1
|
Efstathiou N, Koliakos G, Kantziou K, Kyriazis G, Slavakis A, Drossou V, Soubasi V. Kinetics of Circulating Progenitor Cells and Chemotactic Factors in Full-Term Neonates with Encephalopathy: Indications of Participation in the Endogenous Regenerative Process. Biomolecules 2025; 15:427. [PMID: 40149963 PMCID: PMC11940357 DOI: 10.3390/biom15030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Preclinical studies have shown that progenitor cells (PCs) are mobilized toward injured tissues to ameliorate damage and contribute to regeneration. The exogenous therapeutic administration of PCs in children affected by neonatal encephalopathy (NE) is a promising, yet underreported, topic. In this prospective study, we investigated whether endogenous circulating progenitor cells (CPCs) are involved in intrinsic regeneration mechanisms following neonatal brain injury. Thirteen full-term infants with moderate/severe NE, eleven with perinatal stress, and twelve controls were enrolled. Blood samples were collected on days 1, 3, 9, 18, and 45, as well as at 8 and 24 months of life, and were analyzed with a focus on Endothelial Progenitor Cells, Haematopoietic Stem Cells, and Very Small Embryonic-Like Stem Cells, in addition to chemotactic factors (erythropoietin, IGF-1, and SDF-1). Correlations between CPCs, chemotactic factors, and brain injury were assessed using serum levels of brain injury biomarkers (S100B and neuron-specific enolase), brain MRIs, and Bayley III developmental scores. Increased brain injury biomarkers were followed by the upregulation of SDF-1 receptor and erythropoietin and, finally, by elevated CPCs. These findings suggest a potential endogenous regenerative effort, primarily observed in the moderate encephalopathy group, but this is suppressed in cases of severe brain injury. Mimicking and enhancing endogenous regeneration pathways in cases of failure-regarding cell type and timeframe-could provide a novel therapeutic model.
Collapse
Affiliation(s)
- Nikolaos Efstathiou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Koliakos
- Biochemistry Department, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Kantziou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Kyriazis
- Immunology Department, Pulmonary Clinic, Papanikolaou General Hospital, Aristotle University of Thessaloniki, Exohi, 57010 Thessaloniki, Greece
| | - Aristeidis Slavakis
- Biochemistry Department, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Drossou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Vasiliki Soubasi
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Sidiropoulou S, Gatsiou A, Hansson KM, Tsouka AN, Stellos K, Tselepis AD. Ticagrelor Induces Angiogenesis in Progenitor and Mature Endothelial Cells In Vitro: Investigation of the Possible Role of Adenosine. Int J Mol Sci 2024; 25:13343. [PMID: 39769108 PMCID: PMC11727715 DOI: 10.3390/ijms252413343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Ticagrelor, a reversible platelet P2Y12 receptor antagonist, exerts various pleiotropic actions, some of which are at least partially mediated through adenosine. We studied the ticagrelor and adenosine effect on the angiogenic properties of progenitor CD34+-derived endothelial colony-forming cells (ECFCs). Angiogenesis studies were performed in vitro using capillary-like tube formation and spheroid-based angiogenesis assays. The effects of adenosine receptor antagonists, including DPCPX (A1 antagonist), SCH58621 (A2A antagonist), MRS1706 (A2B inverse agonist and antagonist), MRS1220 (A3 antagonist) and adenosine deaminase (ADA), were also investigated. Ticagrelor, adenosine, and their combination increased capillary-like tube formation and spheroid sprout formation by ECFCs in a dose-dependent manner. This effect was significantly reduced by SCH58621, MRS1706, and their combination, as well as by ADA. By contrast, DPCPX and MRS1220 did not exhibit any inhibitory effects. Similar results were obtained when mature human umbilical vein endothelial cells (HUVECs) were studied. These results show that ticagrelor stimulates angiogenesis by progenitor and mature endothelial cells in an adenosine-dependent pathway in which the adenosine receptors A2A and A2B play major roles. The significance of these results at the clinical level in patients with atherothrombotic events and treated with ticagrelor needs to be investigated.
Collapse
Affiliation(s)
- Sofia Sidiropoulou
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.S.); (A.N.T.)
| | - Aikaterini Gatsiou
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; (A.G.); (K.S.)
| | - Kenny M. Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Aikaterini N. Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.S.); (A.N.T.)
| | - Konstantinos Stellos
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; (A.G.); (K.S.)
- Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE7 7DN, UK
- Department of Cardiology, University Hospital Mannheim, University of Heidelberg, 69117 Mannheim, Germany
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
| | - Alexandros D. Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.S.); (A.N.T.)
| |
Collapse
|
3
|
Park G, Hwang DY, Kim DY, Han JY, Lee E, Hwang H, Park JS, Kim DW, Hong S, Yim SV, Hong HS, Son Y. Identification of CD141 +vasculogenic precursor cells from human bone marrow and their endothelial engagement in the arteriogenesis by co-transplantation with mesenchymal stem cells. Stem Cell Res Ther 2024; 15:388. [PMID: 39482744 PMCID: PMC11526567 DOI: 10.1186/s13287-024-03994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is a condition characterized by insufficient blood flow to the lower limbs, resulting in severe ischemia and potentially leading to amputation. This study aims to identify novel vasculogenic precursor cells (VPCs) in human bone marrow and evaluate their efficacy in combination with bone marrow-derived mesenchymal stem cells (BM-MSCs) for the treatment of CLI. METHODS Ex vivo cultured VPCs and BM-MSCs from bone marrow were characterized and their effects on neovascularization and long-term tissue regeneration were tested in a mouse CLI model. RESULTS VPCs, expressing high levels of hepatocyte growth factor and c-MET, were identified from human bone marrow aspirates. These cells exhibited strong vasculogenic capacity in vitro but possessed a cellular phenotype distinct from those of previously reported endothelial precursor cells in circulation or cord blood. They also expressed most surface markers of BM-MSCs and demonstrated multipotent differentiation ability. Screening of 376 surface markers revealed that VPCs uniquely display CD141 (thrombomodulin). CD141+VPCs are present in BM aspirates as a rare population and can be expanded ex vivo with a population doubling time of approximately 20 h, generating an elaborate vascular network even under angiogenic factor-deficient conditions and recruiting BM-MSCs to the network as pericyte-like cells. Intramuscular transplantation of a combination of human CD141+VPCs and BM-MSCs at a ratio of 2:1 resulted in limb salvage, blood flow recovery, and regeneration of large vessels in the femoral artery-removed CLI model, with an efficacy superior to that of singular transplantation. Importantly, large arteries and arterioles in dual cell transplantation expressed human CD31 in the intima and human α-smooth muscle actin in media layer at 4 and 12 weeks, likely indicating their lineage commitment to endothelial cells and vascular smooth muscle, respectively, in vivo. CONCLUSION Dual-cell therapy using BM-derived CD141+ VPCs and BM-MSCs holds potential for further development in clinical trials to treat peripheral artery disease and diabetic ulcers.
