construct (TEAC) within a 3D printed microfluidic flow chamber to replicate thrombus formation within a healthy artery. We also provide a written methodology on how to use 3D printing to produce a mechanical injury press that can reproducibly damage the TEAC as a stimulus for thrombus formation as part of a mechanical injury model. Perfusion of the uninjured TEAC with whole human blood containing DiOC6-labelled platelets without initiating notable thrombus formation. The mechanical injury press was shown to induce a reproducible puncture wound in the TEAC. Fluorescence microscopy was used to demonstrate that thrombus formation could be observed reproducibly around sites of injury. This humanised thrombosis-on-a-chip model can replace the use of animals in in vivo thrombosis models for preclinical assessment of anti-thrombotic therapies. This method also offers multiple scientific advantages: allowing new drugs to be directly tested on human blood from a diverse array of donors, facilitating use of a realistic and reproducible injury modality as well as removing the potential confounding effects of general anaesthetics in animal studies. The use of human thrombus-on-a-chip models combining TEACs offers a new methodology to reduce animal use whilst improving the predictive capabilities of preclinical trials of anti-thrombotic therapies.
Collapse
Affiliation(s)
- Jacob Ranjbar
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, University of Reading School of Biological Sciences, Reading, England, RG6 6EX, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Ying Yang
- School of Life Sciences, Keele University, Keele, England, ST5 5BG, UK
| | - Alan G.S. Harper
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| |
Collapse
|
3
|
Dai Y, Kretz CA, Kim PY, Gross PL. A specific fluorescence resonance energy quenching-based biosensor for measuring thrombin activity in whole blood. J Thromb Haemost 2024; 22:1627-1639. [PMID: 38382740 DOI: 10.1016/j.jtha.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND At sites of vessel injury, thrombin acts as the central mediator of coagulation by catalyzing fibrin clot formation and platelet activation. Thrombin generation is most frequently measured in plasma samples using small-molecule substrates; however, these have low specificity for thrombin and limited utility in whole blood. Plasma assays are limited because they ignore the hemostatic contributions of blood cells and require anticoagulation and the addition of supraphysiological concentrations of calcium. OBJECTIVES To overcome these limitations, we designed and characterized a fluorescence resonance energy quenching-based thrombin sensor (FTS) protein. METHODS The fluorescence resonance energy quenching pair of mAmetrine and tTomato, separated by a thrombin recognition sequence, was developed. The protein was expressed using Escherichia coli, and purity was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cleavage of FTS was monitored by fluorescence using excitation at 406 nm and emission at 526 nm and 581 nm. RESULTS Compared with small-molecule substrates, the FTS demonstrated high specificity for thrombin; it is not cleaved by thrombin or inhibited by α2-macroglobulin and interacts with thrombin's anion-binding exosite I. The FTS can effectively measure thrombin generation in plasma and in finger-prick whole blood, which allows it to be developed into a point-of-care test of thrombin generation. The FTS does not inhibit standard thrombin-generation assays. Lastly, FTS-based thrombin generation in nonanticoagulated finger-prick blood was delayed but enhanced compared with that in citrated plasma. CONCLUSION The FTS will broaden our understanding of thrombin generation in ways that are not attainable with current methods.
Collapse
Affiliation(s)
- Ying Dai
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y Kim
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Peter L Gross
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Singh N, Kulkarni PP, Tripathi P, Agarwal V, Dash D. Nanogold-coated stent facilitated non-invasive photothermal ablation of stent thrombosis and restoration of blood flow. NANOSCALE ADVANCES 2024; 6:1497-1506. [PMID: 38419863 PMCID: PMC10898437 DOI: 10.1039/d3na00751k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
In-stent restenosis (ISR) and stent thrombosis (ST) are the most serious complications of coronary angioplasty and stenting. Although the evolution of drug-eluting stents (DES) has significantly restricted the incidence of ISR, they are associated with an enhanced risk of ST. In the present study, we explore the photothermal ablation of a thrombus using a nano-enhanced thermogenic stent (NETS) as a modality for revascularization following ST. The photothermal activity of NETS, fabricated by coating bare metal stents with gold nanorods generating a thin plasmonic film of gold, was found to be effective in rarefying clots formed within the stent lumen in various in vitro assays including those under conditions mimicking blood flow. NETS implanted in the rat common carotid artery generated heat following exposure to a NIR-laser that led to effective restoration of blood flow within the occluded vessel in a model of ferric chloride-induced thrombosis. Our results present a proof-of-concept for a novel photothermal ablation approach by employing coated stents in the non-invasive management of ST.
Collapse
Affiliation(s)
- Nitesh Singh
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India
| | - Paresh P Kulkarni
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India
| | - Prashant Tripathi
- School of Physical Sciences, Jawaharlal Nehru University New Mehrauli Road New Delhi Delhi-110067 India
| | - Vikas Agarwal
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India
| |
Collapse
|
5
|
Ranjbar J, Yang Y, Harper AGS. Developing human tissue engineered arterial constructs to simulate human in vivo thrombus formation. Platelets 2023; 34:2153823. [PMID: 36550074 DOI: 10.1080/09537104.2022.2153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombus formation is highly dependent upon the physico-chemical environment in which it is triggered. Our ability to understand how thrombus formation is initiated, regulated, and resolved in the human body is dependent upon our ability to replicate the mechanical and biological properties of the arterial wall. Current in vitro thrombosis models principally use reductionist approaches to model the complex biochemical and cellular milieu present in the arterial wall, and so researcher have favored the use of in vivo models. The field of vascular tissue engineering has developed a range of techniques for culturing artificial human arteries for use as vascular grafts. These techniques therefore provide a basis for developing more sophisticated 3D replicas of the arterial wall that can be used in in vitro thrombosis models. In this review, we consider how tissue engineering approaches can be used to generate 3D models of the arterial wall that improve upon current in vivo and in vitro approaches. We consider the current benefits and limitations of reported 3D tissue engineered models and consider what additional evidence is required to validate them as alternatives to current in vivo models.
Collapse
Affiliation(s)
| | - Ying Yang
- School of Pharmacy & Bioengineering, Keele University, Keele, UK
| | | |
Collapse
|
6
|
Siebert AE, Brake MA, Verbeek SC, Johnston AJ, Morgan AP, Cleuren AC, Jurek AM, Schneider CD, Germain DM, Battistuzzi FU, Zhu G, Miller DR, Johnsen JM, Pardo-Manuel de Villena F, Rondina MT, Westrick RJ. Identification of genomic loci regulating platelet plasminogen activator inhibitor-1 in mice. J Thromb Haemost 2023; 21:2917-2928. [PMID: 37364776 PMCID: PMC10826891 DOI: 10.1016/j.jtha.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Stephanie C Verbeek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | - Andrew P Morgan
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Audrey C Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrianna M Jurek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Caitlin D Schneider
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Derrik M Germain
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darla R Miller
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jill M Johnsen
- Department of Medicine, Institute for Stem Cell & Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew T Rondina
- Molecular Medicine Program, Departments of Internal Medicine and Pathology, the University of Utah, Salt Lake City, Utah, USA; The George E. Wahlen Department of Medical Affairs Medical Center, Salt Lake City, Utah, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA; Eye Research Center and Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA.
| |
Collapse
|
7
|
He F, Hou W, Lan Y, Gao W, Zhou M, Li J, Liu S, Yang B, Zhang J. High Contrast Detection of Carotid Neothrombus with Strong Near-Infrared Absorption Selenium Nanosphere Enhanced Photoacoustic Imaging. Int J Nanomedicine 2023; 18:4043-4054. [PMID: 37520300 PMCID: PMC10377622 DOI: 10.2147/ijn.s404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Background Carotid artery thrombosis is the leading cause of stroke. Since there are no apparent symptoms in the early stages of carotid atherosclerosis onset, it causes a more significant clinical diagnosis. Photoacoustic (PA) imaging provides high contrast and good depth information, which has been used for the early detection and diagnosis of many diseases. Methods We investigated thrombus formation by using 20% ferric chloride (FeCl3) in the carotid arteries of KM mice for the thrombosis model. The near-infrared selenium/polypyrrole (Se@PPy) nanomaterials are easy to synthesize and have excellent optical absorption in vivo, which can be used as PA contrast agents to obtain thrombosis information. Results In vitro experiments showed that Se@PPy nanocomposites have fulfilling PA ability in the 700 nm to 900 nm wavelength range. In the carotid atherosclerosis model, maximum PA signal enhancement up to 3.44, 4.04, and 5.07 times was observed by injection of Se@PPy nanomaterials, which helped to diagnose the severity of carotid atherosclerosis. Conclusion The superior PA signal of Se@PPy nanomaterials can identify the extent of atherosclerotic carotid lesions, demonstrating the feasibility of PA imaging technology in diagnosing carotid thrombosis lesion formation. This study demonstrates nanocomposites and PA techniques for imaging and diagnosing carotid thrombosis in vivo.
