1
|
Oliveira J, Raposo de Magalhães C, Schrama D, Rodrigues PM, Barata M, Soares F, Pousão-Ferreira P, Oliva-Teles A, Couto A. Skin mucus and blood plasma as non-lethal sources of malnutrition protein biomarkers in meagre (Argyrosomus regius). J Proteomics 2025; 316:105432. [PMID: 40089056 DOI: 10.1016/j.jprot.2025.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Developing dietary formulations for aquaculture that meet nutritional requirements is essential to production, as nutrition is key for fish growth and health. However, novel dietary formulations may induce malnutrition, which is complex to evaluate and often requires animal sacrifice. Therefore, finding reliable non-lethal biomarkers to diagnose malnutrition in fish is important. This study aimed to obtain vital information on potential non-lethal biomarkers from blood plasma and skin mucus to assess the fish's nutritional status using meagre (Argyrosomus regius) juveniles. For that purpose, a nutritional challenge was performed with fish fed a fish meal (FM) and fish-oil (FO) based control diet (55.1 % FM; 11 % FO, CTRL), a challenging diet (15 % FM; 7 % FO, CD), and a highly challenging diet (5 % FM; 5 % FO, ED), which, despite being nutritionally complete, may pose digestive and physiological challenges to carnivorous species. Diets significantly affected blood parameters, except for leukocyte counts, peroxidase activity, and immunoglobulin levels. Overall, blood parameters showed potential as non-lethal biomarkers to accurately identify signs of malnutrition. Meagre's plasma and skin mucus proteomes provided crucial information on the species' reaction to malnutrition, and 29 proteins connected to various physiological functions such as metabolism, development and immunity showed potential as non-lethal biomarkers. SIGNIFICANCE: The significance of this study lies in the establishment of potential non-lethal biomarkers for diagnosing malnutrition in fish. The results demonstrate that immunological, haematological, and biochemical parameters measured in fish blood can reveal signs of nutritional deficiencies. The findings further highlight that the proteomes of plasma and skin mucus provide valuable information about the fish's nutritional status. Notably, 29 proteins identified in this study, associated with various physiological functions, exhibit biomarker potential and warrant consideration in future research in the field of aquaculture nutrition. Moreover, the research provides critical insights into the proteome of meagre (Argyrosomus regius), enhancing our understanding of the species and contributing to the future improvement of its aquaculture production.
Collapse
Affiliation(s)
- Joana Oliveira
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal.
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Pedro M Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisa Barata
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Florbela Soares
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Aires Oliva-Teles
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| | - Ana Couto
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Zhao J, Gong Z, Bao W, Liu X, Yu Z, Dong YQ, Mao W, Liu B, Zhang S. Matrine alleviates Staphylococcus aureus-induced acute lung injury in mice by inhibiting MLKL and NLRP3-mediated inflammatory activity. Eur J Pharmacol 2025; 993:177385. [PMID: 39956265 DOI: 10.1016/j.ejphar.2025.177385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Acute lung injury (ALI) is a serious clinical condition with high incidence and mortality. The inflammatory response induced by gram-positive bacteria, especially Staphylococcus aureus (S. aureus), is a key factor contributing to ALI progression and other infectious diseases. Matrine, known for its diverse biological and pharmacological properties, has not been fully explored for its potential to prevent or treat S. aureus-induced ALI. Our study demonstrated that matrine exerts a protective effect against lung injury in mice infected with S. aureus. Specifically, matrine reduced pulmonary edema and decreased neutrophil infiltration in the infected lungs. Furthermore, matrine significantly reduced the expression of high-mobility group box protein 1 (HMGB1) and hyaluronic acid-binding protein 2 (HABP2) in the lungs of infected mice. Additionally, matrine modulated the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α); interleukin-1β (IL-1β); regulated upon activation normal T cell expressed and secreted (RANTES) and Interleukin 10 (IL-10), in both infected lungs and macrophages, suggesting a protective role against tissue damage. Moreover, matrine influenced the secretion of proinflammatory cytokines and regulated the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways, along with the activation of Nod-like receptor pyrin domain-containing protein 3 (NLRP3) and Mixed-lineage kinase domain-like protein (MLKL) in macrophages. Notably, when MLKL, but not NLRP3, is deleted, the ability of matrine to regulate damage-associated proteins and prevent tissue injury is diminished. These findings suggest that matrine may be a promising therapeutic agent for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jiamin Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Zhiguo Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Wenhui Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Xinyu Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Zhuoya Yu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Yan Qin Dong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China.
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot, China.
| |
Collapse
|
3
|
Weiss L, O'Doherty A, Uhrig W, Szklanna PB, Hong-Minh M, Wynne K, Blanco A, Zivny J, Lima Passos V, Kevane B, Murphy S, Ní Áinle F, O'Donnell M, Maguire PB. Rivaroxaban, in combination with low-dose aspirin, is associated with a reduction in proinflammatory and prothrombotic circulating vesicle signatures in patients with cardiovascular disease. J Thromb Haemost 2025; 23:531-545. [PMID: 39413927 DOI: 10.1016/j.jtha.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Despite secondary prevention with aspirin, patients with stable cardiovascular disease (CVD) remain at elevated long-term risk of major adverse cardiovascular events. The Cardiovascular Outcomes in People Using Anticoagulant Strategies (COMPASS) double-blind, randomized clinical trial demonstrated that aspirin plus low-dose rivaroxaban (COMPASS regime) significantly decreased the incidence of major adverse cardiovascular events by 24% compared with aspirin alone. However, the mechanisms underlying these potential synergistic/nonantithrombotic effects remain elusive. Extracellular vesicles (EVs) are crucial messengers regulating a myriad of biological/pathological processes and are highly implicated in CVD. OBJECTIVES We hypothesized that circulating EV profiles reflect the cardioprotective properties of the COMPASS regime. METHODS A cohort of stable CVD patients (N = 40) who participated in the COMPASS trial and were previously randomized to receive aspirin were prospectively recruited and assigned a revised regimen of open-label aspirin plus rivaroxaban. Blood samples were obtained at baseline (aspirin only) and 6-month follow-up. Plasma EV concentration, size, and origin were analyzed by nanoparticle tracking analysis and flow cytometry. EVs were enriched by ultracentrifugation for proteomic analysis. RESULTS The COMPASS regime fundamentally altered small (<200 nm) and large (200-1000 nm) EV concentration and size compared with aspirin alone. Crucially, levels of platelet-derived and myeloperoxidase-positive EVs became significantly decreased at follow-up. Comparative proteomic characterization further revealed a significant decrease in highly proinflammatory protein expression at follow-up. CONCLUSION The observed changes in EV subpopulations, together with the differential protein expression profiles, suggest amelioration of an underlying proinflammatory and prothrombotic state upon dual therapy, which may be of clinical relevance toward understanding the fundamental mechanism underlying the reported superior cardiovascular outcomes associated with this antithrombotic regimen.
