1
|
Mu Y, Hu S, Liu X, Tang X, Lin J, Shi H. Mechanical forces pattern endocardial Notch activation via mTORC2-PKC pathway. eLife 2025; 13:RP97268. [PMID: 39932433 PMCID: PMC11813223 DOI: 10.7554/elife.97268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.
Collapse
Affiliation(s)
- Yunfei Mu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Shijia Hu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xiangyang Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xin Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
2
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Combémorel N, Cavell N, Tyser RC. Early heart development: examining the dynamics of function-form emergence. Biochem Soc Trans 2024; 52:1579-1589. [PMID: 38979619 PMCID: PMC11668286 DOI: 10.1042/bst20230546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
During early embryonic development, the heart undergoes a remarkable and complex transformation, acquiring its iconic four-chamber structure whilst concomitantly contracting to maintain its essential function. The emergence of cardiac form and function involves intricate interplays between molecular, cellular, and biomechanical events, unfolding with precision in both space and time. The dynamic morphological remodelling of the developing heart renders it particularly vulnerable to congenital defects, with heart malformations being the most common type of congenital birth defect (∼35% of all congenital birth defects). This mini-review aims to give an overview of the morphogenetic processes which govern early heart formation as well as the dynamics and mechanisms of early cardiac function. Moreover, we aim to highlight some of the interplay between these two processes and discuss how recent findings and emerging techniques/models offer promising avenues for future exploration. In summary, the developing heart is an exciting model to gain fundamental insight into the dynamic relationship between form and function, which will augment our understanding of cardiac congenital defects and provide a blueprint for potential therapeutic strategies to treat disease.
Collapse
Affiliation(s)
- Noémie Combémorel
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Natasha Cavell
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Richard C.V. Tyser
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| |
Collapse
|
4
|
Liu Z, Liu Y, Yu Z, Tan C, Pek N, O'Donnell A, Wu A, Glass I, Winlaw DS, Guo M, Spence JR, Chen YW, Yutzey KE, Miao Y, Gu M. APOE-NOTCH axis governs elastogenesis during human cardiac valve remodeling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:933-950. [PMID: 39196035 DOI: 10.1038/s44161-024-00510-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2024] [Indexed: 08/29/2024]
Abstract
Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yu Liu
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Cheng Tan
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Nicole Pek
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Anna O'Donnell
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - David S Winlaw
- Cardiothoracic Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine E Yutzey
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yifei Miao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
6
|
Mandrycky C, Ishida T, Rayner SG, Heck AM, Hadland B, Zheng Y. Under pressure: integrated endothelial cell response to hydrostatic and shear stresses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596749. [PMID: 38854073 PMCID: PMC11160699 DOI: 10.1101/2024.05.30.596749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the EC flow response is understudied, despite its known significance in vascular development and disease. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density. Bulk and single-cell RNA sequencing analyses revealed that, while shear stress remains the primary driver of flow-induced transcriptional changes, pressure modulates shear-induced signaling in a dose-dependent manner. These pressure-responsive transcriptional signatures identified in human ECs were conserved during the onset of circulation in early mouse embryonic vascular development, where pressure was notably associated with transcriptional programs essential to arterial and hemogenic EC fates. Our findings suggest that pressure plays a synergistic role with shear stress on ECs and emphasizes the need for an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.
Collapse
|
7
|
Guo P, Chen L, Yang D, Zhang L, Shu C, Li H, Zhu J, Zhou J, Li X. Predictive value of plasma ephrinB2 levels for amputation risk following endovascular revascularization in peripheral artery disease. PeerJ 2024; 12:e17531. [PMID: 38854794 PMCID: PMC11162178 DOI: 10.7717/peerj.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Background The aim of this study is to investigate the expression levels of ephrinB2 in patients with lower extremity peripheral arterial disease (PAD) and explore its association with the severity of the disease and the risk of amputation after endovascular revascularization. Methods During the period from March 2021 to March 2023, this study collected blood samples and clinical data from 133 patients diagnosed with lower extremity PAD and 51 healthy volunteer donors. The severity of lower extremity PAD patients was classified using the Rutherford categories. The expression of ephrin-B2 in plasma samples was detected using the Western Blotting. Results Compared to the control group, the levels of serum ephrinB2 in patients were significantly elevated (p < 0.001). Moreover, the plasma EphrinB2 levels were positively correlated with white blood cell counts (r = 0.204, p = 0.018), neutrophil counts (r = 0.174, p = 0.045), and neutrophil-to-lymphocyte ratio (NLR) (r = 0.223, p = 0.009). Furthermore, the AUCs of plasma ephrinB2 level, NLR, and their combination as predictors for amputation events within 30 months after lower extremity PAD endovascular revascularization were 0.659, 0.730 and 0.811. In the high-ephrinB2 group, the incidence of amputation events within 30 months after endovascular revascularization was higher. Conclusions Plasma EphrinB2 levels may be linked to lower extremity PAD development, inflammation, and postoperative amputation. Combining EphrinB2 and NLR can improve amputation prediction accuracy after endovascular revascularization in lower extremity PAD patients.
Collapse
Affiliation(s)
- Pengcheng Guo
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
| | - Lei Chen
- Pharmacy Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
| | - Dafeng Yang
- Cardiology Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
| | - Lei Zhang
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
| | - Chang Shu
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
- State Key Laboratory of Cardiovascular Diseases, Center of Vascular Surgery, Fuwai Hospital National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huande Li
- Pharmacy Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
| | - Jieting Zhu
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
| | - Jienan Zhou
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
| | - Xin Li
- Vascular Surgery Department, the Secondary Xiangya Hospital, Central South University, Hunan, China
- Institute of Vascular Diseases, Central South University, Chang Sha, Hunan, China
| |
Collapse
|
8
|
Stewen J, Kruse K, Godoi-Filip AT, Zenia, Jeong HW, Adams S, Berkenfeld F, Stehling M, Red-Horse K, Adams RH, Pitulescu ME. Eph-ephrin signaling couples endothelial cell sorting and arterial specification. Nat Commun 2024; 15:2539. [PMID: 38570531 PMCID: PMC10991410 DOI: 10.1038/s41467-024-46300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.