Collapse
Affiliation(s)
- Gabee Park
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Dae Yeon Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Ji Young Han
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Euiseon Lee
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Hwakyung Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Dae Wook Kim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| | - Seonmin Hong
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Sung Vin Yim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea.
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea.
| | - Youngsook Son
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea.
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea.
| |
Collapse
|
4
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
6
|
Hall E, Alderfer L, Neu E, Saha S, Johandes E, Haas DM, Haneline LS, Hanjaya-Putra D. The Effects of Preeclamptic Milieu on Cord Blood Derived Endothelial Colony-Forming Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569585. [PMID: 38105991 PMCID: PMC10723349 DOI: 10.1101/2023.12.03.569585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Preeclampsia is one of the leading causes of infant and maternal mortality worldwide. Many infants born from preeclamptic pregnancies are born prematurely with higher risk of developing cardiovascular later in their life. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). To gain insight into this, cord blood derived ECFCs isolated from preeclamptic pregnancies (PRECs) were analyzed and compared to their healthy counterparts. While PRECs preserve key endothelial markers, they upregulate several markers associated with oxidative stress and inflammatory response. Compared to ECFCs, PRECs also exhibit lower migratory behaviors and impaired angiogenic potential. Interestingly, treatment of neuropilin-1 can improve tube formation in vitro. Collectively, this study reports that preeclamptic milieu influence phenotypes and functionality of PRECs, which can be rejuvenated using exogenous molecules. Promising results from this study warrant future investigations on the prospect of the rejuvenated PRECs to improve lung function of infants born from preeclamptic pregnancies.
Collapse
Affiliation(s)
- Eva Hall
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Laura Alderfer
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Erin Neu
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Sanjoy Saha
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Ellie Johandes
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - David M. Haas
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S. Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Donny Hanjaya-Putra
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
9
|
Xia X, Li G, Dong Q, Wang JW, Kim JE. Endothelial progenitor cells as an emerging cardiovascular risk factor in the field of food and nutrition research: advances and challenges. Crit Rev Food Sci Nutr 2023; 64:12166-12183. [PMID: 37599627 DOI: 10.1080/10408398.2023.2248506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dietary modifications can help prevent many cardiovascular disease (CVD) events. Endothelial progenitor cells (EPCs) actively contribute to cardiovascular system maintenance and could function as surrogate markers for evaluating improvement in cardiovascular health resulting from nutritional interventions. This review summarizes the latest research progress on the impact of food and nutrients on EPCs, drawing on evidence from human, animal, and in vitro studies. Additionally, current trends and challenges faced in the field are highlighted. Findings from studies examining cells as EPCs are generally consistent, demonstrating that a healthy diet, such as the Mediterranean diet or a supervised diet for overweight people, specific foods like olive oil, fruit, vegetables, red wine, tea, chia, and nutraceuticals, and certain nutrients such as polyphenols, unsaturated fats, inorganic nitrate, and vitamins, generally promote higher EPC numbers and enhanced EPC function. Conversely, an unhealthy diet, such as one high in sugar substitutes, salt, or fructose, impairs EPC function. Research on outgrowth EPCs has revealed that various pathways are involved in the modulation effects of food and nutrients. The potential of EPCs as a biomarker for assessing the effectiveness of nutritional interventions in preventing CVDs is immense, while further clarification on definition and characterization of EPCs is required.
Collapse
Affiliation(s)
- Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
10
|
Cadena IA, Buchanan MR, Harris CG, Jenne MA, Rochefort WE, Nelson D, Fogg KC. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res A 2023; 111:747-764. [PMID: 36861788 DOI: 10.1002/jbm.a.37522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti-metastatic and anti-angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Collapse
Affiliation(s)
- Ines A Cadena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Mina R Buchanan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Molly A Jenne
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
11
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
12
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
13
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Abstract
Endothelial colony-forming cells (ECFCs) are progenitor cells that can give rise to colonies of highly proliferative vascular endothelial cells (ECs) with clonal expansion and in vivo blood vessel-forming potential. More than two decades ago, the identification of ECFCs in human peripheral blood created tremendous opportunities as having a clinically accessible source of autologous ECs could facilitate meaningful therapies with the potential to impact multiple vascular diseases. Nevertheless, until recently, the field of endothelial progenitor cells has been plagued with ambiguities and controversies, and reaching a consensus on the definition of ECFCs has not been straightforward. Moreover, although the basic phenotypical and functional characteristics of cultured ECFCs are now well established, some fundamental questions such as the origin of ECFCs and their physiological roles in health and disease remain incompletely understood. Here, I highlight some critical studies that have shaped our current understanding of ECFCs in humans. Insights into the biological attributes of ECFCs are essential for facilitating the clinical translation of their therapeutic potential.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
16
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
17
|
Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022; 5:635. [PMID: 35768543 PMCID: PMC9243106 DOI: 10.1038/s42003-022-03578-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine. Drug-loaded liposomal nanoparticles conjugated to endothelial colony-forming cells can improve the vasculogenic potential of vascular progenitor cells exposed to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shanique Edwards
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kellen Round
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Owen
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pietro Sainaghi
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Siyuan Zhang
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura S Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
18
|
Sen A, Thakkar H, Vincent V, Rai S, Singh A, Mohanty S, Roy A, Ramakrishnan L. Endothelial colony forming cells' tetrahydrobiopterin level in coronary artery disease patients and its association with circulating endothelial progenitor cells. Can J Physiol Pharmacol 2022; 100:473-485. [PMID: 35180005 DOI: 10.1139/cjpp-2021-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial colony forming cells (ECFCs) participate in neovascularization. Endothelial nitric oxide synthase (eNOS) derived NO· helps in homing of endothelial progenitor cells (EPCs) at the site of vascular injury. The enzyme cofactor tetrahydrobiopterin (BH4) stabilizes the catalytic active state of eNOS. Association of intracellular ECFCs biopterins and ratio of reduced to oxidized biopterin (BH4:BH2) with circulatory EPCs and ECFCs functionality have not been studied. We investigated ECFCs biopterin levels and its association with circulatory EPCs as well as ECFCs proliferative potential in terms of day of appearance in culture. Circulatory EPCs were enumerated by flowcytometry in 53 coronary artery disease (CAD) patients and 42 controls. ECFCs were cultured, characterized, and biopterin levels assessed by high performance liquid chromatography. Appearance of ECFCs' colony and their number were recorded. Circulatory EPCs were significantly lower in CAD and ECFCs appeared in 56% and 33% of CAD and control subjects, respectively. Intracellular BH4 and BH4:BH2 were significantly reduced in CAD. BH4:BH2 was positively correlated with circulatory EPCs (p = 0.01), and negatively with day of appearance of ECFCs (p = 0.04). Circulatory EPCs negatively correlated with ECFCs appearance (p = 0.02). These findings suggest the role of biopterins in maintaining circulatory EPCs and functional integrity of ECFCs.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Rai
