1
|
Xu B, Xu Q, Wang Y, Lang D, Lin Z. Causal relationship between circulating inflammatory proteins and atherosclerosis: a bidirectional Mendelian randomization study and meta-analysis. J Cardiol 2025:S0914-5087(25)00114-5. [PMID: 40339743 DOI: 10.1016/j.jjcc.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic inflammatory disease that significantly contributes to cardiovascular morbidity and mortality. Despite extensive research efforts, the connections between circulating inflammatory proteins (CIPs) and different subtypes of AS remain poorly understood. This study aims to clarify these relationships through Mendelian randomization (MR) analysis. METHODS We utilized summary statistics from genome-wide association studies (GWAS) that included 14,824 European participants to analyze inflammatory protein levels, alongside data from the IEU GWAS database for AS phenotypes. Our primary approach for MR analysis was the inverse variance weighted method. To ensure the validity and robustness of the causal relationships, we conducted tests for pleiotropy and heterogeneity, as well as reverse MR analysis to assess the possibility of reverse causality. Finally, we performed a meta-analysis to consolidate and interpret our findings comprehensively. RESULTS Our MR analysis identified several significant associations: elevated artemin [odds ratio (OR) = 1.195], glial cell line-derived neurotrophic factor (hGDNF) (OR = 1.173), and tumor necrosis factor (TNF) (OR = 1.179) levels increased peripheral atherosclerosis (PA) risk; higher CUB domain-containing protein 1 (OR = 0.534), interleukin (IL)-8 (OR = 0.274), monocyte chemoattractant protein-3 (OR = 0.373), transforming growth factor-alpha (OR = 0.306), and tumor necrosis factor receptor superfamily member 9 (OR = 0.423) levels decreased cerebral artery atherosclerosis risk; fibroblast growth factor 21 (FGF-21) (OR = 1.122), hGDNF (OR = 1.108), and IL-22 receptor subunit alpha-1 (IL-22RA1) (OR = 1.235) levels were positively associated with coronary artery atherosclerosis (COA) risk; while IL-13 (OR = 0.909) and TNF-beta levels (OR = 0.954) were negatively associated with COA risk. C-X-C motif chemokine 6 levels (CXCL6) (OR = 1.353) and hGDNF (OR = 1.161) were identified as risk factors for atherosclerosis, excluding cerebral, coronary, and peripheral arterial disease (AECCP). In contrast, IL-2 receptor subunit beta levels (OR = 0.801) and IL-6 levels (OR = 0.788) were found to be protective factors for AECCP. Additionally, CXCL6 (OR = 1.261), FGF-21 (OR = 1.090), IL-22RA1 (OR = 1.127), and hGDNF (OR = 1.134) exhibited a risk effect against overall AS risk, while IL-6 (OR = 0.834) exhibited a protective effect against overall AS risk. CONCLUSIONS This study identifies specific CIPs that have significant causal effects on various forms of AS through MR analysis. The findings suggest potential biomarkers and treatment targets for preventing and managing different manifestations of AS in clinical practice.
Collapse
Affiliation(s)
- Bin Xu
- Department of Vascular Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Qiyang Xu
- Department of Vascular Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Yi Wang
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Dehai Lang
- Department of Vascular Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Zuodong Lin
- Department of Vascular Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China.
| |
Collapse
|
2
|
Sun SW, Wang XJ, Yan RC, Huang L, Hou M. Oxidative Stress-related Gene Signature: A Prognostic Tool for Predicting Survival in ST-elevation MI. Eur Cardiol 2025; 20:e11. [PMID: 40343143 PMCID: PMC12060176 DOI: 10.15420/ecr.2024.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/26/2025] [Indexed: 05/11/2025] Open
Abstract
Background This study aimed to identify differentially expressed oxidative stress-related genes (DEOSRGs) in ST-elevation MI (STEMI) patients and examine their connection to clinical outcomes. Methods We conducted a systematic review of Gene Expression Omnibus datasets, selecting GSE49925, GSE60993 and GSE61144 for analysis. DEOSRGs were identified using GEO2R2, overlapping across the selected datasets. Functional enrichment analysis was performed to understand the biological roles of the DEOSRGs. An optimal model was constructed using Least Absolute Shrinkage and Selection Operator penalised Cox proportional hazards regression. The clinical utility of the signature was assessed through survival analysis, receiver operating characteristic (ROC) curve and decision curve analysis. A prognostic nomogram was developed to predict survival risk, with the signature being externally validated using our own plasma samples. Results A prognostic signature was formulated, incorporating three upregulated DEOSRGs (matrix metalloproteinase-9, arginase 1, interleukin 18 receptor accessory protein) and three clinical variables (age, serum creatinine level, Gensini score). This signature successfully stratified patients into low- and high-risk groups. Survival analysis, ROC curve analysis and decision curve analysis demonstrated the signature's robust predictive performance and clinical utility within 2 years post-disease onset. External validation confirmed significant outcome differences between the risk groups. Conclusion This study identified DEOSRGs in STEMI patients and developed a prognostic signature integrating gene expression levels and clinical variables. While the signature showed promising predictive performance and clinical utility, the findings should be interpreted considering the limitations of small sample size and control group selection.
Collapse
Affiliation(s)
- Shuo-wen Sun
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Xing-jie Wang
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Ruo-chen Yan
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Lei Huang
- Heart Center, Tianjin Third Central HospitalTianjin, China
| | - Min Hou
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| |
Collapse
|
3
|
Lin L, Guo C, Jin H, Huang H, Luo F, Wang Y, Li D, Zhang Y, Xu Y, Zhu C, Zeng F, He H, Chen J, Zhang W, Yu W. Integrative multi-omics approach using random forest and artificial neural network models for early diagnosis and immune infiltration characterization in ischemic stroke. Front Neurol 2024; 15:1475582. [PMID: 39697434 PMCID: PMC11652371 DOI: 10.3389/fneur.2024.1475582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Background Ischemic stroke (IS) is a significant global health issue, causing high rates of morbidity, mortality, and disability. Since conventional Diagnosis methods for IS have several shortcomings. It is critical to create new Diagnosis models in order to enhance existing Diagnosis approaches. Methods We utilized gene expression data from the Gene Expression Omnibus (GEO) databases GSE16561 and GSE22255 to identify differentially expressed genes (DEGs) associated with IS. DEGs analysis using the Limma package, as well as GO and KEGG enrichment analyses, were performed. Furthermore, PPI networks were constructed using DEGs from the String database, and Random Forest models were utilized to screen key DEGs. Additionally, an artificial neural network model was developed for IS classification. Use the GSE58294 dataset to evaluate the effectiveness of the scoring model on healthy controls and ischemic stroke samples. The effectiveness of the scoring model was evaluated through AUC analysis, and CIBERSORT analysis was conducted to estimate the immune landscape and explore the correlation between gene expression and immune cell infiltration. Results A total of 26 significant DEGs associated with IS were identified. Metascape analysis revealed enriched biological processes and pathways related to IS. 10 key DEGs (ARG1, DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, HLA-DQB1) were selected using Random Forest and artificial neural network models. The area under the ROC curve (AUC) for the IS classification model was found to be near 1, indicating its high accuracy. Additionally, the analysis of the immune landscape demonstrated elevated immune-related networks in IS patients compared to healthy controls. Conclusion The study uncovers the involvement of specific genes and immune cells in the pathogenesis of IS, suggesting their importance in understanding and potentially targeting the disease.