Collapse
Affiliation(s)
- Jonas Stewen
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Anca T Godoi-Filip
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Zenia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Sequencing Core Facility, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Frank Berkenfeld
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| |
Collapse
|
9
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
10
|
Loh KM, Ang LT. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol 2024; 155:62-75. [PMID: 37393122 DOI: 10.1016/j.semcdb.2023.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Owing to their manifold roles in health and disease, there have been intense efforts to synthetically generate blood vessels in vitro from human pluripotent stem cells (hPSCs). However, there are multiple types of blood vessel, including arteries and veins, which are molecularly and functionally different. How can we specifically generate either arterial or venous endothelial cells (ECs) from hPSCs in vitro? Here, we summarize how arterial or venous ECs arise during embryonic development. VEGF and NOTCH arbitrate the bifurcation of arterial vs. venous ECs in vivo. While manipulating these two signaling pathways biases hPSC differentiation towards arterial and venous identities, efficiently generating these two subtypes of ECs has remained challenging until recently. Numerous questions remain to be fully addressed. What is the complete identity, timing and combination of extracellular signals that specify arterial vs. venous identities? How do these extracellular signals intersect with fluid flow to modulate arteriovenous fate? What is a unified definition for endothelial progenitors or angioblasts, and when do arterial vs. venous potentials segregate? How can we regulate hPSC-derived arterial and venous ECs in vitro, and generate organ-specific ECs? In turn, answers to these questions could avail the production of arterial and venous ECs from hPSCs, accelerating vascular research, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
12
|
Chen D, Rukhlenko OS, Coon BG, Joshi D, Chakraborty R, Martin KA, Kholodenko BN, Schwartz MA, Simons M. VEGF counteracts shear stress-determined arterial fate specification during capillary remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576920. [PMID: 38328237 PMCID: PMC10849567 DOI: 10.1101/2024.01.23.576920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A key feature of arteriogenesis is capillary-to-arterial endothelial cell fate transition. Although a number of studies in the past two decades suggested this process is driven by VEGF activation of Notch signaling, how arteriogenesis is regulated remains poorly understood. Here we report that arterial specification is mediated by fluid shear stress (FSS) independent of VEGFR2 signaling and that a decline in VEGFR2 signaling is required for arteriogenesis to fully take place. VEGF does not induce arterial fate in capillary ECs and, instead, counteracts FSS-driven capillary-to-arterial cell fate transition. Mechanistically, FSS-driven arterial program involves both Notch-dependent and Notch-independent events. Sox17 is the key mediator of the FSS-induced arterial specification and a target of VEGF-FSS competition. These findings suggest a new paradigm of VEGF-FSS crosstalk coordinating angiogenesis, arteriogenesis and capillary maintenance.
Collapse
|
13
|
Tang W, Chen Y, Ma L, Chen Y, Yang B, Li R, Li Z, Wu Y, Wang X, Guo X, Zhang W, Chen X, Lv M, Zhao Y, Guo G. Current perspectives and trends in the treatment of brain arteriovenous malformations: a review and bibliometric analysis. Front Neurol 2024; 14:1327915. [PMID: 38274874 PMCID: PMC10808838 DOI: 10.3389/fneur.2023.1327915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Currently, there is a lack of intuitive analysis regarding the development trend, main authors, and research hotspots in the field of cerebral arteriovenous malformation treatment, as well as a detailed elaboration of possible research hotspots. Methods A bibliometric analysis was conducted on data retrieved from the Web of Science core collection database between 2000 and 2022. The analysis was performed using R, VOSviewer, CiteSpace software, and an online bibliometric platform. Results A total of 1,356 articles were collected, and the number of publications has increased over time. The United States and the University of Pittsburgh are the most prolific countries and institutions in the field. The top three cited authors are Kondziolka D, Sheehan JP, and Lunsford LD. The Journal of Neurosurgery and Neurosurgery are two of the most influential journals in the field of brain arteriovenous malformation treatment research, with higher H-index, total citations, and number of publications. Furthermore, the analysis of keywords indicates that "aruba trial," "randomised trial," "microsurgery," "onyx embolization," and "Spetzler-Martin grade" may become research focal points. Additionally, this paper discusses the current research status, existing issues, and potential future research directions for the treatment of brain arteriovenous malformations. Conclusion This bibliometric study comprehensively analyses the publication trend of cerebral arteriovenous malformation treatment in the past 20 years. It covers the trend of international cooperation, publications, and research hotspots. This information provides an important reference for scholars to further study cerebral arteriovenous malformation.
Collapse
Affiliation(s)
- Weixia Tang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Li Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Ren Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ming Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Guo
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
15
|
Tang T, Zhu Z, He Z, Wang F, Chen H, Liu S, Zhan M, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. DLX5 regulates the osteogenic differentiation of spinal ligaments cells derived from ossification of the posterior longitudinal ligament patients via NOTCH signaling. JOR Spine 2023; 6:e1247. [PMID: 37361333 PMCID: PMC10285757 DOI: 10.1002/jsp2.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 01/30/2023] Open
Abstract
Background Ossification of the posterior longitudinal ligaments (OPLL) is common disorder characterized by heterotopic ossification of the spinal ligaments. Mechanical stimulation (MS) plays an important role in OPLL. DLX5 is an essential transcription factor required for osteoblast differentiation. However, the role of DLX5 during in OPLL is unclear. This study aims to investigate whether DLX5 is associated with OPLL progression under MS. Methods Stretch stimulation was applied to spinal ligaments cells derived from OPLL (OPLL cells) and non-OPLL (non-OPLL cells) patients. Expression of DLX5 and osteogenesis-related genes were determined by quantitative real-time polymerase chain reaction and Western blot. The osteogenic differentiation ability of the cells was measured using alkaline phosphatase (ALP) staining and alizarin red staining. The protein expression of DLX5 in the tissues and the nuclear translocation of NOTCH intracellular domain (NICD) was examined by immunofluorescence. Results Compared with non-OPLL cells, OPLL cells expressed higher levels of DLX5 in vitro and vivo (p < 0.01). Upregulated expression of DLX5 and osteogenesis-related genes (OSX, RUNX2, and OCN) were observed in OPLL cells induced with stretch stimulation and osteogenic medium, whereas there was no change in the non-OPLL cells (p < 0.01). Cytoplasmic NICD protein translocated from the cytoplasm to the nucleus inducing DLX5 under stretch stimulation, which was reduced by the NOTCH signaling inhibitors (DAPT) (p < 0.01). Conclusions These data suggest that DLX5 play a critical role in MS-induced progression of OPLL through NOTCH signaling, which provides a new insight into the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shengkai Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Mingbin Zhan
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Cho JM, Poon MLS, Zhu E, Wang J, Butcher JT, Hsiai T. Quantitative 4D imaging of biomechanical regulation of ventricular growth and maturation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 26:100438. [PMID: 37424697 PMCID: PMC10327868 DOI: 10.1016/j.cobme.2022.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear vs. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4-D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.