- Department of Laboratory Oncology, Institute of Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Center of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Bao XY, Fan YN, Wang QN, Wang XP, Yang RM, Zou ZX, Zhang Q, Li DS, Duan L, Yu XG. The Potential Mechanism Behind Native and Therapeutic Collaterals in Moyamoya. Front Neurol 2022; 13:861184. [PMID: 35557620 PMCID: PMC9086844 DOI: 10.3389/fneur.2022.861184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose To explore the genetic basis and molecular mechanism of native arteriogenesis and therapeutic synangiosis in moyamoya disease (MMD). Methods An angiography-based study using patients from a prospective trial of encephaloduroarteriosynangiosis (EDAS) surgery was performed. The spontaneous collaterals grades were evaluated according to the system described by a new grading system. Blood samples were collected from all the recruited patients before EDAS and during the second hospitalization 3 months post-EDAS. We performed Boolean analysis using a combination of specific cell surface markers of CD34briCD133+CD45dimKDR+. Genotyping of p.R4810K was also performed. The correlation of age, sex, initial symptoms at diagnosis, collateral grade, Suzuki stages, the RNF213 genotype, time to peak (TTP), and endothelial progenitor cell (EPC) count with good collateral circulation was evaluated. Results Eighty-five patients with MMD were included in this study. The mutation rate of RNF213 p.R4810K in our study was 25.9% (22/85). The heterozygous mutations were occurred significantly more frequently in the cases that were presented with infarction, worse neurological status, severe posterior cerebral artery (PCA) stenosis, and longer TTP delay. Further, the heterozygous mutations occurred significantly more frequently in the poor collateral stage group. Lower grades were significantly correlated with severe ischemia symptoms, worse neurological status, and a longer TTP delay. The post-operative angiographic findings showed that a good Matsushima grade was correlated with heterozygous mutations, a lower collateral stage, and a longer TTP delay. The CD34briCD133+CD45dimKDR+ cell count in patients 3 months post-EDAS was significantly higher as compared to the count before EDAS in the good Matsushima grade group. However, this change was not observed in the poor Matsushima grade group. Conclusions These data imply that mutations of RNF213 p.R4810K affect the establishment of spontaneous collateral circulation, and EPCs are involved in the process of formation of new EDAS collaterals.
Collapse
Affiliation(s)
- Xiang-Yang Bao
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Yan-Na Fan
- Department of Radiation Oncology, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of the PLA), Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Xiao-Peng Wang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ri-Miao Yang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zheng-Xing Zou
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - De-Sheng Li
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- *Correspondence: Lian Duan
| | - Xin-Guang Yu
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
- Xin-Guang Yu
| |
Collapse
|
20
|
Mezu-Ndubuisi OJ, Maheshwari A. Role of the Endothelium in Neonatal Diseases. NEWBORN 2022; 1:44-57. [PMID: 35754998 PMCID: PMC9217741 DOI: 10.5005/jp-journals-11002-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an extensive database literature search from EMBASE, PubMed, and Scopus.
Collapse
Affiliation(s)
- Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
21
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
22
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Shradhanjali A, Uthamaraj S, Dragomir-Daescu D, Gulati R, Sandhu GS, Tefft BJ. Characterization of Blood Outgrowth Endothelial Cells (BOEC) from Porcine Peripheral Blood. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/63285. [PMID: 35068481 PMCID: PMC9645770 DOI: 10.3791/63285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endothelium is a dynamic integrated structure that plays an important role in many physiological functions such as angiogenesis, hemostasis, inflammation, and homeostasis. The endothelium also plays an important role in pathophysiologies such as atherosclerosis, hypertension, and diabetes. Endothelial cells form the inner lining of blood and lymphatic vessels and display heterogeneity in structure and function. Various groups have evaluated the functionality of endothelial cells derived from human peripheral blood with a focus on endothelial progenitor cells derived from hematopoietic stem cells or mature blood outgrowth endothelial cells (or endothelial colony-forming cells). These cells provide an autologous resource for therapeutics and disease modeling. Xenogeneic cells may provide an alternative source of therapeutics due to their availability and homogeneity achieved by using genetically similar animals raised in similar conditions. Hence, a robust protocol for the isolation and expansion of highly proliferative blood outgrowth endothelial cells from porcine peripheral blood has been presented. These cells can be used for numerous applications such as cardiovascular tissue engineering, cell therapy, disease modeling, drug screening, studying endothelial cell biology, and in vitro co-cultures to investigate inflammatory and coagulation responses in xenotransplantation.
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University
| | | | | | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | - Brandon J. Tefft
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University
| |
Collapse
|
24
|
Weiss E, Leopold-Posch B, Schrüfer A, Cvitic S, Hiden U. Fetal sex and maternal fasting glucose affect neonatal cord blood-derived endothelial progenitor cells. Pediatr Res 2022; 92:1590-1597. [PMID: 35184136 PMCID: PMC9771817 DOI: 10.1038/s41390-022-01966-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Maternal cardiovascular risk factors (CVRF) in pregnancy, i.e., obesity and hyperglycemia, transmit to the fetus and affect placental and fetal endothelial function. Moreover, a sex dimorphism in endothelial function and susceptibility towards CVRF exists already in utero. Endothelial colony-forming cells (ECFC) are circulating endothelial progenitors highly present in neonatal cord blood and sensitive to CVRF. This study investigated whether fetal sex or subtle maternal metabolic changes within healthy range alter fetal ECFC outgrowth. METHODS Outgrowth of ECFC from cord blood of male (n = 31) and female (n = 26) neonates was analyzed after healthy pregnancies and related to fetal sex and maternal metabolic parameters. RESULTS Male ECFC grew out earlier (-20.57% days; p = 0.031) than female. Although all women were non-diabetic, higher levels of fasting plasma glucose (FPG) at midpregnancy increased the time required for colony outgrowth (OR: 1.019; p = 0.030), which, after stratifying for fetal sex, was significant only in the males. Gestational weight gain and BMI did not affect outgrowth. Colony number was unchanged by all parameters. CONCLUSIONS Fetal sex and maternal FPG within normal range alter ECFC function in utero. A role of ECFC in postnatal angiogenesis and vasculogenesis has been suggested, which may be affected by altered outgrowth dynamics. IMPACT This study is the first to report that a sexual dimorphism exists in ECFC function, as cells of female progeny require a longer period of time until colony outgrowth than ECFC of male progeny. Our data show that ECFC function is highly sensitive and affected by maternal glucose levels even in a normal, non-diabetic range. Our data raise the question of whether maternal plasma glucose in pregnancy should be considered to play a critical role even in the non-diabetic setting.