Collapse
Affiliation(s)
- Ling Lin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chunmao Guo
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Hanna Jin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Haixiong Huang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
- Clinical Laboratory, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fan Luo
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Ying Wang
- Department of Geriatrics, Xi’an Baoshi Flower Changqing Hospital, Xi’an, Shaanxi, China
| | - Dongqi Li
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuanxin Zhang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuqian Xu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chanyan Zhu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fengshan Zeng
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Huahua He
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Jie Chen
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wenlin Yu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| |
Collapse
|
4
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
5
|
Wu S, Zhao W, Yu Z. Novel Targets and Potential Mechanisms of Mizuhopecten yessoensis-Derived Tripeptide NCW as Antihypertensive Peptides. Mol Nutr Food Res 2024; 68:e2300552. [PMID: 38366946 DOI: 10.1002/mnfr.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Indexed: 02/19/2024]
Abstract
SCOPE Mizuhopecten yessoensis-derived tripeptide Asn-Cys-Trp (NCW) exhibits a potent antihypertensive effect in vivo. However, a lack of knowledge of the antihypertensive mechanism of tripeptide NCW limits its application for functional foods industrialization. The purpose of this study is to elucidate the corresponding targets and mechanisms of tripeptide NCW in hypertension regulation. METHODS AND RESULTS Administration of tripeptide NCW for 3 weeks, the blood pressure of spontaneously hypertensive rats (SHRs) is significantly decreased. After sacrifice, the serum sample is analyzed using tandem mass tag (TMT)-based liquid chromatography with tandem mass spectrometry to identify differentially expressed proteins. The proteomic analysis indicates that tripeptide NCW administration alters serum protein profiles in SHR rats, significantly upregulating 106 proteins and downregulating 30 proteins. These proteins enhance the glycolysis, glucose, and TCA cycle, improve amino metabolism, trigger the cAMP/PKA, cGMP/PKG, PI3K/AKT, and AMPK signal pathways, and inhibit Ras-regulated JNK activation, TGF-β/MAPK, and TGF-β/ RhoA/ROCK pathways. CONCLUSION Tripeptide NCW supplementation is demonstrated to regulate signal pathways involved in the control of blood pressure and regulate the energy and amino acids metabolic processes in serum, providing important insights into the protective effects of tripeptide NCW on hypertension.
Collapse
Affiliation(s)
- Sijia Wu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P.R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| |
Collapse
|
6
|
Susser LI, Nguyen MA, Geoffrion M, Emerton C, Ouimet M, Khacho M, Rayner KJ. Mitochondrial Fragmentation Promotes Inflammation Resolution Responses in Macrophages via Histone Lactylation. Mol Cell Biol 2023; 43:531-546. [PMID: 37807652 PMCID: PMC10569354 DOI: 10.1080/10985549.2023.2253131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
During the inflammatory response, macrophage phenotypes can be broadly classified as pro-inflammatory/classically activated "M1", or pro-resolving/alternatively "M2" macrophages. Although the classification of macrophages is general and assumes there are distinct phenotypes, in reality macrophages exist across a spectrum and must transform from a pro-inflammatory state to a proresolving state following an inflammatory insult. To adapt to changing metabolic needs of the cell, mitochondria undergo fusion and fission, which have important implications for cell fate and function. We hypothesized that mitochondrial fission and fusion directly contribute to macrophage function during the pro-inflammatory and proresolving phases. In the present study, we find that mitochondrial length directly contributes to macrophage phenotype, primarily during the transition from a pro-inflammatory to a proresolving state. Phenocopying the elongated mitochondrial network (by disabling the fission machinery using siRNA) leads to a baseline reduction in the inflammatory marker IL-1β, but a normal inflammatory response to LPS, similar to control macrophages. In contrast, in macrophages with a phenocopied fragmented phenotype (by disabling the fusion machinery using siRNA) there is a heightened inflammatory response to LPS and increased signaling through the ATF4/c-Jun transcriptional axis compared to control macrophages. Importantly, macrophages with a fragmented mitochondrial phenotype show increased expression of proresolving mediator arginase 1 and increased phagocytic capacity. Promoting mitochondrial fragmentation caused an increase in cellular lactate, and an increase in histone lactylation which caused an increase in arginase 1 expression. These studies demonstrate that a fragmented mitochondrial phenotype is critical for the proresolving response in macrophages and specifically drive epigenetic changes via lactylation of histones following an inflammatory insult.
Collapse
Affiliation(s)
- Leah I. Susser
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
8
|
Değirmençay Ş, Küçükler S, Özdemir S, Kaman R. Evaluation of erythrocyte arginase activity, plasma nitric oxide concentration and oxidative stress status in cattle with anaplasmosis. Vet Parasitol 2023; 314:109855. [PMID: 36528965 DOI: 10.1016/j.vetpar.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bovine anaplasmosis is an arthropod-borne disease characterized by high fever, anaemia and sometimes jaundice. The role of oxidative stress in anaplasmosis has been investigated, but erythrocyte arginase (ARG) activity has not been studied. In this study, we aimed to investigate the changes in haematological parameters, erythrocyte ARG activity, plasma nitric oxide (NO) levels and oxidative stress parameters and explain the relationship between each other in cattle with anaplasmosis. The material of this study consisted of 14 cattle, aged 10-12 months with anaplasmosis (infected group) and 14 healthy cattle aged 10-12 months (control group). Our data revealed that leukocyte parameters and plasma NO levels and serum malondialdehyde (MDA), total oxidant status (TOS) and oxidative stress index (OSI) levels were higher while erythrocyte parameters, erythrocyte ARG activity and serum total antioxidant status (TAS) and glutathione (GSH) levels were lower in the infected group compared to the control group. There was a strong correlation between erythrocyte ARG activity and NO, MDA, TOS, OSI, TAS and GSH. ROC analysis and correlation results suggest that erythrocyte ARG activity is an effective oxidative stress marker. We concluded that severe oxidative stress occurs in anaplasmosis. As the severity of anaemia increases, erythrocyte ARG activity plummets while plasma NO level elevates. These two parameters may also be used as prognostic and oxidative stress markers. Although decreased erythrocyte ARG activity is a disadvantage in haemolytic diseases, this situation can be compensated by increased NO. Thus, homeostasis of these two parameters may contribute to the elimination of the infection.
Collapse
Affiliation(s)
- Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ramazan Kaman
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
9
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
10
|
Heuser SK, LoBue A, Li J, Zhuge Z, Leo F, Suvorava T, Olsson A, Schneckmann R, Guimaraes Braga DD, Srivrastava T, Montero L, Schmitz OJ, Schmitt JP, Grandoch M, Weitzberg E, Lundberg JO, Pernow J, Kelm M, Carlström M, Cortese-Krott MM. Downregulation of eNOS and preserved endothelial function in endothelial-specific arginase 1-deficient mice. Nitric Oxide 2022; 125-126:69-77. [PMID: 35752264 DOI: 10.1016/j.niox.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022]
Abstract
Arginase 1 (Arg1) is a ubiquitous enzyme belonging to the urea cycle that catalyzes the conversion of l-arginine into l-ornithine and urea. In endothelial cells (ECs), Arg1 was proposed to limit the availability of l-arginine for the endothelial nitric oxide synthase (eNOS) and thereby reduce nitric oxide (NO) production, thus promoting endothelial dysfunction and vascular disease. The role of EC Arg1 under homeostatic conditions is in vivo less understood. The aim of this study was to investigate the role of EC Arg1 on the regulation of eNOS, vascular tone, and endothelial function under normal homeostatic conditions in vivo and ex vivo. By using a tamoxifen-inducible EC-specific gene-targeting approach, we generated EC Arg1 KO mice. Efficiency and specificity of the gene targeting strategy was demonstrated by DNA recombination and loss of Arg1 expression measured after tamoxifen treatment in EC only. In EC Arg1 KO mice we found a significant decrease in Arg1 expression in heart and lung ECs and in the aorta, however, vascular enzymatic activity was preserved likely due to the presence of high levels of Arg1 in smooth muscle cells. Moreover, we found a downregulation of eNOS expression in the aorta, and a fully preserved systemic l-arginine and NO bioavailability, as demonstrated by the levels of l-arginine, l-ornithine, and l-citrulline as well as nitrite, nitrate, and nitroso-species. Lung and liver tissues from EC Arg1 KO mice showed respectively increase or decrease in nitrosyl-heme species, indicating that the lack of endothelial Arg1 affects NO bioavailability in these organs. In addition, EC Arg1 KO mice showed fully preserved acetylcholine-mediated vascular relaxation in both conductance and resistant vessels but increased phenylephrine-induced vasoconstriction. Systolic, diastolic, and mean arterial pressure and cardiac performance in EC Arg1 KO mice were not different from the wild-type littermate controls. In conclusion, under normal homeostatic conditions, lack of EC Arg1 expression is associated with a down-regulation of eNOS expression but a preserved NO bioavailability and vascular endothelial function. These results suggest that a cross-talk exists between Arg1 and eNOS to control NO production in ECs, which depends on both L-Arg availability and EC Arg1-dependent eNOS expression.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Annika Olsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | | | - Tanu Srivrastava
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Lidia Montero
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Ma Z, Chu L, Liu CF, Liu W, Wei J. Construction of a Joint Prediction Model for the Occurrence of Ischemic Stroke and Acute Myocardial Infarction Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:5967131. [PMID: 35419117 PMCID: PMC9001103 DOI: 10.1155/2022/5967131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) has imposed significant threat to both middle-aged and elderly people worldwide. Acute myocardial infarction (AMI) is a rare but serious complication following IS, which can further increase patient disability and mortality rates. With the development of intravenous thrombolysis and endovascular treatment, the prognosis of IS has been greatly improved. However, the pathogenesis of IS complicated with AMI is still unclear. To fill this gap, this work uses bioinformatic analysis, where IS and AMI datasets were combined for differential gene analysis, and then, a ROC prediction model for target gene analysis was constructed. It is found that OSM gene has the highest prediction accuracy (AUC = 0.793), followed by IL6ST, IL6, JAK1, IL6R, and JAK2 genes. Joint prediction model showed higher accuracy in predicting the outcome of control and case (AUC = 0.918). The etiology of ischemic stroke and acute myocardial infarction is complicated. Their cooccurring pathological mechanisms and the conversion between the two diseases could not be explained by a single gene. Therefore, the joint prediction model in this work can provide a better prediction accuracy for research purpose.
