1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Sun Y, Xu J, Zou L, Tan Y, Li J, Xin H, Guo Y, Kong W, Tian D, Bao X, Wan X, Li X, Zhang Z, Yang X, Deng F. Ceria nanoparticles alleviate myocardial ischemia-reperfusion injury by inhibiting cardiomyocyte apoptosis via alleviating ROS mediated excessive mitochondrial fission. Mater Today Bio 2025; 32:101770. [PMID: 40290893 PMCID: PMC12033917 DOI: 10.1016/j.mtbio.2025.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Reperfusion through thrombolytic therapy or primary percutaneous coronary intervention is commonly used to deal with acute myocardial infarction. However, the reperfusion procedure is accompanied by myocardial ischemia-reperfusion injury (MIRI). Currently, there is no therapeutics that can effectively deal with MIRI in clinical practice. Herein, the potential of ceria nanoparticles (CNPs) coated by different ligands in the treatment of rat MIRI is evaluated. The results demonstrate that CNPs can effectively modulate the oxidative stress in the heart tissue through the elimination of reactive oxygen species (ROS) and stimulation of endogenous antioxidant system. The inhibition of oxidative stress results in the reduction of p-Drp1 (Ser 616) which is critical in driving the fission and fragmentation of mitochondria. The improved mitochondrial dynamics saves the cardiomyocytes from apoptosis and reduces the acute injury of left ventricular wall during the MIRI. The ejection function of the left ventricle for both the short-term and long-term MIRI rats is well preserved. We therefore believe based on these results that the administration of CNPs is beneficial in the attenuation of MIRI during the acute stage. These findings provide useful information for the future fabrication of inorganic antioxidant nanomedicine for the treatment of MIRI.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jiabao Xu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Weikai Kong
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dingyuan Tian
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xinyu Bao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoqin Wan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoxu Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| |
Collapse
|
3
|
Liu T, Guo X, Fu Y, Zhang W. SLAMF9 aggravates myocardial ischemia reperfusion injury through activating the hippo-yap pathway. Biochim Biophys Acta Gen Subj 2025; 1869:130821. [PMID: 40383314 DOI: 10.1016/j.bbagen.2025.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/23/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND The objective was to investigate the impact of signaling lymphocyte activation molecule family member 9 (SLAMF9) on myocardial infarction (MI) and its mechanisms. METHODS SLAMF9 expression in MI rats was firstly measured. SLAMF9 effect on cardiac functions, myocardial fibrosis, cardiomyocyte hypertrophy, cardiomyocyte apoptosis and inflammation in MI rats was explored using echocardiography, HE staining, masson staining, wheat germ agglutinin staining, western blot, TUNEL staining and qRT-PCR. Meanwhile, SLAMF9 effect on the viability, apoptosis, and inflammation in H9C2 cells was investigated by CCK-8 assay, TUNEL staining and western blot. Moreover, the potential mechanisms of SLAMF9 were investigated using western blot, ELISA and TUNEL staining after different treatment. RESULTS SLAMF9 expression was upregulated in MI rats. SLAMF9 knockdown ameliorated heart damage, cardiomyocyte apoptosis and inflammatory response in MI rats. Similarly, SLAMF9 silencing in macrophages attenuated the apoptosis and inflammatory response in H/R-induced H9C2 cells. Moreover, SLAMF9 knockdown inhibited Hippo-Yap pathway in MI in vitro and in vivo. Besides, SLAMF9 knockdown in macrophages suppressed the activation of Hippo-Yap pathway in H9C2 cells by inhibiting TNF-α release. Additionally, LATS1 overexpression in H9C2 cells reversed the effect of SLAMF9 silencing on the apoptosis and inflammatory response in H/R-induced H9C2 cells. Meanwhile, PY-60 treatment in H9C2 cells reversed the effect of SLAMF9 overexpression on the apoptosis and inflammatory response in H/R-induced H9C2 cells. CONCLUSION The absence of SLAMF9 led to a reduction in TNF-α secretion in macrophages, consequently repressing Hippo-Yap pathway in cardiomyocytes, and ultimately ameliorating myocardial damage, cardiomyocyte apoptosis and inflammation in MI.
Collapse
Affiliation(s)
- Tingting Liu
- Cardiovascular Department, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Xiuli Guo
- Geriatrics Department, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Yanhua Fu
- Geriatrics Department, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Weili Zhang
- Geriatrics Department, Yantaishan Hospital, Yantai 264003, Shandong, China.
| |
Collapse
|
4
|
Tanner MA, Dougherty K, Grisanti LA. Death receptor 5 agonists mitigate cardiac pathology in a chronic isoproterenol-induced cardiac remodeling and dysfunction. J Pharmacol Exp Ther 2025; 392:103600. [PMID: 40413881 DOI: 10.1016/j.jpet.2025.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/27/2025] Open
Abstract
Heart failure is a leading cause of death. Despite the economic and health burden, few recent therapeutic advances have been made and current therapies alleviate the symptoms, but minimally impact mortality, highlighting the need for identifying novel therapeutic targets. Death receptor 5 (DR5) has been studied extensively in cancer for its role in inducing apoptosis in transformed cells. However, DR5 is ubiquitously expressed, including in the heart, where its function is poorly understood. Clinical studies have associated DR5 and its ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with heart failure due to multiple etiologies. Previous studies in cardiac cells and mouse models have demonstrated that DR5 promotes eccentric cardiac hypertrophy through ERK1/2-dependent mechanisms and the apoptosis of myofibroblasts. ERK1/2 signaling has been associated with prosurvival mechanisms in cardiomyocytes suggesting DR5 agonism may be a novel therapeutic approach to outcomes in heart failure. We hypothesized that activation of DR5 will be protective in heart failure. Using a chronic isoproterenol administration model, mice were administered a DR5 agonist and progression of cardiac dysfunction was monitored by echocardiography. Cardiac remodeling was assessed by histology and prohypertrophic and profibrotic marker expression. Specificity of these responses was confirmed with DR5 knockout and the involvement of ERK1/2 signaling was confirmed using pharmacological inhibitors. DR5 agonists decreased cardiac remodeling and improved contractility in response to isoproterenol, which was prevented by ERK1/2 inhibition. These findings demonstrate that activation of DR5 reduces the progression of cardiac remodeling and dysfunction and may be a novel therapeutic target for heart failure treatment. SIGNIFICANCE STATEMENT: Death receptor 5 (DR5) is expressed in cardiomyocytes where its function is poorly defined and clinically, DR5 has been associated with heart failure development and severity. Previous studies show in healthy cardiomyocytes, DR5 activates ERK1/2 signaling, causing eccentric hypertrophy, which are associated with cardioprotection during heart failure. This study investigates the therapeutic potential of targeting DR5 and demonstrates that, in a chronic isoproterenol-infusion model of cardiac dysfunction, DR5 activation reduces maladaptive cardiac remodeling and preserves function through ERK1/2-dependent mechanisms.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Katrina Dougherty
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
5
|
Ding J, Zhang S, Li Q, Xia B, Wu J, Lu X, Huang C, Yuan X, You Q. Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:307-319. [PMID: 39572368 PMCID: PMC12012319 DOI: 10.4196/kjpp.24.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 04/22/2025]
Abstract
