1
|
Kaimala S, Yassin LK, Hamad MIK, Allouh MZ, Sampath P, AlKaabi J, Khee-Shing Leow M, Shehab S, Ansari SA, Emerald BS. Epigenetic crossroads in metabolic and cardiovascular health: the role of DNA methylation in type 2 diabetes and cardiovascular diseases. Cardiovasc Diabetol 2025; 24:231. [PMID: 40442704 PMCID: PMC12124063 DOI: 10.1186/s12933-025-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Type 2 diabetes (T2D) and cardiovascular diseases (CVD), part of the metabolic syndrome (MetS), are major contributors to the global health crisis today. A recent report from the World Health Organisation estimates that 17.9 million lives are lost each year to CVD, and one-third of these are premature. The international diabetes federation estimates that around 537 million adults aged between 20 and 79 years are living with diabetes. People with diabetes are suggested to have twice the risk of developing CVD. Epigenetic modifications are being increasingly recognised as the key mediators linking genetic and environmental conditions to metabolic dysfunction. Among these, DNA methylation plays a crucial role in modulating gene expression and influencing pathways involved in glucose homeostasis, inflammation, and vascular integrity. Despite the advances in our understanding of the role of epigenetic alterations in metabolic diseases, including that of T2D, the mechanisms driving selective methylation changes and their long-term impact on cardiovascular health are still not well understood. This review synthesises the current knowledge on DNA methylation dynamics in T2D and their role towards the progression of CVD and explores their potential as biomarkers and therapeutic targets. Understanding the interplay between metabolism and epigenetics in the pathogenesis of T2D and CVD could provide critical insights for early disease identification and the development of novel epigenome-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Lidya K Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohammad I K Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Juma AlKaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Melvin Khee-Shing Leow
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Singapore Institute of Food and Biotechnology Innovation, A*STAR, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Cardiovascular and Metabolic Diseases Program, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
3
|
Davies B, Trelfa L, Rashbrook VS, Drydale E, Martin R, Bai B, Golebka J, Biggs DS, Channon KM, Bhattacharya S, Douglas G. Mutagenesis on a complex mouse genetic background by site-specific nucleases. Transgenic Res 2024; 33:415-426. [PMID: 39088185 PMCID: PMC11588839 DOI: 10.1007/s11248-024-00399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Francis Crick Institute, 1 Midland Road, London, UK
| | - Lucy Trelfa
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Victoria S Rashbrook
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Edward Drydale
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Rachel Martin
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Boyan Bai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jedrzej Golebka
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Daniel Stephen Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
4
|
Yazdani A, Tiwari S, Heydarpour M. WITHDRAWN: The effect of ischemia on expression quantitative trait loci (eQTL) in human myocardium and insights into myocardial injury etiology. RESEARCH SQUARE 2024:rs.3.rs-3967889. [PMID: 38464039 PMCID: PMC10925459 DOI: 10.21203/rs.3.rs-3967889/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
26 February, 2024. Research Square has withdrawn this preprint as it was submitted and made public without the full consent of all the authors and without the full consent of the principle investigator of the registered clinical trial. Therefore, this work should not be cited as a reference.
Collapse
|
5
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
6
|
El-Arabey AA, Abdalla M. Cardiovascular complications in the post-acute COVID-19 syndrome: A novel perspective down the road. Travel Med Infect Dis 2022; 49:102421. [PMID: 35944886 PMCID: PMC9356638 DOI: 10.1016/j.tmaid.2022.102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt.