Collapse
Affiliation(s)
- Fengbing He
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Wenzhong Hou
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yintao Lan
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong, People’s Republic of China
| | - Weijian Gao
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Mengyu Zhou
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinghang Li
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Shutong Liu
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Bin Yang
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jian Zhang
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Ranjbar J, Njoroge W, Gibbins JM, Roach P, Yang Y, Harper AGS. Developing Biomimetic Hydrogels of the Arterial Wall as a Prothrombotic Substrate for In Vitro Human Thrombosis Models. Gels 2023; 9:477. [PMID: 37367147 DOI: 10.3390/gels9060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Current in vitro thrombosis models utilise simplistic 2D surfaces coated with purified components of the subendothelial matrix. The lack of a realistic humanised model has led to greater study of thrombus formation in in vivo tests in animals. Here we aimed to develop 3D hydrogel-based replicas of the medial and adventitial layers of the human artery to produce a surface that can optimally support thrombus formation under physiological flow conditions. These tissue-engineered medial- (TEML) and adventitial-layer (TEAL) hydrogels were developed by culturing human coronary artery smooth muscle cells and human aortic adventitial fibroblasts within collagen hydrogels, both individually and in co-culture. Platelet aggregation upon these hydrogels was studied using a custom-made parallel flow chamber. When cultured in the presence of ascorbic acid, the medial-layer hydrogels were able to produce sufficient neo-collagen to support effective platelet aggregation under arterial flow conditions. Both TEML and TEAL hydrogels possessed measurable tissue factor activity and could trigger coagulation of platelet-poor plasma in a factor VII-dependent manner. Biomimetic hydrogel replicas of the subendothelial layers of the human artery are effective substrates for a humanised in vitro thrombosis model that could reduce animal experimentation by replacing current in vivo models.
Collapse
Affiliation(s)
- Jacob Ranjbar
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Wanjiku Njoroge
- School of Pharmacy & Bioengineering, Keele University, Keele ST5 5BG, UK
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6UB, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough LE11 3TU, UK
| | - Ying Yang
- School of Pharmacy & Bioengineering, Keele University, Keele ST5 5BG, UK
| | | |
Collapse
|
9
|
Kim JT, Lee SB, Son MJ, Zhou Y, Qiu S, Park HJ, Jeon DH, Kim YJ, Lee HJ. Perilla oil and α-linolenic acid ameliorated thrombosis in rats induced by collagen and epinephrine. Food Sci Biotechnol 2023; 32:997-1003. [PMID: 37123064 PMCID: PMC10130252 DOI: 10.1007/s10068-022-01241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Perilla frutescens is an annual herbaceous plant widely cultivated for oil production in China, Japan, and Korea. In this study, we investigated the effect of perilla oil (PO) on thrombosis induced by collagen and epinephrine (CE) in rats. The oral administration of PO significantly increased prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the blood plasma and inhibited the expression of cells adhesion markers (CAMs) such as intercellular CAM-1 (ICAM-1), vascular CAM (VCAM-1), E-selectin and P-selectin in the aorta tissue. Furthermore, pulmonary occlusion induced by CE in rats was suppressed by PO. α-Linolenic acid (ALA) was quantified at 60.14 ± 2.50 g/100 g of PO, and its oral administration at the same concentration with that in PO exerted the similar effect on PT, aPTT, ICAM-1, VCAM-1, E-selectin and P-selectin in CE-induced thrombosis rats. Taken together, PO and ALA significantly ameliorated thrombosis by regulating CAMs.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Dong Hyeon Jeon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul, 01811 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| |
Collapse
|
10
|
Temme S, Kleimann P, Grandoch M, Wang X, Peter K, Simon F, Schrader J, Flögel U. Aktives Targeting zur Visualisierung von thrombotischen Prozessen mittels 19F-MRT. GEFÄSSCHIRURGIE 2022. [DOI: 10.1007/s00772-022-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Jones WL, Ramos CR, Banerjee A, Moore EE, Hansen KC, Coleman JR, Kelher M, Neeves KB, Silliman CC, Di Paola J, Branchford BR. Apolipoprotein A-I, elevated in trauma patients, inhibits platelet activation and decreases clot strength. Platelets 2022; 33:1119-1131. [PMID: 35659185 PMCID: PMC9547822 DOI: 10.1080/09537104.2022.2078488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is elevated in the plasma of a subgroup of trauma patients with systemic hyperfibrinolysis. We hypothesize that apoA-I inhibits platelet activation and clot formation. The effects of apoA-I on human platelet activation and clot formation were assessed by whole blood thrombelastography (TEG), platelet aggregometry, P-selectin surface expression, microfluidic adhesion, and Akt phosphorylation. Mouse models of carotid artery thrombosis and pulmonary embolism were used to assess the effects of apoA-I in vivo. The ApoA-1 receptor was investigated with transgenic mice knockouts (KO) for the scavenger receptor class B member 1 (SR-BI). Compared to controls, exogenous human apoA-I inhibited arachidonic acid and collagen-mediated human and mouse platelet aggregation, decreased P-selectin surface expression and Akt activation, resulting in diminished clot strength and increased clot lysis by TEG. ApoA-I also decreased platelet aggregate size formed on a collagen surface under flow. In vivo, apoA-I delayed vessel occlusion in an arterial thrombosis model and conferred a survival advantage in a pulmonary embolism model. SR-BI KO mice significantly reduced apoA-I inhibition of platelet aggregation versus wild-type platelets. Exogenous human apoA-I inhibits platelet activation, decreases clot strength and stability, and protects mice from arterial and venous thrombosis via the SR-BI receptor.
Collapse
Affiliation(s)
- Wilbert L Jones
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher R. Ramos
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Anirban Banerjee
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Ernest E. Moore
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Dept. of Surgery, Denver Health Medical Center, Denver CO
| | - Kirk C. Hansen
- Department of Biochemistry/Molecular Genetics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julia R. Coleman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Keith B. Neeves
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Bioengineering, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher C. Silliman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Jorge Di Paola
- Dept. of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
12
|
Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded Protein Response Differentially Modulates the Platelet Phenotype. Circ Res 2022; 131:290-307. [PMID: 35862006 PMCID: PMC9357223 DOI: 10.1161/circresaha.121.320530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCβ3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCβ3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kanchi Patell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| |
Collapse
|
13
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Scanning laser-induced endothelial injury: a standardized and reproducible thrombosis model for intravital microscopy. Sci Rep 2022; 12:3955. [PMID: 35273275 PMCID: PMC8913794 DOI: 10.1038/s41598-022-07892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular injury models are indispensable for studying thrombotic processes in vivo. Amongst the available methods for inducing thrombosis, laser-induced endothelial injury (LIEI) has several unique advantages. However, a lack of methodological standardization and expensive instrumentation remain significant problems decreasing reproducibility and impeding the adoption of LIEI in the wider scientific community. In this, study, we developed a standardized protocol for scanning laser-induced endothelial injury (scanning-LIEI) of murine mesenteric veins using the intrinsic 405 nm laser of a conventional laser scanning confocal microscope. We show that our model produces thrombi with prominent core-shell architectures and minimal radiation-related fluorescence artefacts. In comparison with previous methods, the scanning-LIEI model exhibits reduced experimental variability, enabling the demonstration of dose-response effects for anti-thrombotic drugs using small animal cohorts. Scanning-LIEI using the intrinsic 405 nm laser of a confocal laser scanning microscope represents a new method to induce standardized vascular injury with improved reproducibility of thrombus formation. The reduced need for instrument customisation and user experience means that this model could be more readily adopted in the research community.
Collapse
|
15
|
Mohammed BM, Cheng Q, Ivanov IS, Gailani D. Murine Models in the Evaluation of Heparan Sulfate-Based Anticoagulants. Methods Mol Biol 2022; 2303:789-805. [PMID: 34626423 PMCID: PMC8552346 DOI: 10.1007/978-1-0716-1398-6_59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evaluating prospective anticoagulant therapies in animal thrombosis and bleeding models are standard pre-clinical approaches. Mice are frequently used for initial evaluations because a variety of models have been developed in this well-characterized species, and mice are relatively inexpensive to maintain. Because mice seem to be resistant to forming "spontaneous" thrombosis, vessel injury is used to induce intravascular clot formation. For the purpose of testing heparin-based drugs, we adapted a well-established model in which thrombus formation in the carotid artery is induced by exposing the vessel to ferric chloride. For studying anticoagulant effects on venous thrombosis, we use a model in which the inferior vena cava is ligated and the size of the resulting clots are measured. The most common adverse effect of anticoagulation therapy is bleeding. We describe a simple tail bleeding time that has been used for many years to study the effects of anticoagulants on hemostasis. We also describe a more reproducible, but more technically challenging, saphenous vein bleeding model that is also used for this purpose.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Ivan S Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
17
|
Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An "occlusive thrombosis-on-a-chip" microfluidic device for investigating the effect of anti-thrombotic drugs. LAB ON A CHIP 2021; 21:4104-4117. [PMID: 34523623 PMCID: PMC8547327 DOI: 10.1039/d1lc00347j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 05/03/2023]
Abstract
Cardiovascular disease remains one of the world's leading causes of death. Myocardial infarction (heart attack) is triggered by occlusion of coronary arteries by platelet-rich thrombi (clots). The development of new anti-platelet drugs to prevent myocardial infarction continues to be an active area of research and is dependent on accurately modelling the process of clot formation. Occlusive thrombi can be generated in vivo in a range of species, but these models are limited by variability and lack of relevance to human disease. Although in vitro models using human blood can overcome species-specific differences and improve translatability, many models do not generate occlusive thrombi. In those models that do achieve occlusion, time to occlusion is difficult to measure in an unbiased and objective manner. In this study we developed a simple and robust approach to determine occlusion time of a novel in vitro microfluidic assay. This highlighted the potential for occlusion to occur in thrombosis microfluidic devices through off-site coagulation, obscuring the effect of anti-platelet drugs. We therefore designed a novel occlusive thrombosis-on-a-chip microfluidic device that reliably generates occlusive thrombi at arterial shear rates by quenching downstream coagulation. We further validated our device and methods by using the approved anti-platelet drug, eptifibatide, recording a significant difference in the "time to occlude" in treated devices compared to control conditions. These results demonstrate that this device can be used to monitor the effect of antithrombotic drugs on time to occlude, and, for the first time, delivers this essential data in an unbiased and objective manner.