Collapse
Affiliation(s)
- Luisa Weiss
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; AI for Healthcare Hub, Institute for Discovery, O'Brien Centre for Science, University College Dublin, Dublin, Ireland. https://twitter.com/lweiss1311
| | - Aideen O'Doherty
- Health Research Board Clinical Research Facility Galway, School of Medicine, University of Galway, Galway, Ireland
| | - Wido Uhrig
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Paulina B Szklanna
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Molly Hong-Minh
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Mass Spectrometry Core, Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- Flow Cytometry Core, Conway Institute, University College Dublin, Dublin, Ireland
| | - Jan Zivny
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Valeria Lima Passos
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Barry Kevane
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Seán Murphy
- School of Medicine, University College Dublin, Dublin, Ireland; Department for Stroke Medicine, Mater Misericordiae University Hospital, Dublin, Ireland; School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fionnuala Ní Áinle
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland; Department of Haematology, Rotunda Hospital, Dublin, Ireland. https://twitter.com/ConwaySPHERE
| | - Martin O'Donnell
- Health Research Board Clinical Research Facility Galway, School of Medicine, University of Galway, Galway, Ireland.
| | - Patricia B Maguire
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; AI for Healthcare Hub, Institute for Discovery, O'Brien Centre for Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Langbøl M, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Vohra R, Rives AS, Moreira J, Prokosch V, Liu H, Lackmann JW, Müller S, Nielsen CH, Kolko M, Rovelt J. Proteomic and Cytokine Profiling in Plasma from Patients with Normal-Tension Glaucoma and Ocular Hypertension. Cell Mol Neurobiol 2024; 44:59. [PMID: 39150567 PMCID: PMC11329415 DOI: 10.1007/s10571-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Primary open-angle glaucoma (POAG) is subdivided depending on eye pressure. Patients with normal-tension glaucoma (NTG) have never had high intraocular pressure (IOP) measured while patients with ocular hypertension (OHT) have high eye pressure but no signs of glaucoma. Although IOP is considered to be a risk factor for all glaucoma patients, it is reasonable to assume that other risk factors such as inflammation play a role. We aimed to characterize the proteome and cytokine profile during hypoxia in plasma from patients with NTG (n = 10), OHT (n = 10), and controls (n = 10). Participants were exposed to hypoxia for two hours, followed by 30 min of normoxia. Samples were taken before ("baseline"), during ("hypoxia"), and after hypoxia ("recovery"). Proteomics based on liquid chromatography coupled with mass spectrometry (LC-MS) was performed. Cytokines were measured by Luminex assays. Bioinformatic analyses indicated the involvement of complement and coagulation cascades in NTG and OHT. Regulation of high-density lipoprotein 3 (HDL3) apolipoproteins suggested that changes in cholesterol metabolism are related to OHT. Hypoxia decreased the level of tumor necrosis factor-α (TNF-α) in OHT patients compared to controls. Circulating levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were decreased in NTG patients compared to controls during hypoxia. After recovery, plasma interleukin-6 (IL-6) was upregulated in patients with NTG and OHT. Current results indicate an enhanced systemic immune response in patients with NTG and OHT, which correlates with pathogenic events in glaucoma. Apolipoproteins may have anti-inflammatory effects, enabling OHT patients to withstand inflammation and development of glaucoma despite high IOP.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark.
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Veterinary & Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Amalie Santaolalla Rives
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - José Moreira
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stefan Müller
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, 2200, Copenhagen, Denmark
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
6
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
7
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Pirri C, Caroccia B, Angelini A, Piazza M, Petrelli L, Caputo I, Montemurro C, Ruggieri P, De Caro R, Stecco C. A New Player in the Mechanobiology of Deep Fascia: Yes-Associated Protein (YAP). Int J Mol Sci 2023; 24:15389. [PMID: 37895068 PMCID: PMC10607668 DOI: 10.3390/ijms242015389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have demonstrated that fascial fibroblasts are susceptible to mechanical stimuli, leading to the remodeling of the extracellular matrix (ECM). Moreover, the extensive literature on Yes-associated protein (YAP) has shown its role in cell mechanics, linking cell properties, such as shape, adhesion, and size, to the expression of specific genes. The aim of this study was to investigate the presence of YAP in deep fascia and its activation after a mechanical stimulus was induced via a focal extracorporeal shockwave (fESW) treatment. Thoracolumbar fascia (TLF) samples were collected from eight patients (age: 30-70 years; four males and four females) who had undergone spine elective surgical procedures at the Orthopedic Clinic of University of Padova. YAP was measured in both tissue and TLF-derived fibroblasts through immunoblotting. COL1A1 and HABP2 gene expression were also evaluated in fibroblasts 2, 24, and 48 h after the fESW treatment. YAP was expressed in all the examined tissues. The ratio between the active/inactive forms (YAP/p-YAP) of the protein significantly increased in fascial fibroblasts after mechanical stimulation compared to untreated cells (p = 0.0022). Furthermore, COL1A1 and HABP2 gene expression levels were increased upon treatment. These findings demonstrate that YAP is expressed in the deep fascia of the thoracolumbar region, suggesting its involvement in fascial mechanotransduction processes, remodeling, regeneration, and fibrogenesis. This study indicates, for the first time, that YAP is a "new player" in the mechanobiology of deep fascia.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| | - Brasilina Caroccia
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padova, 35128 Padova, Italy; (A.A.); (P.R.)
| | - Maria Piazza
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Lucia Petrelli
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Ilaria Caputo
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | | | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padova, 35128 Padova, Italy; (A.A.); (P.R.)
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| |
Collapse
|
9
|
Hartl N, Jürgens DC, Carneiro S, König AC, Xiao X, Liu R, Hauck SM, Merkel OM. Protein corona investigations of polyplexes with varying hydrophobicity - From method development to in vitro studies. Int J Pharm 2023; 643:123257. [PMID: 37482228 DOI: 10.1016/j.ijpharm.2023.123257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.
Collapse
Affiliation(s)
- Natascha Hartl
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - David C Jürgens
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simone Carneiro
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ann-Christine König
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Ximian Xiao
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Runhui Liu
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Stefanie M Hauck
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
10
|
Factor VII Activating Protease (FSAP) and Its Importance in Hemostasis—Part I: FSAP Structure, Synthesis and Activity Regulation: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065473. [PMID: 36982544 PMCID: PMC10052181 DOI: 10.3390/ijms24065473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Factor VII activating protease (FSAP) was first isolated from human plasma less than 30 years ago. Since then, many research groups have described the biological properties of this protease and its role in hemostasis and other processes in humans and other animals. With the progress of knowledge about the structure of FSAP, several of its relationships with other proteins or chemical compounds that may modulate its activity have been explained. These mutual axes are described in the present narrative review. The first part of our series of manuscripts on FSAP describes the structure of this protein and the processes leading to the enhancement and inhibition of its activities. The following parts, II and III, concern the role of FSAP in hemostasis and in the pathophysiology of human diseases, with particular emphasis on cardiovascular diseases.