| | - Mohnad Abdalla
- Research Institute of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| |
Collapse
|
7
|
Adam S, Ho JH, Liu Y, Siahmansur T, Siddals K, Iqbal Z, Azmi S, Senapati S, New J, Jeziorska M, Ammori BJ, Syed AA, Donn R, Malik RA, Durrington PN, Soran H. Bariatric Surgery-induced High-density Lipoprotein Functionality Enhancement Is Associated With Reduced Inflammation. J Clin Endocrinol Metab 2022; 107:2182-2194. [PMID: 35639942 DOI: 10.1210/clinem/dgac244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Emerging evidence suggests an association between impaired high-density lipoprotein (HDL) functionality and cardiovascular disease (CVD). HDL is essential for reverse cholesterol transport (RCT) and reduces inflammation and oxidative stress principally via paraoxonase-1 (PON1). RCT depends on HDL's capacity to accept cholesterol (cholesterol efflux capacity [CEC]) and active transport through ATP-binding cassette (ABC) A1, G1, and scavenger receptor-B1 (SR-B1). We have studied the impact of Roux-en-Y gastric bypass (RYGB) in morbidly obese subjects on RCT and HDL functionality. METHODS Biomarkers associated with increased CVD risk including tumour necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hsCRP), myeloperoxidase mass (MPO), PON1 activity, and CEC in vitro were measured in 44 patients before and 6 and 12 months after RYGB. Overweight but otherwise healthy (mean body mass index [BMI] 28 kg/m2) subjects acted as controls. Twelve participants also underwent gluteal subcutaneous adipose tissue biopsies before and 6 months after RYGB for targeted gene expression (ABCA1, ABCG1, SR-B1, TNF-α) and histological analysis (adipocyte size, macrophage density, TNF-α immunostaining). RESULTS Significant (P < 0.05) improvements in BMI, HDL-cholesterol, hsCRP, TNF-α, MPO mass, PON1 activity, and CEC in vitro were observed after RYGB. ABCG1 (fold-change, 2.24; P = 0.005) and ABCA1 gene expression increased significantly (fold-change, 1.34; P = 0.05). Gluteal fat adipocyte size (P < 0.0001), macrophage density (P = 0.0067), and TNF-α immunostaining (P = 0.0425) were reduced after RYBG and ABCG1 expression correlated inversely with TNF-α immunostaining (r = -0.71; P = 0.03). CONCLUSION RYGB enhances HDL functionality in association with a reduction in adipose tissue and systemic inflammation.
Collapse
Affiliation(s)
- Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Jan H Ho
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| | - Yifen Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Tarza Siahmansur
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Kirk Siddals
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| | - Siba Senapati
- Department of Surgery, Salford Royal NHS Foundation Trust, Salford M6 8HD, United Kingdom
| | - John New
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford M6 8HD, United Kingdom
| | - Maria Jeziorska
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Basil J Ammori
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford M6 8HD, United Kingdom
| | - Akheel A Syed
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford M6 8HD, United Kingdom
| | - Rachelle Donn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Weill-Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Paul N Durrington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WU, United Kingdom
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
8
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
9
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
10
|
Cederström S, Lundman P, Folkersen L, Paulsson-Berne G, Karadimou G, Eriksson P, Caidahl K, Gabrielsen A, Jernberg T, Persson J, Tornvall P. New candidate genes for ST-elevation myocardial infarction. J Intern Med 2020; 287:66-77. [PMID: 31589004 DOI: 10.1111/joim.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite extensive research in atherosclerosis, the mechanisms of coronary atherothrombosis in ST-elevation myocardial infarction (STEMI) patients are undetermined. OBJECTIVES Our aim was to find candidate genes involved in STEMI by analysing leucocyte gene expression in STEMI patients, without the influence of secondary inflammation from innate immunity, which was assumed to be a consequence rather than the cause of coronary atherothrombosis. METHODS Fifty-one patients were included at coronary angiography because of STEMI. Arterial blood was sampled in the acute phase (P1), at 24-48 h (P2) and at 3 months (P3). Leucocyte RNA was isolated and gene expression analysis was performed by Affymetrix Human Transcriptome Array 2.0. By omission of up- or downregulated genes at P2, secondary changes from innate immunity were excluded. Genes differentially expressed in P1 when compared to the convalescent sample in P3 were determined as genes involved in STEMI. RESULTS Three genes were upregulated at P1 compared to P3; ABCG1 (P = 5.81 × 10-5 ), RAB20 (P = 3.69 × 10-5 ) and TMEM2 (P = 7.75 × 10-6 ) whilst four were downregulated; ACVR1 (P = 9.01 × 10-5 ), NFATC2IP (P = 8.86 × 10-5 ), SUN1 (P = 3.87 × 10-5 ) and TTC9C (P = 7.18 × 10-6 ). These genes were also highly expressed in carotid atherosclerotic plaques. CONCLUSIONS We found seven genes involved in STEMI. The study is unique regarding the blood sampling in the acute phase and omission of secondary expressed genes from innate immunity. However, the results need to be replicated by future studies.