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue. Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in B-cell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells. These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
Collapse
Affiliation(s)
- Jiaqi Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shenjie Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou 215027, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
6
|
Calabrese EJ, Pressman P, Hayes AW, Agathokleous E, Dhawan G, Kapoor R, Parmar J, Mssillou I, Calabrese V. Fisetin: hormesis accounts for many of its chemoprotective effects. Biogerontology 2025; 26:90. [PMID: 40208387 DOI: 10.1007/s10522-025-10230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The present paper provides the first integrated assessment of the capacity of the flavonol, fisetin, to induce hormetic dose responses. Fisetin was shown to induce hormetic dose responses in cellular and in vivo animal model systems affecting a broad range of endpoints of potential therapeutic and public health significance across the entire lifespan. Fisetin was effective in slowing aging processes, acting as a senolytic agent in multiple organ systems, in an hormetic fashion. In addition, fisetin was broadly neuroprotective, including during fetal development, and preventing the toxicity of methylmercury. Since these findings indicate that fisetin may have the potential to induce multi-system chemoprotective effects, it indicates the need to better clarify the absorption and bioavailability of fisetin and ways to enhance its efficiency.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Morrill I-N344, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences Amritsar, India, Hartford, CT, United States
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | - Ibrahim Mssillou
- National Agency of Medicinal and Aromatic Plants, BP 159, Principal, 34000, Taounate, Morocco
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
7
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2025; 18:221-236. [PMID: 39733202 PMCID: PMC12043737 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
8
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. eLife 2025; 13:RP101114. [PMID: 40042383 PMCID: PMC11882144 DOI: 10.7554/elife.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here, we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
|
9
|
Li T, Yang B, Liu X, Shi D, Wang Z, Chen Y, Shen C. Silica Nanoparticles Loaded With Selenium Quantum Dots Reduce Myocardial Ischemia-Reperfusion Injury by Alleviating Ferroptosis and Mitochondrial Dysfunction. Int J Nanomedicine 2025; 20:1843-1864. [PMID: 39958324 PMCID: PMC11829639 DOI: 10.2147/ijn.s500810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Myocardial ischemia-reperfusion (IR) injury, a significant challenge in cardiovascular treatment, is primarily driven by ferroptosis and mitochondrial dysfunction. Despite extensive research, no clinical therapies effectively target ferroptosis in IR injury. This study aims to develop selenium-quantum-dot-loaded porous silica nanospheres (Se@PSN) as a novel therapeutic approach to address IR injury. Patients and Methods Se@PSN were synthesized and tested for their reactive oxygen species (ROS) scavenging capabilities and biocompatibility. Additionally, the effects of Se@PSN on ferroptosis, mitochondrial damage, oxidative stress, and myocardial IR injury severity were evaluated. Results Se@PSN enhanced the stability of selenium quantum dots and exhibited strong ROS scavenging abilities. Additionally, Se@PSN exhibited excellent biocompatibility. The Se@PSN treatment increased GPX4 levels, effectively inhibiting ferroptosis in cardiomyocytes. Furthermore, Se@PSN promoted the expression of mitochondrial respiratory complexes, mitigating oxidative phosphorylation damage and preserving mitochondrial function. These effects collectively resulted in reduced myocardial loss, inflammation, and fibrosis following IR injury. Compared to PSN alone, Se@PSN showed superior therapeutic efficacy against IR injury. Conclusion Se@PSN exhibit great potential in reducing ferroptosis and protecting mitochondrial function, making them a promising therapeutic approach for the treatment of myocardial IR injury.
Collapse
Affiliation(s)
- Taixi Li
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Boshen Yang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai, 201620, People’s Republic of China
| | - Dongmei Shi
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Zhixiang Wang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Yizhi Chen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
10
|
Dwyer KD, Snyder CA, Coulombe KLK. Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies. Bioengineering (Basel) 2025; 12:154. [PMID: 40001674 PMCID: PMC11851968 DOI: 10.3390/bioengineering12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Myocardial infarction (MI) is a severe hypoxic event, resulting in the loss of up to one billion cardiomyocytes (CMs). Due to the limited intrinsic regenerative capacity of the heart, cell-based regenerative therapies, which feature the implantation of stem cell-derived cardiomyocytes (SC-CMs) into the infarcted myocardium, are being developed with the goal of restoring lost muscle mass, re-engineering cardiac contractility, and preventing the progression of MI into heart failure (HF). However, such cell-based therapies are challenged by their susceptibility to oxidative stress in the ischemic environment of the infarcted heart. To maximize the therapeutic benefits of cell-based approaches, a better understanding of the heart environment at the cellular, tissue, and organ level throughout MI is imperative. This review provides a comprehensive summary of the cardiac pathophysiology occurring during and after MI, as well as how these changes define the cardiac environment to which cell-based cardiac regenerative therapies are delivered. This understanding is then leveraged to frame how cell culture treatments may be employed to enhance SC-CMs' hypoxia resistance. In this way, we synthesize both the complex experience of SC-CMs upon implantation and the engineering techniques that can be utilized to develop robust SC-CMs for the clinical translation of cell-based cardiac therapies.
Collapse
Affiliation(s)
| | | | - Kareen L. K. Coulombe
- Institute for Biology, Engineering, and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA; (K.D.D.); (C.A.S.)
| |
Collapse
|
11
|
Yang X, Sha X, Wang G, Xu D, Zhang J, Tang M, Shi J. CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway. Sleep Breath 2025; 29:85. [PMID: 39836257 PMCID: PMC11750943 DOI: 10.1007/s11325-024-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/28/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH. METHODS Rats were separated into CIH and Normoxia groups, and H9c2 cells were divided into Control and CIH + 8 h groups. Rat body weight (BW) was markedly gained from two to six weeks. Furthermore, CIH decreased cardiac dysfunction, damaged cellular structure, induced myocardial fibrosis, and promoted cardiomyocyte apoptosis by HE, masson, sirius-red, and TUNEL staining. Western blot, immunohistochemical, immunofluorescence, double immunofluorescence staining were performed to investigate CaMKIIγ, Bcl-2, Bax, Caspase 3, HIF-1 protein expression. RESULTS Heart weight (HW) and HW/BW ratio in CIH group was markedly gained compared with the Normoxia group. CaMKIIγ expression was notably increased after CIH, and mainly expressed in the cytoplasm in vivo and vitro. The results of HIF-1 expression have the same trend of CaMKIIγ expression and cardiomyocyte apoptosis. In addition, the co-localizations of CaMKIIγ with Caspase 3, and CaMKIIγ with HIF-1 were observed by double immunofluorescence staining. CONCLUSIONS These results indicated increased CaMKIIγ expression advances CIH-induced cardiomyocyte apoptosis via HIF-1 signaling pathway, which afford a new insight and provide a potential therapy for OSA patients.
