1
|
Chini A, Guha P, Rishi A, Bhat N, Covarrubias A, Martinez V, Devejian L, Nguyen BN, Mandal SS. HDLR-SR-BI Expression and Cholesterol Uptake are Regulated via Indoleamine-2,3-dioxygenase 1 in Macrophages under Inflammation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11253-11271. [PMID: 40309829 DOI: 10.1021/acs.langmuir.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Macrophages play crucial roles in inflammation, and their dysfunction is a contributing factor to various human diseases. Maintaining the balance of cholesterol and lipid metabolism is central to macrophage function, and any disruption in this balance increases the risk of conditions such as cardiovascular disease, atherosclerosis, and others. HDLR-SR-BI (SR-BI) is pivotal for reverse cholesterol transport and cholesterol homeostasis. Our studies demonstrate that the expression of SR-BI is reduced along with a decrease in cholesterol uptake in macrophages, both of which are regulated by the activation of NF-κB. Furthermore, we have discovered that indoleamine-2,3-dioxygenase 1 (IDO1), which is a critical player in tryptophan (Trp) catabolism, is crucial to the regulation of SR-BI expression. Inflammation leads to elevated levels of IDO1 and the associated Trp catabolite kynurenine (KYN) in macrophages. Interestingly, knockdown or inhibition of IDO1 results in the downregulation of LPS-induced inflammation, decreased KYN levels, and the restoration of SR-BI expression as well as cholesterol uptake in macrophages. Beyond LPS, stimulation with pro-inflammatory cytokine IFNγ exhibits similar trends in inflammatory response, IDO1 regulation, and cholesterol uptake in macrophages. These observations suggest that IDO1 plays a critical role in SR-BI expression and cholesterol uptake in macrophages under inflammation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nagashree Bhat
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Angel Covarrubias
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Valeria Martinez
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lucine Devejian
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Bao Nhi Nguyen
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Manna PR, Ahmed AU, Molehin D, Narasimhan M, Pruitt K, Reddy PH. Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein. Biomedicines 2022; 10:biomedicines10061313. [PMID: 35740335 PMCID: PMC9220045 DOI: 10.3390/biomedicines10061313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: ; Tel.: +1-806-743-3573; Fax: +1-806-743-3143
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - Madhusudhanan Narasimhan
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Mattoso Miskulin Cardoso AP, Tavares Pereira M, Dos Santos Silva R, Medeiros de Carvalho Sousa LM, Giometti IC, Kowalewski MP, de Carvalho Papa P. Global transcriptome analysis implicates cholesterol availability in the regulation of canine cyclic luteal function. Gen Comp Endocrinol 2021; 307:113759. [PMID: 33771531 DOI: 10.1016/j.ygcen.2021.113759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Considering the key role of the corpus luteum in the regulation of the canine diestrus, the present study aimed to investigate changes in the luteal transcriptome of pseudopregnant dogs (n = 18) from days (D) 10, 20, 30, 40, 50 and 60 post-ovulation. After RNAsequencing was performed, data was analyzed by resorting to several informatic tools. A total of 3300 genes were differently expressed among all samples (FDR < 0.01). By comparing different time points, enriched biological processes as response to estradiol and lipids (D20 vs D10) and intracellular cholesterol transport (D40 vs D60) were observed. Moreover, LXR/RXR (liver X receptor- retinoid X receptor) signaling appeared as an overrepresented pathway in all comparisons. Thus, the expression of 19 genes involved in intracellular cholesterol availability was further evaluated; most were affected by time (P < 0.05). Adding to the deep transcriptomic analysis, presented data implies the importance of cholesterol regulation in luteal physiology of pseudopregnant dogs.
Collapse
Affiliation(s)
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Renata Dos Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Faculty of Veterinary Medicine, University of Western São Paulo, Presidente Prudente, Brazil
| | | | - Paula de Carvalho Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Carpenter KJ, Valfort AC, Steinauer N, Chatterjee A, Abuirqeba S, Majidi S, Sengupta M, Di Paolo RJ, Shornick LP, Zhang J, Flaveny CA. LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Sci Rep 2019; 9:19530. [PMID: 31863071 PMCID: PMC6925117 DOI: 10.1038/s41598-019-56038-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.