Collapse
Affiliation(s)
- Zhaolei Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215004, China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jing Wei
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
12
|
Tengbom J, Cederström S, Verouhis D, Böhm F, Eriksson P, Folkersen L, Gabrielsen A, Jernberg T, Lundman P, Persson J, Saleh N, Settergren M, Sörensson P, Tratsiakovich Y, Tornvall P, Jung C, Pernow J. Arginase 1 is upregulated at admission in patients with ST-elevation myocardial infarction. J Intern Med 2021; 290:1061-1070. [PMID: 34237174 DOI: 10.1111/joim.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms underlying rupture of a coronary atherosclerotic plaque and development of myocardial ischemia-reperfusion injury in ST-elevation myocardial infarction (STEMI) remain unresolved. Increased arginase 1 activity leads to reduced nitric oxide (NO) production and increased formation of reactive oxygen species due to uncoupling of the NO-producing enzyme endothelial NO synthase (eNOS). This contributes to endothelial dysfunction, plaque instability and increased susceptibility to ischemia-reperfusion injury in acute myocardial infarction. OBJECTIVE The purpose of this study was to test the hypothesis that arginase gene and protein expression are upregulated in patients with STEMI. METHODS Two cohorts of patients with STEMI were included. In the first cohort (n = 51), expression of arginase and NO-synthases as well as arginase 1 protein levels were determined and compared to a healthy control group (n = 45). In a second cohort (n = 68), plasma arginase 1 levels and infarct size were determined using cardiac magnetic resonance imaging. RESULTS Expression of the gene encoding arginase 1 was significantly elevated at admission and 24-48 h after STEMI but not 3 months post STEMI, in comparison with the control group. Expression of the genes encoding arginase 2 and endothelial NO synthase (NOS3) were unaltered. Arginase 1 protein levels were elevated at admission, 24 h post STEMI and remained elevated for up to 6 months. No significant correlation between plasma arginase 1 protein levels and infarct size was observed. CONCLUSION The markedly increased gene and protein expression of arginase 1 already at admission indicates a role of arginase 1 in the development of STEMI.
Collapse
Affiliation(s)
- John Tengbom
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Cederström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Dinos Verouhis
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Böhm
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Gabrielsen
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Pia Lundman
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Jonas Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Nawzad Saleh
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Settergren
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder Sörensson
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - John Pernow
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Moretto J, Pudlo M, Demougeot C. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov Today 2020; 26:138-147. [PMID: 33197620 DOI: 10.1016/j.drudis.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Johnny Moretto
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
| | - Marc Pudlo
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
14
|
Abd El-Aleem SA, Abd-Elghany MI, Ali Saber E, Jude EB, Djouhri L. A possible role for inducible arginase isoform (AI) in the pathogenesis of chronic venous leg ulcer. J Cell Physiol 2020; 235:9974-9991. [PMID: 32458472 DOI: 10.1002/jcp.29812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023]
Abstract
Chronic venous ulcer (CVU) is a major cause of chronic wounds of lower extremities and presents a significant financial and resource burden to health care systems worldwide. Defects in the vasculature, matrix deposition, and re-epithelialization are the main histopathological changes believed to impede healing. Supplementation of the amino acid arginine that plays a crucial role in the interactions that occur during inflammation and wound healing was proven clinically to improve acute wound healing probably through enhancing activity of inducible arginase (AI) locally in the wounds. However, the possible mechanism of arginine action and the potential beneficial effects of AI/arginine in human chronic wounds remain unclear. In the present study, using biopsies, taken under local anesthesia, from adult patients (n = 12, mean age 55 years old) with CVUs in lower extremities, we investigated the correlation between AI distribution in CVUs and the histopathological changes, mainly proliferative and vascular changes. Our results show a distinct spatial distribution of AI along the ulcer in the epidermis and in the dermis with the highest level of expression being at the ulcer edge and the least expression towards the ulcer base. The AI cellular immunoreactivity, enzymatic activity, and protein levels were significantly increased towards the ulcer edge. Interestingly, a similar pattern of expression was encountered in the proliferative and the vascular changes with strong correlations between AI and the proliferative activity and vascular changes. Furthermore, AI cellular distribution was associated with increased proliferative activity, inflammation, and vascular changes. Our findings of differential expression of AI along the CVU base, edge, and nearby surrounding skin and its associations with increased proliferative activity and vascular changes provide further support to the AI implication in CVU pathogenesis. The presence of high levels of AI in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- Department of Cell Biology, University of Manchester, Manchester, UK.,Department of Histology and cell Biology, Minia University, Minia, Egypt
| | | | - Entesar Ali Saber
- Department of Histology and cell Biology, Minia University, Minia, Egypt.,Department of Histology, Deraya University, New Minia, Egypt
| | - Edward B Jude
- Department of Cell Biology, University of Manchester, Manchester, UK
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Durante W. Amino Acids in Circulatory Function and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:39-56. [PMID: 32761569 DOI: 10.1007/978-3-030-45328-2_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the major cause of global mortality and disability. Abundant evidence indicates that amino acids play a fundamental role in cardiovascular physiology and pathology. Decades of research established the importance of L-arginine in promoting vascular health through the generation of the gas nitric oxide. More recently, L-glutamine, L-tryptophan, and L-cysteine have also been shown to modulate vascular function via the formation of a myriad of metabolites, including a number of gases (ammonia, carbon monoxide, hydrogen sulfide, and sulfur dioxide). These amino acids and their metabolites preserve vascular homeostasis by regulating critical cellular processes including proliferation, migration, differentiation, apoptosis, contractility, and senescence. Furthermore, they exert potent anti-inflammatory and antioxidant effects in the circulation, and block the accumulation of lipids within the arterial wall. They also mitigate known risk factors for cardiovascular disease, including hypertension, hyperlipidemia, obesity, and diabetes. However, in some instances, the metabolism of these amino acids through discrete pathways yields compounds that fosters vascular disease. While supplementation with amino acid monotherapy targeting the deficiency has ameliorated arterial disease in many animal models, this approach has been less successful in the clinic. A more robust approach combining amino acid supplementation with antioxidants, anti-inflammatory agents, and/or specific amino acid enzymatic pathway inhibitors may prove more successful. Alternatively, supplementation with amino acid-derived metabolites rather than the parent molecule may elicit beneficial effects while bypassing potentially harmful pathways of metabolism. Finally, there is an emerging recognition that circulating levels of multiple amino acids are perturbed in vascular disease and that a more holistic approach that targets all these amino acid derangements is required to restore circulatory function in diseased blood vessels.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Raffort J, Lareyre F, Clément M, Moratal C, Jean-Baptiste E, Hassen-Khodja R, Burel-Vandenbos F, Bruneval P, Chinetti G, Mallat Z. Transforming growth factor β neutralization finely tunes macrophage phenotype in elastase-induced abdominal aortic aneurysm and is associated with an increase of arginase 1 expression in the aorta. J Vasc Surg 2019; 70:588-598.e2. [DOI: 10.1016/j.jvs.2018.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
|
18
|