Collapse
Affiliation(s)
- S Cederström
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Lundman
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - L Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, Roskilde, Denmark
| | - G Paulsson-Berne
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - G Karadimou
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - K Caidahl
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Gabrielsen
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - T Jernberg
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - J Persson
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Tornvall
- Division of Cardiovascular medicine, Department of Clinical Science and Education, Södersjukhuset (KI SÖS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
14
|
Ma S, Snyder M, Dinesh-Kumar SP. Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and Promoter Motif Analysis. Sci Rep 2017; 7:5557. [PMID: 28717181 PMCID: PMC5514134 DOI: 10.1038/s41598-017-05705-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Deciphering gene regulatory networks requires identification of gene expression modules. We describe a novel bottom-up approach to identify gene modules regulated by cis-regulatory motifs from a human gene co-expression network. Target genes of a cis-regulatory motif were identified from the network via the motif's enrichment or biased distribution towards transcription start sites in the promoters of co-expressed genes. A gene sub-network containing the target genes was extracted and used to derive gene modules. The analysis revealed known and novel gene modules regulated by the NF-Y motif. The binding of NF-Y proteins to these modules' gene promoters were verified using ENCODE ChIP-Seq data. The analyses also identified 8,048 Sp1 motif target genes, interestingly many of which were not detected by ENCODE ChIP-Seq. These target genes assemble into house-keeping, tissues-specific developmental, and immune response modules. Integration of Sp1 modules with genomic and epigenomic data indicates epigenetic control of Sp1 targets' expression in a cell/tissue specific manner. Finally, known and novel target genes and modules regulated by the YY1, RFX1, IRF1, and 34 other motifs were also identified. The study described here provides a valuable resource to understand transcriptional regulation of various human developmental, disease, or immunity pathways.
Collapse
Affiliation(s)
- Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Šatrauskienė A, Navickas R, Laucevičius A, Huber HJ. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data. BMC Cardiovasc Disord 2017; 17:173. [PMID: 28666417 PMCID: PMC5493858 DOI: 10.1186/s12872-017-0609-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023] Open
Abstract
Background Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. Methods We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. Results We first identified miRs (miR-122, −126, −223, −138 and −370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, −499, −208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. Conclusion We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation of differential pathological functions between cardiac diseases and provides a novel approach for literature screening for miR and gene consensus patterns. The analysis is easy to use and extendable upon further emergent literature as we provide an Excel sheet for this analysis to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0609-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnė Šatrauskienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Rokas Navickas
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Heinrich J Huber
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. .,Institute for Automation Engineering (IFAT), Laboratory for Systems Theory and Automatic Control, Otto-von-Guericke University Magdeburg, 39106, Magdeburg, Germany.
| |
Collapse
|
16
|
Xu L, Wang YR, Li PC, Feng B. Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: increasing uptake, esterification and decreasing efflux of cholesterol. Lipids Health Dis 2016; 15:161. [PMID: 27644038 PMCID: PMC5028926 DOI: 10.1186/s12944-016-0334-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023] Open
Abstract
Background Previous reports have suggested that advanced glycation end products (AGEs) participate in the pathogenesis of diabetic macroangiopathy. Our previous study have found that AGEs can increase the lipid droplets accumulation in aortas of diabetic rats, but the current understanding of the mechanisms remains incomplete by which AGEs affect lipids accumulation in macrophages and accelerate atherosclerosis. In this study, we investigated the role of AGEs on lipids accumulation in macrophages and the possible molecular mechanisms including cholesterol influx, esterification and efflux of macrophages. Methods THP-1 cells were incubated with PMA to differentiate to be macrophages which were treated with AGEs in the concentration of 300 μg/ml and 600 μg/ml with or without anti-RAGE (receptor for AGEs) antibody and then stimulated by oxidized-LDL (oxLDL) or Dil-oxLDL. Lipids accumulation was examined by oil red staining. The cholesterol uptake, esterification and efflux were detected respectively by fluorescence microscope, enzymatic assay kit and fluorescence microplate. Quantitative RT-PCR and Western blot were used to measure expression of the moleculars involved in cholesterol uptake, synthesis/esterification and efflux. Results AGEs increased lipids accumulation in macrophages in a concentration-dependent manner. 600 μg/ml AGEs obviously upregulated oxLDL uptake, increased levels of cholesterol ester in macrophages, and decreased the HDL-mediated cholesterol efflux by regulating the main molecular expression including CD36, Scavenger receptors (SR) A2, HMG-CoA reductase (HMGCR), ACAT1 and ATP-binding cassette transporter G1 (ABCG1). The changes above were inversed when the cells were pretreated with anti-RAGE antibody. Conclusions The current study suggest that AGEs can increase lipids accumulation in macrophages by regulating cholesterol uptake, esterification and efflux mainly through binding with RAGE, which provide a deep understanding of mechanisms how AGEs accelerating diabetic atherogenesis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Endocriology and Metabolic Disease, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yi-Ru Wang
- Tongji University School of Medicine, Shanghai, 200120, China
| | - Pei-Cheng Li
- Tongji University School of Medicine, Shanghai, 200120, China
| | - Bo Feng
- Department of Endocriology and Metabolic Disease, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,, Ji-mo Road 150, Shanghai, 200120, China.