Collapse
Affiliation(s)
- Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
| | - Mong Lung Steve Poon
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
| | | | - Jonathan T. Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
- Department of Bioengineering, UCLA
| |
Collapse
|
17
|
Kao TW, Liu YS, Yang CY, Lee OKS. Mechanotransduction of mesenchymal stem cells and hemodynamic implications. CHINESE J PHYSIOL 2023; 66:55-64. [PMID: 37082993 DOI: 10.4103/cjop.cjop-d-22-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shiuan Liu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Stem Cell Research Center, National Yang Ming Chiao Tung University; Department of Medical Research, Taipei Veterans General Hospital, Taipei; Department of Orthopedics, China Medical University Hospital; Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Souilhol C, Tardajos Ayllon B, Li X, Diagbouga MR, Zhou Z, Canham L, Roddie H, Pirri D, Chambers EV, Dunning MJ, Ariaans M, Li J, Fang Y, Jørgensen HF, Simons M, Krams R, Waltenberger J, Fragiadaki M, Ridger V, De Val S, Francis SE, Chico TJA, Serbanovic-Canic J, Evans PC. JAG1-NOTCH4 mechanosensing drives atherosclerosis. SCIENCE ADVANCES 2022; 8:eabo7958. [PMID: 36044575 PMCID: PMC9432841 DOI: 10.1126/sciadv.abo7958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Xiuying Li
- School of Pharmacy, Southwest Medical University, LuZhou, Sichuan 646000, P.R. China
| | - Mannekomba R. Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Ziqi Zhou
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Daniela Pirri
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily V. Chambers
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark J. Dunning
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark Ariaans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jin Li
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Helle F. Jørgensen
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, USA
| | - Rob Krams
- Department of Bioengineering, Queen Mary University of London, London, UK
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- Hirslanden Klinik im Park, Cardiovascular Medicine, Diagnostic and Therapeutic Heart Center AG, 8002 Zürich, Switzerland
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Sarah De Val
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Timothy JA Chico
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Choi D, Park E, Yu RP, Cooper MN, Cho IT, Choi J, Yu J, Zhao L, Yum JEI, Yu JS, Nakashima B, Lee S, Seong YJ, Jiao W, Koh CJ, Baluk P, McDonald DM, Saraswathy S, Lee JY, Jeon NL, Zhang Z, Huang AS, Zhou B, Wong AK, Hong YK. Piezo1-Regulated Mechanotransduction Controls Flow-Activated Lymphatic Expansion. Circ Res 2022; 131:e2-e21. [PMID: 35701867 PMCID: PMC9308715 DOI: 10.1161/circresaha.121.320565] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mutations in PIEZO1 (Piezo type mechanosensitive ion channel component 1) cause human lymphatic malformations. We have previously uncovered an ORAI1 (ORAI calcium release-activated calcium modulator 1)-mediated mechanotransduction pathway that triggers lymphatic sprouting through Notch downregulation in response to fluid flow. However, the identity of its upstream mechanosensor remains unknown. This study aimed to identify and characterize the molecular sensor that translates the flow-mediated external signal to the Orai1-regulated lymphatic expansion. METHODS Various mutant mouse models, cellular, biochemical, and molecular biology tools, and a mouse tail lymphedema model were employed to elucidate the role of Piezo1 in flow-induced lymphatic growth and regeneration. RESULTS Piezo1 was found to be abundantly expressed in lymphatic endothelial cells. Piezo1 knockdown in cultured lymphatic endothelial cells inhibited the laminar flow-induced calcium influx and abrogated the flow-mediated regulation of the Orai1 downstream genes, such as KLF2 (Krüppel-like factor 2), DTX1 (Deltex E3 ubiquitin ligase 1), DTX3L (Deltex E3 ubiquitin ligase 3L,) and NOTCH1 (Notch receptor 1), which are involved in lymphatic sprouting. Conversely, stimulation of Piezo1 activated the Orai1-regulated mechanotransduction in the absence of fluid flow. Piezo1-mediated mechanotransduction was significantly blocked by Orai1 inhibition, establishing the epistatic relationship between Piezo1 and Orai1. Lymphatic-specific conditional Piezo1 knockout largely phenocopied sprouting defects shown in Orai1- or Klf2- knockout lymphatics during embryo development. Postnatal deletion of Piezo1 induced lymphatic regression in adults. Ectopic Dtx3L expression rescued the lymphatic defects caused by Piezo1 knockout, affirming that the Piezo1 promotes lymphatic sprouting through Notch downregulation. Consistently, transgenic Piezo1 expression or pharmacological Piezo1 activation enhanced lymphatic sprouting. Finally, we assessed a potential therapeutic value of Piezo1 activation in lymphatic regeneration and found that a Piezo1 agonist, Yoda1, effectively suppressed postsurgical lymphedema development. CONCLUSIONS Piezo1 is an upstream mechanosensor for the lymphatic mechanotransduction pathway and regulates lymphatic growth in response to external physical stimuli. Piezo1 activation presents a novel therapeutic opportunity for preventing postsurgical lymphedema. The Piezo1-regulated lymphangiogenesis mechanism offers a molecular basis for Piezo1-associated lymphatic malformation in humans.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roy P. Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael N. Cooper
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Il-Taeg Cho
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - James Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Luping Zhao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Eun Irene Yum
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jin Suh Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brandon Nakashima
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Young Jin Seong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wan Jiao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chester J. Koh
- Division of Pediatric Urology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Baluk
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, California, USA
| | - Donald M. McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, California, USA
| | - Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jong Y. Lee
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex S. Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Flow goes forward and cells step backward: endothelial migration. Exp Mol Med 2022; 54:711-719. [PMID: 35701563 PMCID: PMC9256678 DOI: 10.1038/s12276-022-00785-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
Collapse
|
21
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
22
|
Rama E, Mohapatra SR, Melcher C, Nolte T, Dadfar SM, Brueck R, Pathak V, Rix A, Gries T, Schulz V, Lammers T, Apel C, Jockenhoevel S, Kiessling F. Monitoring the Remodeling of Biohybrid Tissue-Engineered Vascular Grafts by Multimodal Molecular Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105783. [PMID: 35119216 PMCID: PMC8981893 DOI: 10.1002/advs.202105783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/10/2023]
Abstract
Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Collapse
Affiliation(s)
- Elena Rama
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Saurav Ranjan Mohapatra
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Christoph Melcher
- Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Ramona Brueck