Qiu Y, Yang X, Wang L, Gao K, Jiang Z. L-Arginine Inhibited Inflammatory Response and Oxidative Stress Induced by Lipopolysaccharide via Arginase-1 Signaling in IPEC-J2 Cells. Int J Mol Sci 2019; 20:ijms20071800. [PMID: 30979040 PMCID: PMC6479672 DOI: 10.3390/ijms20071800] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to explore the effect of L-arginine on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in IPEC-2 cells. We found that the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), cluster of differentiation 14 (CD14), nuclear factor-kappaBp65 (NF-κBp65), chemokine-8 (IL-8), tumor necrosis factor (TNF-α) and chemokine-6 (IL-6) mRNA were significantly increased by LPS. Exposure to LPS induced oxidative stress as reactive oxygen species (ROS) and malonaldehyde (MDA) production were increased while glutathione peroxidase (GSH-Px) were decreased in LPS-treated cells compared to those in the control. LPS administration also effectively induced cell growth inhibition through induction of G0/G1 cell cycle arrest. However, compared with the LPS group, cells co-treatment with L-arginine effectively increased cell viability and promoted the cell cycle into the S phase; L-arginine exhibited an anti-inflammatory effect in alleviating inflammation induced by LPS by reducing the abundance of TLR4, MyD88, CD14, NF-κBp65, and IL-8 transcripts. Cells treated with LPS+L-arginine significantly enhanced the content of GSH-Px, while they decreased the production of ROS and MDA compared with the LPS group. Furthermore, L-arginine increased the activity of arginase-1 (Arg-1), while Arg-1 inhibitor abolished the protection of arginine against LPS-induced inflammation and oxidative stress. Taken together, these results suggested that L-arginine exerted its anti-inflammatory and antioxidant effects to protect IPEC-J2 cells from inflammatory response and oxidative stress challenged by LPS at least partly via the Arg-1 signaling pathway.
Collapse
Affiliation(s)
- Yueqin Qiu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
19
|
Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:319-330. [DOI: 10.1161/atvbaha.118.311572] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids
l
-arginine (Arg),
l
-homoarginine (hArg) and
l
-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.
Collapse
Affiliation(s)
- Katrin Nitz
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Michael Lacy
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Dorothee Atzler
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology (D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| |
Collapse
|
20
|
Abstract
Soy isoflavones have demonstrated chemopreventive and anticancer properties in epidemiology and biological studies, in addition to their function as antioxidants in prevention of cardiovascular disease. We have explored the potential of soy isoflavones, as a safe biological approach, to enhance the efficacy of radiotherapy for local tumor control and limit normal tissue damage in solid tumors. This review presents studies investigating the interaction between soy isoflavones and radiation in different malignancies, including prostate cancer, renal cell carcinoma, and nonsmall cell lung cancer. Soy isoflavones were found to be potent sensitizers of cancer cells to radiation causing increased cell killing in vitro in human tumor cell lines and greater tumor inhibition in vivo in preclinical orthotopic murine tumor models. In the course of these studies, radioprotection of normal tissues and organs in the field of radiation was observed both in a clinical trial for prostate cancer and in preclinical models. The mechanisms of radiosensitization and radioprotection mediated by soy isoflavones are discussed and emphasize the role of soy isoflavones in increasing radiation effect on tumor and mitigating inflammatory responses induced by radiation in normal tissues. Soy isoflavones could be used as a safe, nontoxic complementary strategy that simultaneously increases radiation effectiveness on the malignancy while reducing damage in normal tissues in the field of radiation.
Collapse
Affiliation(s)
- Gilda G Hillman
- Department of Oncology, Radiation Oncology Division, and Department of Biochemistry, Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI.
| |
Collapse
|
21
|
Locri F, Cammalleri M, Pini A, Dal Monte M, Rusciano D, Bagnoli P. Further Evidence on Efficacy of Diet Supplementation with Fatty Acids in Ocular Pathologies: Insights from the EAE Model of Optic Neuritis. Nutrients 2018; 10:nu10101447. [PMID: 30301197 PMCID: PMC6213612 DOI: 10.3390/nu10101447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
In the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis, we recently demonstrated that diet supplementation with a balanced mixture of fatty acids (FAs), including omega 3 and omega 6, efficiently limited inflammatory events in the retina and prevented retinal ganglion cell (RGC) death, although mechanisms underlying the efficacy of FAs were to be elucidated. Whether FAs effectiveness was accompanied by efficient rescue of demyelinating events in the optic nerve was also unresolved. Finally, the possibility that RGC rescue might result in ameliorated visual performance remained to be investigated. Here, the EAE model of optic neuritis was used to investigate mechanisms underlying the anti-inflammatory effects of FAs, including their potential efficacy on macrophage polarization. In addition, we determined how FAs-induced rescue of RGC degeneration was related to optic nerve histopathology by performing ultrastructural morphometric analysis with transmission electron microscopy. Finally, RGC rescue was correlated with visual performance by recording photopic electroretinogram, an efficient methodology to unravel the role of RGCs in the generation of electroretinographic waves. We conclude that the ameliorative effects of FAs were dependent on a predominant anti-inflammatory action including a role on promoting the shift of macrophages from the inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype. This would finally result in restored optic nerve histopathology and ameliorated visual performance. These findings can now offer new perspectives for implementing our knowledge on the effectiveness of diet supplementation in counteracting optic neuritis and suggest the importance of FAs as possible adjuvants in therapies against inflammatory diseases of the eye.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Death
- Dietary Supplements
- Electroretinography
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/pharmacology
- Fatty Acids, Omega-6/therapeutic use
- Female
- Inflammation/drug therapy
- Inflammation/etiology
- Macrophages/drug effects
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission/methods
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Optic Nerve/drug effects
- Optic Nerve/pathology
- Optic Neuritis/drug therapy
- Optic Neuritis/etiology
- Optic Neuritis/pathology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/pathology
- Visual Acuity
Collapse
Affiliation(s)
- Filippo Locri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Dario Rusciano
- Sooft Italia SpA, Contrada Molino 17, 63833 Montegiorgio (FM), Italy.
| | - Paola Bagnoli
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| |
Collapse
|
22
|
Alteration of microRNA 340-5p and Arginase-1 Expression in Peripheral Blood Cells during Acute Ischemic Stroke. Mol Neurobiol 2018; 56:3211-3221. [PMID: 30112629 DOI: 10.1007/s12035-018-1295-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023]
Abstract
Acute stroke alters the systemic immune response as can be observed in peripheral blood; however, the molecular mechanism by which microRNA (miRNA) regulates target gene expression in response to acute stroke is unknown. We performed a miRNA microarray on the peripheral blood of 10 patients with acute ischemic stroke and 11 control subjects. Selected miRNAs were quantified using a TaqMan assay. After searching for putative targets from the selected miRNAs using bioinformatic analysis, functional studies including binding capacity and protein expression of the targets of the selected miRNAs were performed. The results reveal a total of 30 miRNAs that were differentially expressed (16 miRNAs were upregulated and 14 miRNAs were downregulated) during the acute phase of stroke. Using prediction analysis, we found that miR-340-5p was predicted to bind to the 3'-untranslated region of the arginase-1 (ARG1) gene; a luciferase reporter assay confirmed the binding of miR-340-5p to ARG1. miR-340-5p was downregulated whereas ARG1 mRNA was upregulated in peripheral blood in patients experiencing acute stroke. Overexpression of miR-340-5p in human neutrophil and mouse macrophage cell lines induced downregulation of the ARG1 protein. Transfection with miR-340-5p increased nitric oxide production after LPS treatment in a mouse macrophage cell line. Our results suggest that several miRNAs are dynamically altered in the peripheral blood during the acute phase of ischemic stroke, including miR-340-5p. Acute stroke induces the downregulation of miR-340-5p, which subsequently upregulates ARG1 protein expression.