Collapse
Affiliation(s)
- Elisa Weiss
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Barbara Leopold-Posch
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Anna Schrüfer
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Silvija Cvitic
- grid.11598.340000 0000 8988 2476Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
25
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Weiss E, Vlahos A, Kim B, Wijegunasekara S, Shanmuganathan D, Aitken T, Joo JHE, Imran S, Shepherd R, Craig JM, Green M, Hiden U, Novakovic B, Saffery R. Transcriptomic Remodelling of Fetal Endothelial Cells During Establishment of Inflammatory Memory. Front Immunol 2021; 12:757393. [PMID: 34867995 PMCID: PMC8640490 DOI: 10.3389/fimmu.2021.757393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory memory involves the molecular and cellular ‘reprogramming’ of innate immune cells following exogenous stimuli, leading to non-specific protection against subsequent pathogen exposure. This phenomenon has now also been described in non-hematopoietic cells, such as human fetal and adult endothelial cells. In this study we mapped the cell-specific DNA methylation profile and the transcriptomic remodelling during the establishment of inflammatory memory in two distinct fetal endothelial cell types – a progenitor cell (ECFC) and a differentiated cell (HUVEC) population. We show that both cell types have a core transcriptional response to an initial exposure to a viral-like ligand, Poly(I:C), characterised by interferon responsive genes. There was also an ECFC specific response, marked by the transcription factor ELF1, suggesting a non-canonical viral response pathway in progenitor endothelial cells. Next, we show that both ECFCs and HUVECs establish memory in response to an initial viral exposure, resulting in an altered subsequent response to lipopolysaccharide. While the capacity to train or tolerize the induction of specific sets of genes was similar between the two cell types, the progenitor ECFCs show a higher capacity to establish memory. Among tolerized cellular pathways are those involved in endothelial barrier establishment and leukocyte migration, both important for regulating systemic immune-endothelial cell interactions. These findings suggest that the capacity for inflammatory memory may be a common trait across different endothelial cell types but also indicate that the specific downstream targets may vary by developmental stage.
Collapse
Affiliation(s)
- Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics & Gynaecology, Medical University of Graz, Graz, Austria
| | - Amanda Vlahos
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sachintha Wijegunasekara
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Dhanya Shanmuganathan
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Thomas Aitken
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Ji-Hoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Samira Imran
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia.,Molecular Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia.,The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Mark Green
- Department of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics & Gynaecology, Medical University of Graz, Graz, Austria
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
27
|
Evans WS, Sapp RM, Kim K, Heilman JM, Hagberg JM, Prior SJ. Re: Letter to the Editor on: "Effects of Exercise Training on the Paracrine Function of Circulating Angiogenic Cells.". Int J Sports Med 2021; 42:1139. [PMID: 34731896 DOI: 10.1055/a-1527-5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America
| | - Katherine Kim
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America
| | - James M Heilman
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America
| | - James M Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, United States of America.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Baltimore, MD 21201, United States of America
| |
Collapse
|
28
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
29
|
Sidiropoulou S, Papadaki S, Tsouka AN, Koutsaliaris IK, Chantzichristos VG, Pantazi D, Paschopoulos ME, Hansson KM, Tselepis AD. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality. Angiology 2021; 72:776-786. [PMID: 33678047 DOI: 10.1177/0003319721998895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platelets mediate circulating endothelial progenitor cell (EPC) recruitment and maturation, participating in vascular repair, however the underlying mechanism(s) remain unclear. We investigated the effect of platelet-rich plasma (PRP) on the functionality of CD34+-derived late-outgrowth endothelial cells (OECs) in culture. Confluent OECs were coincubated with PRP under platelet aggregation (with adenosine diphosphate; ADP) and nonaggregation conditions, in the presence/absence of the reversible P2Y12 platelet receptor antagonist ticagrelor. Outgrowth endothelial cell activation was evaluated by determining prostacyclin (PGI2) and monocyte chemoattractant protein-1 (MCP-1) release and intercellular adhesion molecule-1 (ICAM-1) membrane expression. Similar experiments were performed using human umbilical vein endothelial cells (HUVECs). Platelet-rich plasma increased ICAM-1 expression and PGI2 and MCP-1 secretion compared with autologous platelet-poor plasma, whereas ADP-aggregated platelets in PRP did not exhibit any effect. Platelet-rich plasma pretreated with ticagrelor prior to activation with ADP increased all markers to a similar extent as PRP. Similar results were obtained using HUVECs. In conclusion, PRP induces OEC activation, a phenomenon not observed when platelets are aggregated with ADP. Platelet inhibition with ticagrelor restores the PRP capability to activate OECs. Since EPC activation is important for endothelial regeneration and angiogenesis, we suggest that agents inhibiting platelet aggregation, such as ticagrelor, may promote platelet-EPC interaction and EPC function.