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Vertika Pathak
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Anne Rix
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Thomas Gries
- Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Christian Apel
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| |
Collapse
|
23
|
Li-Villarreal N, Wong RLY, Garcia MD, Udan RS, Poché RA, Rasmussen TL, Rhyner AM, Wythe JD, Dickinson ME. FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development 2022; 149:274922. [PMID: 35297995 PMCID: PMC8995087 DOI: 10.1242/dev.200131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebecca Lee Yean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tara L. Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander M. Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joshua D. Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
24
|
Baek KI, Chang SS, Chang CC, Roustaei M, Ding Y, Wang Y, Chen J, O'Donnell R, Chen H, Ashby JW, Xu X, Mack JJ, Cavallero S, Roper M, Hsiai TK. Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network. Front Cardiovasc Med 2022; 9:841101. [PMID: 35369301 PMCID: PMC8971683 DOI: 10.3389/fcvm.2022.841101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shyr-Shea Chang
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, United States
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| | - Chih-Chiang Chang
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mehrdad Roustaei
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Ding
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yixuan Wang
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin Chen
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan O'Donnell
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianne W. Ashby
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiaolei Xu
- Zebrafish Genetics, Mayo Clinic, Rochester, MN, United States
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Marcus Roper
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tzung K. Hsiai
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
25
|
Klostranec JM, Krings T. Cerebral neurovascular embryology, anatomic variations, and congenital brain arteriovenous lesions. J Neurointerv Surg 2022; 14:910-919. [PMID: 35169032 DOI: 10.1136/neurintsurg-2021-018607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cerebral neurovascular development is a complex and coordinated process driven by the changing spatial and temporal metabolic demands of the developing brain. Familiarity with the process is helpful in understanding neurovascular anatomic variants and congenital arteriovenous shunting lesions encountered in endovascular neuroradiological practice. Herein, the processes of vasculogenesis and angiogenesis are reviewed, followed by examination of the morphogenesis of the cerebral arterial and venous systems. Common arterial anatomic variants are reviewed with an emphasis on their development. Finally, endothelial genetic mutations affecting angiogenesis are examined to consider their probable role in the development of three types of congenital brain arteriovenous fistulas: vein of Galen malformations, pial arteriovenous fistulas, and dural sinus malformations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- Department of Neuroradiology, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada .,McGill University Health Centre, Montreal, Quebec, Canada
| | - Timo Krings
- Division of Neuroradiology, Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
|
28
|
Lyons O, Walker J, Seet C, Ikram M, Kuchta A, Arnold A, Hernández-Vásquez M, Frye M, Vizcay-Barrena G, Fleck RA, Patel AS, Padayachee S, Mortimer P, Jeffery S, Berland S, Mansour S, Ostergaard P, Makinen T, Modarai B, Saha P, Smith A. Mutations in EPHB4 cause human venous valve aplasia. JCI Insight 2021; 6:e140952. [PMID: 34403370 PMCID: PMC8492339 DOI: 10.1172/jci.insight.140952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
Collapse
Affiliation(s)
- Oliver Lyons
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - James Walker
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Christopher Seet
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Mohammed Ikram
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Adam Kuchta
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Andrew Arnold
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Magda Hernández-Vásquez
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Maike Frye
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Ashish S. Patel
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Soundrie Padayachee
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Peter Mortimer
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Steve Jeffery
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
- South West Thames Regional Genetics Service, St. George’s Hospital, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Taija Makinen
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Alberto Smith
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
29
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
30
|
Chen D, Schwartz MA, Simons M. Developmental Perspectives on Arterial Fate Specification. Front Cell Dev Biol 2021; 9:691335. [PMID: 34249941 PMCID: PMC8269928 DOI: 10.3389/fcell.2021.691335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Blood vessel acquisition of arterial or venous fate is an adaptive phenomenon in response to increasing blood circulation during vascular morphogenesis. The past two decades of effort in this field led to development of a widely accepted paradigm of molecular regulators centering on VEGF and Notch signaling. More recent findings focused on shear stress-induced cell cycle arrest as a prerequisite for arterial specification substantially modify this traditional understanding. This review aims to summarize key molecular mechanisms that work in concert to drive the acquisition of arterial fate in two distinct developmental settings of vascular morphogenesis: de novo vasculogenesis of the dorsal aorta and postnatal retinal angiogenesis. We will also discuss the questions and conceptual controversies that potentially point to novel directions of investigation and possible clinical relevance.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Wang T, Liu J, Liu H, Lee SR, Gonzalez L, Gorecka J, Shu C, Dardik A. Activation of EphrinB2 Signaling Promotes Adaptive Venous Remodeling in Murine Arteriovenous Fistulae. J Surg Res 2021; 262:224-239. [PMID: 33039109 PMCID: PMC8024410 DOI: 10.1016/j.jss.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Arteriovenous fistulae (AVF) are the preferred mode of vascular access for hemodialysis. Before use, AVF remodel by thickening and dilating to achieve a functional conduit via an adaptive process characterized by expression of molecular markers characteristic of both venous and arterial identity. Although signaling via EphB4, a determinant of venous identity, mediates AVF maturation, the role of its counterpart EphrinB2, a determinant of arterial identity, remains unclear. We hypothesize that EphrinB2 signaling is active during AVF maturation and may be a mechanism of venous remodeling. METHODS Aortocaval fistulae were created or sham laparotomy was performed in C57Bl/6 mice, and specimens were examined on Days 7 or 21. EphrinB2 reverse signaling was activated with EphB4-Fc applied periadventitially in vivo and in endothelial cell culture medium in vitro. Downstream signaling was assessed using immunoblotting and immunofluorescence. RESULTS Venous remodeling during AVF maturation was characterized by increased expression of EphrinB2 as well as Akt1, extracellular signal-regulated kinases 1/2 (ERK1/2), and p38. Activation of EphrinB2 with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and was associated with increased diameter and wall thickness in the AVF. Both mouse and human endothelial cells treated with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and increased endothelial cell tube formation and migration. CONCLUSIONS Activation of EphrinB2 signaling by EphB4-Fc was associated with adaptive venous remodeling in vivo while activating endothelial cell function in vitro. Regulation of EphrinB2 signaling may be a new strategy to improve AVF maturation and patency.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jia Liu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Haiyang Liu