Collapse
Affiliation(s)
- Jess Berry
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - François J Peaudecerf
- Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicole A Masters
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Keith B Neeves
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
18
|
Ye S, Liu Y, Lu Y, Ji Y, Mei L, Yang M, Gong X, Gu Q, Li D, Yang F, Li CJ. Cyclic RGD functionalized liposomes targeted to activated platelets for thrombosis dual-mode magnetic resonance imaging. J Mater Chem B 2021; 8:447-453. [PMID: 31833530 DOI: 10.1039/c9tb01834d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thrombotic disease is a serious threat to human health. The rapid and accurate detection of thrombosis is still a clinical challenge. To achieve the accurate diagnosis of thrombosis with magnetic resonance imaging (MRI), nanomaterials-based contrast agents have been developed in recent years. In this study, cyclic RGD functionalized liposomes targeted to the activated platelets are developed for thrombosis dual-mode MRI. The cyclic RGD functionalized liposomes (cRGD@MLP-Gd) encapsulated with gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA) and superparamagnetic iron oxide (SPIO) are prepared, and their thrombus-targeted T1 and T2 MRI potential is evaluated in vitro and in vivo. Results show that cRGD@MLP-Gd could actively bind to the activated platelets and gradually accumulate at the thrombus site with a T1 - T2 contrast enhancement imaging effect in vitro. In in vivo MRI experiments, cRGD@MLP-Gd exhibits a T2 contrast enhancement at 1 h after intravenous administration, followed by a visibly larger T1 contrast enhancement at the thrombus site. This dynamic property showed that cRGD@MLP-Gd could actively bind to thrombus and possessed an enhanced T1 and T2 dual-mode MRI effect in vivo. Our results establish the characterization, feasibility and superiority of cRGD@MLP-Gd for the rapid identification of thrombosis, showing great potential to improve diagnostic accuracy and sensitivity to thrombosis of the MRI technique.
Collapse
Affiliation(s)
- Sen Ye
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
20
|
Grover SP, Bendapudi PK, Yang M, Merrill-Skoloff G, Govindarajan V, Mitrophanov AY, Flaumenhaft R. Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laser-induced injury model of thrombosis. J Thromb Haemost 2020; 18:3078-3085. [PMID: 33456401 PMCID: PMC7805486 DOI: 10.1111/jth.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The cremaster arteriole laser-induced injury model is a powerful technique with which to investigate the molecular mechanisms that drive thrombus formation. This model is capable of direct visualization and quantification of accumulation of thrombus constituents, including both platelets and fibrin. However, a large degree of variability in platelet accumulation and fibrin formation is observed between thrombi. Strategies to understand this variability will enhance performance and standardization of the model. We determined whether ablation injury size contributes to variation in platelet accumulation and fibrin formation and, if so, whether incorporating ablation injury size into measurements reduces variation. Methods Thrombus formation was initiated by laser-induced injury of cremaster arterioles of mice (n=59 injuries). Ablation injuries within the vessel wall were consistently identified and quantified by measuring the length of vessel wall injury observed immediately following laser-induced disruption. Platelet accumulation and fibrin formation as detected by fluorescently-labeled antibodies were captured by digital intra-vital microscopy. Results Laser-induced disruption of the vessel wall resulted in ablation injuries of variable length (18-95 μm) enabling interrogation of the relationship between injury severity and thrombus dynamics. Strong positive correlations were observed between vessel injury length and both platelet and fibrin when the data are transformed as area under the curve (Spearman r = 0.80 and 0.76 respectively). Normalization of area under the curve measurements by injury length reduced intraclass coefficients of variation among thrombi and improved hypothesis testing when comparing different data sets. Conclusions Measurement of vessel wall injury length provides a reliable and robust marker of injury severity. Injury length can effectively normalize measurements of platelet accumulation and fibrin formation improving data interpretation and standardization.
Collapse
Affiliation(s)
- Steven P Grover
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Oncology and Hematology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|
22
|
Sivaraja M, Clemens DM, Sizikov S, Dash S, Xu C, Rienzo M, Yang B, Ryan M, Chattopadhyay M, Igoudin L, Chang SS, Keutzer S, Zalicki P, Estiarte MA, Shiau TP, Short KM, Williams DC, Datta A, Pozzi N, Di Cera E, Gibson CM, Fox KAA, Kita DB. VE-1902-A direct thrombin inhibitor with reversible covalent mechanism of action shows efficacy with reduced bleeding in rodent models of thrombosis. Thromb Res 2020; 190:112-121. [PMID: 32339947 DOI: 10.1016/j.thromres.2020.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/18/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION High incidence of bleeding events remains a key risk for patients taking anticoagulants, especially those in need of long-term combination therapy with antiplatelet agents. As a consequence, patients may not receive clinically indicated combination antithrombotic therapy. Here, we report on VE-1902, a member of a novel class of precision oral anticoagulants (PROACs) that combines effective anticoagulation with reduced bleeding in preclinical testing. METHODS AND RESULTS Acting through covalent, reversible active-site modification of thrombin similar to a previously described molecule [1], VE-1902 shows potency and selectivity for thrombin inhibition in human plasma comparable to clinically relevant direct thrombin inhibitors (DTI) such as argatroban and dabigatran (thrombin generation assay ETP EC50 = 1.3 μM compared to 0.36 μM and 0.31 μM for argatroban and dabigatran; >100-fold selectivity against related serine proteases). Unlike the current anticoagulants, VE-1902 does not significantly inhibit thrombin-mediated platelet activation in in vivo models of thrombosis. In the thrombin generation assay, the compound inhibits thrombin formation without significantly delaying the initiation phase of the clotting cascade. These features are possibly responsible for the observed reduced bleeding in tail bleeding and saphenous vein bleeding models. Consistent with this novel pharmacological profile, VE-1902 shows efficacious anticoagulation in several fibrin-driven animal models of thrombosis (arteriovenous shunt, venous stasis thrombosis, and thrombin-induced thromboembolism models), whereas it does not significantly prevent arterial occlusion in the platelet dependent FeCl3 model. CONCLUSIONS By leaving platelet activation following vascular injury mostly unaffected, VE-1902, and the PROACs more generally, represent a new generation of precision anticoagulants with reduced bleeding risk.