| |
Collapse
|
17
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
18
|
Tamehiro N, Park MH, Hawxhurst V, Nagpal K, Adams ME, Zannis VI, Golenbock DT, Fitzgerald ML. LXR Agonism Upregulates the Macrophage ABCA1/Syntrophin Protein Complex That Can Bind ApoA-I and Stabilized ABCA1 Protein, but Complex Loss Does Not Inhibit Lipid Efflux. Biochemistry 2015; 54:6931-41. [PMID: 26506427 DOI: 10.1021/acs.biochem.5b00894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophage ABCA1 effluxes lipid and has anti-inflammatory activity. The syntrophins, which are cytoplasmic PDZ protein scaffolding factors, can bind ABCA1 and modulate its activity. However, many of the data assessing the function of the ABCA1-syntrophin interaction are based on overexpression in nonmacrophage cells. To assess endogenous complex function in macrophages, we derived immortalized macrophages from Abca1(+/+) and Abca1(-/-) mice and show their phenotype recapitulates primary macrophages. Abca1(+/+) lines express the CD11B and F4/80 macrophage markers and markedly upregulate cholesterol efflux in response to LXR nuclear hormone agonists. In contrast, immortalized Abca1(-/-) macrophages show no efflux to apoA-I. In response to LPS, Abca1(-/-) macrophages display pro-inflammatory changes, including an increased level of expression of cell surface CD14, and 11-26-fold higher levels of IL-6 and IL-12 mRNA. Given recapitulation of phenotype, we show with these lines that the ABCA1-syntrophin protein complex is upregulated by LXR agonists and can bind apoA-I. Moreover, in immortalized macrophages, combined α1/β2-syntrophin loss modulated ABCA1 cell surface levels and induced pro-inflammatory gene expression. However, loss of all three syntrophin isoforms known to bind ABCA1 did not impair lipid efflux in immortalized or primary macrophages. Thus, the ABCA1-syntrophin protein complex is not essential for ABCA1 macrophage lipid efflux but does directly interact with apoA-I and can modulate the pool of cell surface ABCA1 stabilized by apoA-I.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Lipid Metabolism Unit, Massachusetts General Hospital (MGH), Center for Computational & Integrative Biology (CCIB), Richard B. Simches Research Center , 185 Cambridge Street, 7th Floor #7150, Boston, Massachusetts 02114, United States
| | - Min Hi Park
- Lipid Metabolism Unit, Massachusetts General Hospital (MGH), Center for Computational & Integrative Biology (CCIB), Richard B. Simches Research Center , 185 Cambridge Street, 7th Floor #7150, Boston, Massachusetts 02114, United States
| | - Victoria Hawxhurst
- Lipid Metabolism Unit, Massachusetts General Hospital (MGH), Center for Computational & Integrative Biology (CCIB), Richard B. Simches Research Center , 185 Cambridge Street, 7th Floor #7150, Boston, Massachusetts 02114, United States
| | - Kamalpreet Nagpal
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Marv E Adams
- University of Washington , 1705 Northeast Pacific Street, H-418 HSB Campus Box 357290, Seattle, Washington 98195, United States
| | - Vassilis I Zannis