Collapse
Affiliation(s)
- Katherine J Carpenter
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- The Center for Clinical Pharmacology, Saint Louis College of Pharmacy, Saint Louis, MO, 63110, USA
| | - Nick Steinauer
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Arindam Chatterjee
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Suomia Abuirqeba
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Shabnam Majidi
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Monideepa Sengupta
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Richard J Di Paolo
- The Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Laurie P Shornick
- The Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Jinsong Zhang
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Colin A Flaveny
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Garbacz WG, Uppal H, Yan J, Xu M, Ren S, Stolz DB, Huang M, Xie W. Chronic Activation of Liver X Receptor Sensitizes Mice to High Cholesterol Diet-Induced Gut Toxicity. Mol Pharmacol 2018; 94:1145-1154. [PMID: 30045953 PMCID: PMC6108576 DOI: 10.1124/mol.118.112672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Cholesterol is essential for numerous biologic functions and processes, but an excess of intracellular cholesterol can be toxic. Intestinal cholesterol absorption is a major determinant of plasma cholesterol level. The liver X receptor (LXR) is a nuclear receptor known for its activity in cholesterol efflux and reverse cholesterol transport. In this study, we uncovered a surprising function of LXR in intestinal cholesterol absorption and toxicity. Genetic or pharmacologic activation of LXRα-sensitized mice to a high-cholesterol diet (HCD) induced intestinal toxicity and tissue damage, including the disruption of enterocyte tight junctions, whereas the same HCD caused little toxicity in the absence of LXR activation. The gut toxicity in HCD-fed LXR-KI mice may have been accounted for by the increased intestinal cholesterol absorption and elevation of enterocyte and systemic levels of free cholesterol. The increased intestinal cholesterol absorption preceded the gut toxicity, suggesting that the increased absorption was not secondary to tissue damage. The heightened sensitivity to HCD in the HCD-fed LXRα-activated mice appeared to be intestine-specific because the liver was not affected despite activation of the same receptor in this tissue. Moreover, heightened sensitivity to HCD cannot be reversed by ezetimibe, a Niemann-Pick C1-like 1 inhibitor that inhibits intestinal cholesterol absorption, suggesting that the increased cholesterol absorption in LXR-activated intestine is mediated by a mechanism that has yet to be defined.
Collapse
Affiliation(s)
- Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Hirdesh Uppal
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Donna B Stolz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Min Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (W.G.G., H.U., J.Y., M.X., S.R., W.X.), Departments of Cell Biology and Physiology (D.B.S.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China (M.H.)
| |
Collapse
|
6
|
Zhang C, Qin JJ, Gong FH, Tong JJ, Cheng WL, Wang H, Zhang Y, Zhu X, She ZG, Xia H, Zhu LH. Mindin deficiency in macrophages protects against foam cell formation and atherosclerosis by targeting LXR-β. Clin Sci (Lond) 2018; 132:1199-1213. [PMID: 29695588 DOI: 10.1042/cs20180033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Mindin, which is a highly conserved extracellular matrix protein, has been documented to play pivotal roles in regulating angiogenesis, inflammatory processes, and immune responses. The aim of the present study was to assess whether mindin contributes to the development of atherosclerosis. A significant up-regulation of Mindin expression was observed in the serum, arteries and atheromatous plaques of ApoE-/- mice after high-fat diet treatment. Mindin-/-ApoE-/- mice and macrophage-specific mindin overexpression in ApoE-/- mice (Lyz2-mindin-TG) were generated to evaluate the effect of mindin on the development of atherosclerosis. The Mindin-/-ApoE-/- mice exhibited significantly ameliorated atherosclerotic burdens in the entire aorta and aortic root and increased atherosclerotic plaque stability. Moreover, bone marrow transplantation further demonstrated that mindin deficiency in macrophages was largely responsible for the alleviated atherogenesis. The Lyz2-mindin-TG mice exhibited the opposite phenotype. Mindin deficiency enhanced foam cell formation by increasing the expression of cholesterol effectors, including ABCA1 and ABCG1. The mechanistic study indicated that mindin ablation promoted LXR-β expression via a direct interaction. Importantly, LXR-β inhibition largely reversed the ameliorating effect of mindin deficiency on foam cell formation and ABCA1 and ABCG1 expression. The present study demonstrated that mindin deficiency serves as a novel mediator that protects against foam cell formation and atherosclerosis by directly interacting with LXR-β.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Fu-Han Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Jing-Jing Tong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Haiping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