Collapse
Affiliation(s)
| | | | - Sivan Sizikov
- Verseon Corporation, Fremont, CA, United States of America
| | - Subhadra Dash
- Verseon Corporation, Fremont, CA, United States of America
| | - Chengpei Xu
- Verseon Corporation, Fremont, CA, United States of America
| | - Matthew Rienzo
- Verseon Corporation, Fremont, CA, United States of America
| | - Bo Yang
- Verseon Corporation, Fremont, CA, United States of America
| | - Molly Ryan
- Verseon Corporation, Fremont, CA, United States of America
| | | | - Lev Igoudin
- Verseon Corporation, Fremont, CA, United States of America
| | | | - Samuel Keutzer
- Verseon Corporation, Fremont, CA, United States of America
| | - Piotr Zalicki
- Verseon Corporation, Fremont, CA, United States of America
| | | | | | - Kevin M Short
- Verseon Corporation, Fremont, CA, United States of America
| | | | - Anirban Datta
- Verseon Corporation, Fremont, CA, United States of America
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - C Michael Gibson
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States of America
| | - Keith A A Fox
- Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David B Kita
- Verseon Corporation, Fremont, CA, United States of America
| |
Collapse
|
23
|
Sun Y, Venugopal J, Guo C, Fan Y, Li J, Gong Y, Chen YE, Zhang H, Eitzman DT. Clopidogrel Resistance in a Murine Model of Diet-Induced Obesity Is Mediated by the Interleukin-1 Receptor and Overcome With DT-678. Arterioscler Thromb Vasc Biol 2020; 40:1533-1542. [PMID: 32268786 DOI: 10.1161/atvbaha.120.314146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Clopidogrel is a commonly used P2Y12 inhibitor to treat and prevent arterial thrombotic events. Clopidogrel is a prodrug that requires bioactivation by CYP (cytochrome P450) enzymes to exert antiplatelet activity. Diabetes mellitus is associated with an increased risk of ischemic events, and impaired ability to generate the active metabolite (AM) from clopidogrel. The objective of this study is to identify the mechanism of clopidogrel resistance in a murine model of diet-induced obesity (DIO). Approach and Results: C57BL/6J mice and IL-1R-/- mice were given high-fat diet for 10 weeks to generate a murine model of diet-induced obesity. Platelet aggregation and carotid arterial thrombosis were assessed in response to clopidogrel treatment. Wild-type DIO mice exhibited resistance to antiplatelet and antithrombotic effects of clopidogrel that was associated with reduced hepatic expression of CYP genes and reduced generation of the AM. IL (Interleukin)-1 receptor-deficient DIO (IL1R-/- DIO) mice showed no resistance to clopidogrel. Lack of resistance was accompanied by increased exposure of the clopidogrel AM. This resistance was also absent when wild-type DIO mice were treated with the conjugate of the clopidogrel AM, DT-678. CONCLUSIONS These findings indicate that antiplatelet effects of clopidogrel may be impaired in the setting of diabetes mellitus due to reduced prodrug bioactivation related to IL-1 receptor signaling. Therapeutic targeting of P2Y12 in patients with diabetes mellitus using the conjugate of clopidogrel AM may lead to improved outcomes.
Collapse
Affiliation(s)
- Yifang Sun
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.).,Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China (Y.S.)
| | - Jessica Venugopal
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.)
| | - Chiao Guo
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.)
| | - Yanbo Fan
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.)
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China (J.L., Y.G.)
| | - Yanjun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, China (J.L., Y.G.)
| | - Y Eugene Chen
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.)
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor (H.Z.)
| | - Daniel T Eitzman
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor (Y.S., J.V., C.G., Y.F., Y.E.C., D.T.E.)
| |
Collapse
|
24
|
Timing of Heparin Administration Modulates Arterial Occlusive Thrombotic Response in Rats. J Cardiovasc Dev Dis 2020; 7:jcdd7010010. [PMID: 32197497 PMCID: PMC7151218 DOI: 10.3390/jcdd7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: The timing for initiation of effective antithrombotic therapy relative to the onset of arterial thrombosis may influence outcomes. This report investigates the hypothesis that early administration of heparin anticoagulation relative to the onset of thrombotic occlusion will effect a reduction in occlusion. Methods: A standard rat model of experimental thrombosis induction was used, injuring the carotid artery exposure with FeCl3-saturated filter paper, followed by flow monitoring for onset of occlusion and subsequent embolization events. Intravenous heparin administration (200 units/mL) was timed relative to the initiation of injury or onset of near occlusion, compared with controls (no heparin administration). Results: No occlusion was found for delivery of heparin 5 min prior to thrombus induction, whereas all vessels occluded without heparin. Unstable (embolic) thrombi were seen with heparin given at or shortly after initial occlusion. Only 9% (1/11) of the vessels had permanent occlusion when heparin was given at the time of thrombotic onset (p < 0.0001 vs. unheparinized), while 50% occluded when heparin was delayed by 5 min (p > 0.05). Conclusions: These findings provide evidence that antithrombotic therapy may need to be administered prior to the onset of anticipated loss of patency, with less effectiveness when given after occlusion has occurred.
Collapse
|
25
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
26
|
Tang Z, Kattula S, Holle LA, Cooley BC, Lin F, Wolberg AS. Factor XIII deficiency does not prevent FeCl 3-induced carotid artery thrombus formation in mice. Res Pract Thromb Haemost 2020; 4:111-116. [PMID: 31989092 PMCID: PMC6971319 DOI: 10.1002/rth2.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The compositions of venous (red blood cell-rich) and arterial (platelet-rich) thrombi are mediated by distinct pathophysiologic processes; however, fibrin is a major structural component of both. The transglutaminase factor XIII (FXIII) stabilizes fibrin against mechanical and biochemical disruption and promotes red blood cell retention in contracted venous thrombi. Previous studies have shown factor XIII (FXIII) inhibition decreases whole blood clot mass and therefore, may be a therapeutic target for reducing venous thrombosis. The role of FXIII in arterial thrombogenesis is less studied, and the particular contribution of platelet FXIII remains unresolved. OBJECTIVE To determine whether FXIII reduction prevents experimental arterial thrombogenesis. METHODS Using wild-type mice and mice with genetically imposed deficiency in FXIII, we measured thrombus formation and stability following ferric chloride-induced arterial thrombosis. We also determined the impact of FXIII on the mass of contracted platelet-rich plasma clots. RESULTS Following vessel injury, F13a+/+ , F13a+/- , and F13a-/- mice developed occlusive arterial thrombi. FXIII deficiency did not significantly reduce the incidence or prolong the time to occlusion. FXIII deficiency also did not alter the timing of reflow events or decrease platelet-rich clot mass. CONCLUSIONS FXIII does not significantly alter the underlying pathophysiology of experimental arterial thrombus formation.
Collapse
Affiliation(s)
- Zhaoming Tang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Sravya Kattula
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lori A. Holle
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Feng‐Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
27
|
Collado-Diaz V, Andujar I, Sanchez-Lopez A, Orden S, Blanch-Ruiz MA, Martinez-Cuesta MA, Blas-García A, Esplugues JV, Álvarez Á. Abacavir Induces Arterial Thrombosis in a Murine Model. J Infect Dis 2019; 218:228-233. [PMID: 29346575 DOI: 10.1093/infdis/jiy001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
Abstract
Background The purinergic system is known to underlie prothrombotic and proinflammatory vascular programs, making the profile of experimental actions demonstrated by abacavir compatible with thrombogenesis. However, direct evidence of a prothrombotic effect by the drug has been lacking. Methods The present study appraised the effects of abacavir in a well-validated animal model of arterial thrombosis. The role of ATP-P2X7 receptors in the actions of the drug was also assessed, and the actions of recognized vascular-damaging agents and other nucleoside reverse-transcriptase inhibitors (NRTIs) were evaluated and compared to those of abacavir. Results Abacavir dose-dependently promoted thrombus formation. This effect was reversed by a P2X7-receptor antagonist and was nonexistent in P2X7 knockout mice. The effects of abacavir were similar to those of diclofenac and rofecoxib. Other NRTIs had no thrombosis-related effects. Conclusion Abacavir promotes arterial thrombosis through interference with purinergic signaling, suggesting a possible biological mechanism for the clinical association of abacavir with cardiovascular diseases.
Collapse
Affiliation(s)
- Victor Collado-Diaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Isabel Andujar
- FISABIO-Fundación Hospital Universitario Dr Peset, Valencia, Spain
| | - Ainhoa Sanchez-Lopez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Samuel Orden
- FISABIO-Fundación Hospital Universitario Dr Peset, Valencia, Spain
| | | | - María Angeles Martinez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| | - Ana Blas-García
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,FISABIO-Fundación Hospital Universitario Dr Peset, Valencia, Spain.,CIBERehd, Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| |
Collapse
|
28
|
Lüsebrink E, Warm V, Pircher J, Ehrlich A, Zhang Z, Strecker J, Chambon P, Massberg S, Schulz C, Petzold T. Role of RXRβ in platelet function and arterial thrombosis. J Thromb Haemost 2019; 17:1489-1499. [PMID: 31172692 DOI: 10.1111/jth.14531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Retinoid X receptors (RXR) are a family of nuclear receptors that play critical roles in the regulation of numerous fundamental biological processes including cell proliferation, differentiation, and death. Earlier studies suggested that treatment with RXR agonists attenuates platelet activation in all adults (male and femal) and mice; however, the underlying molecular mechanisms have remained insufficiently understood. To elaborate further on this issue, we characterized megakaryocyte and platelet-specific RXR knockout mice to study platelet function in vitro and arterial thrombosis in vivo. APPROACH AND RESULTS First, we identified RXRβ as the dominant RXR receptor in mouse platelets, prompting us to generate a megakaryocyte and platelet-specific PF4Cre ;RXRβflox/flox mouse. Second, we studied activation, spreading, and aggregation of platelets from C57Bl/6 wild-type mice (WT), PF4Cre+ ;RXRβflox/flox mice, and PF4Cre- ;RXRβflox/flox littermate controls in the presence or absence of RXR ligands, that is, 9-cis-retinoic acid (9cRA) and methoprene acid (MA). We found that in vitro treatment with RXR ligands attenuates spreading and aggregation of platelets and increases proplatelet particle formation from megakaryocytes (MK). However, these effects are also observed in RXRβ-deficient platelets and MKs and are thus independent of RXRβ. Third, we investigated arterial thrombus formation in an iron chloride (FeCl3)-induced vascular injury model in vivo, which is also not affected by the absence of RXRβ in platelets. CONCLUSIONS Absence of the most abundant RXR receptor in mouse platelets, RXRβ, does not affect platelet function in vitro and thrombus formation in vivo. Furthermore, RXR agonists' mediated effects on platelet function are independent of RXRβ expression. Hence, our data do not support a significant contribution of RXRβ to arterial thrombosis in mice.