Collapse
|
23
|
Arginase II inhibition prevents interleukin-8 production through regulation of p38 MAPK phosphorylation activated by loss of mitochondrial membrane potential in nLDL-stimulated hAoSMCs. Exp Mol Med 2018; 50:e438. [PMID: 29391541 PMCID: PMC5903817 DOI: 10.1038/emm.2017.254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 01/16/2023] Open
Abstract
Arginase inhibition exhibits beneficial effects in vascular endothelial and smooth muscle cells. In human aortic smooth muscle cells (hAoSMCs), native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. Therefore, we examined the effect of arginase inhibition on IL-8 production and the underlying mechanism. In hAoSMCs, reverse transcription–PCR, western blotting and immunocytochemistry with MitoTracker confirmed that arginase II was confined predominantly to mitochondria. The mitochondrial membrane potential (MMP) was assessed using tetramethylrhodamine ethyl ester. The MMP decreased upon nLDL stimulation but was restored upon arginase inhibition. MMP loss caused by nLDL was prevented by treatment with the intracellular Ca2+ chelator BAPTA-AM. In mitochondrial Ca2+ measurements using Rhod-2 AM, increased mitochondrial Ca2+ levels by nLDL were inhibited upon preincubation with an arginase inhibitor. Among the polyamines, spermine, an arginase activity-dependent product, caused mitochondrial Ca2+ movement. The nLDL-induced MMP change resulted in p38 mitogen-activated protein kinase (MAPK) phosphorylation and IL-8 production and was prevented by the arginase inhibitors BAPTA and ruthenium 360. In isolated AoSMCs from ApoE−/− mice fed a high-cholesterol diet, arginase activity, p38 MAPK phosphorylation, spermine and mitochondrial Ca2+ levels and keratinocyte-derived chemokine (KC) production were increased compared with wild-type (WT) mice. However, in AoSMCs isolated from arginase II-null mice, increases in MMP and decreases in mitochondrial Ca2+ levels were noted compared with WT and were associated with p38 MAPK activation and IL-8 production. These data suggest that arginase activity regulates the change in MMP through Ca2+ uptake that is essential for p38 MAPK phosphorylation and IL-8 production.
Collapse
|
24
|
Bhatta A, Yao L, Xu Z, Toque HA, Chen J, Atawia RT, Fouda AY, Bagi Z, Lucas R, Caldwell RB, Caldwell RW. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovasc Res 2017; 113:1664-1676. [PMID: 29048462 PMCID: PMC6410953 DOI: 10.1093/cvr/cvx164] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/16/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
AIMS Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. METHODS AND RESULTS To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. CONCLUSION Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome.
Collapse
MESH Headings
- Animals
- Arginase/antagonists & inhibitors
- Arginase/genetics
- Arginase/metabolism
- Arginine/blood
- Blood Glucose/metabolism
- Blood Pressure
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/prevention & control
- Diet, High-Fat
- Dietary Sucrose
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Fibrosis
- Genetic Predisposition to Disease
- Insulin/blood
- Male
- Metabolic Syndrome/enzymology
- Metabolic Syndrome/genetics
- Metabolic Syndrome/physiopathology
- Metabolic Syndrome/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Obesity/drug therapy
- Obesity/enzymology
- Obesity/genetics
- Obesity/physiopathology
- Ornithine/blood
- Oxidative Stress
- Phenotype
- Signal Transduction
- Vascular Diseases/enzymology
- Vascular Diseases/genetics
- Vascular Diseases/physiopathology
- Vascular Diseases/prevention & control
- Vascular Stiffness/drug effects
- Vasodilation
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- School of Pharmaceutical Sciences, South China Research Centre for
Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR
China
| | - Zhimin Xu
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Haroldo A. Toque
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Jijun Chen
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Abdelrahman Y. Fouda
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Zsolt Bagi
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta
University, Augusta, GA 30912, USA
- Veterans Administration Medical Centre, Augusta, GA 30912, USA
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| |
Collapse
|
25
|
Abernathy LM, Fountain MD, Joiner MC, Hillman GG. Innate Immune Pathways Associated with Lung Radioprotection by Soy Isoflavones. Front Oncol 2017; 7:7. [PMID: 28168165 PMCID: PMC5253714 DOI: 10.3389/fonc.2017.00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction Radiation therapy for lung cancer causes pneumonitis and fibrosis. Soy isoflavones protect against radiation-induced lung injury, but the mediators of radioprotection remain unclear. We investigated the effect of radiation on myeloid-derived suppressor cells (MDSCs) in the lung and their modulation by soy isoflavones for a potential role in protection from radiation-induced lung injury. Methods BALB/c mice (5–6 weeks old) received a single 10 Gy dose of thoracic irradiation and soy isoflavones were orally administrated daily before and after radiation at 1 mg/day. Arginase-1 (Arg-1) and nuclear factor κB (NF-κB) p65 were detected in lung tissue by western blot analysis and immunohistochemistry. Lung MDSC subsets and their Arg-1 expression were analyzed by flow cytometry. Cytokine levels in the lungs were measured by ELISA. Results At 1 week after radiation, CD11b+ cells expressing Arg-1 were decreased by radiation in lung tissue yet maintained in the lungs treated with radiation and soy isoflavones. Arg-1 was predominantly expressed by CD11b+Ly6ClowLy6G+ granulocytic MDSCs (gr-MDSCs). Arg-1 expression in gr-MDSCs was reduced by radiation and preserved by supplementation with soy isoflavones. A persistent increase in Arg-1+ cells was observed in lung tissue treated with combined radiation and soy isoflavones at early and late time points, compared to radiation alone. The increase in Arg-1 expression mediated by soy isoflavones could be associated with the inhibition of radiation-induced activation of NF-κB and the control of pro-inflammatory cytokine production demonstrated in this study. Conclusion A radioprotective mechanism of soy isoflavones may involve the promotion of Arg-1-expressing gr-MDSCs that could play a role in downregulation of inflammation and lung radioprotection.
Collapse
Affiliation(s)
- Lisa M Abernathy
- Department of Oncology, Division of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Microbiology and Immunology, Indiana University School of Medicine at Notre Dame, South Bend, IN, USA
| | - Matthew D Fountain
- Department of Oncology, Division of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Joiner
- Department of Oncology, Division of Radiation Oncology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Gilda G Hillman
- Department of Oncology, Division of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proc Natl Acad Sci U S A 2016; 113:E5308-17. [PMID: 27540115 DOI: 10.1073/pnas.1514161113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.