7
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
8
|
Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 2016; 51:7-21. [PMID: 26271515 PMCID: PMC4707056 DOI: 10.1007/s12020-015-0715-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
Abstract
Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Cloyce L Stetson
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrzej T Slominski
- Department of Dermatology, VA Medical Center, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
9
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Cao P, Pan H, Xiao T, Zhou T, Guo J, Su Z. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL. Int J Mol Sci 2015. [PMID: 26225968 PMCID: PMC4581191 DOI: 10.3390/ijms160817245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hypothesis that raising high-density lipoprotein cholesterol (HDL-C) levels could improve the risk for cardiovascular disease (CVD) is facing challenges. There is multitudinous clear clinical evidence that the latest failures of HDL-C-raising drugs show no clear association with risks for CVD. At the genetic level, recent research indicates that steady-state HDL-C concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. It is evident that the newer strategies may replace therapeutic approaches to simply raise plasma HDL-C levels. There is an urgent need to identify an efficient biomarker that accurately predicts the increased risk of atherosclerosis (AS) in patients and that may be used for exploring newer therapeutic targets. Studies from recent decades show that the composition, structure and function of circulating HDL are closely associated with high cardiovascular risk. A vast amount of data demonstrates that the most important mechanism through which HDL antagonizes AS involves the reverse cholesterol transport (RCT) process. Clinical trials of drugs that specifically target HDL have so far proven disappointing, so it is necessary to carry out review on the HDL therapeutics.
Collapse
Affiliation(s)
- Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Ting Zhou
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Ishibashi M, Filomenko R, Rébé C, Chevriaux A, Varin A, Derangère V, Bessède G, Gambert P, Lagrost L, Masson D. Knock-down of the oxysterol receptor LXRα impairs cholesterol efflux in human primary macrophages: Lack of compensation by LXRβ activation. Biochem Pharmacol 2013; 86:122-9. [DOI: 10.1016/j.bcp.2012.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
|
12
|
Fletcher T, Galloway TS, Melzer D, Holcroft P, Cipelli R, Pilling LC, Mondal D, Luster M, Harries LW. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. ENVIRONMENT INTERNATIONAL 2013; 57-58:2-10. [PMID: 23624243 DOI: 10.1016/j.envint.2013.03.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Perfluorooctanoic acid (PFOA, 'C8') and perfluoroctane sulphonate (PFOS) are environmentally stable compounds with industrial and consumer uses and long half-lives in humans. Concern has been raised over chronic exposure effects to human health, especially in relation to cholesterol metabolism. Here, we explore the association between exposure to PFOA and PFOS and the in vivo expression of genes involved in cholesterol metabolism. We studied 290 individuals exposed to background levels of PFOS and elevated concentrations of PFOA through drinking water. Using adjusted linear regression models, we found inverse associations between serum PFOA levels and the whole blood expression level of genes involved in cholesterol transport (NR1H2, NPC1 and ABCG1; p=0.002, 0.026 and 0.014 respectively). A positive association was seen between PFOS and a transcript involved in cholesterol mobilisation (NCEH1; p=0.018), and a negative relationship with a transcript involved in cholesterol transport (NR1H3; p=0.044). When sexes were analysed separately, reductions in the levels of mRNAs involved in cholesterol transport were seen with PFOA in men (NPC1, ABCG1, and PPARA; p=0.025, 0.024 and 0.012 respectively) and in women (NR1H2 expression; p=0.019), whereas an increase in the levels of a cholesterol mobilisation transcript (NCEH1; p=0.036) was noted in women alone. PFOS was positively associated with expression of genes involved in both cholesterol mobilisation and transport in women (NCEH1 and PPARA; p=0.003 and 0.039 respectively), but no effects were evident in men. This is the first report of associations between the in vivo expression of genes involved in cholesterol metabolism and exposure to PFOA or PFOS, suggested that exposure to these compounds may promote a hypercholesterolaemic environment, with wider implications for human disease.