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Shin-Rong Lee
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Luis Gonzalez
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jolanta Gorecka
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
32
|
Li Z, Li JN, Li Q, Liu C, Zhou LH, Zhang Q, Xu Y. miR-25-5p regulates endothelial progenitor cell differentiation in response to shear stress through targeting ABCA1. Cell Biol Int 2021; 45:1876-1886. [PMID: 33945659 DOI: 10.1002/cbin.11621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 11/10/2022]
Abstract
The importance of flow shear stress (SS) on the differentiation of endothelial progenitor cells (EPCs) has been demonstrated in various studies. Cholesterol retention and microRNA regulation have been also proposed as relevant factors involved in this process, though evidence regarding their regulatory roles in the differentiation of EPCs is currently lacking. In the present study on high shear stress (HSS)-induced differentiation of EPCs, we investigated the importance of ATP-binding cassette transporter 1 (ABCA1), an important regulator in cholesterol efflux, and miR-25-5p, a potential regulator of endothelial reconstruction. We first revealed an inverse correlation between miR-25-5p and ABCA1 expression levels in EPCs under HSS treatment; their direct interaction was subsequently validated by a dual-luciferase reporter assay. Further studies using flow cytometry and quantitative polymerase chain reaction demonstrated that both miR-25-5p overexpression and ABCA1 inhibition led to elevated levels of specific markers of endothelial cells, with concomitant downregulation of smooth muscle cell markers. Finally, knockdown of ABCA1 in EPCs significantly promoted tube formation, which confirmed our conjecture. Our current results suggest that miR-25-5p might regulate the differentiation of EPCs partially through targeting ABCA1, and such a mechanism might account for HSS-induced differentiation of EPCs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Jia-Nan Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital of Shanghai affiliated to Naval Military Medical University, Shanghai, China
| | - Chun Liu
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Lin-Hua Zhou
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Qi Zhang
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital of Shanghai affiliated to Naval Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Giglio RV, Pantea Stoian A, Al-Rasadi K, Banach M, Patti AM, Ciaccio M, Rizvi AA, Rizzo M. Novel Therapeutical Approaches to Managing Atherosclerotic Risk. Int J Mol Sci 2021; 22:4633. [PMID: 33924893 PMCID: PMC8125277 DOI: 10.3390/ijms22094633] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifactorial vascular disease that leads to inflammation and stiffening of the arteries and decreases their elasticity due to the accumulation of calcium, small dense Low Density Lipoproteins (sdLDL), inflammatory cells, and fibrotic material. A review of studies pertaining to cardiometabolic risk factors, lipids alterations, hypolipidemic agents, nutraceuticals, hypoglycaemic drugs, atherosclerosis, endothelial dysfunction, and inflammation was performed. There are several therapeutic strategies including Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) inhibitors, inclisiran, bempedoic acid, Glucagon-Like Peptide-1 Receptor agonists (GLP-1 RAs), and nutraceuticals that promise improvement in the atheromatous plaque from a molecular point of view, because have actions on the exposure of the LDL-Receptor (LDL-R), on endothelial dysfunction, activation of macrophages, on lipid oxidation, formations on foam cells, and deposition extracellular lipids. Atheroma plaque reduction both as a result of LDL-Cholesterol (LDL-C) intensive lowering and reducing inflammation and other residual risk factors is an integral part of the management of atherosclerotic disease, and the use of valid therapeutic alternatives appear to be appealing avenues to solving the problem.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat 123, Oman;
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital, 90127 Palermo, Italy
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Manfredi Rizzo
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University, 050474 Bucharest, Romania;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
34
|
Liu J, Hu C, Zhou J, Li B, Liao X, Liu S, Li Y, Yuan D, Jiang W, Yan J. RNF213 rare variants and cerebral arteriovenous malformation in a Chinese population. Clin Neurol Neurosurg 2021; 203:106582. [PMID: 33706059 DOI: 10.1016/j.clineuro.2021.106582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cerebral arteriovenous malformation (AVM) is characterised by an abnormal tangle of arteries and veins, the rupture of which is a significant portion of the morbidity and mortality cases, especially in young populations. However, the exact risk factors and pathophysiologic mechanisms of AVM remain poorly understood. RNF213 variants have been identified as obvious susceptible factors of several cerebrovascular disorders, such as Moyamoya disease and intracranial aneurysms. Thus, this study aimed to determine whether there is an association between RNF213 rare variants and AVM. METHODS The AVM group included 22 patients with AVM. The control group included 1007 samples from the GeneSky in-house database and 208 samples from the 1000 Genome Project of Chinese Han Population. Genomic DNA samples were extracted from the peripheral blood of the AVM patients, and targeted exome sequencing of RNF213 was performed to assess the existence of low-frequency or rare variants. Sanger sequencing was performed to validate the identified variants. Logistic regression analysis was performed to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the candidate variants and risk of AVM. Statistical analyses were performed using SPSS version 21.0. RESULTS The RNF213 c.10997T>C variant (amino acid mutation p.M3666T, NM_001256071) was observed in two AVM patients after filtration. It was significantly associated with AVM in the Chinese population (ORs, 10.30 and 25.08; 95 %; CIs, 1.38-77.10 and 4.34-144.90 compared with 1000 Genome Project of Chinese Han Population and GeneSky in-house database, respectively). CONCLUSION Rare variants of RNF213 are associated with AVM in the Chinese population, suggesting the important role of RNF213 in AVM. Further studies are needed to verify these findings.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Jilin Zhou
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songlin Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China.