Collapse
Affiliation(s)
- Xuechao Yang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Rd, Nantong, Jiangsu, 226001, China
| | - Xinyu Sha
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Rd, Nantong, Jiangsu, 226001, China
| | - Gang Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Rd, Nantong, Jiangsu, 226001, China
| | - Duo Xu
- Department of Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jingji Zhang
- Department of Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Ming Tang
- Department of Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Rd, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
12
|
Shahidi S, Ramezani-Aliakbari K, Sarihi A, Heshmati A, Shiri E, Nosrati S, Hashemi SP, Bahrami M, Ramezani-Aliakbari F. Protective effects of olive oil against cardiac aging through mitophagy and apoptosis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2025; 16:27-33. [PMID: 40094056 PMCID: PMC11905957 DOI: 10.30466/vrf.2024.2030624.4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/05/2024] [Indexed: 03/19/2025]
Abstract
Cardiac mitochondrial dysfunction is an important feature of aged heart. However, there is still no potent agent to ameliorate cardiac function abnormalities in aged hosts. Olive oil (OLO), containing monounsaturated fatty acids, has diverse protective effects on the cardiovascular system, including anti-diabetic, anti-inflammatory, and anti-hypertensive effects. We evaluated the beneficial impacts of OLO against aging-related cardiac dysfunction. Wistar rats were randomly allotted into three groups with eight rats, including control, aged rats receiving D-galactose (D-GAL), and aged rats administrated with D-galactose plus OLO (D-GAL + OLO). Aged animals were received D-GAL at a dose of 150.00 mg kg-1 daily through intra-peritoneal injection for aging induction. The animals in D-GAL + OLO group were co-administrated with oral OLO at a dose of 1.00 mL kg-1 by gavage feeding daily. The administration term was eight weeks. A histological examination of heart tissue was performed. The heart tissues were also harvested to assay the oxidative stress and molecular parameters. The aged animals showed cardiac hypertrophy, increased malondialdehyde level and Bax expression, and reduced mitofusin 2, phosphatase and tensin homologue-induced putative kinase 1, dynamin-related protein 1, and Bcl2 expressions in comparison with the control animals. The OLO treatment ameliorated all these parameters. Overall, OLO could improve cardiac aging through reducing oxidative stress, enhancing genes mediated mitophagy, and improving genes mediated apoptosis in the heart.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | | | - Abdolrahman Sarihi
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Elham Shiri
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Shiva Nosrati
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Sayed Payam Hashemi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Mitra Bahrami
- Department of Islamic Studies, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| |
Collapse
|
13
|
Tam E, Ouimet M, Sweeney G. Cardioprotective Effects of Adiponectin-Stimulated Autophagy. J Lipid Atheroscler 2025; 14:40-53. [PMID: 39911962 PMCID: PMC11791421 DOI: 10.12997/jla.2025.14.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 02/07/2025] Open
Abstract
Cardiovascular diseases (CVDs), including heart failure, pose a significant economic and health burden worldwide. Current treatment strategies for heart failure are greatly limited, in that they mainly mitigate symptoms or delay further progression. In contrast, therapies aimed at proactively preventing the onset of heart failure could greatly improve outcomes. Adiponectin is an adipocyte-derived hormone that confers an array of cardioprotective effects. It exerts anti-inflammatory effects, improves metabolic function, mitigates endothelial cell dysfunction, and reduce cardiomyocyte cell death. Furthermore, it has gained increasing attention for its ability to activate autophagy, a conserved cellular pathway that facilitates the degradation and recycling of cell components. The disruption of autophagy has been linked to CVDs including heart failure. Additionally, growing evidence also points to specific forms of autophagy, namely mitophagy and lipophagy, as crucial adaptive responses in protection against CVDs. The protective effects of adiponectin, autophagy, mitophagy, and lipophagy against CVDs along with potential therapeutic implications will be discussed.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
15
|
Patel P, Mendoza A, Ramirez D, Robichaux D, Molkentin JD, Karch J. The adenine nucleotide translocase family underlies cardiac ischemia-reperfusion injury through the mitochondrial permeability pore independently of cyclophilin D. SCIENCE ADVANCES 2024; 10:eadp7444. [PMID: 39661674 PMCID: PMC11633734 DOI: 10.1126/sciadv.adp7444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The mitochondrial permeability transition pore (mPTP) is implicated in cardiac ischemia-reperfusion (I/R) injury. During I/R, elevated mitochondrial Ca2+ triggers mPTP opening, leading to necrotic cell death. Although nonessential regulators of this pore are characterized, the molecular identity of the pore-forming component remains elusive. Two of these genetically verified regulators are cyclophilin D (CypD) and the adenine nucleotide translocase (ANT) family. We investigated the ANT/CypD relationship in mPTP dynamics and I/R injury. Despite lacking all ANT isoforms, Ca2+-dependent mPTP opening persisted in cardiac mitochondria but was desensitized. This desensitization conferred resistance to I/R injury in ANT-deficient mice. CypD is hypothesized to trigger mPTP opening through isomerization of ANTs at proline-62. To test this, we generated mice that expressed a P62A mutated version of ANT1. These mice showed similar mPTP dynamics and I/R sensitivity as the wild type, indicating that P62 is dispensable for CypD regulation. Together, these data indicate that the ANT family contributes to mPTP opening independently of CypD.
Collapse
Affiliation(s)
- Pooja Patel
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Ramirez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Dexter Robichaux
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Yin S, Han K, Wu D, Wang Z, Zheng R, Fang L, Wang S, Xing J, Du G. Tilianin suppresses NLRP3 inflammasome activation in myocardial ischemia/reperfusion injury via inhibition of TLR4/NF-κB and NEK7/NLRP3. Front Pharmacol 2024; 15:1423053. [PMID: 39508038 PMCID: PMC11538317 DOI: 10.3389/fphar.2024.1423053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Tilianin, a flavonoid compound derived from Dracocephalum moldavica L., is recognized for its diverse biological functionalities, in particular alleviating myocardial ischemia-reperfusion injury (MIRI). There is ample evidence suggesting that the NLRP3 inflammasome has a significant impact on the development of MIRI. In this study, rats undergoing the ligation and subsequent release of the left anterior descending (LAD) coronary artery and H9c2 cardiomyocytes subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate the effects of tilianin on NLRP3 inflammasome and its anti-MIRI mechanisms. Upon reperfusion, the rats were intraperitoneally injected with tilianin at doses of 3, 10, 30 mg/kg. H9c2 cells were treated with tilianin at concentrations of 10, 30, and 50 μg/mL. Echocardiography, TTC staining and TUNEL staining demonstrated that tilianin remarkably improved cardiac function and mitigated myocardial damage in MIRI rats. Additionally, notable inflammatory response reduction by tilianin was evidenced by subsequent hematatoxylin-eosin (HE) staining, inflammatory cytokines assay, and quantitative proteomics. Further western blotting analysis and immunofluorescence staining showed tilianin decreased the levels of TLR4, p-NF-κB, NLRP3, and ASC in MIRI rats and H9c2 cells exposed to OGD/R, alongside a significant reduction in cleaved gasdermin D, mature IL-1β and IL-18. Molecular docking, cellular thermal shift assay (CETSA) and co-immunoprecipitation (co-IP) assay revealed that tilianin impeded the interaction between NLRP3 and NEK7. Taken together, tilianin protects cardiomyocytes from MIRI by suppressing NLRP3 inflammasome through the inhibition of the TLR4/NF-κB signaling pathway and the disruption of the NEK7/NLRP3 interface. These findings underscore the potential of tilianin as a promising therapeutic candidate for MIRI.
Collapse
Affiliation(s)
- Suyue Yin
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixi Han
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihan Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Lianhua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Xing
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N, Xie LH. Potential Roles of IP 3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases. Biomolecules 2024; 14:1334. [PMID: 39456267 PMCID: PMC11506173 DOI: 10.3390/biom14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| |
Collapse
|
19
|
Xu T, Chen G. MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import. Int J Mol Sci 2024; 25:10832. [PMID: 39409161 PMCID: PMC11476822 DOI: 10.3390/ijms251910832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis.
Collapse
Affiliation(s)
| | - Guilan Chen
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
20
|
Jankowski J, Kozub KO, Kleibert M, Camlet K, Kleibert K, Cudnoch-Jędrzejewska A. The Role of Programmed Types of Cell Death in Pathogenesis of Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:9921. [PMID: 39337409 PMCID: PMC11432194 DOI: 10.3390/ijms25189921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition that develops in the course of many diseases and conditions, and its pathophysiology is still not well understood, but the involvement of programmed types of cell death in the development of this type of heart failure is becoming increasingly certain. In addition, drugs already widely used in clinical practice, with a good safety profile and efficacy demonstrated in large-group clinical trials, seem to be exerting their beneficial effects on cardiovascular health. Perhaps new drugs that reduce the susceptibility of cells to programmed types of cell death are under investigation and may improve the prognosis of patients with HFpEF. In this article, we summarize the current knowledge about the pathogenesis of HFpEF and the role of programmed types of cell death in its development. Additionally, we have described the future directions of research that may lead to the improvement of a patient's prognosis and potential treatment.