Collapse
|
11
|
Cheng L, Wang D, Wang Z, Li H, Wang G, Wu Z, Xu M, Yan S, Zhan H, Wang H, Zhang X, Liang T, Wei C, Zhang F, Zheng W, Yu X, Li Y. Proteomics Landscape Mapping of Organ-Resolved Behçet's Disease Using In-Depth Plasma Proteomics for Identifying Hyaluronic Binding Protein 2 Expression Associated With Vascular Involvement. Arthritis Rheumatol 2023; 75:424-437. [PMID: 36122191 DOI: 10.1002/art.42348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to elucidate the pathogenesis and heterogeneity of Behçet's disease (BD) involving different organs using in-depth proteomics to identify the biomarkers for clinical assessment and treatment of patients with BD. METHODS We measured the expression levels of proteins in plasma samples from 98 patients with BD and from 31 healthy controls using our in-depth proteomics platform with a data-independent acquisition mass spectrometer and antibody microarray. We performed bioinformatics analyses of the biologic processes and signaling pathways that were changed in the BD group and constructed a proteomics landscape of organ-resolved BD pathogenesis. We then validated the biomarkers of disease severity and the vascular subset in an independent cohort of 108 BD patients and 29 healthy controls using an enzyme-linked immunosorbent assay. RESULTS The BD group had 220 differentially expressed proteins, which discriminated between BD patients (88.6%) and healthy controls (95.5%). The bioinformatics analyses revealed different biologic processes associated with BD pathogeneses, including complement activation, wound healing, angiogenesis, and leukocyte-mediated immunity. Furthermore, the constructed proteomics landscape of organ-resolved BD identified proteomics features of BD associated with different organs and protein targets that could be used for the development of therapeutic treatment. Hyaluronic binding protein 2, tenascin, and serpin A3 were validated as potential biomarkers for the clinical assessment of vascular BD and treatment targets. CONCLUSION Our results provide valuable insight into the pathogenesis of organ-resolved BD in terms of proteomics characteristics and potential biomarkers for clinical assessment and potential therapies for vascular BD.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongxue Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Zhimian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Ziyan Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Chundi Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
13
|
Cui XY, Stavik B, Thiede B, Sandset PM, Kanse SM. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. Int J Mol Sci 2022; 23:ijms232213706. [PMID: 36430180 PMCID: PMC9690979 DOI: 10.3390/ijms232213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Factor-VII-activating protease (FSAP) is involved in the regulation of hemostasis and inflammation. Extracellular histones play a role in inflammation and the conversion of latent pro-FSAP into active FSAP. FSAP has been shown to regulate endothelial permeability, but the mechanisms are not clear. Here, we have investigated the effects of FSAP on endothelial permeability in vitro. A mixture of histones from calf thymus stimulated permeability, and the wild-type (WT) serine protease domain (SPD) of FSAP blocked this effect. WT-SPD-FSAP did not influence permeability on its own, nor that stimulated by thrombin or vascular endothelial growth factor (VEGF)-A165. Histones induced a large-scale rearrangement of the junction proteins VE-cadherin and zona occludens-1 from a clear junctional distribution to a diffuse pattern. The presence of WT-SPD-FSAP inhibited these changes. Permeability changes by histones were blocked by both TLR-2 and TLR4 blocking antibodies. Histones upregulated the expression of TLR-2, but not TLR-4, in HUVEC cells, and WT-SPD-FSAP abolished the upregulation of TLR-2 expression. An inactive variant, Marburg I (MI)-SPD-FSAP, did not have any of these effects. The inhibition of histone-mediated permeability may be an important function of FSAP with relevance to sepsis, trauma, and stroke and the need to be investigated further in in vivo experiments.
Collapse
Affiliation(s)
- Xue Yan Cui
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| | - Benedicte Stavik
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sandip M. Kanse
- Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
14
|
Potential Urine Proteomic Biomarkers for Focal Segmental Glomerulosclerosis and Minimal Change Disease. Int J Mol Sci 2022; 23:ijms232012607. [PMID: 36293475 PMCID: PMC9604469 DOI: 10.3390/ijms232012607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score—depending on the proteinuria level, the third score—resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more—in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.
Collapse
|
15
|
Kim JY, Manna D, Etscheid M, Leergaard TB, Kanse SM. Factor VII activating protease (FSAP) inhibits the outcome of ischemic stroke in mouse models. FASEB J 2022; 36:e22564. [PMID: 36165219 DOI: 10.1096/fj.202200828r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/16/2022]
Abstract
The outcome of ischemic stroke can be improved by further refinements of thrombolysis and reperfusion strategies. Factor VII activating protease (FSAP) is a circulating serine protease that could be important in this context. Its levels are raised in patients as well as mice after stroke and a single nucleotide polymorphism (SNP) in the coding sequence, which results in an inactive enzyme, is linked to an increased risk of stroke. In vitro, FSAP cleaves fibrinogen to promote fibrinolysis, activates protease-activated receptors, and decreases the cellular cytotoxicity of histones. Based on these facts, we hypothesized that FSAP can be used as a treatment for ischemic stroke. A combination of tissue plasminogen activator (tPA), a thrombolytic drug, and recombinant serine protease domain of FSAP (FSAP-SPD) improved regional cerebral perfusion and neurological outcome and reduced infarct size in a mouse model of thromboembolic stroke. FSAP-SPD also improved stroke outcomes and diminished the negative consequences of co-treatment with tPA in the transient middle cerebral artery occlusion model of stroke without altering cerebral perfusion. The inactive MI-isoform of FSAP had no impact in either model. FSAP enhanced the lysis of blood clots in vitro, but in the tail transection model of hemostasis, FSAP-SPD treatment provoked a faster clotting time indicating that it also has pro-coagulant actions. Thus, apart from enhancing thrombolysis, FSAP has multiple effects on stroke progression and represents a promising novel therapeutic strategy in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jeong Yeon Kim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dipankar Manna
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Etscheid
- Division of Hematology/Transfusion Medicine, Paul Ehrlich Institut, Langen, Germany
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sandip M Kanse
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
17
|
Metabolite, protein, and tissue dysfunction associated with COVID-19 disease severity. Sci Rep 2022; 12:12204. [PMID: 35842456 PMCID: PMC9288092 DOI: 10.1038/s41598-022-16396-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 01/09/2023] Open
Abstract
Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.
Collapse
|
18
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
19
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
21
|
NETosis and SARS-COV-2 infection related thrombosis: a narrative review. Thromb J 2022; 20:13. [PMID: 35354492 PMCID: PMC8965217 DOI: 10.1186/s12959-022-00375-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) infection is related to immune hyperactivity, the release of inflammatory cytokines, and immunothrombosis. Among the underlying mechanisms in COVID-19 thrombosis, neutrophil extracellular traps (NETs) formation, NETosis, may have a significant role. COVID-19 thrombi obtained from extracorporeal membrane oxygenation contained an accumulation of neutrophils and in a higher amount of NETs when compared with non-COVID-19 thrombi specimens. Main body During sepsis and inflammatory status, NETs released from neutrophils and histones and nucleosomes extruded into the extracellular space and take part in the host innate immunity defense, inflammation, and thrombosis. Excessive NETosis is related to clinical progression and respiratory failure in infections and sepsis. NETosis act as a scaffold for thrombus formation, and new associative data support the relation between deregulated immune responses with thrombus formation and organ failure. NETosis is reported in COVID-19 patients. In COVID-19 infection, overproduction of tissue factor (TF) by neutrophils has a role in immunothrombosis. Additionally, NETs can trap TF pathway inhibitor (TFPI) as the only endogenous protein that effectively inhibits the activity of the significant proteases– complexes, TF–FVIIa and prothrombinase. Conclusion Because of NETosis can induce intrinsic and extrinsic coagulation cascade activation through the production of TF, activation of FXII, and inhibition of TFPI and fibrinolysis and induce immunothrombosis, targeting NETosis may diminish thrombus formation related to NETs in COVID-19 patients.