Collapse
Affiliation(s)
- Tony Fletcher
- Department of Social and Environmental Research, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Newer therapeutic strategies to alter high-density lipoprotein level and function. Cardiol Rev 2013; 22:17-24. [PMID: 23707991 DOI: 10.1097/crd.0b013e31829cac29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Measurements of low levels of high-density lipoprotein (HDL) cholesterol have been identified as a risk factor for premature coronary artery disease, however, to date, current pharmacologic approaches for raising HDL have provided little benefit, if at all, in reducing cardiovascular outcomes. It has been shown that HDL can modify many aspects of plaque pathogenesis. Its most established role is in reverse cholesterol transportation, but HDL can also affect oxidation, inflammation, cellular adhesion, and vasodilatation. Considering these potential benefits of HDL, newer treatments have been developed to modify HDL activity, which include the use of oral cholesteryl ester transfer protein inhibitors, apolipoprotein (apo)A-I infusions, apoA-I mimetics, drugs to increase apoA-I synthesis, and agonists of the liver X receptor. These new therapies are reviewed in this article.
Collapse
|
14
|
Abstract
Liver X receptors (LXRs) belong to the nuclear receptor superfamily of ligand-dependent transcription factors. LXRs are activated by oxysterols, metabolites of cholesterol, and therefore act as intracellular sensors of this lipid. There are two LXR genes (α and β) that display distinct tissue/cell expression profiles. LXRs interact with regulatory sequences in target genes as heterodimers with retinoid X receptor. Such direct targets of LXR actions include important genes implicated in the control of lipid homeostasis, particularly reverse cholesterol transport. In addition, LXRs attenuate the transcription of genes associated with the inflammatory response indirectly by transrepression. In this review, we describe recent evidence that both highlights the key roles of LXRs in atherosclerosis and inflammation and provides novel insights into the mechanisms underlying their actions. In addition, we discuss the major limitations of LXRs as therapeutic targets for the treatment of atherosclerosis and how these are being addressed.
Collapse
|
15
|
Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3:173-81. [PMID: 22447659 DOI: 10.1007/s13238-012-2025-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | |
Collapse
|
16
|
Lemaire-Ewing S, Lagrost L, Néel D. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 2011; 221:303-10. [PMID: 22071358 DOI: 10.1016/j.atherosclerosis.2011.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Lipid rafts are microdomains of the plasma membrane which are enriched in cholesterol and sphingolipids. They serve as a platform for signal transduction, in particular during immune and inflammatory responses. As hypercholesterolemia and inflammation are two key elements of atherogenesis, it is conceivable that the cholesterol and cholesterol oxide content of lipid rafts might influence the inflammatory signalling pathways, thus modulating the development of atherosclerosis. In support of this emerging view, lipid rafts have been shown to be involved in several key steps of atherogenesis, such as the oxysterol-mediated apoptosis of vascular cells, the blunted ability of high density lipoproteins (HDL) to exert anti-inflammatory effects, and the exacerbated secretion of pro-inflammatory cytokines by immune cells. Additional studies are now required to address the relative contribution of lipid raft abnormalities to the pathophysiology of atherosclerosis and cardiovascular disease.