Collapse
Affiliation(s)
- Jan Jankowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kamil Oskar Kozub
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Camlet
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Kleibert
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Zhi F, Pu X, Wei W, Liu L, Liu C, Chen Y, Chang X, Xu H. Modulating mitochondrial dynamics ameliorates left ventricular dysfunction by suppressing diverse cell death pathways after diabetic cardiomyopathy. Int J Med Sci 2024; 21:2324-2333. [PMID: 39310254 PMCID: PMC11413890 DOI: 10.7150/ijms.98065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.
Collapse
Affiliation(s)
- Fumin Zhi
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wei
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunyan Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ye Chen
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hongtao Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
22
|
Jiang X, Wang W, Kang H. EPHB2 Knockdown Mitigated Myocardial Infarction by Inhibiting MAPK Signaling. Adv Biol (Weinh) 2024; 8:e2300517. [PMID: 38955672 DOI: 10.1002/adbi.202300517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/17/2024] [Indexed: 07/04/2024]
Abstract
Myocardial infarction (MI) is a common type of cardiovascular disease. The incidence of ventricular remodeling dysplasia and heart failure increases significantly after MI. The objective of this study is to investigate whether erythropoietin hepatocellular receptor B2 (EPHB2) can regulate myocardial injury after MI and explore its regulatory pathways. EPHB2 is significantly overexpressed in the heart tissues of MI mice. The downregulation of EPHB2 alleviates the cardiac function damage after MI. Knockdown EPHB2 alleviates MI-induced myocardial tissue inflammation and apoptosis, and myocardial fibrosis in mice. EPHB2 knockdown significantly inhibits the activation of mitogen activated kinase-like protein (MAPK) pathway in MI mice. Moreover, EPHB2 overexpression significantly promotes the phosphorylation of MAPK pathway-related protein, which can be reversed by MAPK-IN-1 (an MAPK inhibitor) treatment. In conclusion, silencing EPHB2 can mitigate MI-induced myocardial injury by inhibiting MAPK signaling in mice, suggesting that targeting EPHB2 can be a promising therapeutic target for MI-induced myocardial injury.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Cardiovascular Medicine, Yantai Fushan People's Hospital, Yantai, Shandong, 265500, P. R. China
| | - Wenhua Wang
- Cardiovascular Medicine, Yantai Fushan People's Hospital, Yantai, Shandong, 265500, P. R. China
| | - Haofei Kang
- The First Ward of Cardiovascular Medicine, YanTai YanTaiShan Hospital, Yantai, Shandong, 264000, P. R. China
| |
Collapse
|
23
|
Li Q, Ding J, Xia B, Liu K, Zheng K, Wu J, Huang C, Yuan X, You Q. L-theanine alleviates myocardial ischemia/reperfusion injury by suppressing oxidative stress and apoptosis through activation of the JAK2/STAT3 pathway in mice. Mol Med 2024; 30:98. [PMID: 38943069 PMCID: PMC11214244 DOI: 10.1186/s10020-024-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND L-theanine is a unique non-protein amino acid in tea that is widely used as a safe food additive. We investigated the cardioprotective effects and mechanisms of L-theanine in myocardial ischemia-reperfusion injury (MIRI). METHODS The cardioprotective effects and mechanisms of L-theanine and the role of Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling were investigated in MIRI mice using measures of cardiac function, oxidative stress, and apoptosis. RESULTS Administration of L-theanine (10 mg/kg, once daily) suppressed the MIRI-induced increase in infarct size and serum creatine kinase and lactate dehydrogenase levels, as well as MIRI-induced cardiac apoptosis, as evidenced by an increase in Bcl-2 expression and a decrease in Bax/caspase-3 expression. Administration of L-theanine also decreased the levels of parameters reflecting oxidative stress, such as dihydroethidium, malondialdehyde, and nitric oxide, and increased the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD) in ischemic heart tissue. Further analysis showed that L-theanine administration suppressed the MIRI-induced decrease of phospho-JAK2 and phospho-STAT3 in ischemic heart tissue. Inhibition of JAK2 by AG490 (5 mg/kg, once daily) abolished the cardioprotective effect of L-theanine, suggesting that the JAK2/STAT3 signaling pathway may play an essential role in mediating the anti-I/R effect of L-theanine. CONCLUSIONS L-theanine administration suppresses cellular apoptosis and oxidative stress in part via the JAK2/STAT3 signaling pathway, thereby attenuating MIRI-induced cardiac injury. L-theanine could be developed as a potential drug to alleviate cardiac damage in MIRI.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong University, #20 Xishi Road, Nantong, 226001, Jiangsu, China
| | - Jiaqi Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong University, #20 Xishi Road, Nantong, 226001, Jiangsu, China
| | - Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong University, #20 Xishi Road, Nantong, 226001, Jiangsu, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong University, #20 Xishi Road, Nantong, 226001, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong University, #20 Xishi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
24
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
25
|
Rakshit P, Giri TK, Mukherjee K. Progresses and perspectives on natural polysaccharide based hydrogels for repair of infarcted myocardium. Int J Biol Macromol 2024; 269:132213. [PMID: 38729464 DOI: 10.1016/j.ijbiomac.2024.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) is serious health threat and impairs the quality of life. It is a major causative factor of morbidity and mortality. MI leads to the necrosis of cardio-myocytes, cardiac remodelling and dysfunction, eventually leading to heart failure. The limitations of conventional therapeutic and surgical interventions and lack of heart donors have necessitated the evolution of alternate treatment approaches for MI. Polysaccharide hydrogel based repair of infarcted myocardium have surfaced as viable option for MI treatment. Polysaccharide hydrogels may be injectable hydrogels or cardiac patches. Injectable hydrogels can in situ deliver cells and bio-actives, facilitating in situ cardiac regeneration and repair. Polysaccharide hydrogel cardiac patches reduce cardiac wall stress, and inhibit ventricular expansion and promote angiogenesis. Herein, we discuss about MI pathophysiology and myocardial microenvironment and how polysaccharide hydrogels are designed to mimic and support the microenvironment for cardiac repair. We also put forward the versatility of the different polysaccharide hydrogels in mimicking diverse cardiac properties, and acting as a medium for delivery of cells, and therapeutics for promoting angiogenesis and cardiac repair. The objectives of this review is to summarize the factors leading to MI and to put forward how polysaccharide based hydrogels promote cardiac repair. This review is written to enable researchers understand the factors promoting MI so that they can undertake and design novel hydrogels for cardiac regeneration.
Collapse
Affiliation(s)
- Pallabita Rakshit
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Kaushik Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
26
|
Tan H, Li W, Pang Z, Weng X, Gao J, Chen J, Wang Q, Li Q, Yang H, Dong Z, Wang Z, Zhu G, Tan Y, Fu Y, Han C, Cai S, Qian J, Huang Z, Song Y, Ge J. Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Adv Healthc Mater 2024; 13:e2303267. [PMID: 38198534 PMCID: PMC11468776 DOI: 10.1002/adhm.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two. Herein, inspired by the application research of chimeric antigen receptor macrophages (CAR-Ms) in solid tumors, a genetically modified macrophage-based synergistic drug delivery strategy that effectively challenging the three major barriers in an integrated manner is developed. This strategy involves the overexpression of exogenous macrophages with CCR2 (C-C chemokine receptor type 2) and cleavage-resistant MerTK, as well as surface clicking with liposomal PEP-20 (a CD47 antagonist). In MI/R mice model, this synergistic strategy can effectively restore cardiac efferocytosis after intravenous injection, thereby alleviating the inflammatory response, ultimately preserving cardiac function. This therapy focuses on inhibiting the initiation and promoting active resolution of inflammation, providing new insights for immune-regulatory therapy.