Collapse
Affiliation(s)
- Sofia Sidiropoulou
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Styliani Papadaki
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios G Chantzichristos
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Minas E Paschopoulos
- Department of Obstetrics and Gynecology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
30
|
Kantapan J, Anukul N, Leetrakool N, Rolin G, Vergote J, Dechsupa N. Iron-Quercetin Complex Preconditioning of Human Peripheral Blood Mononuclear Cells Accelerates Angiogenic and Fibroblast Migration: Implications for Wound Healing. Int J Mol Sci 2021; 22:ijms22168851. [PMID: 34445558 PMCID: PMC8396238 DOI: 10.3390/ijms22168851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the "iron-quercetin complex" or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron-quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nipapan Leetrakool
- Blood Bank Section, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Gwenaël Rolin
- Inserm Centre d’Investigation Clinique-1431 (Inserm CIC-1431), Centre Hospitalier Régional Universitaire de Besançon, F-25000 Besançon, France;
- Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Etablissement Français du Sang en Bourgogne Franche-Comté, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Jackie Vergote
- Laboratoire Signalisation et Transports Ioniques Membranaires (EA 7349), Faculté de Pharmacie, Université de Tours, F-37200 Tours, France;
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-53-936-022
| |
Collapse
|
31
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
32
|
Tan CMJ, Lewandowski AJ, Williamson W, Huckstep OJ, Yu GZ, Fischer R, Simon JN, Alsharqi M, Mohamed A, Leeson P, Bertagnolli M. Proteomic Signature of Dysfunctional Circulating Endothelial Colony-Forming Cells of Young Adults. J Am Heart Assoc 2021; 10:e021119. [PMID: 34275329 PMCID: PMC8475699 DOI: 10.1161/jaha.121.021119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Background A subpopulation of endothelial progenitor cells called endothelial colony-forming cells (ECFCs) may offer a platform for cellular assessment in clinical studies because of their remarkable angiogenic and expansion potentials in vitro. Despite endothelial cell function being influenced by cardiovascular risk factors, no studies have yet provided a comprehensive proteomic profile to distinguish functional (ie, more angiogenic and expansive cells) versus dysfunctional circulating ECFCs of young adults. The aim of this study was to provide a detailed proteomic comparison between functional and dysfunctional ECFCs. Methods and Results Peripheral blood ECFCs were isolated from 11 subjects (45% men, aged 27±5 years) using Ficoll density gradient centrifugation. ECFCs expressed endothelial and progenitor surface markers and displayed cobblestone-patterned morphology with clonal and angiogenic capacities in vitro. ECFCs were deemed dysfunctional if <1 closed tube formed during the in vitro tube formation assay and proliferation rate was <20%. Hierarchical functional clustering revealed distinct ECFC proteomic signatures between functional and dysfunctional ECFCs with changes in cellular mechanisms involved in exocytosis, vesicle transport, extracellular matrix organization, cell metabolism, and apoptosis. Targeted antiangiogenic proteins in dysfunctional ECFCs included SPARC (secreted protein acidic and rich in cysteine), CD36 (cluster of differentiation 36), LUM (lumican), and PTX3 (pentraxin-related protein PYX3). Conclusions Circulating ECFCs with impaired angiogenesis and expansion capacities have a distinct proteomic profile and significant phenotype changes compared with highly angiogenic endothelial cells. Impaired angiogenesis in dysfunctional ECFCs may underlie the link between endothelial dysfunction and cardiovascular disease risks in young adults.
Collapse
Affiliation(s)
- Cheryl M. J. Tan
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Odaro J. Huckstep
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of BiologyUnited States Air Force AcademyColorado SpringsCOUSA
| | - Grace Z. Yu
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Cardiac TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Diagnostic Imaging & Applied Health Sciences, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Mariane Bertagnolli
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Montreal Hospital Sacré‐Cœur Research CentreCentre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l'Île‐de‐MontréalMontréalQCCanada
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontréalQCCanada
| |
Collapse
|
33
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Association of Gene Polymorphisms of Some Endothelial Factors with Stent Reendothelization after Elective Coronary Artery Revascularization. Bull Exp Biol Med 2021; 171:194-197. [PMID: 34173092 DOI: 10.1007/s10517-021-05193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 10/21/2022]
Abstract
Restenosis remains the main complication after percutaneous coronary interventions in patients with coronary heart disease. The causes of its development include, in particular, genetic factors. We studied polymorphic loci of genes encoding endothelin-1 (EDN1 rs5370), endothelin-1 receptor (EDNRA rs5333), endothelin-converting enzyme (ECE1 rs1076669), and endothelial NO synthase (eNOS rs1549758, eNOS rs1799983, and eNOS rs2070244) in the context of in-stent restenosis development. It was found that the analyzed polymorphisms of the endothelin system genes were more significant for patients aged ≥ 65 years, while the polymorphic loci of the endothelial NO synthase gene (eNOS rs1799983 and eNOS rs1549758) were predominantly associated with time of in-stent restenosis. The obtained results can be useful for comprehensive assessment of the restenosis risk factors and the choice of optimal treatment for patients with coronary heart disease before elective surgical intervention.
Collapse
|
36
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
37
|
Xue F, Bai Y, Jiang Y, Liu J, Jian K. Construction and a preliminary study of paracrine effect of bone marrow-derived endothelial progenitor cell sheet. Cell Tissue Bank 2021; 23:185-197. [PMID: 34052984 PMCID: PMC8854320 DOI: 10.1007/s10561-021-09932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
The release of paracrine factors from endothelial progenitor cell (EPC) sheet is a central mechanism of tissue repair. The purpose of this study was to constuct the rat bone marrow derived-endothelial progenitor cell (BM-EPCs) sheet and investigate invest the role of stromal cell-derived factor-1α (SDF-1α)/CXCR4 axis in the biological function of BM-EPCs sheet. BM-EPC cells were identified by the cell-surface markers-CD34/CD133/VE-cadherin/KDR using flow cytometry and dual affinity for acLDL and UEA-1. After 7 days of incubation, the BM-EPC single-cell suspensions were seeded on thermo-sensitive plate to harvest the BM-EPC cell sheets. The expression levels of SDF-1α/CXCR4 axis-associated genes and proteins were examined using RT-qPCR and western blot analysis, and enzyme-linked immunosorbent assay (ELISA) was applied to determine the concentration of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and SDF-1α in the cell culture medium. The BM-EPC cell sheets were successfully harvested. Moreover, BM-EPC cell sheets have superior migration and tube formation activity when compared with single cell suspension. When capillary-like tube were formed from EPCs sheets, the releasing of paracrine factors such as VEGF, EGF and SDF-1α were increased. To reveal the mechanism of tube formation of BM-EPCs sheets, our research showed that the activation of PI3K/AKT/eNOS pathway was involved in the process, because the phosphorylation of CXCR, PI3K, AKT and eNOS were increased. BM-EPC cell sheets have superior paracrine and tube formation activity than the BM-EPC single-cell. The strong ability to secrete paracrine factors was be potentially related to the SDF-1α/CXCR4 axis through PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Fenlong Xue
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yunpeng Bai
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Yiyao Jiang
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, China
| | - Jianshi Liu
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China
| | - Kaitao Jian
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China.