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
35
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
37
|
Ross JM, Kim C, Allen D, Crouch EE, Narsinh K, Cooke DL, Abla AA, Nowakowski TJ, Winkler EA. The Expanding Cell Diversity of the Brain Vasculature. Front Physiol 2020; 11:600767. [PMID: 33343397 PMCID: PMC7744630 DOI: 10.3389/fphys.2020.600767] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebrovasculature is essential to brain health and is tasked with ensuring adequate delivery of oxygen and metabolic precursors to ensure normal neurologic function. This is coordinated through a dynamic, multi-directional cellular interplay between vascular, neuronal, and glial cells. Molecular exchanges across the blood-brain barrier or the close matching of regional blood flow with brain activation are not uniformly assigned to arteries, capillaries, and veins. Evidence has supported functional segmentation of the brain vasculature. This is achieved in part through morphologic or transcriptional heterogeneity of brain vascular cells-including endothelium, pericytes, and vascular smooth muscle. Advances with single cell genomic technologies have shown increasing cell complexity of the brain vasculature identifying previously unknown cell types and further subclassifying transcriptional diversity in cardinal vascular cell types. Cell-type specific molecular transitions or zonations have been identified. In this review, we summarize emerging evidence for the expanding vascular cell diversity in the brain and how this may provide a cellular basis for functional segmentation along the arterial-venous axis.
Collapse
Affiliation(s)
- Jayden M. Ross
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Chang Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Denise Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Elizabeth E. Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kazim Narsinh
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel L. Cooke
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Adib A. Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
38
|
Toshima T, Watanabe T, Narumi T, Otaki Y, Shishido T, Aono T, Goto J, Watanabe K, Sugai T, Takahashi T, Yokoyama M, Kinoshita D, Tamura H, Kato S, Nishiyama S, Arimoto T, Takahashi H, Miyamoto T, Sadahiro M, Watanabe M. Therapeutic inhibition of microRNA-34a ameliorates aortic valve calcification via modulation of Notch1-Runx2 signalling. Cardiovasc Res 2020; 116:983-994. [PMID: 31393559 DOI: 10.1093/cvr/cvz210] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/09/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Calcific aortic valve stenosis (CAVS) is the most common valvular heart disease and is increased with elderly population. However, effective drug therapy has not been established yet. This study aimed to investigate the role of microRNAs (miRs) in the development of CAVS. METHODS AND RESULTS We measured the expression of 10 miRs, which were reportedly involved in calcification by using human aortic valve tissue from patients who underwent aortic valve replacement with CAVS or aortic regurgitation (AR) and porcine aortic valve interstitial cells (AVICs) after treatment with osteogenic induction medium. We investigated whether a specific miR-inhibitor can suppress aortic valve calcification in wire injury CAVS mice model. Expression of miR-23a, miR-34a, miR-34c, miR-133a, miR-146a, and miR-155 was increased, and expression of miR-27a and miR-204 was decreased in valve tissues from CAVS compared with those from AR. Expression of Notch1 was decreased, and expression of Runt-related transcription factor 2 (Runx2) was increased in patients with CAVS compared with those with AR. We selected miR-34a among increased miRs in porcine AVICs after osteogenic treatment, which was consistent with results from patients with CAVS. MiR-34a increased calcium deposition in AVICs compared with miR-control. Notch1 expression was decreased, and Runx2 expression was increased in miR-34a transfected AVICs compared with that in miR-control. Conversely, inhibition of miR-34a significantly attenuated these calcification signals in AVICs compared with miR-control. RNA pull-down assay revealed that miR-34a directly targeted Notch1 expression by binding to Notch1 mRNA 3' untranslated region. In wire injury CAVS mice, locked nucleic acid miR-34a inhibitor suppressed aortic velocity, calcium deposition of aortic valves, and cardiac hypertrophy, which were involved in decreased Runx2 and increased Notch1 expressions. CONCLUSION miR-34a plays an important role in the development of CAVS via Notch1-Runx2 signalling pathway. Inhibition of miR-34a may be the therapeutic target for CAVS.
Collapse
Affiliation(s)
- Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomonori Aono
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jun Goto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Ken Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takayuki Sugai
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsuya Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Miyuki Yokoyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takuya Miyamoto
- Department of Internal Medicine, Yamagata Prefectural Shinjo Hospital, Yamagata, Japan
| | - Mitsuaki Sadahiro
- Department of Cardiovascular, Thoracic and Pediatric Surgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
39
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
40
|
Du E, Li X, He S, Li X, He S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol Biol Rep 2020; 47:4681-4690. [PMID: 32488576 DOI: 10.1007/s11033-020-05470-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The significant role of VEGF (vascular endothelial growth factor) as an angiogenesis inducer is well recognized. Besides VEGF, EphrinB2/EphB4 also plays essential roles in vascular development and postnatal angiogenesis. Compared with classical proangiogenic factors, not only does EphrinB2/EphB4 promote sprouting of new vessels, it is also involved in the vessel maturation. Given their involvement in many physiologic and pathological conditions, EphB4 and EphrinB2 are increasingly recognized as attractive therapeutic targets for angiogenesis-related diseases through modulating their expression and function. Previous works mainly focused on the individual role of VEGF and EphrinB2/EphB4 in angiogenesis, respectively, but the correlation between EphrinB2/EphB4 and VEGF in angiogenesis has not been fully disclosed. Here, we summarize the structure and bidirectional signaling of EphrinB2/EphB4, provide an overview on the relationship between EphrinB2/EphB4 signaling and VEGF pathway in angiogenesis and highlight the associated potential usefulness in anti-angiogenetic therapy.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xue Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Siyu He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaohua Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China. .,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Shikun He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China. .,Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, USC Roski Eye Institute, Los Angeles, CA, 90033, USA.