Collapse
Affiliation(s)
- Haipeng Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Weiyan Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityMinistry of Education826 Zhangheng Road, Pudong New AreaShanghai201210P. R. China
| | - Xueyi Weng
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jinfeng Gao
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jing Chen
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiaozi Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiyu Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Hongbo Yang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheng Dong
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhengmin Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Guangrui Zhu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yiwen Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yuyuan Fu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Chengzhi Han
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Shiteng Cai
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Juying Qian
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheyong Huang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yanan Song
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Junbo Ge
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| |
Collapse
|
27
|
Sagris M, Apostolos A, Theofilis P, Ktenopoulos N, Katsaros O, Tsalamandris S, Tsioufis K, Toutouzas K, Tousoulis D. Myocardial Ischemia-Reperfusion Injury: Unraveling Pathophysiology, Clinical Manifestations, and Emerging Prevention Strategies. Biomedicines 2024; 12:802. [PMID: 38672157 PMCID: PMC11048318 DOI: 10.3390/biomedicines12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) remains a challenge in the context of reperfusion procedures for myocardial infarction (MI). While early revascularization stands as the gold standard for mitigating myocardial injury, recent insights have illuminated the paradoxical role of reperfusion, giving rise to the phenomenon known as ischemia-reperfusion injury. This comprehensive review delves into the intricate pathophysiological pathways involved in MIRI, placing a particular focus on the pivotal role of endothelium. Beyond elucidating the molecular intricacies, we explore the diverse clinical manifestations associated with MIRI, underscoring its potential to contribute substantially to the final infarct size, up to 50%. We further navigate through current preventive approaches and highlight promising emerging strategies designed to counteract the devastating effects of the phenomenon. By synthesizing current knowledge and offering a perspective on evolving preventive interventions, this review serves as a valuable resource for clinicians and researchers engaged in the dynamic field of MIRI.
Collapse
Affiliation(s)
- Marios Sagris
- Correspondence: ; Tel.: +30-213-2088099; Fax: +30-2132088676
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
29
|
Dash M, Mahajan B, Dar GM, Sahu P, Saluja SS. An update on the cell-free DNA-derived methylome as a non-invasive biomarker for coronary artery disease. Int J Biochem Cell Biol 2024; 169:106555. [PMID: 38428633 DOI: 10.1016/j.biocel.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.
Collapse
Affiliation(s)
- Manoswini Dash
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; School of Medicine, Center for Aging, Tulane University, LA, United States
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| |
Collapse
|
30
|
Xiang Q, Yi X, Zhu XH, Wei X, Jiang DS. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab 2024; 35:219-234. [PMID: 37981501 DOI: 10.1016/j.tem.2023.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Athari SS, Mehrabi Nasab E, Jing K, Wang J. Interaction between cardiac resynchronization therapy and cytokines in heart failure patients. Cytokine 2024; 175:156479. [PMID: 38199086 DOI: 10.1016/j.cyto.2023.156479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Congestive heart failure (CHF) is a complex multistage syndrome that has a great financial burden on human societies. It was known that the damaged myocardium sends a signal to stimulate the immune system and proliferation of leukocytes. In continuous, cytokine storm can be initiated and causes the probability of CHF. Persistent inflammation by increasing the levels of pro-inflammatory cytokines, plays an important role in the pathogenesis of CHF and causes remodeling, which is a progressive processs. Although treatment by drugs can reduce mortality and partially control the symptoms of heart failure patients, but complications and mortality are still high. Therefore, other treatment options such as Cardiac Resynchronization Therapy (CRT) are necessary. Today, it is known that CRT can be an effective treatment for many patients with heart failure. CRT is novel, non-pharmacological, and device-based therapy that would be beneficial to know more about its performance in the management of heart failure. In this study, we have reviewed the immunological processes involved in heart failure and the effect of CRT in controlling of the cytokine storm.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Cardiology, School of Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kai Jing
- Department of Proctology, The People's Hospital of Huaiyin Jinan, 250021 Shandong, China
| | - Jin Wang
- Department of Cardiology, The Fifth People's Hospital of Jinan, 250022 Shandong, China.
| |
Collapse
|
32
|
Maayah M, Grubman S, Allen S, Ye Z, Park DY, Vemmou E, Gokhan I, Sun WW, Possick S, Kwan JM, Gandhi PU, Hu JR. Clinical Interpretation of Serum Troponin in the Era of High-Sensitivity Testing. Diagnostics (Basel) 2024; 14:503. [PMID: 38472975 DOI: 10.3390/diagnostics14050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiac troponin (Tn) plays a central role in the evaluation of patients with angina presenting with acute coronary syndrome. The advent of high-sensitivity assays has improved the analytic sensitivity and precision of serum Tn measurement, but this advancement has come at the cost of poorer specificity. The role of clinical judgment is of heightened importance because, more so than ever, the interpretation of serum Tn elevation hinges on the careful integration of findings from electrocardiographic, echocardiographic, physical exam, interview, and other imaging and laboratory data to formulate a weighted differential diagnosis. A thorough understanding of the epidemiology, mechanisms, and prognostic implications of Tn elevations in each cardiac and non-cardiac etiology allows the clinician to better distinguish between presentations of myocardial ischemia and myocardial injury-an important discernment to make, as the treatment of acute coronary syndrome is vastly different from the workup and management of myocardial injury and should be directed at the underlying cause.
Collapse
Affiliation(s)
- Marah Maayah
- Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Scott Grubman
- Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Stephanie Allen
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Zachary Ye
- Department of Internal Medicine, Temple University Medical Center, Philadelphia, PA 19140, USA
| | - Dae Yong Park
- Department of Internal Medicine, Cook County Hospital, Chicago, IL 60612, USA
| | - Evangelia Vemmou
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ilhan Gokhan
- Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Wendy W Sun
- Department of Emergency Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Stephen Possick
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Parul U Gandhi
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Cardiology, Veterans Affairs Connecticut Health Care System, West Haven, CT 06516, USA
| | - Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
33
|
Kanuri B, Biswas P, Dahdah A, Murphy AJ, Nagareddy PR. Impact of age and sex on myelopoiesis and inflammation during myocardial infarction. J Mol Cell Cardiol 2024; 187:80-89. [PMID: 38163742 PMCID: PMC10922716 DOI: 10.1016/j.yjmcc.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Priosmita Biswas
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Albert Dahdah
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
| |
Collapse
|
34
|
Zhang J, Sandroni PB, Huang W, Gao X, Oswalt L, Schroder MA, Lee S, Shih YYI, Huang HYS, Swigart PM, Myagmar BE, Simpson PC, Rossi JS, Schisler JC, Jensen BC. Cardiomyocyte Alpha-1A Adrenergic Receptors Mitigate Postinfarct Remodeling and Mortality by Constraining Necroptosis. JACC Basic Transl Sci 2024; 9:78-96. [PMID: 38362342 PMCID: PMC10864988 DOI: 10.1016/j.jacbts.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Peyton B. Sandroni
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wei Huang
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xiaohua Gao
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leah Oswalt
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Melissa A. Schroder
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - SungHo Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yen-Yu I. Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hsiao-Ying S. Huang
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Philip M. Swigart
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Bat E. Myagmar
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Paul C. Simpson
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Joseph S. Rossi
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan C. Schisler
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Kordi N, Saydi A, Karami S, Bagherzadeh-Rahmani B, Marzetti E, Jung F, Stockwell BR. Ferroptosis and aerobic training in ageing. Clin Hemorheol Microcirc 2024; 87:347-366. [PMID: 38306027 DOI: 10.3233/ch-232076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sajad Karami
- Faculty of Physical Education and Sport Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Behnam Bagherzadeh-Rahmani
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Emanuele Marzetti
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, NewYork, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Li S, Tao G. Perish in the Attempt: Regulated Cell Death in Regenerative and Nonregenerative Tissue. Antioxid Redox Signal 2023; 39:1053-1069. [PMID: 37218435 PMCID: PMC10715443 DOI: 10.1089/ars.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Significance: A cell plays its roles throughout its life span, even during its demise. Regulated cell death (RCD) is one of the key topics in modern biomedical studies. It is considered the main approach for removing stressed and/or damaged cells. Research during the past two decades revealed more roles of RCD, such as coordinating tissue development and driving compensatory proliferation during tissue repair. Recent Advances: Compensatory proliferation, initially identified in primitive organisms during the regeneration of lost tissue, is an evolutionarily conserved process that also functions in mammals. Among various types of RCD, apoptosis is considered the top candidate to induce compensatory proliferation in damaged tissue. Critical Issues: The roles of apoptosis in the recovery of nonregenerative tissue are still vague. The roles of other types of RCD, such as necroptosis and ferroptosis, have not been well characterized in the context of tissue regeneration. Future Directions: In this review article, we attempt to summarize the recent insights on the role of RCD in tissue repair. We focus on apoptosis, with expansion to ferroptosis and necroptosis, in primitive organisms with significant regenerative capacity as well as common mammalian research models. After gathering hints from regenerative tissue, in the second half of the review, we take a notoriously nonregenerative tissue, the myocardium, as an example to discuss the role of RCD in terminally differentiated quiescent cells. Antioxid. Redox Signal. 39, 1053-1069.