Collapse
|
17
|
Le Lay S, Rodriguez M, Jessup W, Rentero C, Li Q, Cartland S, Grewal T, Gaus K. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux. PLoS One 2011; 6:e23353. [PMID: 21858084 PMCID: PMC3155548 DOI: 10.1371/journal.pone.0023353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (Cav1(-/-)) animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/-) cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/-) MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/-) cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Soazig Le Lay
- Centre de Recherche des Cordeliers, INSERM, U872, Paris, France
| | - Macarena Rodriguez
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Wendy Jessup
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Carles Rentero
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Qiong Li
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Siân Cartland
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
18
|
Abstract
OPINION STATEMENT The treatment of lipid abnormalities generally has focused on low-density lipoprotein cholesterol (LDL-C) reduction based on extensive clinical trials and the National Cholesterol Education Program Adult Treatment Panel III guidelines. Unfortunately, it has become increasingly clear that a significant percentage of patients continue to have cardiovascular events despite being on LDL-C-lowering medications and having LDL-C levels below 100 mg/dL. Numerous epidemiologic studies have associated low high-density lipoprotein cholesterol (HDL-C) levels with increased risk of cardiovascular disease (CVD). Furthermore, recent data show that up to 55% of patients hospitalized for CVD have low HDL-C levels (<40 mg/dL) on admission, suggesting a possible target for further reducing CVD. Low HDL-C also is part of the atherogenic phenotype associated with obesity, glucose intolerance, and hypertension, termed the metabolic syndrome, and often is seen in patients with insulin resistance states. In general, the first line of therapy for increasing HDL-C in patients with levels below 40 mg/dL is lifestyle modification with smoking cessation, exercise, weight loss, and diet modifications. The pharmacologic treatment of isolated low HDL-C in patients without coronary disease is controversial but should be considered in those with a strong family history of CVD. In patients with coronary artery disease and isolated low HDL-C, statins remain the first-line therapy and should be instituted after lifestyle modifications, with the goal of increasing HDL-C above 40 mg/dL. If concomitant hypertriglyceridemia is present, a fibrate or niacin should be considered. Although statins do offer some HDL-C-raising properties, they tend to have modest effects. If treatment goals have not been achieved with either lifestyle changes or statin therapy, then the next agent of choice is niacin. Among the various HDL-C-raising therapies, niacin continues to be the most potent therapeutic option available. There are several novel HDL-C therapies in the research pipeline; however, only one class of medications is relatively close to clinical use, the cholesteryl ester transferase protein (CETP) inhibitors. Although one of the CETP inhibitors, torcetrapib, has received much negative attention from a large randomized trial showing increased mortality associated with its use, the overall class of therapeutic agents may still hold some benefit. Currently, two new CETP inhibitors without the off-target effects of torcetrapib are undergoing clinical research. Overall, the use of HDL-C-modifying agents likely will increase over the next decade.
Collapse
|
19
|
Abstract
Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C(+) in mice) and other monocytes (Ly-6C(-) in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C(+) monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
20
|
Ji A, Meyer JM, Cai L, Akinmusire A, de Beer MC, Webb NR, van der Westhuyzen DR. Scavenger receptor SR-BI in macrophage lipid metabolism. Atherosclerosis 2011; 217:106-12. [PMID: 21481393 DOI: 10.1016/j.atherosclerosis.2011.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the mechanisms by which macrophage scavenger receptor BI (SR-BI) regulates macrophage cholesterol homeostasis and protects against atherosclerosis. METHODS AND RESULTS The expression and function of SR-BI was investigated in cultured mouse bone marrow-derived macrophages (BMM). SR-BI, the other scavenger receptors SRA and CD36 and the ATP-binding cassette transporters ABCA1 and ABCG1 were each distinctly regulated during BMM differentiation. SR-BI levels increased transiently to significant levels during culture. SR-BI expression in BMM was reversibly down-regulated by lipid loading with modified LDL; SR-BI was shown to be present both on the cell surface as well as intracellularly. BMM exhibited selective HDL CE uptake, however, this was not dependent on SR-BI or another potential candidate glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1). SR-BI played a significant role in facilitating bidirectional cholesterol flux in non lipid-loaded cells. SR-BI expression enhanced both cell cholesterol efflux and cholesterol influx from HDL, but did not lead to altered cellular cholesterol mass. SR-BI-dependent efflux occurred to larger HDL particles but not to smaller HDL(3). Following cholesterol loading, ABCA1 and ABCG1 were up-regulated and served as the major contributors to cholesterol efflux, while SR-BI expression was down-regulated. CONCLUSION Our results suggest that SR-BI plays a significant role in macrophage cholesterol flux that may partly account for its effects on atherogenesis.