| |
Collapse
|
41
|
Bai H, Wang Z, Li M, Sun P, Wei S, Wang Z, Xing Y, Dardik A. Adult Human Vein Grafts Retain Plasticity of Vessel Identity. Ann Vasc Surg 2020; 68:468-475. [PMID: 32422286 DOI: 10.1016/j.avsg.2020.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/14/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The spiral saphenous vein graft is an excellent choice for venous reconstruction after periphery vein injury, but only few cases have been reported. We implanted a segment of a single saphenous vein into both the popliteal vein as a venous vein graft and into the popliteal artery as an arterial vein graft at the same time in a trauma patient; we then had an extraordinary opportunity to harvest and examine both patent venous and arterial vein grafts at 2 weeks after implantation. METHODS A spiral saphenous vein graft was made as previously described and implanted into the popliteal vein and artery as interposition grafts; because of the patient's serious injuries, an amputation was performed at day 18 after vascular reconstruction. The grafts were harvested, fixed, and examined using histology and immunohistochemistry. RESULTS Both grafts were patent, and there was a larger neointimal area in the venous graft compared to the arterial graft. There were CD31- and vWF-positive cells on both neointimal endothelia, with subendothelial deposition of α-actin-, CD3-, CD45-, and CD68-positive cells. There were fewer cells in the venous graft neointima compared to the arterial graft neointima; however, there were more inflammatory cells in the neointima of the venous graft. Some of the neointimal cells were PCNA-positive, whereas very few cells were cleaved caspase-3 positive. The venous graft neointimal endothelial cells were Eph-B4 and COUP-TFII positive, while the arterial graft neointimal endothelial cells were dll-4 and Ephrin-B2 positive. CONCLUSIONS The spiral saphenous vein graft remains a reasonable choice for vessel reconstruction, especially in the presence of diameter mismatch. Both the venous and arterial grafts showed similar re-endothelialization and cellular deposition; the venous graft had more neointimal hyperplasia and inflammation. At an early time, endothelial cells showed venous identity in the venous graft, whereas endothelial cells showed arterial identity in the arterial graft. CLINICAL RELEVANCE Veins can be used as venous or arterial vein grafts but venous grafts have more neointimal hyperplasia and inflammation; vein grafts acquire different vessel identity depending on the environment into which they are implanted.
Collapse
Affiliation(s)
- Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China; Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhiju Wang
- Key Vascular Physiology and Applied Research Laboratory, Zhengzhou, Henan, People's Republic of China; Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Xing
- Key Vascular Physiology and Applied Research Laboratory, Zhengzhou, Henan, People's Republic of China; Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
42
|
Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials 2020; 234:119747. [PMID: 31951971 DOI: 10.1016/j.biomaterials.2019.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
The effective deployment of arterial (AECs), venous (VECs) and stem cell-derived endothelial cells (PSC-ECs) in clinical applications requires understanding of their distinctive phenotypic and functional characteristics, including their responses to microenvironmental cues. Efforts to mimic the in-vivo vascular basement membrane milieu have led to the design and fabrication of nano- and micro-topographical substrates. Although the basement membrane architectures of arteries and veins are different, investigations into the effects of substrate topographies have so far focused on generic EC characteristics. Thus, topographical modulation of arterial- or venous-specific EC phenotype and function remains unknown. Here, we comprehensively evaluated the effects of 16 unique topographies on primary AECs, VECs and human PSC-ECs using a Multi Architectural (MARC) Chip. Gratings and micro-lenses augmented venous-specific phenotypes and depressed arterial functions in VECs; while AECs did not respond consistently to topography. PSC-ECs exhibited phenotypic and functional maturation towards an arterial subtype with increased angiogenic potential, NOTCH1 and Ac-LDL expression on gratings. Specific topographies could elicit different phenotypic and functional changes, despite similar morphological response in different ECs, demonstrating no direct correlation between the two responses.
Collapse
|
43
|
Blatchley MR, Gerecht S. Reconstructing the Vascular Developmental Milieu In Vitro. Trends Cell Biol 2020; 30:15-31. [DOI: 10.1016/j.tcb.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
44
|
Tian GE, Zhou JT, Liu XJ, Huang YC. Mechanoresponse of stem cells for vascular repair. World J Stem Cells 2019; 11:1104-1114. [PMID: 31875871 PMCID: PMC6904862 DOI: 10.4252/wjsc.v11.i12.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/25/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Stem cells have shown great potential in vascular repair. Numerous evidence indicates that mechanical forces such as shear stress and cyclic strain can regulate the adhesion, proliferation, migration, and differentiation of stem cells via serious signaling pathways. The enrichment and differentiation of stem cells play an important role in the angiogenesis and maintenance of vascular homeostasis. In normal tissues, blood flow directly affects the microenvironment of vascular endothelial cells (ECs); in pathological status, the abnormal interactions between blood flow and vessels contribute to the injury of vessels. Next, the altered mechanical forces are transduced into cells by mechanosensors to trigger the reformation of vessels. This process occurs when signaling pathways related to EC differentiation are initiated. Hence, a deep understanding of the responses of stem cells to mechanical stresses and the underlying mechanisms involved in this process is essential for clinical translation. In this the review, we provide an overview of the role of stem cells in vascular repair, outline the performance of stem cells under the mechanical stress stimulation, and describe the related signaling pathways.
Collapse
Affiliation(s)
- Ge-Er Tian
- Regenerative Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jun-Teng Zhou
- Department of Cardiology of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Jing Liu
- Regenerative Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
45
|
Wang L, Wu S, Cao G, Fan Y, Dunne N, Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mater Chem B 2019; 7:7439-7459. [PMID: 31539007 DOI: 10.1039/c9tb01539f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Biomechanics contains a wide variety of research fields related to biology and mechanics. Actually, to better study or develop a tissue-engineered system, it is now widely recognized that there is no complete nor meaningful study without considering biomechanical factors and the cell response or adaptation to biomechanics. In that respect, this review will focus on not only the influence of biomechanics in biomaterial degradation and co-cultured cells, based on current major frontier research findings, but also the challenges and prospects in biomechanical research. Particularly, through the elaboration of certain typical forces affecting biomaterial degradation and celluar functions, this paper tries to reveal the possible mechanisms, and thus provide ideas on how to design or optimize co-culture systems and apply external forces for proper cell and tissue engineering. Furthermore, while emphasizing the importance of the mechanical control of the cell phenotype and fate, it is expected that these achievements can pave the way to materials-based therapies for different pathological conditions, including diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
46
|
Shear Stress Promotes Arterial Endothelium-Oriented Differentiation of Mouse-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:1847098. [PMID: 31827524 PMCID: PMC6881757 DOI: 10.1155/2019/1847098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Establishment of a functional vascular network, which is required in tissue repair and regeneration, needs large-scale production of specific arterial or venous endothelial cells (ECs) from stem cells. Previous in vitro studies by us and others revealed that shear stress induces EC differentiation of bone marrow-derived mesenchymal stem cells and embryonic stem cells. In this study, we focused on the impact of different magnitudes of shear stress on the differentiation of mouse-induced pluripotent stem cells (iPSCs) towards arterial or venous ECs. When iPSCs were exposed to shear stress (5, 10, and 15 dyne/cm2) with 50 ng/mL vascular endothelial growth factor and 10 ng/mL fibroblast growth factor, the expression levels of the general EC markers and the arterial markers increased, and the stress amplitude of 10 dyne/cm2 could be regarded as a proper promoter, whereas the venous and lymphatic markers had little or no expression. Further, shear stress caused cells to align parallel to the direction of the flow, induced cells forming functional tubes, and increased the secretion of nitric oxide. In addition, Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated in response to shear stress, while inhibition of Notch signaling by DAPT remarkably abolished the shear stress-induced arterial epithelium differentiation. Taken together, our results indicate that exposure to appropriate shear stress facilitated the differentiation of mouse iPSCs towards arterial ECs via Notch signaling pathways, which have potential applications for both disease modeling and regenerative medicine.