Collapse
Affiliation(s)
- Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
37
|
Sahadevan R, Binoy A, Shajan I, Sadhukhan S. Mitochondria-targeting EGCG derivatives protect H9c2 cardiomyocytes from H 2O 2-induced apoptosis: design, synthesis and biological evaluation. RSC Adv 2023; 13:29477-29488. [PMID: 37818277 PMCID: PMC10561634 DOI: 10.1039/d3ra04527g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Pathologies related to cardiovascular diseases mostly emerge as a result of oxidative stress buildup in cardiomyocytes. The heavy load of mitochondrial oxidative phosphorylation in cardiac tissues corresponds to a surge in oxidative stress leading to mitochondrial dysfunction and cellular apoptosis. Thus, scavenging the reactive oxygen species (ROS) linked to mitochondria can significantly improve cardio-protection. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea has been extensively studied for its profound health-beneficial activities. Herein, we designed and synthesized a series of mitochondrial-targeting EGCG derivatives, namely MitoEGCGn (n = 4, 6, 8) by incorporating triphenylphosphonium ion onto it using different linkers. MitoEGCGn were found to be non-toxic to H9c2 rat cardiomyocyte cells even at higher doses in comparison to its parent molecule EGCG. Interestingly, MitoEGCG4 and MitoEGCG6 protected the H9c2 cardiomyocyte cells from the oxidative damage induced by H2O2 whereas EGCG was found to be toxic and ineffective in protecting the cells from H2O2 damage. MitoEGCG4 and MitoEGCG6 also protected the cells from the H2O2-induced disruption of mitochondrial membrane potential as well as activation of apoptosis as revealed by pro-caspase 3 expression profile, DNA fragmentation assay, and AO/EtBr staining. Taken together, our study shows that the mitochondria targeting EGCG derivatives were able to effectively combat the H2O2-induced oxidative stress in H9c2 cardiomyocytes. They eventually augmented the mitochondrial health of cardiomyocytes by maintaining the mitochondrial function and attenuating apoptosis. Overall, MitoEGCG4 and MitoEGCG6 could provision a cardioprotective role to H9c2 cardiomyocytes at the time of oxidative insults related to mitochondrial dysfunction-associated injuries.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Irene Shajan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
- Physical & Chemical Biology Laboratory, Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad Kerala 678 623 India
| |
Collapse
|
38
|
Prathumsap N, Ongnok B, Khuanjing T, Arinno A, Maneechote C, Chunchai T, Arunsak B, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Acetylcholine receptor agonists effectively attenuated multiple program cell death pathways and improved left ventricular function in trastuzumab-induced cardiotoxicity in rats. Life Sci 2023; 329:121971. [PMID: 37482212 DOI: 10.1016/j.lfs.2023.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
AIMS Cardiotoxicity is a seriously debilitating complication of trastuzumab (TRZ) therapy in patients with cancer as a consequence of overexpression of the human epidermal growth factor receptor 2. Although most TRZ-induced cardiotoxicity (TIC) cases are reversible, some patients experience chronic cardiac dysfunction, and these irreversible concepts may be associated with cardiomyocyte death. Acetylcholine receptor (AChR) activation has been shown to exert cardioprotection in several heart diseases, but the effects of AChR agonists against TIC have not been investigated. MAIN METHOD Forty adult male Wistar rats were randomized into 5 groups: (i) CON (0.9 % normal saline), (ii) TRZ (4 mg/kg/day), (iii) TRZ + α7nAChR agonist (PNU-282987: 3 mg/kg/day), (iv) TRZ + mAChR agonists (bethanechol: 12 mg/kg/day), and (v) TRZ + combined treatment (Combined PNU-282987 and bethanechol). KEY FINDINGS The progression of TIC was driven by mitochondrial dysfunction, autophagic deficiency, and excessive myocyte death including by pyroptosis, ferroptosis, and apoptosis, which were significantly alleviated by α7nAChR and mAChR agonists. Interestingly, necroptosis was not associated with development of TIC. More importantly, the in vitro study validated the cytoprotective effects of AChR activation in TRZ-treated H9c2 cells, while not interfering with the anticancer properties of TRZ. All of these findings indicated that TRZ induced mitochondrial dysfunction, autophagic deficiency, and excessive myocyte death including pyroptosis, ferroptosis, and apoptosis, leading to impaired cardiac function. These pathological alterations were attenuated by α7nAChR and mAChR agonists. SIGNIFICANCE α7nAChR and mAChR agonists might be used as a future therapeutic target in the mitigation of TIC.
Collapse
Affiliation(s)
- Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
39
|
Fang Z, Lee H, Liu J, Wong KA, Brown LM, Li X, Xiaoli AM, Yang F, Zhang M. Complement C3 Reduces Apoptosis via Interaction with the Intrinsic Apoptotic Pathway. Cells 2023; 12:2282. [PMID: 37759504 PMCID: PMC10528058 DOI: 10.3390/cells12182282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) elicits an acute inflammatory response involving complement factors. Recently, we reported that myocardial necrosis was decreased in complement C3-/- mice after heart I/R. The current study used the same heart model to test the effect of C3 on myocardial apoptosis and investigated if C3 regulation of apoptosis occurred in human cardiomyocytes. Comparative proteomics analyses found that cytochrome c was present in the myocardial C3 complex of WT mice following I/R. Incubation of exogenous human C3 reduced apoptosis in a cell culture system of human cardiomyocytes that did not inherently express C3. In addition, human C3 inhibited the intrinsic apoptosis pathway in a cell-free apoptosis system. Finally, human pro-C3 was found to bind with an apoptotic factor, pro-caspase 3, in a cell-free system. Thus, we present firsthand evidence showing that C3 readily reduces myocardial apoptosis via interaction with the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Zhou Fang
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Haekyung Lee
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Junying Liu
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Karen A. Wong
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Xiang Li
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Alus M. Xiaoli
- Department of Medicine/Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.X.); (F.Y.)
| | - Fajun Yang
- Department of Medicine/Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.X.); (F.Y.)