- Whitaker Cardiovascular Institute, Boston University School of Medicine , 700 Albany Street, W509, Boston, Massachusetts 02118, United States
| | - Douglas T Golenbock
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Michael L Fitzgerald
- Lipid Metabolism Unit, Massachusetts General Hospital (MGH), Center for Computational & Integrative Biology (CCIB), Richard B. Simches Research Center , 185 Cambridge Street, 7th Floor #7150, Boston, Massachusetts 02114, United States
| |
Collapse
|
19
|
Association of ATP-Binding Cassette Transporter G1 Polymorphisms with Risk of Ischemic Stroke in the Chinese Han Population. J Stroke Cerebrovasc Dis 2015; 24:1397-404. [PMID: 25890853 DOI: 10.1016/j.jstrokecerebrovasdis.2015.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1), a member of the superfamily of ATP-binding cassette transporters, is involved in the transport of cholesterol and phospholipids in macrophages. As such, ABCG1 plays a crucial role in the development of atherosclerosis in humans. In this study, we investigate the association between ABCG1 polymorphisms and the risk of developing ischemic stroke in a Chinese Han population. METHODS This case-control study included 389 ischemic stroke patients and 380 healthy subjects. ABCG1 rs1378577 and rs57137919 polymorphisms were analyzed by a polymerase chain reaction-ligation detection reaction. RESULTS We found that the genotypic distribution and allelic frequency of these polymorphisms were similar in patients and controls. In a subgroup with hypertriglyceridemia (144 patients and 115 controls), the frequency of rs1378577 GG genotype and G allele as well as rs57137919 AA genotype was lower in the patient group compared with that in the control group (P = .018, P = .035, and P = .023, respectively). Logistic regression analysis revealed a reduced risk of ischemic stroke in a recessive model for both rs1378577 and rs57137919. Subtype analyses demonstrated that rs1378577 TG and GG genotypes and the G allele were associated with reduced risk of atherothrombotic stroke (P = .030, P = .006, and P = .004, respectively), even after adjusting for confounding factors in a dominant model. CONCLUSIONS Data from the present study demonstrate that ABCG1 polymorphisms are associated with reduced risk of developing ischemic stroke in hypertriglyceridemic population and atherothrombotic stroke in this cohort of Chinese Han population.
Collapse
|
20
|
Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J, Klopp N, Illig T, Hedman ÅK, Roden M, Hernandez DG, Singleton AB, Thasler WE, Grallert H, Gieger C, Herder C, Teupser D, Meisinger C, Spector TD, Kronenberg F, Prokisch H, Melzer D, Peters A, Deloukas P, Ferrucci L, Waldenberger M. DNA methylation of lipid-related genes affects blood lipid levels. ACTA ACUST UNITED AC 2015; 8:334-42. [PMID: 25583993 DOI: 10.1161/circgenetics.114.000804] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 12/16/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. METHODS AND RESULTS Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=-0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06-1.25). CONCLUSIONS Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases.