Collapse
Affiliation(s)
- Enzo Lüsebrink
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Verena Warm
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Pierre Chambon
- Département de Biologie, Cellulaire and Développement, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
29
|
Li F, Yang X, Liu J, Shu K, Shen C, Chen T, Yang W, Li S, Wang X, Jiang M. Antithrombotic Effect of shRNA Target F12 Mediated by Adeno-Associated Virus. MOLECULAR THERAPY - NUCLEIC ACIDS 2019; 16:295-301. [PMID: 30959404 PMCID: PMC6454094 DOI: 10.1016/j.omtn.2019.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/10/2018] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
Coagulation factor XII (FXII) plays a crucial role in thrombosis. Moreover, deficiencies in FXII are not associated with excessive bleeding, and its depletion exhibits satisfactory protective effect on thrombus formation. Several strategies targeting FXII have been applied to inhibit thrombosis formation. In this study, C57BL/6 mice were injected with adeno-associated virus (AAV) to identify the role of short hairpin RNA (shRNA) in thrombosis. Differences in liver FXII, coagulation function, and thrombus formation were detected. The potential side effects of FXII were then evaluated through analysis of tail bleeding, biochemical indices, and pathological sections. Results showed that shRNAs, especially shRNA2, carried by AAV, effectively reduced the expression of FXII. Furthermore, only shRNA2 demonstrated an anti-thrombosis effect on multiple models without hemorrhage and side effects. Hence the novel approach of AAV-based shRNA is specific and safe for inhibiting FXII and thrombosis.
Collapse
|
30
|
Moreno A, Pitoc GA, Ganson NJ, Layzer JM, Hershfield MS, Tarantal AF, Sullenger BA. Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chem Biol 2019; 26:634-644.e3. [PMID: 30827937 PMCID: PMC6707742 DOI: 10.1016/j.chembiol.2019.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Biopharmaceuticals have become increasingly attractive therapeutic agents and are often PEGylated to enhance their pharmacokinetics and reduce their immunogenicity. However, recent human clinical trials have demonstrated that administration of PEGylated compounds can evoke anti-PEG antibodies. Considering the ubiquity of PEG in commercial products and the presence of pre-existing anti-PEG antibodies in patients in large clinical trials evaluating a PEG-modified aptamer, we investigated how anti-PEG antibodies effect the therapeutic activities of PEGylated RNA aptamers. We demonstrate that anti-PEG antibodies can directly bind to and inhibit anticoagulant aptamer function in vitro and in vivo. Moreover, in parallel studies we detected the presence of anti-PEG antibodies in nonhuman primates after a single administration of a PEGylated aptamer. Our results suggest that anti-PEG antibodies can limit the activity of PEGylated drugs and potentially compromise the activity of otherwise effective therapeutic agents.
Collapse
Affiliation(s)
- Angelo Moreno
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA
| | | | - Nancy J. Ganson
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Juliana M. Layzer
- Department of Surgery, Duke University, Durham, NC, USA,Duke Clinical and Translational Science Institute, Durham, NC, USA
| | | | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, NHLBI Center for Gene Transfer for Heart, Lung, and Blood Disease, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Bruce A. Sullenger
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA,Contact Info: Corresponding Author and Lead Contact:
| |
Collapse
|
31
|
Sashindranath M, Sturgeon SA, French S, Craenmehr DDD, Selan C, Freddi S, Johnson C, Cody SH, Nesbitt WS, Hamilton JR, Nandurkar HH. The mode of anesthesia influences outcome in mouse models of arterial thrombosis. Res Pract Thromb Haemost 2019; 3:197-206. [PMID: 31011704 PMCID: PMC6462741 DOI: 10.1002/rth2.12184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Arterial thrombosis models are important for preclinical evaluation of antithrombotics but how anesthetic protocol can influence experimental results is not studied. OBJECTIVES We studied how three most commonly used rodent anesthetics affect the induction of thrombosis and thrombus resolution with antiplatelet agent integrilin (Eptifibatide). METHODS The Folts, electrolytic, and FeCl3 models of carotid artery thrombosis were evaluated. The extent of blood flow reduction required to elicit cyclic flow reductions (CFR) was examined in the Folts model. The occlusion time and stability following electrolytic or FeCl3 injury was assessed. The efficacy of Eptifibatide was studied in each cohort and clot composition following FeCl3 application was assessed histologically. RESULTS Isoflurane and ketamine-xylazine (ket-x) elicited higher basal blood flow velocities. For reliable CFR in the Folts model, a higher degree of blood flow reduction was required under ket-x and isoflurane. For the FeCl3 and electrolytic models, injury severity had to be increased in mice under ket-x anesthesia to achieve rapid occlusion. FeCl3-injured artery sections from ket-x and isoflurane-treated mice showed vessel dilatation and clots that were more fibrin/red-cell rich compared to pentobarbitone. Integrilin led to cycle abolishment for all three Folts-injury cohorts but for the electrolytic model a 2.5-fold higher dose was required to restore blood flow under pentobarbitone. Integrilin after FeCl3 arterial injury was partially ineffective in isoflurane-treated mice. CONCLUSIONS Anesthesia impacts rodent carotid artery occlusion experiments and alters integrilin efficacy. It is important to consider anesthetic protocols in animal experiments involving pharmacological agents for treatment of atherothrombosis.
Collapse
Affiliation(s)
- Maithili Sashindranath
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Sharelle A. Sturgeon
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Shauna French
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Daphne D. D. Craenmehr
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Carly Selan
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Susanna Freddi
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Chad Johnson
- Monash Micro ImagingMonash UniversityMelbourneVic.Australia
- Burnet InstituteMelbourneVic.Australia
| | | | - Warwick S. Nesbitt
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
- School of EngineeringRMIT UniversityMelbourneVICAustralia
| | - Justin R. Hamilton
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Harshal H. Nandurkar
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| |
Collapse
|
32
|
CARNEIRO GIANED, SIELSKI MICHELIS, VIEIRA CRISTIANOPEDROSO, COSTA FABIOTRINDADEMARANHÃO, WERNECK CLAUDIOC, VICENTE CRISTINAP. Administration of endothelial progenitor cells accelerates the resolution of arterial thrombus in mice. Cytotherapy 2019; 21:444-459. [DOI: 10.1016/j.jcyt.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
|
33
|
Brake MA, Ivanciu L, Maroney SA, Martinez ND, Mast AE, Westrick RJ. Assessing Blood Clotting and Coagulation Factors in Mice. ACTA ACUST UNITED AC 2019; 9:e61. [PMID: 30875463 DOI: 10.1002/cpmo.61] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian blood coagulation system was designed to restrict blood loss due to injury as well as keep the blood fluid within the blood vessels of the organism. Blood coagulation activity in inbred mouse strains varies widely among strains, suggesting that many genomic variants affect hemostasis. Some of these molecules have been discovered and characterized; however, many are still unknown. Genetically modified mouse technologies are providing a plethora of new mouse models for investigating the regulation of blood coagulation. Here we provide a protocol for the tail bleeding time as a primary assessment of in vivo blood coagulation, as well as in vitro methods such as the prothrombin time, activated partial thromboplastin time, and thrombin generation assay. We also provide protocols for the assessment of the activities of specific known factors involved in blood coagulation. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Lacramioara Ivanciu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Divison of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Susan A Maroney
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Nicolas D Martinez
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan.,Center for Data Science and Big Data Analysis, Center for Biomedical Research, Oakland University, Rochester, Michigan
| |
Collapse
|
34
|
Liang W, Fan Y, Lu H, Chang Z, Hu W, Sun J, Wang H, Zhu T, Wang J, Adili R, Garcia-Barrio MT, Holinstat M, Eitzman D, Zhang J, Eugene Chen Y. KLF11 (Krüppel-Like Factor 11) Inhibits Arterial Thrombosis via Suppression of Tissue Factor in the Vascular Wall. Arterioscler Thromb Vasc Biol 2019; 39:402-412. [PMID: 30602303 PMCID: PMC6393209 DOI: 10.1161/atvbaha.118.311612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled. In this study, we investigated the role of KLF11 in vascular smooth muscle cell biology and arterial thrombosis. Approach and Results- Using a ferric chloride-induced thrombosis model, we found that the occlusion time was significantly reduced in conventional Klf11 knockout mice, whereas bone marrow transplantation could not rescue this phenotype, suggesting that vascular KLF11 is critical for inhibition of arterial thrombosis. We further demonstrated that vascular smooth muscle cell-specific Klf11 knockout mice also exhibited significantly reduced occlusion time. The expression of tissue factor (encoded by the F3 gene), a main initiator of the coagulation cascade, was increased in the artery of Klf11 knockout mice, as determined by real-time quantitative polymerase chain reaction and immunofluorescence. Furthermore, vascular smooth muscle cells isolated from Klf11 knockout mouse aortas showed increased tissue factor expression, which was rescued by KLF11 overexpression. In human aortic smooth muscle cells, small interfering RNA-mediated knockdown of KLF11 increased tissue factor expression. Consistent results were observed on adenovirus-mediated overexpression of KLF11. Mechanistically, KLF11 downregulates F3 at the transcriptional level as determined by reporter and chromatin immunoprecipitation assays. Conclusions- Our data demonstrate that KLF11 is a novel transcriptional suppressor of F3 in vascular smooth muscle cells, constituting a potential molecular target for inhibition of arterial thrombosis.