| | - Ming Zhang
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
- Departments of Cell Biology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| |
Collapse
|
40
|
Wass SY, Offerman EJ, Sun H, Hsu J, Rennison JH, Cantlay CC, McHale ML, Gillinov AM, Moravec C, Smith JD, Van Wagoner DR, Barnard J, Chung MK. Novel functional atrial fibrillation risk genes and pathways identified from coexpression analyses in human left atria. Heart Rhythm 2023; 20:1219-1226. [PMID: 37329937 PMCID: PMC10527093 DOI: 10.1016/j.hrthm.2023.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Genomewide association studies have associated >100 genetic loci with atrial fibrillation (AF), but establishing causal genes contributing to AF remains challenging. OBJECTIVE The purpose of this study was to determine candidate novel causal genes and mechanistic pathways associated with AF risk loci by incorporating gene expression and coexpression analyses and to provide a resource for functional studies and targeting of AF-associated genes. METHODS Cis-expression quantitative trait loci were identified for candidate genes near AF risk variants in human left atrial tissues. Coexpression partners were identified for each candidate gene. Weighted gene coexpression network analysis (WGCNA) identified modules and modules with overrepresentation of candidate AF genes. Ingenuity pathway analysis (IPA) was applied to the coexpression partners of each candidate gene. IPA and gene set over representation analysis were applied to each WGCNA module. RESULTS One hundred sixty-six AF-risk single nucleotide polymorphisms were located in 135 loci. Eighty-one novel genes not previously annotated as putative AF risk genes were identified. IPA identified mitochondrial dysfunction, oxidative stress, epithelial adherens junction signaling, and sirtuin signaling as the most frequent significant pathways. WGCNA characterized 64 modules (candidate AF genes overrepresented in 8), represented by cell injury, death, stress, developmental, metabolic/mitochondrial, transcription/translation, and immune activation/inflammation regulatory pathways. CONCLUSION Candidate gene coexpression analyses suggest significant roles for cellular stress and remodeling in AF, supporting a dual risk model for AF: Genetic susceptibility to AF may not manifest until later in life, when cellular stressors overwhelm adaptive responses. These analyses also provide a novel resource to guide functional studies on potential causal AF genes.
Collapse
Affiliation(s)
- Sojin Youn Wass
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erik J Offerman
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Han Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey Hsu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julie H Rennison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Catherine C Cantlay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Meghan L McHale
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - A Marc Gillinov
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christine Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - David R Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
41
|
Li B, Xu L, Liu J, Zhou M, Jiang X. Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling. Biomed Pharmacother 2023; 165:115083. [PMID: 37413902 DOI: 10.1016/j.biopha.2023.115083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVES/AIMS Inflammation is crucial in structural and electrical remodeling after myocardial infarction (MI), affecting cardiac pump function and conduction pathways. Phloretin possesses an anti-inflammation role by inhibiting the NLRP3/Caspase-1/IL-1β pathway. However, the effects of Phloretin on cardiac contractile and electrical conduction function after MI remained unclear. Therefore, we aimed to investigate the potential role of Phloretin in a rat model of MI. METHODS Rats were assigned into four groups: Sham, Sham+Phloretin, MI and MI+Phloretin, with ad libitum food and water. In the MI and MI+Phloretin groups, the left anterior descending coronary artery was occluded for 4 weeks, while the Sham and Sham+Phloretin groups received sham operation. The Sham+Phloretin group and the MI+Phloretin group received oral administration of Phloretin. In vitro, H9c2 cells were subjected to hypoxic conditions to simulate an MI model, with Phloretin for 24 h. Cardiac electrophysiological properties were assessed following MI, including the effective refractory period (ERP), action potential duration (APD)90 and ventricular fibrillation (VF) incidence. Echocardiography evaluated left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), left ventricular internal diameter at end-diastole (LVIDd), left ventricular internal diameter at end-systole (LVIDs), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) to assess cardiac function. Serum type B natriuretic peptide (BNP) level was applied to evaluate the degree of Heart failure (HF). The fibrosis area and severity were assessed by Masson staining and protein expression levels of collagen 3, collagen 1, TGF-β and α-SMA. Western blot analysis estimated the protein expression levels of NLRP3, Pro Caspase-1, Caspase-1, ASC, IL-18, IL-1β, pp38, p38, and Connexin43(Cx43) to elucidate the influence of inflammation on electrical remodeling after MI. RESULTS Our findings demonstrate that Phloretin inhibits the NLRP3/Caspase-1/IL-1β pathway, leading to the upregulation of Cx43 by limiting p38 phosphorylation, which further decreases susceptibility to ventricular arrhythmias (VAs). Additionally, Phloretin attenuated fibrosis by inhibiting inflammation to prevent HF. In vitro experiments also provided strong evidence supporting the inhibitory effects of Phloretin on the NLRP3/Caspase-1/IL-1β pathway. CONCLUSION Our results suggest that Phloretin could suppress the NLRP3/Caspase-1/IL-1β pathway to reverse structural and electrical remodeling after MI to prevent the occurrence of VAs and HF.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
42
|
Liu J, Meng F, Lv J, Yang M, Wu Y, Gao J, Luo J, Li X, Wei G, Yuan Z, Li H. Comprehensive monitoring of mitochondrial viscosity variation during different cell death processes by a NIR mitochondria-targeting fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122602. [PMID: 36934595 DOI: 10.1016/j.saa.2023.122602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cell death is a fundamental feature of multicellular organisms, in which mitochondria play crucial roles. Therefore, revealing and monitoring the microenvironment of mitochondria are significant to investigate cell death process. Herein, the mitochondrial viscosity variation behaviors of a series of different cell death processes were monitored with a NIR mitochondria-targeting fluorescence probe FLV. FLV was designed based on a rotatable flavylocyanine fluorophore that presented selective and sensitive NIR fluorescence enhancement response with the increase of environmental viscosity. Fluorescence imaging experiments of living cells incubated with nystatin or under different temperature indicated that FLV was capable of imaging the change of mitochondrial viscosity. Finally, FLV was applied for monitoring the mitochondrial viscosity variation during different cell death processes. It was found that there were obvious mitochondrial viscosity increases during apoptosis, necrosis and autophagy; however, no detectable mitochondrial viscosity variation was observed in ferroptosis process incubated with ferroptosis inducer erastin or RSL3 for 6 h. These results demonstrated that FLV is a viable tool for monitoring the mitochondrial viscosity variation and is likely to be used in the diagnosis of the mitochondrial viscosity-associated cell processes and diseases.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Fancheng Meng
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jiajia Lv
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Mingyan Yang
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Yumei Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jie Gao
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Junjun Luo
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organization Manufacturing, Lindfield, New South Wales 2070, Australia.