Collapse
|
22
|
Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D, Zhang B, Liu M, Chen C, Fu W, Yuan S, Gu C, Wang L, Li W, Liang Y, Yang Z, Ren X, Wang S, Zhang X, Song Y, Xie Y, Lu H, Xu J, Wang H, Yu W. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 2022; 76:103861. [PMID: 35124429 PMCID: PMC8811534 DOI: 10.1016/j.ebiom.2022.103861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).
Collapse
Affiliation(s)
- Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Peng Xu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ben Jia
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
| | - Ang Li
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Lian
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Daoping Ru
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Mengxing Liu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Cancan Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Weihui Fu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songhua Yuan
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Zhicong Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shaoxuan Wang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China.
| |
Collapse
|
23
|
Tian DS, Qin C, Zhou LQ, Yang S, Chen M, Xiao J, Shang K, Bosco DB, Wu LJ, Wang W. FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke due to large vessel occlusion. Signal Transduct Target Ther 2022; 7:6. [PMID: 34992208 PMCID: PMC8738761 DOI: 10.1038/s41392-021-00802-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Revascularization and angiogenesis, as substrates of sustained collateral circulation, play a crucial role in determining the severity and clinical outcome of acute ischemic stroke (AIS) due to large vessel occlusion (LVO). Developing an adjunct biomarker to help identify and monitor collateral status would aid stroke diagnosis and prognosis. To screen the potential biomarkers, proteomic analysis was performed in this study to identify those distinct plasma protein profiles in AIS due to LVO with different collateral status. Interestingly, we found that levels of Plasma Factor VII Activating Protease (FSAP) significantly increased in those AIS patients with poor collaterals, and were correlated with worse neurological outcome. Furtherly, both in vitro and in vivo models of ischemic stroke were used to explore pathological mechanisms of FSAP in endothelial dysfunction. We demonstrated that the FSAP inhibitor, high-molecular-weight hyaluronan (HMW-HA), enhanced the pro-angiogenic vascular factors, improved the integrity of brain blood barrier, and promoted newly formed cerebral microvessels in the ischemic penumbra, consequently improving neurological function. To elucidate the pathways that might contribute to revascularization during LVO, we applied transcriptomic analysis via unbiased RNA sequencing and showed that Wnt signaling was highly involved in FSAP mediated endothelial dysfunction. Notably, inhibition of Wnt5a largely reversed the protective effects from HMW-HA treatment, implying that FSAP might aggravate endothelial dysfunction and neurological deficits by regulating Wnt5a signaling. Therefore, FSAP may represent a potential biomarker for collateral status after LVO and a promising therapeutic target to be explored in the treatment of stroke.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
24
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
25
|
McCormack M, Talbot A, Dillon E, O’Connor I, MacCarthy E. Host Response of Atlantic Salmon ( Salmo salar) Re-Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9050993. [PMID: 34062978 PMCID: PMC8147987 DOI: 10.3390/microorganisms9050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
In aquaculture, recurrence rates of amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans are high and no prophylactic strategies exist for disease prevention. In this study, Atlantic salmon (Salmo salar) were initially inoculated with P. perurans and following the development of amoebic gill disease were treated with freshwater immersion on day 21 and day 35 post inoculation. Fish were re-inoculated following a negative qPCR analysis for the presence of P. perurans. The gill host immune response was investigated at 7, 14, and 18 days post re-inoculation. Differential proteome expression of immune related proteins was assessed by comparison of each time point against naïve controls. In the gill, some proteins of the innate immune system were expressed in response to gill re-colonization by P. perurans, while no features of adaptive immunity were found to be differentially expressed. Many of the proteins identified are novel in the context of AGD and their expression profiles suggest that their roles in the response to disease development and progression in single or multiple infections warrant further investigation.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
- Correspondence:
| | - Anita Talbot
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| |
Collapse
|
26
|
Queisser KA, Mellema RA, Petrey AC. Hyaluronan and Its Receptors as Regulatory Molecules of the Endothelial Interface. J Histochem Cytochem 2021; 69:25-34. [PMID: 32870756 PMCID: PMC7780188 DOI: 10.1369/0022155420954296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
On the surface of endothelial cells (ECs) lies the glycocalyx, a barrier of polysaccharides that isolates the ECs from the blood. The role of the glycocalyx is dynamic and complex, thanks to not only its structure, but its vast number of components, one being hyaluronan (HA). HA is a critical component of the glycocalyx, having been found to have a wide variety of functions depending on its molecular weight, its modification, and receptor-ligand interactions. As HA and viscous blood are in constant contact, HA can transmit mechanosensory information directly to the cytoskeleton of the ECs. The degradation and synthesis of HA directly alters the permeability of the EC barrier; HA modulation not only alters the physical barrier but also can signal the initiation of other pathways. EC proliferation and angiogenesis are in part regulated by HA fragmentation, HA-dependent receptor binding, and downstream signals. The interaction between the CD44 receptor and HA is a driving force behind leukocyte recruitment, but each class of leukocyte still interacts with HA in unique ways during inflammation. HA regulates a diverse repertoire of EC functions.
Collapse
Affiliation(s)
| | - Rebecca A Mellema
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Aaron C Petrey
- Molecular Medicine Program, The University of Utah, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol 2020; 11:590614. [PMID: 33328998 PMCID: PMC7734331 DOI: 10.3389/fphar.2020.590614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
In recent years, the number of diabetic patients has rapidly increased. Diabetic vascular complications seriously affect people’s quality of life. Studies found that endothelial dysfunction precedes the vascular complications of diabetes. Endothelial dysfunction is related to glycocalyx degradation on the surface of blood vessels. Heparanase (HPSE), matrix metalloproteinase (MMP), hyaluronidase (HYAL), hyaluronic acid synthase (HAS), and neuraminidase (NEU) are related to glycocalyx degradation. Therefore, we reviewed the relationship between endothelial dysfunction and the vascular complications of diabetes from the perspective of enzymes.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Parahuleva MS, Worsch M, Euler G, Choukeir M, Mardini A, Parviz B, Kanse SM, Portig I, Khayrutdinov E, Schieffer B, Markus B. Factor VII Activating Protease Expression in Human Platelets and Accumulation in Symptomatic Carotid Plaque. J Am Heart Assoc 2020; 9:e016445. [PMID: 32856552 PMCID: PMC7660758 DOI: 10.1161/jaha.120.016445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023]
Abstract
Background Factor VII activating protease (FSAP) is of interest as a marker for vascular inflammation and plaque destabilization. The aim of this study was to analyze the expression profile of FSAP in endarterectomy specimens that were taken from patients with asymptomatic and symptomatic carotid atherosclerotic plaques and to compare them with circulating FSAP levels. Methods and Results Plasma FSAP concentration, activity, and mRNA expression were measured in endarterectomy specimens and in monocytes and platelets. Plaque and plasma FSAP levels were higher in symptomatic patients (n=10) than in asymptomatic patients (n=14). Stronger FSAP immunostaining was observed in advanced symptomatic lesions, in intraplaque hemorrhage-related structures, and in lipid-rich areas within the necrotic core. FSAP was also colocalized with monocytes and macrophages (CD11b/CD68-positive cells) and platelets (CD41-positive cells) of the plaques. Moreover, human platelets expressed FSAP in vitro, at both the mRNA and protein levels. Expression is stimulated by thrombin receptor-activating peptide and ADP and reduced by acetylsalicylic acid. Conclusions Plasma FSAP levels were significantly increased in patients with symptomatic carotid stenosis and thus may be involved in plaque development This plaque-associated FSAP may be produced by platelets or macrophages or may be taken up from the circulation. To establish FSAP's utility as a circulating or plaque biomarker in patients with symptomatic carotid atherosclerotic plaques, further studies are needed.