Collapse
|
21
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
22
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu F, Wang W, Xu Y, Wang Y, Chen LF, Fang Q, Yan XW. ABCG1 rs57137919G>a polymorphism is functionally associated with varying gene expression and apoptosis of macrophages. PLoS One 2014; 9:e97044. [PMID: 24972087 PMCID: PMC4074052 DOI: 10.1371/journal.pone.0097044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 01/16/2023] Open
Abstract
ATP-binding cassette transporter G1 (ABCG1) is a transmembrane cholesterol transporter involved in macrophage sterol homeostasis, reverse cholesterol transport (RCT), and atherosclerosis. The role of ABCG1 in atherosclerosis remains controversial, especially in animal models. Our previous study showed that single nucleotide polymorphism rs57137919 (-367G>A) in the ABCG1 promoter region was associated with reduced risk for atherosclerotic coronary artery disease (CAD). This study was designed to provide functional evidence for the role of rs57137919G>A in atherosclerosis in humans. We combined in vitro and ex vivo studies using cell lines and human monocyte-derived macrophages to investigate the functional consequences of the promoter polymorphism by observing the effects of the rs57137919A allele on promoter activity, transcription factor binding, gene expression, cholesterol efflux, and apoptosis levels. The results showed that the rs57137919A allele was significantly associated with decreased ABCG1 gene expression possibly due to the impaired ability of protein-DNA binding. ABCG1-mediated cholesterol efflux decreased by 23% with rs57137919 A/A versus the G/G genotype. Cholesterol-loaded macrophage apoptosis was induced 2-fold with the A/A genotype compared with the G/G genotype. Proapoptotic genes Bok and Bid mRNA levels were significantly increased in macrophages from the A/A genotype compared with those from the G/G genotype. These findings demonstrated that the ABCG1 promoter rs57137919G>A variant had an allele-specific effect on ABCG1 expression and was associated with an increased apoptosis in cholesterol-loaded macrophages, providing functional evidence to explain the reduced risk for atherosclerosis in subjects with the ABCG1 promoter rs57137919A allele as reported in our previous study.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
25
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circ Res 2014; 114:157-70. [DOI: 10.1161/circresaha.114.300738] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marit Westerterp
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrea E. Bochem
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Laurent Yvan-Charvet
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrew J. Murphy
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Alan R. Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| |
Collapse
|
27
|
Wang F, Li G, Gu HM, Zhang DW. Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 2013; 52:9497-509. [PMID: 24320932 PMCID: PMC3880014 DOI: 10.1021/bi401285j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
ATP-binding cassette transporter
G1 (ABCG1) mediates cholesterol
and oxysterol efflux onto lipidated lipoproteins and plays an important
role in macrophage reverse cholesterol transport. Here, we identified
a highly conserved sequence present in the five ABCG transporter family
members. The conserved sequence is located between the nucleotide
binding domain and the transmembrane domain and contains five amino
acid residues from Asn at position 316 to Phe at position 320 in ABCG1
(NPADF). We found that cells expressing mutant ABCG1, in which Asn316,
Pro317, Asp319, and Phe320 in the conserved sequence were replaced
with Ala simultaneously, showed impaired cholesterol efflux activity
compared with wild type ABCG1-expressing cells. A more detailed mutagenesis
study revealed that mutation of Asn316 or Phe 320 to Ala significantly
reduced cellular cholesterol and 7-ketocholesterol efflux conferred
by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no
detectable effect. To confirm the important role of Asn316 and Phe320,
we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile
(F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype
as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol
was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I
compared with wild type ABCG1. Further, mutations N316Q and F320I
impaired ABCG1 trafficking while having no marked effect on the stability
and oligomerization of ABCG1. The mutant N316Q and F320I could not
be transported to the cell surface efficiently. Instead, the mutant
proteins were mainly localized intracellularly. Thus, these findings
indicate that the two highly conserved amino acid residues, Asn and
Phe, play an important role in ABCG1-dependent export of cellular
cholesterol, mainly through the regulation of ABCG1 trafficking.
Collapse
Affiliation(s)
- Faqi Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, ‡Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
28
|
Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta 2013; 424:245-52. [DOI: 10.1016/j.cca.2013.06.006] [Citation(s) in RCA: 553] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 01/11/2023]
|
29
|
Daniil G, Zannis VI, Chroni A. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. PLoS One 2013; 8:e67993. [PMID: 23826352 PMCID: PMC3694867 DOI: 10.1371/journal.pone.0067993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 12/29/2022] Open
Abstract
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.