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China.
| | - Hongyu Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China.
| |
Collapse
|
43
|
Shalihat A, Lesmana R, Hasanah AN, Mutakin M. Selenium Organic Content Prediction in Jengkol ( Archidendron pauciflorum) and Its Molecular Interaction with Cardioprotection Receptors PPAR-γ, NF-κB, and PI3K. Molecules 2023; 28:molecules28103984. [PMID: 37241725 DOI: 10.3390/molecules28103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
44
|
Garbincius JF, Luongo TS, Lambert JP, Mangold AS, Murray EK, Hildebrand AN, Jadiya P, Elrod JW. MCU gain- and loss-of-function models define the duality of mitochondrial calcium uptake in heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537222. [PMID: 37131819 PMCID: PMC10153142 DOI: 10.1101/2023.04.17.537222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Mitochondrial calcium (mCa2+) uptake through the mitochondrial calcium uniporter channel (mtCU) stimulates metabolism to meet acute increases in cardiac energy demand. However, excessive mCa2+ uptake during stress, as in ischemia-reperfusion, initiates permeability transition and cell death. Despite these often-reported acute physiological and pathological effects, a major unresolved controversy is whether mtCU-dependent mCa2+ uptake and long-term elevation of cardiomyocyte mCa2+ contributes to the heart's adaptation during sustained increases in workload. Objective We tested the hypothesis that mtCU-dependent mCa2+ uptake contributes to cardiac adaptation and ventricular remodeling during sustained catecholaminergic stress. Methods Mice with tamoxifen-inducible, cardiomyocyte-specific gain (αMHC-MCM × flox-stop-MCU; MCU-Tg) or loss (αMHC-MCM × Mcufl/fl; Mcu-cKO) of mtCU function received 2-wk catecholamine infusion. Results Cardiac contractility increased after 2d of isoproterenol in control, but not Mcu-cKO mice. Contractility declined and cardiac hypertrophy increased after 1-2-wk of isoproterenol in MCU-Tg mice. MCU-Tg cardiomyocytes displayed increased sensitivity to Ca2+- and isoproterenol-induced necrosis. However, loss of the mitochondrial permeability transition pore (mPTP) regulator cyclophilin D failed to attenuate contractile dysfunction and hypertrophic remodeling, and increased isoproterenol-induced cardiomyocyte death in MCU-Tg mice. Conclusions mtCU mCa2+ uptake is required for early contractile responses to adrenergic signaling, even those occurring over several days. Under sustained adrenergic load excessive MCU-dependent mCa2+ uptake drives cardiomyocyte dropout, perhaps independent of classical mitochondrial permeability transition pore opening, and compromises contractile function. These findings suggest divergent consequences for acute versus sustained mCa2+ loading, and support distinct functional roles for the mPTP in settings of acute mCa2+ overload versus persistent mCa2+ stress.
Collapse
Affiliation(s)
- Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Timothy S. Luongo
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jonathan P. Lambert
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Adam S. Mangold
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Emma K. Murray
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Alycia N. Hildebrand
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Leancă SA, Afrăsânie I, Crișu D, Matei IT, Duca ȘT, Costache AD, Onofrei V, Tudorancea I, Mitu O, Bădescu MC, Șerban LI, Costache II. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life (Basel) 2023; 13:1000. [PMID: 37109529 PMCID: PMC10143569 DOI: 10.3390/life13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Afrăsânie
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Crișu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Viviana Onofrei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuţ Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ovidiu Mitu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Iuliana Costache
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
46
|
Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun 2023; 647:1-8. [PMID: 36706596 DOI: 10.1016/j.bbrc.2023.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.
Collapse
Affiliation(s)
- Qiuxia Zhu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Yong Luo
- Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Ding Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Jing Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China.
| |
Collapse
|
47
|
Fang Z, Li X, Liu J, Lee H, Salciccioli L, Lazar J, Zhang M. The role of complement C3 in the outcome of regional myocardial infarction. Biochem Biophys Rep 2023; 33:101434. [PMID: 36748063 PMCID: PMC9898614 DOI: 10.1016/j.bbrep.2023.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3-/- mice had significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest that innate immune response through complement C3 plays an important role in necrotic cell death, which contributes to the cardiac fibrosis that underlies post-infarction heart failure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Anesthesiology, USA
| | | | | | - Louis Salciccioli
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Jason Lazar
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Ming Zhang
- Department of Anesthesiology, USA,Department of Cell Biology, USA,Corresponding author. Department of Anesthesiology, MSC6 SUNY Downstate Health Science University, 450 Clarkson Avenue Brooklyn, NY, 11203, USA.
| |
Collapse
|
48
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Chattipakorn SC, Chattipakorn N. GSDMD-mediated pyroptosis dominantly promotes left ventricular remodeling and dysfunction in post-myocardial infarction: a comparison across modes of programmed cell death and mitochondrial involvement. J Transl Med 2023; 21:16. [PMID: 36627703 PMCID: PMC9830763 DOI: 10.1186/s12967-023-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) has recently accounted for more than one-third of global mortality. Multiple molecular pathological pathways, such as oxidative stress, inflammation, and mitochondrial dysfunction, have been recognized as possible mechanisms in the development of MI. Furthermore, different phases of ischemic injury following the progression of MI were also associated with multiple types of programmed cell death (PCDs), including apoptosis, necroptosis, ferroptosis, and pyroptosis. However, it remains unknown whether which types of PCDs play the most dominant role in post-myocardial infarction (post-MI). METHOD In this study, we used a preclinical rat model of MI induced by permanent left anterior descending coronary artery (LAD) ligation (n = 6) or a sham operated rat model (n = 6). After a 5-week experiment, cardiac function and morphology, mitochondrial studies, and molecular signaling analysis of PCDs were determined. RESULTS Herein, we demonstrated that post-MI rats had considerably impaired cardiac geometry, increased oxidative stress, myocardial injuries, and subsequently contractile dysfunction. They also exhibited worsened cardiac mitochondrial function and dynamic imbalance. More importantly, we found that post-MI mediated abundant myocardial cell death through multiple PCDs, including apoptosis, necroptosis, and pyroptosis, but not ferroptosis. CONCLUSION In this study, we provide the first insights into the mechanism of PCDs by pyroptosis, which is leveraged as the most dominant mode of cell death after MI.
Collapse
Affiliation(s)
- Chanon Piamsiri
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayodom Maneechote
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kewarin Jinawong
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Busarin Arunsak
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Titikorn Chunchai
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wichwara Nawara
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
49
|
Heuts S, Gollmann-Tepeköylü C, Denessen EJS, Olsthoorn JR, Romeo JLR, Maessen JG, van ‘t Hof AWJ, Bekers O, Hammarsten O, Pölzl L, Holfeld J, Bonaros N, van der Horst ICC, Davidson SM, Thielmann M, Mingels AMA. Cardiac troponin release following coronary artery bypass grafting: mechanisms and clinical implications. Eur Heart J 2023; 44:100-112. [PMID: 36337034 PMCID: PMC9897191 DOI: 10.1093/eurheartj/ehac604] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.
Collapse
Affiliation(s)
- Samuel Heuts
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | - Ellen J S Denessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jules R Olsthoorn
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Department of Cardiothoracic Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Jamie L R Romeo
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Arnoud W J van ‘t Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Otto Bekers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ola Hammarsten
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Iwan C C van der Horst
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Alma M A Mingels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
50
|
Yanpiset P, Maneechote C, Sriwichaiin S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury: Cumulative evidence for future cardioprotective strategies. Acta Pharm Sin B 2023; 13:29-53. [PMID: 36815034 PMCID: PMC9939317 DOI: 10.1016/j.apsb.2022.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction (MI) and myocardial ischemia/reperfusion (MI/R) injury. Due to the limited regenerative ability of cardiomyocytes, understanding the mechanisms of cardiomyocyte death is necessary. Pyroptosis, one of the regulated programmed cell death pathways, has recently been shown to play important roles in MI and MI/R injury. Pyroptosis is activated by damage-associated molecular patterns (DAMPs) that are released from damaged myocardial cells and activate the formation of an apoptosis-associated speck-like protein containing a CARD (ASC) interacting with NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), resulting in caspase-1 cleavage which promotes the activation of Gasdermin D (GSDMD). This pathway is known as the canonical pathway. GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11. Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury. Although the effects of MI or MI/R injury on pyroptosis have previously been discussed, knowledge concerning the roles of GSDMD in these settings remains limited. In this review, the evidence from in vitro, in vivo, and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed. Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Panat Yanpiset
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand,Corresponding author. Tel.: +66 53 935329; fax: +66 53 935368.
| |
Collapse
|