Collapse
|
27
|
Liu K, Zhang X, Cao G, Liu Y, Liu C, Sun H, Pang X. Intratracheal instillation of ethyl pyruvate nanoparticles prevents the development of shunt-flow-induced pulmonary arterial hypertension in a rat model. Int J Nanomedicine 2016; 11:2587-99. [PMID: 27354791 PMCID: PMC4907741 DOI: 10.2147/ijn.s103183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose To investigate whether inhalation of ethyl pyruvate (EP) encapsulated with poly(ethylene glycol)-block-lactide/glycolide copolymer nanoparticles (EP-NPs) can prevent the development of shunt-flow-induced hyperkinetic pulmonary arterial hypertension (PAH) in a rat model. Materials and methods Rats were separated into five groups: blank (ie, no treatment after shunt flow), normal control (ie, no shunt flow or treatment), EP-NP instillation, EP-only instillation, and vehicle. The animals received intratracheal instillation of EP-NPs or other treatments immediately after a shunt flow, and treatment continued weekly until the end of the experiment. Hemodynamic data were recorded, pulmonary arterial remodeling was assessed, and levels of inflammatory mediators and ET1 expression in the lung and serum were analyzed. In addition, retention of EP in the lungs of rats in the EP-NP and EP-only groups was measured using high-performance liquid chromatography. Results After 12 weeks, hemodynamic abnormalities and pulmonary arterial remodeling were improved in the EP-NP instillation group, compared with the blank, EP-only, and vehicle groups (P<0.05). In addition, the EP-NP group showed significantly decreased levels of HMGB1, IL-6, TNFα, reactive oxygen species, and ET1 in the lung during PAH development (P<0.05). Furthermore, EP-NP instillation was associated with reduced serum levels of inflammatory factors and ET1. High-performance liquid-chromatography measurement indicated that EP retention was greater in the lungs of the EP-NP group than in the EP-only group. Conclusion EP-NP instillation attenuated inflammation and prevented pulmonary arterial remodeling during the development of PAH induced by shunt flow. In the future, EP-NP delivery into the lung might provide a novel approach for preventing PAH.
Collapse
Affiliation(s)
- Kai Liu
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Xiquan Zhang
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Guangqing Cao
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Yongjun Liu
- Pharmacy College of Shandong University, Jinan, People's Republic of China
| | - Chuanzhen Liu
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Hourong Sun
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Xinyan Pang
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| |
Collapse
|
28
|
Arancibia S, Barrientos A, Torrejón J, Escobar A, Beltrán CJ. Copper oxide nanoparticles recruit macrophages and modulate nitric oxide, proinflammatory cytokines and PGE2 production through arginase activation. Nanomedicine (Lond) 2016; 11:1237-51. [PMID: 27079258 DOI: 10.2217/nnm.16.39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In the present study, we examine the effects of copper oxide nanoparticles (CuNP) on macrophage immune response and the signaling pathways involved. MATERIALS & METHODS A peritonitis model was used to determine in vivo immune cells recruitment, while primary macrophages were used as an in vitro model for the cellular and molecular analysis. RESULTS In vivo, CuNP induce significant macrophages recruitment to the site of injection. In vitro, in LPS-stimulated primary macrophages, the co-treatment with CuNP inhibited the production of NO in a dose-dependent manner. The mechanism underlying NO and proinflammatory cytokines inhibition was associated with an increased arginase activity. Macrophage stimulation with CuNP did not provoke any cytokine secretion; however, arginase inhibition promoted TNFα and MIP-1β production. In addition, CuNP induced the expression of COX-2 and the production of PGE2 through arginase activation. CONCLUSION Our results demonstrate that CuNP activate arginase and suppress macrophage innate immune response.
Collapse
Affiliation(s)
- Sergio Arancibia
- Investigación y Desarrollo, Fundación Ciencia y Tecnología para el Desarrollo, Santiago, Chile.,Investigación y Desarrollo, Laboratorio Centrovet, Santiago, Chile
| | | | - Javiera Torrejón
- Investigación y Desarrollo, Laboratorio Centrovet, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Caroll J Beltrán
- Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Gastroenterología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Abrams J, Einhorn Z, Seiler C, Zong AB, Sweeney HL, Pack M. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish. Dis Model Mech 2016; 9:529-40. [PMID: 26893369 PMCID: PMC4892660 DOI: 10.1242/dmm.023309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/10/2016] [Indexed: 12/29/2022] Open
Abstract
Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress.
Collapse
Affiliation(s)
- Joshua Abrams
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev Einhorn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph Seiler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan B Zong
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Lee Sweeney
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Pack
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Chu Y, XiangLi X, Niu H, Wang H, Jia P, Gong W, Wu D, Qin W, Xing C. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia. Mol Cell Biochem 2016; 412:91-9. [PMID: 26608181 DOI: 10.1007/s11010-015-2611-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- YanBiao Chu
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - XiaoYing XiangLi
- Department of Surgery, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - Hu Niu
- Department of General Surgery, The Fourth People's Hospital of Ji'nan, The Second Affiliated Hospital of Tai Shan Medical College, Ji'nan, 250031, China
| | - HongChao Wang
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - PingDong Jia
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - WenBin Gong
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - DaWei Wu
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - WeiDong Qin
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - ChunYan Xing
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China.
| |
Collapse
|
31
|
McCarty MF, DiNicolantonio JJ. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. AGE (DORDRECHT, NETHERLANDS) 2015; 37:96. [PMID: 26362762 PMCID: PMC5005830 DOI: 10.1007/s11357-015-9823-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Restricted dietary intakes of protein or essential amino acids tend to slow aging and boost lifespan in rodents, presumably because they downregulate IGF-I/Akt/mTORC1 signaling that acts as a pacesetter for aging and promotes cancer induction. A recent analysis of the National Health and Nutrition Examination Survey (NHANES) III cohort has revealed that relatively low protein intakes in mid-life (under 10 % of calories) are indeed associated with decreased subsequent risk for mortality. However, in those over 65 at baseline, such low protein intakes were associated with increased risk for mortality. This finding accords well with other epidemiology correlating relatively high protein intakes with lower risk for loss of lean mass and bone density in the elderly. Increased efficiency of protein translation reflecting increased leucine intake and consequent greater mTORC1 activity may play a role in this effect; however, at present there is little solid evidence that leucine supplementation provides important long-term benefits to the elderly. Aside from its potential pro-anabolic impact, higher dietary protein intakes may protect the elderly in another way-by providing increased amino acid substrate for synthesis of key protective factors. There is growing evidence, in both rodents and humans, that glutathione synthesis declines with increasing age, likely reflecting diminished function of Nrf2-dependent inductive mechanisms that boost expression of glutamate cysteine ligase (GCL), rate-limiting for glutathione synthesis. Intracellular glutathione blunts the negative impact of reactive oxygen species (ROS) on cell health and functions both by acting as an oxidant scavenger and by opposing the pro-inflammatory influence of hydrogen peroxide on cell signaling. Fortunately, since GCL's K m for cysteine is close to intracellular cysteine levels, increased intakes of cysteine-achieved from whole proteins or via supplementation with N-acetylcysteine (NAC)-can achieve a compensatory increase in glutathione synthesis, such that more youthful tissue levels of this compound can be restored. Supplementation with phase 2 inducers-such as lipoic acid-can likewise increase glutathione levels by promoting increased GCL expression. In aging humans and/or rodents, NAC supplementation has exerted favorable effects on vascular health, muscle strength, bone density, cell-mediated immunity, markers of systemic inflammation, preservation of cognitive function, progression of neurodegeneration, and the clinical course of influenza-effects which could be expected to lessen mortality and stave off frailty. Hence, greater cysteine availability may explain much of the favorable impact of higher protein intakes on mortality and frailty risk in the elderly, and joint supplementation with NAC and lipoic acid could be notably protective in the elderly, particularly in those who follow plant-based diets relatively low in protein. It is less clear whether the lower arginine intake associated with low-protein diets has an adverse impact on vascular health.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA, 92009, USA.
| | - James J DiNicolantonio
- Preventive Cardiology Department, St. Luke's Mid America Heart Institute, Kansas City, MO, USA.