Collapse
Affiliation(s)
- Ailing Ji
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailänder V, Landfester K, Simmet T. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS NANO 2011; 5:1657-69. [PMID: 21344890 DOI: 10.1021/nn2000756] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tumor cell lines are often used as models for the study of nanoparticle-cell interactions. Here we demonstrate that carboxy (PS-COOH) and amino functionalized (PS-NH2) polystyrene nanoparticles of ∼100 nm in diameter are internalized by human macrophages, by undifferentiated and by PMA-differentiated monocytic THP-1 cells via diverse mechanisms. The uptake mechanisms also differed for all cell types and particles when analyzed either in buffer or in medium containing human serum. Macrophages internalized ∼4 times more PS-COOH than THP-1 cells, when analyzed in serum-containing medium. By contrast, in either medium, THP-1 cells internalized PS-NH2 more rapidly than macrophages. Using pharmacological and antisense in vitro knockdown approaches, we showed that, in the presence of serum, the specific interaction between the CD64 receptor and the particles determines the macrophage uptake of particles by phagocytosis, whereas particle internalization in THP-1 cells occurred via dynamin II-dependent endocytosis. PMA-differentiated THP-1 cells differed in their uptake mechanism from macrophages and undifferentiated THP-1 cells by internalizing the particles via macropinocytosis. In line with our in vitro data, more intravenously applied PS-COOH particles accumulated in the liver, where macrophages of the reticuloendothelial system reside. By contrast, PS-NH2 particles were preferentially targeted to tumor xenografts grown on the chorioallantoic membrane of fertilized chicken eggs. Our data show that the amount of internalized nanoparticles, the uptake kinetics, and its mechanism may differ considerably between primary cells and a related tumor cell line, whether differentiated or not, and that particle uptake by these cells is critically dependent on particle opsonization by serum proteins.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Y, Wang L, Si S, Hong B. How can high-throughput screening deliver drugs to treat atherosclerosis? Expert Opin Drug Discov 2010; 5:1175-88. [DOI: 10.1517/17460441.2010.529896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Abstract
Normally macrophages localized in the arterial vessel wall perform the "reverse transfer" of cholesterol, which includes endocytosis of low density lipoproteins (LDL), cholesterol transfer to newly formed high density lipoprotein particles, and their following elimination by the liver. The homeostatic function of macrophages for cholesterol involves a system of lipid sensors. Oxysterol sensors LXRs, oxysterol and cholesterol sensors INSIG and SCAP acting through controlled transcription factors SREBP, as well as sensors for oxidized fatty acids and their derivatives, PPAR, are the best studied. Activation of LXR and PPAR is also accompanied by inhibition of macrophage functions related to inflammation. Accumulation of oxidized and otherwise modified LDL in the subendothelial space induced by endothelium injury, infection, or other pathogenic factors instead of stimulation of the homeostatic functions of macrophages leads to their weakening with a concurrent increase in the inflammatory potential of these cells. These shifts seem to drive the transformation of macrophages into foam cells, which form the core of sclerotic plaques. The intervention of another lipid sensor, TLR4, can trigger such a radical change in the functional activity of macrophages. The interaction of modified LDL with this signaling receptor results in inhibition of the homeostatic oxysterol signaling, induction of additional LDL transporters, and activation of the phagocytic function of macrophages. The re-establishment of cholesterol homeostasis under these circumstances can be achieved by administration of LXR and PPARgamma agonists. Therefore, it is urgent to design ligands with reduced side effects.
Collapse
|
24
|
|
25
|
Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, Simmet T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 2010; 32:547-55. [PMID: 20880574 DOI: 10.1016/j.biomaterials.2010.08.111] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/31/2010] [Indexed: 01/04/2023]
Abstract