Collapse
Affiliation(s)
| | - Michael Worsch
- Department of Internal Medicine I/Cardiology and AngiologyUKGMGiessenGermany
| | - Gerhild Euler
- Department of Internal Medicine I/Cardiology and AngiologyUKGMGiessenGermany
| | - Maryana Choukeir
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| | - Amar Mardini
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| | - Behnoush Parviz
- Department of Internal Medicine I/Cardiology and AngiologyUKGMGiessenGermany
| | - Sandip M. Kanse
- Institute for Basic Medical SciencesUniversity of OsloNorway
| | - Irene Portig
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| | - Evgeny Khayrutdinov
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| | - Bernhard Schieffer
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| | - Birgit Markus
- Department of Cardiology, Angiology and Internal Intensive CareUKGMMarburgGermany
| |
Collapse
|
29
|
Jiang Y, Li J, Sang C, Cao G, Wang S. Diagnostic and prognostic value of HABP2 as a novel biomarker for endometrial cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1164. [PMID: 33241013 PMCID: PMC7576057 DOI: 10.21037/atm-20-5744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Endometrial cancer is the fifth most common malignant disorder in women, with its incidence increasing. A biomarker with diagnostic and prognostic value remains to be found. The HABP2 protein, or Factor VII-activating protease, encodes a hyaluronic acid-binding protein. METHODS Patient data including clinical characteristics and RNAseq information of HABP2 was obtained from The Cancer Genome Atlas (TCGA), and analyzed by R statistic packages. A total of 370 women with endometrial cancer were enrolled in the study. To study the diagnostic value of HABP2 in patients with endometrial cancer, receiver operating characteristic (ROC) curves were plotted by the pROC package. To study the prognostic value of HABP2 in patients with endometrial cancer, the survival package in R was used and the Cox model was established. RESULTS HABP2 expression was lower in endometrial cancer compared with normal endometrial tissues. HABP2 showed moderate diagnostic value for endometrial cancer, with HBP2 expression associated with vital status, histologic grade, and residual tumor. HABP2 was an independent prognostic factor, with low HABP2 expression indicating a better overall survival. CONCLUSIONS HABP2 has diagnostic and prognostic value and maybe a novel biomarker for endometrial cancer.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Cuiqin Sang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Association of proteome and metabolome signatures with severity in patients with community-acquired pneumonia. J Proteomics 2020; 214:103627. [DOI: 10.1016/j.jprot.2019.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
|
31
|
Byskov K, Etscheid M, Kanse SM. Cellular effects of factor VII activating protease (FSAP). Thromb Res 2020; 188:74-78. [PMID: 32087413 DOI: 10.1016/j.thromres.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Factor VII activating protease (FSAP) is a circulating serine protease of broad specificity that is likely to be involved in many pathophysiological processes. The activation of the circulating zymogen form of FSAP by histones, released from damaged cells, underlines its roles in regulating host responses to tissue damage and inflammation. Some of the direct cellular effects of FSAP are mediated through protease-activated receptors (PARs). Knock-down of each one of the four PARs in endothelial cells indicated that PAR-1 and -3 are involved in regulating endothelial permeability in response to FSAP. Overexpression of PARs in cell lines led to the conclusion that PAR-2 and -1 were the main receptors for FSAP. Studies with synthetic peptides and receptor mutants demonstrate that FSAP cleaves PAR-1 and -2 at their canonical cleavage site. However, PAR-1 is not activated by FSAP in all cells, which may be related to other, as yet, undefined factors. Inhibition of apoptosis by FSAP is mediated through PAR-1 and was observed in neurons, astrocytes and A549 cells. FSAP also mediates cellular effects by modulating the activity of growth factors, generation of bradykinin, C5a and C3a generation or histone inactivation. These cellular effects need to be further investigated at the in vivo level.
Collapse
Affiliation(s)
- Kristina Byskov
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
32
|
Vikramdeo KS, Saha P, Dutta S, Kumar N, Roy Chowdhury A, Kumar S, Tyagi RK, Ghosh I, Datta K. Hyaluronan-binding protein 1 (HABP1) overexpression triggers induction of senescence in fibroblasts cells. Cell Biol Int 2020; 44:1312-1330. [PMID: 32068317 DOI: 10.1002/cbin.11326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/16/2020] [Indexed: 01/01/2023]
Abstract
Hyaluronan-binding protein 1 (HABP1), a multi-compartmental, multi-functional protein has a wide range of functions, which can be attributed to its ability to associate with a variety of cellular ligands. Earlier we have reported that HABP1 overexpression in rat normal fibroblasts (F-HABP07) shows chronic generation of reactive oxygen species (ROS), induction of autophagy, and apoptosis. However, a significant proportion of cells remained viable after the majority went through apoptosis from 60 to 72 h. In this study, an attempt has been made to delineate the cellular events in the declined population of surviving cells. It has been elucidated here that, these cells at later time points of growth, that is, 72 and 84 h, not only appeared to shrink but also are devoid of autophagic vacuoles and displayed polyploidy. F-HABP07 cells exhibited an altered cytoskeletal structure from their parental cell line F111, assumed to be caused upon inhibition of actin polymerization and decrease in IQ motif-containing GTPase activating protein 1 (IQGAP1), a key protein associated with maintenance of cytoskeletal integrity. Enhanced expression and nuclear localization of AKT observed in F-HABP07 cells appears to be contributing toward the maintenance of high ROS levels in these cells and also potentially modulating the IQGAP1 activity. These observations, in fact have been considered to result in sustained DNA damage, which then leads to increased expression of p53 and activation of p21 and carry out the cellular events responsible for senescence. Subsequent assessment of the presence of positive β-gal staining and enhanced expression of p16INK4a in F-HABP07, confirmed that HABP1 overexpressing fibroblasts undergo senescence.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naveen Kumar
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Kumar Tyagi
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
33
|
Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, Maier AG, Dorin-Semblat D, Biswas S, Gamain B, Lau YL, Malleret B, Chu C, Nosten F, Renia L. Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. eLife 2020; 9:e51546. [PMID: 32066522 PMCID: PMC7048393 DOI: 10.7554/elife.51546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Bruce Russell
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Radoslaw Mikolaj Sobota
- Systems Structural Biology Group, Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Institute of Medical Biology (IMB) Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Khairunnisa Ghaffar
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zi Xin Wong
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Alexander G Maier
- Biomedical Sciences and Biochemistry, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Subhra Biswas
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Yee-Ling Lau
- Department of ParasitologyFaculty of Medicine, University of MalayaKuala LumpurMalaysia
| | - Benoit Malleret
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Laurent Renia
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
34
|
Wang G, Tiemeier GL, van den Berg BM, Rabelink TJ. Endothelial Glycocalyx Hyaluronan: Regulation and Role in Prevention of Diabetic Complications. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:781-790. [PMID: 32035886 DOI: 10.1016/j.ajpath.2019.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/25/2022]