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China.
| |
Collapse
|
38
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
39
|
Zhu Z, Li T, Chen J, Kumar J, Kumar P, Qin J, Hadigan C, Sereti I, Baker JV, Catalfamo M. The Role of Inflammation and Immune Activation on Circulating Endothelial Progenitor Cells in Chronic HIV Infection. Front Immunol 2021; 12:663412. [PMID: 34079548 PMCID: PMC8165313 DOI: 10.3389/fimmu.2021.663412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelial inflammation and damage are the main drivers of cardiovascular risk/disease. Endothelial repair is mediated in part by recruitment of bone marrow endothelial progenitor/endothelial colony forming cells (EPC/ECFC). People with HIV (PWH) have increased cardiovascular risk and the impact of infection in endothelial repair is not well defined. The low frequencies and challenges to in vitro isolation and differentiation of EPC/ECFC from PBMCs had made it difficult to study their role in this context. We hypothesized that HIV driven inflammation induces phenotypic changes that reflects the impact of infection. To test this hypothesis, we evaluated expression of markers of trafficking, endothelial differentiation, and angiogenesis, and study their association with biomarkers of inflammation in a cohort of PWH. In addition, we investigated the relationship of circulating endothelial progenitors and angiogenic T cells, a T cell subset with angiogenic function. Using a flow cytometry approach, we identified two subsets of circulating progenitors LIN4-CD45-CD34+ and LIN4-CD45dimCD34+ in PWH. We found that the phenotype but not frequencies were associated with biomarkers of inflammation. In addition, the percentage of LIN4-CD45dimCD34+ was associated with serum levels of lipids. This data may provide a new tool to better address the impact of HIV infection in endothelial inflammation and repair.
Collapse
Affiliation(s)
- Ziang Zhu
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC, United States
| | - Tong Li
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC, United States
| | - Jinya Chen
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC, United States
| | - Jai Kumar
- Division of Infectious Diseases and Tropical Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - Princy Kumar
- Division of Infectious Diseases and Tropical Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - Jing Qin
- Biostatistics Research Branch, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Colleen Hadigan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason V Baker
- Hennepin Healthcare Research Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
40
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
41
|
Jiang C, Li R, Xiu C, Ma X, Hu H, Wei L, Tang Y, Tao M, Zhao J. Upregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitus. Stem Cell Res Ther 2021; 12:264. [PMID: 33941256 PMCID: PMC8091720 DOI: 10.1186/s13287-021-02324-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background Endothelial progenitor cell (EPC) dysfunction contributes to vascular disease in diabetes mellitus. However, the molecular mechanism underlying EPC dysfunction and its contribution to delayed reendothelialization in diabetes mellitus remain unclear. Our study aimed to illustrate the potential molecular mechanism underlying diabetic EPC dysfunction in vivo and in vitro. Furthermore, we assessed the effect of EPC transplantation on endothelial regeneration in diabetic rats. Methods Late outgrowth EPCs were isolated from the bone marrow of rats for in vivo and in vitro studies. In vitro functional assays and Western blotting were conducted to reveal the association between C-X-C chemokine receptor type 7 (CXCR7) expression and diabetic EPC dysfunction. To confirm the association between cellular CXCR7 levels and EPC function, CXCR7 expression in EPCs was upregulated and downregulated via lentiviral transduction and RNA interference, respectively. Western blotting was used to reveal the potential molecular mechanism by which the Stromal-Derived Factor-1 (SDF-1)/CXCR7 axis regulates EPC function. To elucidate the role of the SDF-1/CXCR7 axis in EPC-mediated endothelial regeneration, a carotid artery injury model was established in diabetic rats. After the model was established, saline-treated, diabetic, normal, or CXCR7-primed EPCs were injected via the tail vein. Results Diabetic EPC dysfunction was associated with decreased CXCR7 expression. Furthermore, EPC dysfunction was mimicked by knockdown of CXCR7 in normal EPCs. However, upregulating CXCR7 expression reversed the dysfunction of diabetic EPCs. The SDF-1/CXCR7 axis positively regulated EPC function by activating the AKT-associated Kelch-like ECH-associated protein 1 (keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis, which was reversed by blockade of AKT and Nrf2. Transplantation of CXCR7-EPCs accelerated endothelial repair and attenuated neointimal hyperplasia in diabetes mellitus more significantly than transplantation of diabetic or normal EPCs. However, the therapeutic effect of CXCR7-EPC transplantation on endothelial regeneration was reversed by knockdown of Nrf2 expression. Conclusions Dysfunction of diabetic EPCs is associated with decreased CXCR7 expression. Furthermore, the SDF-1/CXCR7 axis positively regulates EPC function by activating the AKT/keap-1/Nrf2 axis. CXCR7-primed EPCs might be useful for endothelial regeneration in diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200233, People's Republic of China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Chaoyang Xiu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Liming Wei
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Yihan Tang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Mingyang Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
42
|
Canu G, Ruhrberg C. First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis 2021; 24:199-211. [PMID: 33783643 PMCID: PMC8205888 DOI: 10.1007/s10456-021-09783-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Hematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.