Although systemically applied nanoparticles are quickly taken up by phagocytic cells, mainly macrophages, the interactions between engineered nanoparticles and macrophages are still not well defined. We therefore analyzed the uptake of diagnostically used carboxydextran-coated superparamagnetic iron oxide nanoparticles of 60 nm (SPIO) and 20 nm (USPIO) by human macrophages. By pharmacological and in vitro knockdown approaches, the principal uptake mechanism for both particles was identified as clathrin-mediated, scavenger receptor A-dependent endocytosis. We developed a mathematical model of the uptake process that allows determination of key parameters of endocytosis, including the rate of uptake, the number of nanoparticles per cell in saturation, the mean uptake time, and the correlation between the number of internalized nanoparticles and their extracellular concentration. The calculated parameters correlate well with experimental data obtained by confocal microscopy. Moreover, the model predicts the individual and collective wrapping times of different nanoparticles, describes the relation between cytoskeletal forces, membrane elasticity and the uptake time. We also introduced a new physical parameter 'a' governing the collective uptake process, a reflecting minimal linear spacing between simultaneously acting neighboring endocytotic pits.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Tsezou A, Iliopoulos D, Malizos KN, Simopoulou T. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes. J Orthop Res 2010; 28:1033-9. [PMID: 20108316 DOI: 10.1002/jor.21084] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered lipid metabolism has been implicated as a critical player in osteoarthritis (OA). Our study aimed to investigate the expression of genes regulating cholesterol efflux in human chondrocytes and to study the effect of an LXR agonist on cholesterol efflux and lipid accumulation in osteoarthritic chondrocytes. ATP-binding-cassette transporter A1 (ABCA1), apolipoprotein A1 (ApoA1), and liver X receptors (LXRalpha and LXRbeta) mRNA expression levels were evaluated using real-time polymerase chain reaction (PCR) and ApoA1 protein levels by Western blot analysis in normal and osteoarthritic articular cartilage samples. Cholesterol efflux was evaluated in osteoarthritic chondrocytes radiolabeled with [1,2(n)-(3)H] cholesterol after LXR treatment, while intracellular lipid accumulation was studied after Oil-red-O staining. Cholesterol efflux gene expressions were significantly lower in osteoarthritic cartilage compared to normal. Treatment of osteoarthritic chondrocytes with the LXR agonist TO-901317 significantly increased ApoA1 and ABCA1 expression levels, as well as cholesterol efflux. Additionally, osteoarthritic chondrocytes presented intracellular lipids deposits, while no deposits were found after treatment with TO-901317. Our findings suggest that impaired expression of genes regulating cholesterol efflux may be a critical player in osteoarthritis, while the ability of the LXR agonist to facilitate cholesterol efflux suggests that it may be a target for therapeutic intervention in osteoarthritis.
Collapse
Affiliation(s)
- Aspasia Tsezou
- Department of Biology, Medical School, University of Thessaly, Mezourlo Hill, 41222 Larissa, Greece.
| | | | | | | |
Collapse
|
27
|
Lakomy D, Rébé C, Sberna AL, Masson D, Gautier T, Chevriaux A, Raveneau M, Ogier N, Nguyen AT, Gambert P, Grober J, Bonnotte B, Solary E, Lagrost L. Liver X receptor-mediated induction of cholesteryl ester transfer protein expression is selectively impaired in inflammatory macrophages. Arterioscler Thromb Vasc Biol 2009; 29:1923-9. [PMID: 19679828 DOI: 10.1161/atvbaha.109.193201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cholesteryl ester transfer protein (CETP) is a target gene for the liver X receptor (LXR). The aim of this study was to further explore this regulation in the monocyte-macrophage lineage and its modulation by lipid loading and inflammation, which are key steps in the process of atherogenesis. METHODS AND RESULTS Exposure of bone marrow-derived macrophages from human CETP transgenic mice to the T0901317 LXR agonist increased CETP, PLTP, and ABCA1 mRNA levels. T0901317 also markedly increased CETP mRNA levels and CETP production in human differentiated macrophages, whereas it had no effect on CETP expression in human peripheral blood monocytes. In inflammatory mouse and human macrophages, LXR-mediated CETP gene upregulation was inhibited, even though ABCA1, ABCG1, and SREBP1c inductions were maintained. The inhibition of CETP gene response to LXR agonists in inflammatory cells was independent of lipid loading (ie, oxidized LDL increased CETP production in noninflammatory macrophages with a synergistic effect of synthetic LXR agonists). CONCLUSIONS LXR-mediated induction of human CETP expression is switched on during monocyte-to-macrophage differentiation, is magnified by lipid loading, and is selectively lost in inflammatory macrophages, which suggests that inflammatory cells may not increase the circulating CETP pool on LXR agonist treatment.
Collapse
|
28
|
Abstract
Low levels of HDL cholesterol are a significant predictor of atherosclerotic cardiovascular events. HDL is believed to protect against atherosclerosis by promoting reverse cholesterol transport, and potentially through anti-inflammatory, antioxidative, antithrombotic and nitric oxide effects. The multiple mechanisms of action, as well as a limited ability to measure these properties, make HDL a complex therapeutic target, albeit one with immense potential for the treatment of patients with atherosclerosis. Here, we discuss new therapeutic strategies currently being developed, which have the potential to increase plasma levels of HDL cholesterol and/or improve HDL function.
Collapse
|