Collapse
Affiliation(s)
- Wenying Liang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Ziyi Chang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Huilun Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Tianqing Zhu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jintao Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann
Arbor, MI
| | - Minerva T. Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | | | - Daniel Eitzman
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
35
|
Ueda H, Neyama H, Sasaki K, Miyama C, Iwamoto R. Lysophosphatidic acid LPA 1 and LPA 3 receptors play roles in the maintenance of late tissue plasminogen activator-induced central poststroke pain in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 5:100020. [PMID: 31194070 PMCID: PMC6550111 DOI: 10.1016/j.ynpai.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
We developed a mouse model for central post-stroke pain (CPSP), a centrally-originated neuropathic pain (NeuP). In this mode, mice were first injected with Rose Bengal, followed by photo-irradiation of left middle cerebral artery (MCA) to generate thrombosis. Although the MCA thrombosis was soon dissolved, the reduced blood flow remained for more than 24 h due to subsequent occlusion of microvessels. This photochemically induced thrombosis (PIT) model showed a hypersensitivity to the electrical stimulation of both sides of paw, but did not show any abnormal pain in popular thermal or mechanical nociception tests. When tissue-type plasminogen activator (tPA) was injected 6 h after the PIT stress, tPA-dependent hypersensitivity to the electrical paw stimulation and stable thermal and mechanical hyperalgesia on both sides for more than 17 or 18 days after the PIT treatment. These hyperalgesic effects were abolished in lysophosphatidic acid receptor 1 (LPA1)- and lysophosphatidic acid receptor 3 (LPA3)-deficient mice. When Ki-16425, an LPA1 and LPA3 antagonist was treated twice daily for 6 days consecutively, the thermal and mechanical hyperalgesia at day 17 and 18 were significantly reversed. The liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed that there is a significant increase in several species of LPA molecules in somatosensory S-I and medial dorsal thalamus (MD), but not in striatum or ventroposterior thalamus. All these results suggest that LPA1 and LPA3 signaling play key roles in the development and maintenance of CPSP.
Collapse
Key Words
- CPSP, central post-stroke pain
- Central poststroke pain
- DMSO, dimethyl sulfoxide
- EPW, electrical stimulation-induced paw withdrawal
- HE, Hematoxylin and Eosin
- LC–MS/MS
- LC–MS/MS, liquid chromatography–mass spectrometry
- LPA1, lysophosphatidic acid receptor 1
- LPA1-KO, LPA1-deficient
- LPA3, lysophosphatidic acid receptor 3
- Lysophosphatidic acid
- MCA, middle cerebral artery
- MD, medial dorsal thalamus
- MRM, multiple reaction monitoring
- NeuP, neuropathic pain
- PFA, paraformaldehyde
- PIT, photochemically induced thrombosis
- PWL, paw withdrawal latency
- Photochemically induced thrombosis
- RB, Rose Bengal
- S-I, sensory cortex
- TTC, 2,3,5-triphenyltetrazolium chloride
- i.v., intravenously
- pSNL, partial sciatic nerve ligation
- tMCAO, transient middle cerebral artery occlusion
- tPA
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
36
|
Kim L, Lim Y, Park SY, Kim YJ, Kwon O, Lee JH, Shin JH, Yang YK, Kim JY. A comparative study of the antithrombotic effect through activated endothelium of garlic powder and tomato extracts using a rodent model of collagen and epinephrine induced thrombosis. Food Sci Biotechnol 2018; 27:1513-1518. [PMID: 30319862 DOI: 10.1007/s10068-018-0469-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022] Open
Abstract
In this study, garlic powder, tomato extract and a mixture of both were analyzed for anti-thrombotic effects using a collagen and epinephrine induced thrombosis model. Rats were randomly assigned to control, thrombosis induced control (COL/EP), garlic powder (G), tomato extract (T) and mixture of garlic powder and tomato extract (GT) groups. Test materials were administered for 7 days and thrombosis was induced by collagen and epinephrine injection. The results showed that G, T, and GT delayed activated partial thromboplastin time and reduced the expression of intracellular adhesion molecule-1 mRNA. Histological analysis of aorta and lung revealed that thrombosis was partially improved by G, T, and GT. Although there was no synergistic effect in GT compared to G and T treatment, this study showed that G, T, and GT have anti-thrombotic effect.
Collapse
Affiliation(s)
- Leeseon Kim
- 1Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Yeni Lim
- 2Department of Nutritional Science and Food Management, Ewha Woman's University, Seoul, 03760 Republic of Korea
| | - Soo-Yeon Park
- 2Department of Nutritional Science and Food Management, Ewha Woman's University, Seoul, 03760 Republic of Korea
| | - You Jin Kim
- 2Department of Nutritional Science and Food Management, Ewha Woman's University, Seoul, 03760 Republic of Korea
| | - Oran Kwon
- 2Department of Nutritional Science and Food Management, Ewha Woman's University, Seoul, 03760 Republic of Korea
| | - Jin Hee Lee
- 3Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggido 13488 Republic of Korea
| | - Jae-Ho Shin
- 4Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggido 13135 Republic of Korea
| | - Yoon Kyoung Yang
- 5Department of Nutritional Science and Food Management, Soongeui Women's College, Seoul, 04628 Republic of Korea
| | - Ji Yeon Kim
- 1Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
37
|
Pan H, Palekar RU, Hou KK, Bacon J, Yan H, Springer LE, Akk A, Yang L, Miller MJ, Pham CT, Schlesinger PH, Wickline SA. Anti-JNK2 peptide-siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice. Int J Nanomedicine 2018; 13:5187-5205. [PMID: 30233180 PMCID: PMC6135209 DOI: 10.2147/ijn.s168556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A direct and independent role of inflammation in atherothrombosis was recently highlighted by the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) trial, showing the benefit of inhibiting signaling molecules, eg, interleukins. Accordingly, we sought to devise a flexible platform for preventing the inflammatory drivers at their source to preserve plaque endothelium and mitigate procoagulant risk. METHODS p5RHH-siRNA nanoparticles were formulated through self-assembly processes. The therapeutic efficacy of p5RHH-JNK2 siRNA nanoparticles was evaluated both in vitro and in vivo. RESULTS Because JNK2 is critical to macrophage uptake of oxidized lipids through scavenger receptors that engender expression of myriad inflammatory molecules, we designed an RNA-silencing approach based on peptide-siRNA nanoparticles (p5RHH-siRNA) that localize to atherosclerotic plaques exhibiting disrupted endothelial barriers to achieve control of JNK2 expression by macrophages. After seven doses of p5RHH-JNK2 siRNA nanoparticles over 3.5 weeks in ApoE-/- mice on a Western diet, both JNK2 mRNA and protein levels were significantly decreased by 26% (P=0.044) and 42% (P=0.042), respectively. Plaque-macrophage populations were markedly depleted and NFκB and STAT3-signaling pathways inhibited by 47% (P<0.001) and 46% (P=0.004), respectively. Endothelial barrier integrity was restored (2.6-fold reduced permeability to circulating 200 nm nanoparticles in vivo, P=0.003) and thrombotic risk attenuated (200% increased clotting times to carotid artery injury, P=0.02), despite blood-cholesterol levels persistently exceeding 1,000 mg/dL. No adaptive or innate immunoresponses toward the nanoparticles were observed, and blood tests after the completion of treatment confirmed the largely nontoxic nature of this approach. CONCLUSION The ability to formulate these nanostructures rapidly and easily interchange or multiplex their oligonucleotide content represents a promising approach for controlling deleterious signaling events locally in advanced atherosclerosis.