Abstract
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Collapse
Affiliation(s)
- Gangqi Wang
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gesa L Tiemeier
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
35
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Byskov K, Le Gall SM, Thiede B, Camerer E, Kanse SM. Protease activated receptors (PAR)-1 and -2 mediate cellular effects of factor VII activating protease (FSAP). FASEB J 2019; 34:1079-1090. [PMID: 31914657 DOI: 10.1096/fj.201801986rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023]
Abstract
Factor VII activating protease (FSAP) is a circulating serine protease implicated in thrombosis, atherosclerosis, stroke, and cancer. Using an overexpression strategy, we have systematically investigated the role of protease activated receptors (PAR)-1, -2, -3, and -4 on FSAP-mediated signaling in HEK293T and A549 cells. Cleavage of PAR-reporter constructs and MAPK phosphorylation was used to monitor receptor activation. FSAP cleaved PAR-2 and to a lesser degree PAR-1, but not PAR-3 or PAR-4 in both cell types. Robust MAPK activation in response to FSAP was observed after PAR-2, but not PAR-1 overexpression in HEK293T. Recombinant serine protease domain of wild type FSAP, but not the Marburg I isoform of FSAP, could reproduce the effects of plasma purified FSAP. Canonical cleavage of both PARs was suggested by mass spectrometric analysis of synthetic peptide substrates from the N-terminus of PARs and site directed mutagenesis studies. Surprisingly, knockdown of endogenous PAR-1, but not PAR-2, prevented the apoptosis-inhibitory effect of FSAP, suggesting that PAR1 is nevertheless a direct or indirect target in some cell types. This molecular characterization of PAR-1 and -2 as cellular receptors of FSAP will help to define the actions of FSAP in the context of cancer and vascular biology.
Collapse
Affiliation(s)
- Kristina Byskov
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sylvain M Le Gall
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, Paris, France
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, Paris, France
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
VEGF-A-Cleavage by FSAP and Inhibition of Neo-Vascularization. Cells 2019; 8:cells8111396. [PMID: 31698750 PMCID: PMC6912458 DOI: 10.3390/cells8111396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing leads to the secretion of multiple forms of vascular endothelial growth factor-A (VEGF-A) that differ in their activity profiles with respect to neovascularization. FSAP (factor VII activating protease) is the zymogen form of a plasma protease that is activated (FSAPa) upon tissue injury via the release of histones. The purpose of the study was to determine if FSAPa regulates VEGF-A activity in vitro and in vivo. FSAP bound to VEGF165, but not VEGF121, and VEGF165 was cleaved in its neuropilin/proteoglycan binding domain. VEGF165 cleavage did not alter its binding to VEGF receptors but diminished its binding to neuropilin. The stimulatory effects of VEGF165 on endothelial cell proliferation, migration, and signal transduction were not altered by FSAP. Similarly, proliferation of VEGF receptor-expressing BAF3 cells, in response to VEGF165, was not modulated by FSAP. In the mouse matrigel model of angiogenesis, FSAP decreased the ability of VEGF165, basic fibroblast growth factor (bFGF), and their combination, to induce neovascularization. Lack of endogenous FSAP in mice did not influence neovascularization. Thus, FSAP inhibited VEGF165-mediated angiogenesis in the matrigel model in vivo, where VEGF’s interaction with the matrix and its diffusion are important.
Collapse
|
38
|
Szewczyk G, Maciejewski TM, Szukiewicz D. Current progress in the inflammatory background of angiogenesis in gynecological cancers. Inflamm Res 2019; 68:247-260. [PMID: 30680411 PMCID: PMC6420455 DOI: 10.1007/s00011-019-01215-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
A tumor growth depends on the potency of the tumor to support itself with nutrients and oxygen. The development of a vascular network within the tumor is key to its survival. The permanent contest between the tumor and its host involves tumor cells on one side and an immunological system and tissue stroma on the other. The angiogenesis is not only a specialty of the tumor, but it also depends on this complex multidirectional interaction. The most common gynecological cancers, cervical, endometrial and ovarian carcinoma are good examples for studying this problem. In this review, we aim to show that an inflammatory response against a tumor can be reverted into an undesirable process leading to the development of a vascular network within the tumor and, subsequently, further growth of the tumor and progression of a disease. Therefore, a key for tumor management should be searched within the immunological system, rather than focused on cell cycle and anti-angiogenic treatment only.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Chair and Department of General and Experimental Pathology, Medical University of Warsaw, ul. Pawinskiego 3C, 02-106, Warsaw, Poland.
| | - Tomasz M Maciejewski
- Department of Gynecology and Obstetrics, Institute of Mother and Child, ul. Kasprzaka 17A, 01-211, Warsaw, Poland
| | - Dariusz Szukiewicz
- Chair and Department of General and Experimental Pathology, Medical University of Warsaw, ul. Pawinskiego 3C, 02-106, Warsaw, Poland
| |
Collapse
|
39
|
Olsson M, Stanne TM, Pedersen A, Lorentzen E, Kara E, MartinezâPalacian A, RÃnnow Sand NP, Jacobsen AF, Sandset PM, Sidelmann JJ, EngstrÃm G, Melander O, Kanse SM, Jern C. Genome-wide analysis of genetic determinants of circulating factor VII-activating protease (FSAP) activity. J Thromb Haemost 2018; 16:2024-2034. [PMID: 30070759 PMCID: PMC6485504 DOI: 10.1111/jth.14258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/17/2023]
Abstract
Essentials Knowledge of genetic regulators of plasma factor VII activating protease (FSAP) levels is limited. We performed a genome-wide analysis of variants influencing FSAP activity in Scandinavian cohorts. We replicated an association for Marburg-1 and identified an association for a HABP2 stop variant. We identified a novel locus near ADCY2 as a potential additional regulator of FSAP activity. SUMMARY Background Factor VII-activating protease (FSAP) has roles in both coagulation and fibrinolysis. Recent data indicate its involvement in several other processes, such as vascular remodeling and inflammation. Plasma FSAP activity is highly variable among healthy individuals and, apart from the low-frequency missense variant Marburg-I (rs7080536) in the FSAP-encoding gene HABP2, determinants of this variation are unclear. Objectives To identify novel genetic variants within and outside of the HABP2 locus that influence circulating FSAP activity. Patients/Methods We performed an exploratory genome-wide association study (GWAS) on plasma FSAP activity amongst 3230 Swedish subjects. Directly genotyped rare variants were also analyzed with gene-based tests. Using GWAS, we confirmed the strong association between the Marburg-I variant and FSAP activity. HABP2 was also significant in the gene-based analysis, and remained significant after exclusion of Marburg-I carriers. This was attributable to a rare HABP2 stop variant (rs41292628). Carriers of this stop variant showed a similar reduction in FSAP activity as Marburg-I carriers, and this finding was replicated. A secondary genome-wide significant locus was identified at a 5p15 locus (rs35510613), and this finding requires future replication. This common variant is located upstream of ADCY2, which encodes a protein catalyzing the formation of cAMP. Results and Conclusions This study verified the Marburg-I variant to be a strong regulator of FSAP activity, and identified an HABP2 stop variant with a similar impact on FSAP activity. A novel locus near ADCY2 was identified as a potential additional regulator of FSAP activity.