Collapse
Affiliation(s)
- Giovanni Canu
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
43
|
Zhang B, Li D, Liu G, Tan W, Zhang G, Liao J. Impaired activity of circulating EPCs and endothelial function are associated with increased Syntax score in patients with coronary artery disease. Mol Med Rep 2021; 23:321. [PMID: 33760184 PMCID: PMC7974324 DOI: 10.3892/mmr.2021.11960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
It has previously been shown that the number of endothelial progenitor cells (EPCs) is negatively correlated with Syntax score in patients with coronary artery disease (CAD). However, the association between alterations in EPC function and Syntax score is still unknown. The present study evaluated the association between the activity of EPCs as well as endothelial function and Syntax score in patients with CAD and investigated the underlying mechanisms. A total of 60 patients with CAD were enrolled in 3 groups according to Syntax score, and 20 healthy subjects were recruited as the control group. The number and migratory, proliferative and adhesive activities of circulating EPCs were studied. The endothelial function was measured by flow-mediated dilatation (FMD) and the levels of nitric oxide (NO) in plasma or secreted by EPCs were detected. The number and activity of circulating EPCs were lower in patients with a high Syntax score, which was similar to the alteration in FMD. The level of NO in plasma or secreted by EPCs also decreased as Syntax score increased. There was a negative association between FMD or circulating EPCs and Syntax score. A similar association was observed between the levels of NO in plasma or secreted by EPCs and Syntax score. Patients with CAD who had a higher Syntax score exhibited lower EPC numbers or activity and weaker endothelial function, which may be associated with attenuated NO production. These findings provide novel surrogate parameters for evaluation of the severity and complexity of CAD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Dong Li
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Gexiu Liu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenfeng Tan
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Gaoxing Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Jinli Liao
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
44
|
Endothelial colony forming cells generated from cryopreserved peripheral blood mononuclear cells. Hum Immunol 2021; 82:309-314. [PMID: 33648804 DOI: 10.1016/j.humimm.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
Derivation of endothelial colony forming cells (ECFCs) from peripheral blood mononuclear cells (PBMCs) is a technique that could provide access to donor endothelial cells to study donor endothelium/recipient immune cells interactions. The success rate of ECFC colony formation from cryopreserved PBMCs has not been reported. We used biobanked PBMCs and studied the yield of ECFC generation. Endothelial phenotype was confirmed with CD31, CD146, CD309, CD34, CD14 and CD11c staining by flow cytometry and VE-cadherin, von Willebrand factor and Dil-Ac-LDL by fluorescent microscopy. Functionality was tested by endothelial cell tube-based formation assay. The success rate of ECFC generation was 28%. Freezing time was not a predictor of ECFC generation while a shorter time on dialysis and living transplant were significant determinants. These data suggest that it is possible to generate ECFCs from cryopreserved PBMCs, which is a potentially useful option for the longitudinal assessment of alloimmune response in transplantation.
Collapse
|
45
|
Ramshani Z, Fan F, Wei A, Romanello-Giroud-Joaquim M, Gil CH, George M, Yoder MC, Hanjaya-Putra D, Senapati S, Chang HC. A multiplexed immuno-sensor for on-line and automated monitoring of tissue culture protein biomarkers. Talanta 2020; 225:122021. [PMID: 33592751 DOI: 10.1016/j.talanta.2020.122021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Frequent on-line and automated monitoring of multiple protein biomarkers level secreted in the culture media during tissue growth is essential for the successful development of Tissue Engineering and Regenerative Medicine (TERM) products. Here, we present a low-cost, rapid, reliable, and integrable anion-exchange membrane-(AEM) based multiplexed sensing platform for this application. Unlike the gold-standard manual ELISA test, incubation/wash steps are optimized for each target and precisely metered in microfluidic chips to enhance selectivity. Unlike optical detection and unreliable visual detection for the ELISA test, which require standardization for every usage, the AEM ion current signal also offers robustness, endowed by the pH and ionic strength control capability of the ion-selective membrane, such that a universal standard curve can be used to calibrate all runs. The electrical signal is enhanced by highly charged silica nanoparticle reporters, which also act as hydrodynamic shear amplifiers to enhance selectivity during wash. This AEM-based sensing platform is tested with vascular protein biomarkers, Endothelin-1 (ET-1), Angiogenin (ANG) and Placental Growth Factor (PlGF). The limit of detection and three-decade dynamic range are comparable to ELISA assay but with a significantly reduced assay time of 1 h vs 7 h, due to the elimination of calibration and blocking steps. Optimized protocol for each target renders the detection highly reliable with more than 98% confidence. The multiplexed detection capability of the platform is also demonstrated by simultaneous detection of ET-1, ANG and PlGF in 40 μl of the vascular endothelial cell culture supernatants using three-membrane AEM sensor and the performance is validated against ELISA.
Collapse
Affiliation(s)
- Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Miguel Romanello-Giroud-Joaquim
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Chang-Hyun Gil
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matt George
- Vascugen Inc., 5602 Research Park Blvd, Ste 213, Madison, WI 53719, USA
| | - Mervin C Yoder
- Vascugen Inc., 5602 Research Park Blvd, Ste 213, Madison, WI 53719, USA
| | - Donny Hanjaya-Putra
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
46
|
Kraus X, Pflaum M, Thoms S, Jonczyk R, Witt M, Scheper T, Blume C. A pre-conditioning protocol of peripheral blood derived endothelial colony forming cells for endothelialization of tissue engineered constructs. Microvasc Res 2020; 134:104107. [PMID: 33212112 DOI: 10.1016/j.mvr.2020.104107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
In regenerative medicine, autologous endothelial colony forming cells (ECFCs) bear the greatest potential to be used for surface endothelialization of tissue engineered constructs, as they are easily attainable and possess a high proliferation rate. The aim of this study was to develop a standardized pre-conditioning protocol under dynamic conditions simulating the physiology of human circulation to improve the formation of a flow resistant monolayer of ECFCs and to enhance the antithrombogenicity of the endothelial cells. The main focus of the study was to consequently compare the cellular behavior under a steady laminar flow against a pulsatile flow. Mononuclear cells were isolated out of peripheral blood (PB) buffy coats and plated on uncoated tissue culture flasks in anticipation of guidelines for Advanced Therapy Medicinal Products. ECFCs were identified by typical surface markers such as CD31, CD146 and VE-Cadherin. To explore the effects of dynamic cultivation, ECFCs and human umbilical vein endothelial cells were comparatively cultured under either laminar or pulsatile (1 Hz) flow conditions with different grades of shear stress (5 dyn/cm2versus 20 dyn/cm2). High shear stress of 20 dyn/cm2 led to a significant upregulation of the antithrombotic gene marker thrombomodulin in both cell types, but only ECFCs orientated and elongated significantly after shear stress application forming a confluent endothelial cell layer. The work therefore documents a suitable protocol to pre-condition PB-derived ECFCs for sustainable endothelialization of blood contacting surfaces and provides essential knowledge for future cultivations in bioreactor systems.