Collapse
Affiliation(s)
- Hua Pan
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| | - Rohun U Palekar
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Kirk K Hou
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - John Bacon
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Huimin Yan
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Luke E Springer
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Antonina Akk
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Lihua Yang
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Mark J Miller
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Christine Tn Pham
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Paul H Schlesinger
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| |
Collapse
|
38
|
Optimizing outcome measurement with murine ferric chloride-induced thrombosis. Blood Coagul Fibrinolysis 2018; 29:636-643. [PMID: 30113321 DOI: 10.1097/mbc.0000000000000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: The murine FeCl3 model is a widely used model for studying arterial thrombosis, yet provides limited information from each mouse, often only a single time point for the onset of occlusion (defined as the time to occlusion; TTO). To optimize data from the murine ferric chloride model of thrombosis. FeCl3 injury was induced in the carotid arteries of wild-type and Factor IX (FIX) knockout mice, with infusion of recombinant FIX (rFIX) to normalize FIX deficiency at various times around FeCl3 injury. The TTO was recorded as a percentage of baseline flow as occlusion continued to zero flow, with identification of reflow events. The TTO among the treatment groups of FIX-deficient mice showed no statistical differences, except with physiological saline-treated FIX-deficient mice and those receiving delayed treatment. Incidences of occlusion were 100% for wild-type mice and FIX-deficient mice receiving slow infusions of rFIX at early times around the FeCl3 application. In contrast, only 68% of FIX-deficient mice achieved occlusion with preinfusion of rFIX and none occluded with delayed rFIX infusion. A majority of occluded vessels exhibited reflow events, with significantly lower incidence for slow infusion of rFIX starting 4 min after FeCl3 application in comparison with preinjury bolus, demonstrating characterization of a differential response to timing and infusion rates of treatment. Simple use of the time to occlusion may not maximize data available from the FeCl3 arterial thrombosis model. Inclusion of documenting reflow events can extend the useful data obtained with application of this model.
Collapse
|
39
|
Reaktive Sauerstoffspezies und Gefäßdegeneration. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2018. [DOI: 10.1007/s00398-018-0227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Methods available to assess therapeutic potential of fibrinolytic enzymes of microbial origin: a review. J Anal Sci Technol 2018. [DOI: 10.1186/s40543-018-0143-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Cui G, Akers WJ, Scott MJ, Nassif M, Allen JS, Schmieder AH, Paranandi KS, Itoh A, Beyder DD, Achilefu S, Ewald GA, Lanza GM. Diagnosis of LVAD Thrombus using a High-Avidity Fibrin-Specific 99mTc Probe. Am J Cancer Res 2018; 8:1168-1179. [PMID: 29464007 PMCID: PMC5817118 DOI: 10.7150/thno.20271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/09/2017] [Indexed: 01/23/2023] Open
Abstract
Treatment of advanced heart failure with implantable LVADs is increasing, driven by profound unmet patient need despite potential serious complications: bleeding, infection, and thrombus. The experimental objective was to develop a sensitive imaging approach to assess early thrombus accumulation in LVADs under operational high flow and high shear rates. Methods: A monomeric bifunctional ligand with a fibrin-specific peptide, a short spacer, and 99mTc chelating amino acid sequence (F1A) was developed and compared to its tetrameric PEG analogue (F4A). Results: 99mTc attenuation by LVAD titanium (1 mm) was 23%. 99mTc-F1A affinity to fibrin was Kd ~10 µM, whereas, the bound 99mTc-F4A probe was not displaced by F1A (120,000:1). Human plasma interfered with 99mTc-F1A binding to fibrin clot (p<0.05) in vitro, whereas, 99mTc-F4A targeting was unaffected. The pharmacokinetic half-life of 99mTc-F4A was 28% faster (124±41 min) than 99mTc-F1A (176±26 min) with both being bioeliminated through the urinary system with negligible liver or spleen biodistribution. In mice with carotid thrombus, 99mTc-F4A binding to the injured carotid was much greater (16.3±3.3 %ID/g, p=0.01) than that measured with an irrelevant negative control, 99mTc-I4A (3.4±1.6 %ID/g). In an LVAD mock flow-loop (1:1, PBS:human plasma:heparin) operating at maximal flow rate, 99mTc-F4A bound well to phantom clots in 2 min (p<0.05), whereas 99mTc-F1A had negligible targeting. Excised LVADs from patients undergoing pump exchange or heart transplant were rewired, studied in the mock flow loop, and found to have spatially variable fibrin accumulations in the inlet and outlet cannulas and bearings. Conclusions:99mTc-F4A is a high-avidity prototype probe for characterizing thrombus in LVADs that is anticipated to help optimize anticoagulation, reduce thromboembolic events, and minimize pump exchange.
Collapse
|
42
|
Branchford BR, Stalker TJ, Law L, Acevedo G, Sather S, Brzezinski C, Wilson KM, Minson K, Lee-Sherick AB, Davizon-Castillo P, Ng C, Zhang W, Neeves KB, Lentz SR, Wang X, Frye SV, Shelton Earp H, DeRyckere D, Brass LF, Graham DK, Di Paola JA. The small-molecule MERTK inhibitor UNC2025 decreases platelet activation and prevents thrombosis. J Thromb Haemost 2018; 16:352-363. [PMID: 29045015 PMCID: PMC5858881 DOI: 10.1111/jth.13875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 02/06/2023]
Abstract
Essentials Signaling by Gas6 through Tyro3/Axl/Mer receptors is essential for stable platelet aggregation. UNC2025 is a small molecule inhibitor of the Mer tyrosine kinase. UNC2025 decreases platelet activation in vitro and thrombus formation in vivo. UNC2025's anti-platelet effect is synergistic with inhibition of the ADP receptor, P2Y12 . SUMMARY Background Growth arrest-specific protein 6 signals through the TAM (TYRO-3-AXL-MERTK) receptor family, mediating platelet activation and thrombus formation via activation of the aggregate-stabilizing αIIb β3 integrin. Objective To describe the antithrombotic effects mediated by UNC2025, a small-molecule MERTK tyrosine kinase inhibitor. Methods MERTK phosphorylation and downstream signaling were assessed by immunoblotting. Light transmission aggregometry, flow cytometry and microfluidic analysis were used to evaluate the impact of MERTK inhibition on platelet activation and stability of aggregates in vitro. The effects of MERTK inhibition on arterial and venous thrombosis, platelet accumulation at microvascular injury sites and tail bleeding times were determined with murine models. The effects of combined treatment with ADP-P2Y1&12 pathway antagonists and UNC2025 were also evaluated. Results and Conclusions Treatment with UNC2025 inhibited MERTK phosphorylation and downstream activation of AKT and SRC, decreased platelet activation, and protected animals from pulmonary embolism and arterial thrombosis without increasing bleeding times. The antiplatelet effect of UNC2025 was enhanced in combination with ADP-P2Y1&12 pathway antagonists, and a greater than additive effect was observed when these two agents with different mechanisms of inhibition were coadministered. TAM kinase signaling represents a potential therapeutic target, as inhibition of this axis, especially in combination with ADP-P2Y pathway antagonism, mediates decreased platelet activation, aggregate stability, and thrombus formation, with less hemorrhagic potential than current treatment strategies. The data presented here also demonstrate antithrombotic activity mediated by UNC2025, a novel translational agent, and support the development of TAM kinase inhibitors for clinical applications.
Collapse
Affiliation(s)
- B R Branchford
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - T J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Law
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - G Acevedo
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - S Sather
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - C Brzezinski
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - K M Wilson
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K Minson
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - A B Lee-Sherick
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - P Davizon-Castillo
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - C Ng
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - W Zhang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - K B Neeves
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - S R Lentz
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - X Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - S V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D DeRyckere
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - L F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D K Graham
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - J A Di Paola
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
- Graduate Program - Human Medical Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
43
|
Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2017; 105 Suppl 1:S3-12. [DOI: 10.1160/ths10-11-0730] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryArterial thrombosis occurs at sites of erosion or rupture of atherosclerotic vascular lesions. To better study the pathophysiology of this complex phenomenon, there is a need for animal models of localised thrombosis at sites of atherosclerotic lesions with closer resemblance to the human pathology as compared to commonly used thrombosis models in healthy vessels. In the present study, we describe and compare a new model of thrombosis induced by atherosclerotic plaque rupture in the carotid artery from ApoE-/- mice using a suture needle to a milder model of ultrasound-induced plaque injury. Needle injury induces atherosclerotic plaque rupture with exposure of plaque material and formation of a thrombus that is larger, nearly occlusive and more stable as compared to that formed by application of ultrasounds. These two models have common features such as the concomitant involvement of platelet activation, thrombin generation and fibrin formation, which translates into sensitivity toward both antiplatelet drugs and anticoagulants. On the other hand, they display differences with respect to the role of the platelet collagen receptor GPVI, the plaque rupture model being less sensitive to its inhibition as compared to the ultrasound-induced injury, which may be related to the amount of thrombin generated. These models represent an improvement as compared to models in healthy vessels and may help identify specific plaque triggers of thrombosis. They should therefore be useful to evaluate new antithrombotic targets.
Collapse
|
44
|
Albadawi H, Witting AA, Pershad Y, Wallace A, Fleck AR, Hoang P, Khademhosseini A, Oklu R. Animal models of venous thrombosis. Cardiovasc Diagn Ther 2017; 7:S197-S206. [PMID: 29399523 DOI: 10.21037/cdt.2017.08.10] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Venous thrombosis (VT) is a prevalent clinical condition with significant adverse sequela or mortality. Anticoagulation and pharmacologic or pharmacomechanical thrombolytic therapies are the mainstays of VT treatment. An understanding of thrombosis biology will allow for more effective VT-tailored diagnosis and therapy. In vivo models of thrombosis provide indispensable tools to study the pathogenesis of thrombus formation and to evaluate novel therapeutic or preventive adjuncts for VT management or prevention. In this article, we review the most prominent in vivo models of VT created in rodents and swine species and outline how each model can serve as a useful tool to promote our understanding of VT pathogenesis and to examine novel therapies.