Collapse
Affiliation(s)
- M. Olsson
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - T. M. Stanne
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - A. Pedersen
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - E. Lorentzen
- Bioinformatics Core FacilityUniversity of GothenburgGothenburgSweden
| | - E. Kara
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - A. MartinezâPalacian
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - N. P. RÃnnow Sand
- Department of CardiologyHospital of South West DenmarkEsbjerg and Department of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - A. F. Jacobsen
- Department of ObstetricsOslo University Hospital and University of OsloOsloNorway
| | - P. M. Sandset
- Department of HematologyOslo University Hospital and University of OsloOsloNorway
| | - J. J. Sidelmann
- Unit for Thrombosis ResearchDepartment of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - G. EngstrÃm
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - O. Melander
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - S. M. Kanse
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - C. Jern
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| |
Collapse
|
40
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
41
|
Etscheid M, Kanse SM. Factor VII activating protease. Hamostaseologie 2017; 31:174-178. [DOI: 10.5482/ha-1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/26/2011] [Indexed: 02/06/2023] Open
Abstract
SummaryFactor VII activating protease (FSAP) is a circulating serine protease with high homology to fibrinolytic enzymes. A role in the regulation of coagulation and fibrinolysis is suspected based on in vitro studies demonstrating activation of FVII or pro-urokinase plasminogen activator (uPA). However, considering the paucity of any studies in animal models or any correlative studies in humans the role of FSAP in haemostasis remains unclear. In relation to vascular remodeling processes or inflammation it has been convincingly shown that FSAP interacts with growth factors as well as protease activated receptors (PAR). Against this sparse background there are a plethora of studies which have investigated the linkage of single nucleotide polymorphisms (SNP) in the FSAP gene (HABP2) to various diseases. The G534E SNP of FSAP is associated with a low proteolytic activity due to an amino acid exchange in the protease domain. This and other SNPs have been linked to carotid stenosis, stroke as well as thrombosis in the elderly and plaque calcification. These SNP analyses indicate an important role for FSAP in the regulation of the haemostasis system as well as fibroproliferative inflammatory processes.
Collapse
|
42
|
Stephan F, Aarden LA, Zeerleder S. FSAP, a new player in inflammation? Hamostaseologie 2017; 32:51-5. [DOI: 10.5482/ha-1187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 12/11/2022] Open
Abstract
SummaryFactor VII-activating protease (FSAP) is a serine protease in plasma that has a role in coagulation and fibrinolysis. FVII could be activated by purified FSAP in a tissue factor independent manner and pro-urokinase has been demonstrated to be a substrate for purified FSAP in-vitro. However, the physiological role of FSAP in haemostasis remains unclear. More recently FSAP is suggested to be involved in inflammation. It modulates vascular permeability directly and indirectly by the generation of bradykinin. Furthermore, FSAP is activated by dead cells induced by the inflammatory response and subsequently removes nucleosomes from apoptotic cells. FSAP activation can be detected in sepsis patients as well. However, whether FSAP activation upon inflammation is beneficial or detrimental remains an open question.In this review the structure, activation mechanisms and the possible role of FSAP in inflammation are discussed.
Collapse
|
43
|
Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 2017; 293:567-578. [PMID: 29183997 DOI: 10.1074/jbc.ra117.000148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Department of Medicine, Division of Infectious Diseases,
| | | | - Gernot Kaber
- From the Department of Medicine, Division of Infectious Diseases
| | - Pamela Y Johnson
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Michael J Kratochvil
- From the Department of Medicine, Division of Infectious Diseases.,the Department of Materials Science and Engineering
| | - Koshika Yadava
- From the Department of Medicine, Division of Infectious Diseases
| | - Wenting Zhao
- the Department of Materials Science and Engineering
| | - Yi Cui
- the Department of Materials Science and Engineering
| | | | - Justin P Annes
- the Department of Medicine, Division of Endocrinology, and
| | - Thomas N Wight
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Paul L Bollyky
- From the Department of Medicine, Division of Infectious Diseases
| | - Manish J Butte
- the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Stanford University, Stanford, California 94305 and
| |
Collapse
|
44
|
Grasso S, Neumann A, Lang IM, Etscheid M, von Köckritz-Blickwede M, Kanse SM. Interaction of factor VII activating protease (FSAP) with neutrophil extracellular traps (NETs). Thromb Res 2017; 161:36-42. [PMID: 29178989 DOI: 10.1016/j.thromres.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
Abstract
The circulating zymogen form of Factor VII activating protease (FSAP) can be activated by histones and nucleosomes in vivo. These cell-death-associated nuclear factors are also actively extruded into the extracellular space by neutrophils through a process called neutrophil extracellular trap (NET) formation (NETosis). NETs are thought to be involved in host defense, inflammation as well as thrombosis. We have investigated the bidirectional interactions of FSAP and NETs. Phorbol ester-mediated NET formation was marginally stimulated by FSAP. Plasma-derived FSAP as well as exogenous FSAP bound to NETs. There was co-localization of FSAP and NETs in coronary thrombi from patients with acute myocardial infarction. Contrary to our expectations no activation of pro-FSAP by NETs was evident. However, after disintegration of NETs with DNase, a robust activation of pro-FSAP, due to release of histones from nucleosomes, was detected. The released histones were in turn degraded by FSAP. Histone cytotoxicity towards endothelial cells was neutralized by FSAP more potently than by activated protein C (APC). One more consequence of histone degradation was a decrease in nucleosome release from apoptotic neutrophils. Taken together, NETs bind to FSAP, but do not activate pro-FSAP unless histones are released from NETs by DNAse. This activation of FSAP is likely to be important in diminishing the cytotoxic effect of histones, thus limiting the damaging effect of NETosis.
Collapse
Affiliation(s)
- Simona Grasso
- Oslo University Hospital and University of Oslo, Olso, Norway
| | - Ariane Neumann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany; Lund University, Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund, Sweden
| | | | | | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany; Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sandip M Kanse
- Oslo University Hospital and University of Oslo, Olso, Norway.
| |
Collapse
|
45
|
Factor VII activating protease (FSAP) regulates the expression of inflammatory genes in vascular smooth muscle and endothelial cells. Atherosclerosis 2017; 265:133-139. [DOI: 10.1016/j.atherosclerosis.2017.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 02/04/2023]
|
46
|
Collum SD, Chen NY, Hernandez AM, Hanmandlu A, Sweeney H, Mertens TCJ, Weng T, Luo F, Molina JG, Davies J, Horan IP, Morrell NW, Amione-Guerra J, Al-Jabbari O, Youker K, Sun W, Rajadas J, Bollyky PL, Akkanti BH, Jyothula S, Sinha N, Guha A, Karmouty-Quintana H. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol 2017; 174:3284-3301. [PMID: 28688167 PMCID: PMC5595757 DOI: 10.1111/bph.13947] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.