| |
Collapse
|
32
|
Jiang W, Sun B, Song X, Zheng Y, Wang L, Wang T, Liu S. Arginase inhibition protects against hypoxia‑induced pulmonary arterial hypertension. Mol Med Rep 2015; 12:4743-4749. [PMID: 26126810 DOI: 10.3892/mmr.2015.3994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the role of arginase (Arg) in pulmonary arterial hypertension (PAH). In vitro, human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions with, or without, the Arg inhibitor, S‑(2‑boronoethyl)‑l‑cysteine (BEC), for 48 h, following which the proliferation of the HPASMCs was determined using MTT and cell counting assays. For the in vivo investigation, 30 male rats were randomly divided into the following three groups (n=10 per group): i) control group, ii) PAH group and iii) BEC group, in which the right ventricle systolic pressure (RVSP) of the rats was assessed. The levels of cyclin D1, cyclin‑dependent kinase (CDK)4 and p27 were measured in vitro and in vivo. The phosphorylation levels of Akt and extracellular‑related kinase (ERK) were also measured in HPASMCs. In vitro, compared with the hypoxia group, Arg inhibition reduced HPASMC proliferation and reduced the expression levels of cyclin D1, CDK4, phosphorylated (p‑)Akt and p‑ERK. By contrast, Arg inhibition increased the expression of p27. In vivo, compared with the control group, the expression levels of cyclin D1 and CDK4 were reduced in the PAH group, however, the expression of p27 and the RVSP increased. In the BEC group, the opposite effects were observed. Therefore, it was suggested that Arg inhibition may reduce the RVSP of PAH rats and reduce HPASMC proliferation by decreasing the expression levels of cyclin D1 and CDK4, increasing the expression of p27, and partly reducing the phosphorylation of Akt and ERK.
Collapse
Affiliation(s)
- Wenjin Jiang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Bolin Sun
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xuepeng Song
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yanbo Zheng
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ligang Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Tao Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Sheng Liu
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
33
|
Wang XP, Cheng ZY, Schmid KL. GABAB receptors are expressed in human aortic smooth muscle cells and regulate the intracellular Ca(2+) concentration. Heart Vessels 2015; 30:249-57. [PMID: 24682435 DOI: 10.1007/s00380-014-0499-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 03/14/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway.
Collapse
MESH Headings
- Aorta/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Enzyme Activation
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Xu-Ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | |
Collapse
|
34
|
Meng FW, Slivka PF, Dearth CL, Badylak SF. Solubilized extracellular matrix from brain and urinary bladder elicits distinct functional and phenotypic responses in macrophages. Biomaterials 2015; 46:131-40. [PMID: 25678122 DOI: 10.1016/j.biomaterials.2014.12.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) derived from a variety of source tissues has been successfully used to facilitate tissue reconstruction. The recent development of solubilized forms of ECM advances the therapeutic potential of these biomaterials. Isolated, soluble components of ECM and matricryptic peptides have been shown to bias macrophages toward a regulatory and constructive (M2-like) phenotype. However, the majority of studies described thus far have utilized anatomically and morphologically similar gastrointestinal derived ECMs (small intestine, esophagus, urinary bladder, etc.) and a small subset of macrophage markers (CD206, CD86, CCR7) to describe them. The present study evaluated the effect of solubilized ECM derived from molecularly diverse source tissues (brain and urinary bladder) upon primary macrophage phenotype and function. Results showed that solubilized urinary bladder ECM (U-ECM) up-regulated macrophage PGE2 secretion and suppressed traditional pro-inflammatory factor secretion, consistent with an M2-like phenotype. The hyaluronic acid (HA) component in solubilized U-ECM played an important role in mediating this response. Brain ECM (B-ECM) elicited a pro-inflammatory (M1-like) macrophage response and contained almost no HA. These findings suggest that the molecular composition of the source tissue ECM plays an important role in influencing macrophage function and phenotype.
Collapse
Affiliation(s)
- Fan Wei Meng
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA
| | - Peter F Slivka
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, 15219 PA, USA; DoD-VA Extremity Trauma & Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, 15219 PA, USA.
| |
Collapse
|
35
|
Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 2014; 5:533. [PMID: 25386179 PMCID: PMC4209887 DOI: 10.3389/fimmu.2014.00533] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022] Open
Abstract
Macrophages play a paramount role in immunity and inflammation-associated diseases, including infections, cardiovascular diseases, obesity-associated metabolic imbalances, and cancer. Compelling evidence from studies of recent years demonstrates that macrophages are heterogeneous and undergo heterogeneous phenotypic changes in response to microenvironmental stimuli. The M1 killer type response and the M2 repair type response are best known, and are two extreme examples. Among other markers, inducible nitric oxide synthase and type-I arginase (Arg-I), the enzymes that are involved in l-arginine/nitric oxide (NO) metabolism, are associated with the M1 and M2 phenotype, respectively, and therefore widely used as the markers for characterization of the two macrophage phenotypes. There is also a type-II arginase (Arg-II), which is expressed in macrophages and prevalently viewed as having the same function as Arg-I in the cells. In contrast to Arg-I, little information on the role of Arg-II in macrophage inflammatory responses is available. Emerging evidence, however, suggests that differential roles of Arg-I and Arg-II in regulating macrophage functions. In this article, we will review recent developments on the functional roles of the two arginase isoforms in regulation of macrophage inflammatory responses by focusing on their impact on the pathogenesis of cardiovascular diseases and metabolic disorders.
Collapse
Affiliation(s)
- Zhihong Yang
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| | - Xiu-Fen Ming
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
36
|
GABAB receptors expressed in human aortic endothelial cells mediate intracellular calcium concentration regulation and endothelial nitric oxide synthase translocation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:871735. [PMID: 25114926 PMCID: PMC4119922 DOI: 10.1155/2014/871735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Collapse
|
37
|
Wang J, Liu L, Xia Y, Wu D. Silencing of poly(ADP-ribose) polymerase-1 suppresses hyperstretch-induced expression of inflammatory cytokines in vitro. Acta Biochim Biophys Sin (Shanghai) 2014; 46:556-64. [PMID: 24829399 DOI: 10.1093/abbs/gmu035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In addition to biochemical stimuli, physical forces also play a critical role in regulating the structure, function, and metabolism of the lung. Hyperstretch can induce the inflammatory responses in asthma, but the mechanism remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that can regulate a variety of inflammatory cytokines expression. In the present study, we aimed to investigate the role and mechanism of PARP-1 in mechanical stretch-induced inflammation in human bronchial epithelial cells (HBEpiCs). HBEpiCs were simulated by mechanical stretch and cells under static were used as the control. PARP-1 expression was interfered by small interfering RNA. Oxidative stress was evaluated by DHE staining. DNA damage was assessed by comet assay. The results showed that interleukin-8 (IL-8) and vascular cell adhesion molecule-1 (VCAM-1) expression were regulated by hyperstretch in a time-dependent manner. Hyperstretch could increase PARP-1 expression and activity by inducing superoxide production and DNA damage. Silencing of PARP-1 attenuated hyperstretch-induced IL-8 and VCAM-1 up-regulation as well as monocytes adhesion, which were related to the inhibition of nuclear factor-kappa B (NF-κB) translocation. Our study showed that hyperstretch could induce inflammatory response and superoxide production as well as DNA damage in HBEpiCs. PARP-1 silencing decreased IL-8 and VCAM-1 expression, partly through inhibition of NF-κB translocation. PARP-1 played a fundamental role in hyperstretch-induced inflammation. PARP-1 silencing could be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Intensive Care Unit, Qilu Hospital of Shandong University, Jinan 250012, China Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Luyi Liu
- Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Yonghong Xia
- Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Dawei Wu
- Department of Intensive Care Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, Le W. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson's disease. Cell Death Differ 2014; 21:369-380. [PMID: 24212761 PMCID: PMC3921590 DOI: 10.1038/cdd.2013.159] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Classical activation (M1 phenotype) and alternative activation (M2 phenotype) are the two polars of microglial activation states that can produce either detrimental or beneficial effects in the central nervous system (CNS). Harnessing the beneficial properties of microglia cells by modulating their polarization states provides great potential for the treatment of Parkinson's disease (PD). However, the epigenetic mechanism that regulates microglia polarization remains elusive. Here, we reported that histone H3K27me3 demethylase Jumonji domain containing 3 (Jmjd3) was essential for M2 microglia polarization. Suppression of Jmjd3 in N9 microglia inhibited M2 polarization and simultaneously exaggerated M1 microglial inflammatory responses, which led to extensive neuron death in vitro. We also observed that the suppression of Jmjd3 in the substantia nigra (SN) in vivo dramatically caused microglial overactivation and exacerbated dopamine (DA) neuron death in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-intoxicated mouse model of PD. Moreover, we showed that the Jmjd3 level was lower in the midbrain of aged mice, which was accompanied by an elevated level of H3K27me3 and an increased ratio of M1 to M2 markers, suggesting that aging is an important factor in switching the microglia phenotypes. Overall, our studies indicate that Jmjd3 is able to enhance the polarization of M2 microglia by modifying histone H3K27me3, and therefore it has a pivotal role in the switch of microglia phenotypes that may contribute to the immune pathogenesis of PD.