Collapse
Affiliation(s)
- Hassan Albadawi
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Avery A Witting
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Yash Pershad
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Alex Wallace
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Peter Hoang
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rahmi Oklu
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA.,Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
45
|
Alame G, Mangin PH, Freund M, Riehl N, Magnenat S, Petitou M, Hechler B, Gachet C. EP217609, a neutralisable dual-action FIIa/FXa anticoagulant, with antithrombotic effects in arterial thrombosis. Thromb Haemost 2017; 113:385-95. [DOI: 10.1160/th14-05-0399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/09/2014] [Indexed: 11/05/2022]
Abstract
SummaryEP217609 is a new synthetic parenteral dual-action anticoagulant combining a direct thrombin inhibitor (α-NAPAP analog), an indirect factor Xa inhibitor (fondaparinux analog) and a biotin moiety allowing its neutralisation. EP217609 exhibited similar in vitro anticoagulant properties as its parent compounds. On the basis of dose-response curves, we identified low and moderate doses of EP217609 resulting in similar ex vivo prolongation of the APTT as α-NAPAP analog and comparable ex vivo anti-FXa activity as fondaparinux. The effects of EP217609 were compared to those of its parent compounds used alone or in combination in two models of experimental thrombosis induced by FeCl3 injury of the carotid artery or mechanical injury of atherosclerotic plaques in ApoE-deficient mice. When administered at low doses increasing the APTT by only 1.1 fold, EP217609 significantly reduced the thrombus area in both models as compared to α-NAPAP analog or fondaparinux alone, but not to the combination of these drugs. In contrast, at higher doses increasing the APTT 1.5 times, EP217609 was not superior to either parent compound. Low doses of EP217609 did not prolong the tail bleeding time or increase the volume of blood loss, although a tendency towards an increased blood loss was observed in five out of 12 mice. Finally, the effects of EP217609 could be neutralised in vivo by injection of avidin. The pharmacological profile of EP217609, its performance in arterial thrombosis models and its possible neutralisation make it an interesting molecule and a potential candidate as an antithrombotic drug.
Collapse
|
46
|
Feng W, Valiyaveettil M, Dudiki T, Mahabeleshwar GH, Andre P, Podrez EA, Byzova TV. β 3 phosphorylation of platelet α IIbβ 3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 2017; 15:22. [PMID: 28860945 PMCID: PMC5576334 DOI: 10.1186/s12959-017-0145-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background It is well accepted that functional activity of platelet integrin αIIbβ3 is crucial for hemostasis and thrombosis. The β3 subunit of the complex undergoes tyrosine phosphorylation shown to be critical for outside-in integrin signaling and platelet clot retraction ex vivo. However, the role of this important signaling event in other aspects of prothrombotic platelet function is unknown. Method Here, we assess the role of β3 tyrosine phosphorylation in platelet function regulation with a knock-in mouse strain, where two β3 cytoplasmic tyrosines are mutated to phenylalanine (DiYF). We employed platelet transfusion technique and intravital microscopy for observing the cellular events involved in specific steps of thrombus growth to investigate in detail the role of β3 tyrosine phosphorylation in arterial thrombosis in vivo. Results Upon injury, DiYF mice exhibited delayed arterial occlusion and unstable thrombus formation. The mean thrombus volume in DiYF mice formed on collagen was only 50% of that in WT. This effect was attributed to DiYF platelets but not to other blood cells and endothelium, which also carry these mutations. Transfusion of isolated DiYF but not WT platelets into irradiated WT mice resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion times. DiYF platelets exhibited reduced adhesion to collagen under in vitro shear conditions compared to WT platelets. Decreased platelet microparticle release after activation, both in vitro and in vivo, were observed in DiYF mice compared to WT mice. Conclusion β3 tyrosine phosphorylation of platelet αIIbβ3 regulates both platelet pro-thrombotic activity and the formation of a stable platelet thrombus, as well as arterial microparticle release.
Collapse
Affiliation(s)
- Weiyi Feng
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Manojkumar Valiyaveettil
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,US Army Medical Materiel Development Activity, 1430 Veterans Drive, Fort Detrick, Frederick, MD 21702 USA
| | - Tejasvi Dudiki
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | | | | | - Eugene A Podrez
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| |
Collapse
|
47
|
Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 2017; 130:527-536. [DOI: 10.1182/blood-2017-01-764910] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022] Open
Abstract
Key Points
APP is dispensable for platelet activation and arterial thrombosis. APP is an important novel regulator of vein thrombosis and controls coagulation and neutrophil extracellular traps formation.
Collapse
|
48
|
Minol JP, Reinsch I, Luik M, Leferink A, Barth M, Assmann A, Lichtenberg A, Akhyari P. Focal induction of ROS-release to trigger local vascular degeneration. PLoS One 2017; 12:e0179342. [PMID: 28614411 PMCID: PMC5470706 DOI: 10.1371/journal.pone.0179342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) play an important role in the process of cardiovascular degeneration. We evaluated the potential of a controlled, local induction of ROS-release by application of rose bengal (RB) and photo energy to induce atherosclerosis-like focal vascular degeneration in vivo. After injection of RB, rats fed with a pro-degenerative diet underwent focal irradiation of the abdominal aorta by a green laser (ROS group), while the controls received irradiation without RB. Aortic tissue was analyzed by histology and immunohistochemistry at 0, 2, 4, 8, 28 and 56 days (n = 5). The intimal surface topography was analyzed by scanning electron microscopy. In the ROS group, an initial thrombus formation had disappeared by day 8. Similarly, ROS-derived products displayed the highest concentrations at day 0. Relative matrix metalloproteinase (MMP) activity achieved a maximum after 8 days (ROS group vs. CONTROL GROUP 1.60 ± 0.11 vs. 0.98 ± 0.01; p < 0.001). After 28 days, no significant differences in any aspect were found between the ROS group and the controls. However, after 56 days, the aortic tissue of ROS animals exhibited relative media-pronounced thickening (ROS vs. CONTROL 2.15 ± 0.19 vs. 0.87 ± 0.10; p < 0.001) with focal calcification and reduced expression of alpha smooth muscle actin (aSMA). The ROS-releasing application of RB and photo energy allowed for the induction of vascular degeneration in a rodent model. This protocol may be used for the focal induction of vascular disease without systemic side effects and can thereby elucidate the role of ROS in the multifactorial processes of vessel degeneration and atherogenesis.
Collapse
Affiliation(s)
- Jan-Philipp Minol
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
- * E-mail:
| | - Isabella Reinsch
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| | - Maximilian Luik
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| | - Anne Leferink
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Mareike Barth
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| | - Alexander Assmann
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, University Hospital, Dusseldorf, Germany
| |
Collapse
|
49
|
Wang H, Wang Q, Kleiman K, Guo C, Eitzman DT. Hematopoietic Deficiency of miR-223 Attenuates Thrombosis in Response to Photochemical Injury in Mice. Sci Rep 2017; 7:1606. [PMID: 28487522 PMCID: PMC5431646 DOI: 10.1038/s41598-017-01887-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Some studies have shown that levels of MicroRNA (miR)-223 derived from platelets in the plasma are reduced following inhibition of platelet function, while others have shown a correlation between low plasma miR-223 and high on-treatment platelet reactivity. The present study seeks to investigate the role of miR-223 in arterial thrombosis. A model of photochemical-induced carotid thrombosis was applied to miR-223 deficient mice and littermate (WT) controls. Mice deficient in miR-223 exhibited significantly prolonged times to occlusive thrombosis compared to WT mice indicating a protective effect of miR-223 deficiency. Bone marrow transplantation experiments confirmed that the hematopoietic pool of miR-223 was responsible for differences in thrombosis times. Transfusion of either WT platelets or extracellular vesicles derived from WT platelets were both sufficient to shorten thrombosis times in miR-223 deficient recipients. The effect of platelet transfusions on IGF-1R was explored. These experiments revealed that vascular IGF-1R was down-regulated by platelet miR-223. Furthermore, inhibition of IGF-1R abolished the protection conferred by miR-223 deficiency on thrombosis. In conclusion, platelet miR-223 is a regulator of arterial thrombosis following endothelial injury through effects on vascular wall IGF-1R. This study indicates that platelet miR-223 is a potential therapeutic target for prevention of arterial thrombosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Qian Wang
- Department of Cardiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Kyle Kleiman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Chiao Guo
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel T Eitzman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
50
|
Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ Res 2017; 118:1363-79. [PMID: 27126647 DOI: 10.1161/circresaha.115.306823] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.
Collapse
Affiliation(s)
- Pudur Jagadeeswaran
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.).
| | - Brian C Cooley
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Peter L Gross
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Nigel Mackman
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| |
Collapse
|