Collapse
Affiliation(s)
- Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Adriana M Hernandez
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Heather Sweeney
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Jonathan Davies
- Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ian P Horan
- Cambridge BHF Centre for Cardiovascular Research Excellence, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nick W Morrell
- Cambridge BHF Centre for Cardiovascular Research Excellence, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Odeaa Al-Jabbari
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Keith Youker
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Neeraj Sinha
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Ashrith Guha
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
47
|
|
48
|
Herold J, Nowak S, Kostin S, Daniel JM, Francke A, Subramaniam S, Braun-Dullaeus RC, Kanse SM. Factor VII activating protease (FSAP) influences vascular remodeling in the mouse hind limb ischemia model. Am J Transl Res 2017; 9:3084-3095. [PMID: 28670395 PMCID: PMC5489907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Investigations in factor VII activating protease (FSAP)-/- mice suggest a role for FSAP in stroke, thrombosis and neointima formation. Here, we analyzed the role of FSAP in vascular remodeling processes related to arteriogenesis and angiogenesis in the mouse hind limb ischemia model. METHODS AND RESULTS Femoral artery ligation was performed in mice and exogenous FSAP was injected locally to examine its effect on arteriogenesis in the adductor and angiogenesis in the gastrocnemius muscle over 21 days. Perfusion was decreased by FSAP, which was reflected in a lower arterial diameter and was associated with reduced monocyte infiltration in the adductor muscle. There was increased angiogenesis in the gastrocnemius muscle triggered indirectly by less blood supply to the lower limb. Comparison of wild-type (WT) and FSAP-/- mice showed that perfusion was not different between the genotypes but there were 2.5-fold more collateral arteries in the adductor muscle of FSAP-/- mice at day 21. This was associated with a higher infiltration of monocytes at day 3. Capillary density in the gastrocnemius muscle was not altered. Activity of the two major proteolytic pathways associated with vascular remodeling; matrix metalloprotease (MMP)-9 and urokinase-type plasminogen activator (uPA) was elevated in the gastrocnemius but not in the adductor muscle in FSAP-/- mice. CONCLUSIONS Arteriogenesis is enhanced, and this is associated with a higher infiltration of monocytes, in the absence of endogenous FSAP but angiogenesis is unchanged. Exogenous FSAP had the opposite effect on arteriogenesis indicating a possible therapeutic potential of modulating endogenous FSAP.
Collapse
Affiliation(s)
- Joerg Herold
- Department of Internal Medicine and Cardiology, University of MagdeburgGermany
| | - Steven Nowak
- Department of Internal Medicine and Cardiology, University of MagdeburgGermany
| | | | | | - Alexander Francke
- Department of Internal Medicine and Cardiology, University of MagdeburgGermany
| | | | | | | |
Collapse
|
49
|
Hydrolysis of Hyaluronic Acid in Lymphedematous Tissue Alleviates Fibrogenesis via T H1 Cell-Mediated Cytokine Expression. Sci Rep 2017; 7:35. [PMID: 28232732 PMCID: PMC5428353 DOI: 10.1038/s41598-017-00085-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Although surgery and radiation are beneficial for treating cancer, they can also lead to malfunctions of the lymphatic system such as secondary lymphedema. This abnormality of the lymphatic system is characterized by severe swelling, adipogenesis, inflammation, and fibrosis in the lymphedematous region. Moreover, the proliferation of fibrotic tissue in the lymphedematous region generates edema that is no longer spontaneously reversible. No treatment for fibrosis has been validated in patients with lymphedema. In our efforts to develop a therapeutic agent for lymphedema fibrosis, we used a newly established mouse hind limb model. Previous studies have demonstrated that hyaluronic acid accumulates in the lymphedematous region. Thus, we challenged mice with of hyaluronidase (HYAL), with the aim of reducing fibrogenesis. After subcutaneous injections in the lymphedematous mouse leg every two days, the volume of lymphedema had reduced significantly by 7 days post-operation. Histochemical analysis indicated that collagen accumulation and myofibroblast differentiation were decreased in epidermal tissues after HYAL injection. Moreover, it was associated with upregulation of interferon-gamma, increased numbers of Th1 cells, and downregulation of interleukin-4 and interleukin-6 in the lymphedematous region and spleen. These results indicate that hydrolysis of hyaluronic acid can boost an anti-fibrotic immune response in the mouse lymphedema model.
Collapse
|
50
|
Daniel JM, Reichel CA, Schmidt-Woell T, Dutzmann J, Zuchtriegel G, Krombach F, Herold J, Bauersachs J, Sedding DG, Kanse SM. Factor VII-activating protease deficiency promotes neointima formation by enhancing leukocyte accumulation. J Thromb Haemost 2016; 14:2058-2067. [PMID: 27431088 DOI: 10.1111/jth.13417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 07/01/2016] [Indexed: 01/08/2023]
Abstract
Essentials Factor VII-activating protease (FSAP) is a plasma protease involved in vascular processes. Neointima formation was investigated after vascular injury in FSAP-/- mice. The neointimal lesion size and the accumulation of macrophages were increased in FSAP-/- mice. This was due to an increased activity of the chemokine (C-C motif) ligand 2 (CCL2). SUMMARY Background Factor VII-activating protease (FSAP) is a multifunctional circulating plasma serine protease involved in thrombosis and vascular remodeling processes. The Marburg I single-nucleotide polymorphism (MI-SNP) in the FSAP-coding gene is characterized by low proteolytic activity, and is associated with increased rates of stroke and carotid stenosis in humans. Objectives To determine whether neointima formation after vascular injury is increased in FSAP-/- mice. Methods and Results The neointimal lesion size and the proliferation of vascular smooth muscle cells (VSMCs) were significantly enhanced in FSAP-/- mice as compared with C57BL/6 control mice after wire-induced injury of the femoral artery. Accumulation of leukocytes and macrophages was increased within the lesions of FSAP-/- mice at day 3 and day 14. Quantitative zymography demonstrated enhanced activity of gelatinases/matrix metalloproteinase (MMP)-2 and MMP-9 within the neointimal lesions of FSAP-/- mice, and immunohistochemistry showed particular costaining of MMP-9 with accumulating leukocytes. Using intravital microscopy, we observed that FSAP deficiency promoted the intravascular adherence and the subsequent transmigration of leukocytes in vivo in response to chemokine ligand 2 (CCL2). CCL2 expression was increased in FSAP-/- monocytes but not in the vessel wall. There was no difference in the expression of platelet-derived growth factor (PDGF-BB). Conclusions FSAP deficiency causes an increase in CCL2 expression and CCL2-mediated infiltration of leukocytes into the injured vessel, thereby promoting SMC proliferation and migration by the activation of leukocyte-derived gelatinases. These results provide a possible explanation for the observed association of the loss-of-function MI-SNP with vascular proliferative diseases.
Collapse
Affiliation(s)
- J-M Daniel
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - C A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Schmidt-Woell
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - J Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - G Zuchtriegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - F Krombach
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - J Herold
- Department of Cardiology, Angiology and Pneumology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - D G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - S M Kanse
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany.
- Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|