Collapse
Affiliation(s)
- Y Tang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - T Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X J Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Le
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Propofol reduces lipopolysaccharide-induced, NADPH oxidase (NOX 2) mediated TNF- α and IL-6 production in macrophages. Clin Dev Immunol 2013; 2013:325481. [PMID: 24371447 PMCID: PMC3859231 DOI: 10.1155/2013/325481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
During an infection, lipopolysaccharide (LPS) stimulates the production of reactive oxygen species (ROS), which is mediated, in large part, by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs); NOX2 is the major NOX isoform found in the macrophage cell membrane. While the immunomodulatory activity of propofol is highly documented, its effect on the LPS-induced NOX2/ROS/NF-κB signaling pathway in macrophages has not been addressed. In present study, we used murine macrophage cell line RAW264.7 pretreated with propofol and stimulated with LPS. IL-6 and TNF-α expression, ROS production, and NOX activity were determined. Results showed that propofol attenuated LPS-induced TNF-α and IL-6 expression. Moreover, LPS-stimulated phosphorylation of NF-κB and generation of ROS were weakened in response to propofol. Propofol also reduced LPS-induced NOX activity and expression of gp91phox and p47phox. We conclude that propofol modulates LPS signaling in macrophages by reducing NOX-mediated production of TNF-α and IL-6.
Collapse
|
40
|
Wang XP, Zhang W, Liu XQ, Wang WK, Yan F, Dong WQ, Zhang Y, Zhang MX. Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. Eur Heart J 2013; 35:911-9. [DOI: 10.1093/eurheartj/eht329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Abstract
Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia Columbia, MO, USA
| |
Collapse
|
42
|
Yoon J, Ryoo S. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production. Biochem Biophys Res Commun 2013; 435:428-33. [PMID: 23665321 DOI: 10.1016/j.bbrc.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Abstract
We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.
Collapse
Affiliation(s)
- Jeongyeon Yoon
- Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | | |
Collapse
|
43
|
Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res 2013; 98:334-43. [DOI: 10.1093/cvr/cvt036] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Cheng ZY, Wang XP, Schmid KL, Liu L. Identification of GABA receptors in chick retinal pigment epithelium. Neurosci Lett 2013; 539:43-7. [DOI: 10.1016/j.neulet.2013.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/09/2023]
|
45
|
Qin WD, Wei SJ, Wang XP, Wang J, Wang WK, Liu F, Gong L, Yan F, Zhang Y, Zhang M. Poly(ADP-ribose) polymerase 1 inhibition protects against low shear stress induced inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:59-68. [PMID: 23085506 DOI: 10.1016/j.bbamcr.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis begins as local inflammation of vessels at sites of disturbed flow, where low shear stress (LSS) leads to mechanical irritation and plaque development and progression. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is associated with the inflammation response during atherosclerosis. We investigated the role and underlying mechanism of PARP-1 in LSS-induced inflammation in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS HUVECs were simulated by LSS (0.4Pa). PARP-1 expression was inhibited by ABT888 or siRNA. The inducible nitric oxide synthase (iNOS) and intercellular adhesion molecular-1 (ICAM-1) expression was regulated by LSS in a time dependent manner. LSS could increase superoxide production and 3-nitrotyrosine formation. LSS induced DNA damage as assessed by H2A.X phosphorylation and comet assay. Compared with cells under static, LSS increased PARP-1 expression and PAR formation via MEK/ERK signaling pathway. PARP-1 inhibition increased Sirt1 activity through an increased intracellular nicotinamide adenine dinucleotide (NAD(+)) level. Moreover, PARP-1 inhibition attenuated LSS-induced iNOS and ICAM-1 upregulation by inhibiting nuclear factor kappa B (NF-κB) nuclear translocation and activity, with a reduced NF-κB phosphorylation. CONCLUSIONS LSS induced oxidative damage and PARP-1 activation via MEK/ERK pathway. PARP-1 inhibition restored Sirt1 activity by increasing NAD(+) level and decreased iNOS and ICAM-1 expression by inhibiting NF-κB nuclear translocation and activity as well as NF-κB phosphorylation. PARP-1 played a fundamental role in LSS induced inflammation. Inhibition of PARP-1 might be a mechanism for treatment of inflammation response during atherosclerosis.
Collapse
Affiliation(s)
- Wei-dong Qin
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang J, Si Y, Wu C, Sun L, Ma Y, Ge A, Li B. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway. Lipids Health Dis 2012; 11:139. [PMID: 23072373 PMCID: PMC3485618 DOI: 10.1186/1476-511x-11-139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/30/2012] [Indexed: 12/23/2022] Open
Abstract
Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, the General Hospital of PLA, Beijing, 100853, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hou SW, Liu CY, Li YH, Yu JZ, Feng L, Liu YT, Guo MF, Xie Y, Meng J, Zhang HF, Xiao BG, Ma CG. Fasudil ameliorates disease progression in experimental autoimmune encephalomyelitis, acting possibly through antiinflammatory effect. CNS Neurosci Ther 2012; 18:909-17. [PMID: 22994384 DOI: 10.1111/cns.12002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/20/2012] [Accepted: 08/03/2012] [Indexed: 12/11/2022] Open
Abstract
AIM The purpose of this investigation was to further explore the mechanism(s) underlying the amelioration in EAE caused by Fasudil, particularly focusing on anti-inflammatory effect. METHODS We induced a chronic-progressive experimental autoimmune encephalomyelitis (EAE) in B6 mice immunized with myelin oligodendrocyte glycoprotein(35-55) and performed Fasudil intervention in early and late stages of the disease. RESULTS The administration of Fasudil (40 mg/kg, i.p) had a therapeutic effect in delaying the onset and ameliorating the severity of EAE, accompanied by the improvement in myelination and the decrease in inflammatory cells in spinal cords. Fasudil inhibited TLR-4, p-NF-kB/p65, and inflammatory cytokines (IL-1β, IL-6, and TNF-α) and enhanced IL-10 production in spinal cords. The ratio of arginase/iNOS was enhanced mainly in the spinal cords of EAE mice treated with Fasudil, reflecting a shift toward the M2 (antiinflammation) macrophage/microglia phenotype. The administration of Fasudil also induced the upregulation of CB2 receptor in spinal cords, but did not significantly trigger CB1 receptor. Levels of neurotrophic factors NGF, BDNF, and GDNF in the CNS were not altered by Fasudil. CONCLUSION Fasudil ameliorates disease progression in EAE, acting possibly through antiinflammatory pathway.
Collapse
Affiliation(s)
- Shao-Wei Hou
- Department of Neurology, Medical School, Institute of Brain Science, Shanxi Datong University, Datong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|