Collapse
Affiliation(s)
- Georgios Daniil
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
| | - Vassilis I. Zannis
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
- * E-mail:
| |
Collapse
|
30
|
The transcription levels of ABCA1, ABCG1 and SR-BI are negatively associated with plasma CRP in Chinese populations with various risk factors for atherosclerosis. Inflammation 2013; 35:1641-8. [PMID: 22614118 DOI: 10.1007/s10753-012-9479-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ATP binding cassette transporters (ABCA1, ABCG1) and scavenger receptor class B type I (SR-BI) are the three most important cellular cholesterol transporters that may prevent atherogenesis. The aim of this study was to investigate whether they were altered in Chinese populations with various risk factors for atherosclerosis and their potential associations with C-reactive protein (CRP). Healthy female controls (n = 30) and populations with various risk factors for atherosclerosis, such as type 2 diabetes (n = 17), hypertension (n = 12), overweight/obesity (n = 10), incipient nephropathy (n = 10), postmenopausal women (n = 9), male (n = 19), ageing male (n = 22), or smoking (n = 16), were recruited. ABCA1, ABCG1 and SR-BI mRNA levels in peripheral monocytes was determined. ABCG1 was decreased in all the risk populations except ageing. ABCA1 was decreased in all the risk populations except diabetes and male. SR-BI was decreased in those with overweight/obesity and incipient nephropathy. Circulating CRP was increased almost in all the risk populations except in males. The levels of ABCA1, ABCG1 and SR-BI were reduced in those with subclinically high CRP, and negatively associated with CRP level. These data indicates that ABCA1, ABCG1, and SR-BI are reduced in various populations under subclinically inflammatory conditions, which may potentially lead to impairing reverse cholesterol transport and developing atherosclerosis.
Collapse
|
31
|
Burns V, Sharpe LJ, Gelissen IC, Brown AJ. Species variation in ABCG1 isoform expression: Implications for the use of animal models in elucidating ABCG1 function. Atherosclerosis 2013; 226:408-11. [DOI: 10.1016/j.atherosclerosis.2012.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023]
|
32
|
Schou J, Tybjærg-Hansen A, Møller HJ, Nordestgaard BG, Frikke-Schmidt R. ABC transporter genes and risk of type 2 diabetes: a study of 40,000 individuals from the general population. Diabetes Care 2012; 35:2600-6. [PMID: 23139370 PMCID: PMC3507608 DOI: 10.2337/dc12-0082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2 diabetes in the general population is unknown. RESEARCH DESIGN AND METHODS We tested whether genetic variation in the promoter and coding regions of ABCA1 and ABCG1 predicted risk of type 2 diabetes in the general population. Twenty-seven variants, identified by previous resequencing of both genes, were genotyped in the Copenhagen City Heart Study (CCHS) (n = 10,185). Two loss-of-function mutations (ABCA1 N1800H and ABCG1 g.-376C>T) (n = 322) and a common variant (ABCG1 g.-530A>G) were further genotyped in the Copenhagen General Population Study (CGPS) (n = 30,415). RESULTS Only one of the variants examined, ABCG1 g.-530A>G, predicted a decreased risk of type 2 diabetes in the CCHS (P for trend = 0.05). Furthermore, when validated in the CGPS or in the CCHS and CGPS combined (n = 40,600), neither the two loss-of-function mutations (ABCA1 N1800H, ABCG1 g.-376C>T) nor ABCG1 g.-530A>G were associated with type 2 diabetes (P values >0.57 and >0.30, respectively). CONCLUSIONS Genetic variations in ABCA1 and ABCG1 were not associated with increased risk of type 2 diabetes in the general population. These data were obtained in general population samples harboring the largest number of heterozygotes for loss-of-function mutations in ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Jesper Schou
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia is characterized by a major elevation in circulating LDL-cholesterol levels, cholesterol deposition within the arterial wall and an increased risk of premature coronary artery disease. The reverse cholesterol transport (RCT) is now considered as a key process that protects against development of atherosclerosis. The major antiatherogenic action of HDL particles is intimately linked to their determinant role in RCT pathway. However, the steady-sate of HDL-cholesterol levels does not represent the optimal marker to evaluate the efficiency of the RCT in all circumstances. RECENT FINDINGS By using ex-vivo systems for the evaluation of the efficacy of RCT a strong inverse relationship between HDL efflux capacity from macrophages and atherosclerosis progression has been demonstrated. Low HDL-C phenotype observed in familial hypercholesterolemia patients is associated with defective capacities of HDL particles to mediate major steps of the centripetal movement of cholesterol from peripheral cells to feces. However, current available treatment used to reduce LDL-C to therapeutic goals does not correct altered functions of HDL particles in humans. SUMMARY In the context of familial hypercholesterolemia, a growing body of evidence suggests that impaired efficacy of the RCT pathway contributes significantly to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Maryse Guerin
- INSERM UMRS939, Hôpital de la Pitié, Université Pierre et Marie Curie-Paris 6, Paris, France.
| |
Collapse
|