Collapse
Affiliation(s)
- Xenia Kraus
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany.
| | - Michael Pflaum
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefanie Thoms
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Rebecca Jonczyk
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Martin Witt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Thomas Scheper
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Cornelia Blume
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
47
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
48
|
de Boer S, Bowman M, Notley C, Mo A, Lima P, de Jong A, Dirven R, Weijers E, Lillicrap D, James P, Eikenboom J. Endothelial characteristics in healthy endothelial colony forming cells; generating a robust and valid ex vivo model for vascular disease. J Thromb Haemost 2020; 18:2721-2731. [PMID: 32654420 PMCID: PMC7590112 DOI: 10.1111/jth.14998] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/14/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Endothelial colony forming cells (ECFCs) derived from peripheral blood can be used to analyze the pathophysiology of vascular diseases ex vivo. However, heterogeneity is observed between ECFC clones and this variability needs to be understood and standardized for ECFCs to be used as a cell model for applications in vascular studies. OBJECTIVE Determine reference characteristics of healthy control ECFCs to generate a valid ex vivo model for vascular disease. METHODS Putative ECFCs (n = 47) derived from 21 individual healthy subjects were studied for cell morphology and specific cell characteristics. Clones were analyzed for the production and secretion of von Willebrand factor (VWF), cell proliferation, and the expression of endothelial cell markers. RESULTS Based on morphology, clones were categorized into three groups. Group 1 consisted of clones with classic endothelial cell morphology, whereas groups 2 and 3 contained less condensed cells with increasing cell sizes. All clones had comparable endothelial cell surface expression profiles, with low levels of non-endothelial markers. However, a decrease in CD31 and a group-related increase in CD309 and CD45 expression, combined with a decrease in cell proliferation and VWF production and secretion, was observed in clones in group 3 and to a lesser extent in group 2. CONCLUSIONS We observed group-related variations in endothelial cell characteristics when clones lacked the classic endothelial cell morphology. Despite this variation, clones in all groups expressed endothelial cell surface markers. Provided that clones with similar characteristics are compared, we believe ECFCs are a valid ex vivo model to study vascular disease.
Collapse
Affiliation(s)
- Suzan de Boer
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Colleen Notley
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Aomei Mo
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Patricia Lima
- Department of MedicineQueen’s UniversityKingstonONCanada
| | - Annika de Jong
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Richard Dirven
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Ester Weijers
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Paula James
- Department of MedicineQueen’s UniversityKingstonONCanada
| | - Jeroen Eikenboom
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
49
|
de Cavanagh EMV, González SA, Inserra F, Forcada P, Castellaro C, Chiabaut-Svane J, Obregón S, Casarini MJ, Kempny P, Kotliar C. Blood pressure control is not enough to normalize endothelial repair by progenitor cells. Am J Physiol Heart Circ Physiol 2020; 319:H744-H752. [PMID: 32795193 DOI: 10.1152/ajpheart.00333.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients presenting with classical cardiovascular risk factors within acceptable or average value ranges often develop cardiovascular disease, suggesting that other risk factors need to be considered. Considering that endothelial progenitor cells (EPCs) contribute to endothelial repair, we investigated whether EPCs might be such a factor. We compared the ability of peripheral blood EPCs to attach to extracellular matrix proteins and to grow and function in culture, between controlled hypertensive patients exhibiting a Framingham score (FS) of <10% while showing severe vascular impairment (intima-media thickness/diameter, carotid-femoral pulse wave velocity, brachial artery flow-mediated dilation, carotid and femoral atherosclerotic plaque presence; vulnerable group, N = 30) and those with an FS of ≥10% and scarce vascular changes (protected group, N = 30). When compared with vulnerable patients, protected patients had significantly higher early and late-EPC and early and late-tunneling nanotube (TNT) numbers. Significant negative associations were found between vascular damage severity and early EPC, late-EPC, or late-TNT numbers, whereas EPC or TNT numbers and patient characteristics or cardiovascular risk factors were not associated. Except for protected patients, in all controlled hypertensive patients, early and late-EPC and early and late-TNT counts were significantly lower than those in the normotensive subjects studied (N = 30). We found that the disparity in vascular status between patients presenting with both an FS of ≥10% and scarce vascular changes and those presenting with both an FS of <10% and severe vascular impairment is related to differences in peripheral blood EPC and TNT numbers. These observations support the role of EPCs as contributors to vascular injury repair and suggest that EPC numbers may be a potential cardiovascular risk factor to be included in the FS calculation.NEW & NOTEWORTHY As individuals who present with risk factors within acceptable or average value ranges often develop cardiovascular (CV) disease, it has been suggested that other CV risk factors need to be considered in addition to those that are commonly combined in the Framingham score (FS) to estimate the risk of general CV disease. We investigated whether peripheral endothelial progenitor cells (EPCs) and tunneling nanotubes (TNTs) deserve to be considered. Here we report that EPCs and TNTs are significantly lower in controlled hypertensive patients versus normotensive subjects and that the disparity in vascular status between patients presenting with an FS of ≥10% with scarce vascular changes and those presenting with an FS of <10% with severe vascular impairment is related to differences in EPC and TNT numbers. These data point to EPC and TNT numbers as potential CV risk factors to be included in the FS calculation.
Collapse
Affiliation(s)
| | - Sergio A González
- Cardiometabolic Unit, Cardiology Department, Austral University Hospital, Pilar, Argentina
| | | | | | - Carlos Castellaro
- Cardiometabolic Unit, Cardiology Department, Austral University Hospital, Pilar, Argentina.,Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno," Buenos Aires, Argentina
| | - Jorge Chiabaut-Svane
- Cardiometabolic Unit, Cardiology Department, Austral University Hospital, Pilar, Argentina
| | - Sebastián Obregón
- Arterial Hypertension Center, Department of Cardiology, Austral University Hospital, Buenos Aires, Argentina
| | | | - Pablo Kempny
- Cardiometabolic Unit, Cardiology Department, Austral University Hospital, Pilar, Argentina
| | - Carol Kotliar
- Arterial Hypertension Center, Department of Cardiology, Austral University Hospital, Buenos Aires, Argentina
| |
Collapse
|
50
|
Shahin H, Elmasry M, Steinvall I, Söberg F, El-Serafi A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. BURNS & TRAUMA 2020; 8:tkaa022. [PMID: 32766342 PMCID: PMC7396265 DOI: 10.1093/burnst/tkaa022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Skin regeneration represents a promising line of management for patients with skin loss, including burn victims. The current approach of spraying single cells over the defective areas results in variable success rates in different centers. The modern approach is to synthesize a multilayer skin construct that is based on autologous stem cells. One of the main complications with different types of transplants is sloughing due to the absence of proper vascularization. Ensuring proper vascularization will be crucial for the integration of skin constructs with the surrounding tissues. Combination of the right cells with scaffolds of proper physico-chemical properties, vascularization can be markedly enhanced. The material effect, pore size and adsorption of certain proteins, as well as the application of appropriate growth factors, such as vascular endothelial growth factors, can have an additive effect. A selection of the most effective protocols is discussed in this review.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
- Faculty of Biotechnology, MSA University, 26 July Mehwar Road, 125 85, 6th October City. Egypt
| | - Moustafa Elmasry
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Folke Söberg
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ahmed El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| |
Collapse
|