Collapse
|
47
|
Li R, Baek KI, Chang CC, Zhou B, Hsiai TK. Mechanosensitive Pathways Involved in Cardiovascular Development and Homeostasis in Zebrafish. J Vasc Res 2019; 56:273-283. [PMID: 31466069 DOI: 10.1159/000501883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases such as coronary heart disease, myocardial infarction, and cardiac arrhythmia are the leading causes of morbidity and mortality in developed countries and are steadily increasing in developing countries. Fundamental mechanistic studies at the molecular, cellular, and animal model levels are critical for the diagnosis and treatment of these diseases. Despite being phylogenetically distant from humans, zebrafish share remarkable similarity in the genetics and electrophysiology of the cardiovascular system. In the last 2 decades, the development and deployment of innovative genetic manipulation techniques greatly facilitated the application of zebrafish as an animal model for studying basic biology and diseases. Hemodynamic shear stress is intimately involved in vascular development and homeostasis. The critical mechanosensitive signaling pathways in cardiovascular development and pathophysiology previously studied in mammals have been recapitulated in zebrafish. In this short article, we reviewed recent knowledge about the role of mechanosensitive pathways such as Notch, PKCε/PFKFB3, and Wnt/Ang2 in cardiovas-cular development and homeostasis from studies in the -zebrafish model.
Collapse
Affiliation(s)
- Rongsong Li
- College of Health Sciences and Environmental Engineering, Shenzhen Technology University, Shenzhen, China,
| | - Kyung In Baek
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Chih-Chiang Chang
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Bill Zhou
- Department of Radiology, University of California, Los Angeles, California, USA
| | - Tzung K Hsiai
- Department of Bioengineering,University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology) and Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
48
|
Arora S, Yim EKF, Toh YC. Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and Venous Subtypes. Front Bioeng Biotechnol 2019; 7:143. [PMID: 31259171 PMCID: PMC6587665 DOI: 10.3389/fbioe.2019.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are required for a multitude of cardiovascular clinical applications, such as revascularization of ischemic tissues or endothelialization of tissue engineered grafts. Patient derived primary ECs are limited in number, have donor variabilities and their in vitro phenotypes and functions can deteriorate over time. This necessitates the exploration of alternative EC sources. Although there has been a recent surge in the use of pluripotent stem cell derived endothelial cells (PSC-ECs) for various cardiovascular clinical applications, current differentiation protocols yield a heterogeneous EC population, where their specification into arterial or venous subtypes is undefined. Since arterial and venous ECs are phenotypically and functionally different, inappropriate matching of exogenous ECs to host sites can potentially affect clinical efficacy, as exemplified by venous graft mismatch when placed into an arterial environment. Therefore, there is a need to design and employ environmental cues that can effectively modulate PSC-ECs into a more homogeneous arterial or venous phenotype for better adaptation to the host environment, which will in turn contribute to better application efficacy. In this review, we will first give an overview of the developmental and functional differences between arterial and venous ECs. This provides the foundation for our subsequent discussion on the different bioengineering strategies that have been investigated to varying extent in providing biochemical and biophysical environmental cues to mature PSC-ECs into arterial or venous subtypes. The ability to efficiently leverage on a combination of biochemical and biophysical environmental cues to modulate intrinsic arterio-venous specification programs in ECs will greatly facilitate future translational applications of PSC-ECs. Since the development and maintenance of arterial and venous ECs in vivo occur in disparate physio-chemical microenvironments, it is conceivable that the application of these environmental factors in customized combinations or magnitudes can be used to selectively mature PSC-ECs into an arterial or venous subtype.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, National University of Singapore, Singapore, Singapore
| |
Collapse
|
49
|
The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5470470. [PMID: 31915510 PMCID: PMC6935452 DOI: 10.1155/2019/5470470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Despite the currently available pharmacotherapies, today, thirty percent of worldwide deaths are due to cardiovascular diseases (CVDs), whose primary cause is atherosclerosis, an inflammatory disorder characterized by the buildup of lipid deposits on the inside of arteries. Multiple cellular signaling pathways have been shown to be involved in the processes underlying atherosclerosis, and evidence has been accumulating for the crucial role of Notch receptors in regulating the functions of the diverse cell types involved in atherosclerosis onset and progression. Several classes of nutraceuticals have potential benefits for the prevention and treatment of atherosclerosis and CVDs, some of which could in part be due to their ability to modulate the Notch pathway. In this review, we summarize the current state of knowledge on the role of Notch in vascular health and its modulation by nutraceuticals for the prevention of atherosclerosis and/or treatment of related CVDs.
Collapse
|
50
|
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng 2019; 13:26. [PMID: 30984287 PMCID: PMC6444752 DOI: 10.1186/s13036-019-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Capillaries within the microcirculation are essential for oxygen delivery and nutrient/waste exchange, among other critical functions. Microvascular bioengineering approaches have sought to recapitulate many key features of these capillary networks, with an increasing appreciation for the necessity of incorporating vascular pericytes. Here, we briefly review established and more recent insights into important aspects of pericyte identification and function within the microvasculature. We then consider the importance of including vascular pericytes in various bioengineered microvessel platforms including 3D culturing and microfluidic systems. We also discuss how vascular pericytes are a vital component in the construction of computational models that simulate microcirculation phenomena including angiogenesis, microvascular biomechanics, and kinetics of exchange across the vessel wall. In reviewing these topics, we highlight the notion that incorporating pericytes into microvascular bioengineering applications will increase their utility and accelerate the translation of basic discoveries to clinical solutions for vascular-related pathologies.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA
| | - John C Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA.,3Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016 USA
| |
Collapse
|