1
|
Vaseghi M, van Weperen V, Hoang J, Jani N, Atmani K, Chan C, Cao K, Avathi S, Lokhandwala Z, Emamimeybodi M. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. RESEARCH SQUARE 2025:rs.3.rs-6247307. [PMID: 40235500 PMCID: PMC11998784 DOI: 10.21203/rs.3.rs-6247307/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
After myocardial infarction (MI), pathological autonomic remodeling, including vagal dysfunction and sympathoexcitation, occurs and predisposes to ventricular arrhythmias (VT/VF). The underlying factors that drive this remodeling, including the observed neuroinflammation and glial activation, remain unknown. We hypothesized that sympathetic nociceptive afferents underlie this remodeling post-MI. Epidural resiniferatoxin (RTX, to ablate sympathetic cardiac afferent neurons) vs. saline was administered in pigs prior to MI and autonomic and electrophysiological effects assessed four to six weeks post-infarction. Acute effects of afferent ablation after chronic MI were also assessed in a separate group of animals. Baroreflex sensitivity and vagal tone, as measured by parasympathetic neuronal activity and cardiac nociceptive responses, were improved in infarcted animals which received epidural RTX prior to MI. These animals also demonstrated reduced spinal cord inflammation and glial activation, downregulation of circulating stress and inflammatory pathways, and stabilization of electrophysiological parameters, with reduced VT/VF-inducibility. Epidural RTX after chronic MI also acutely restored vagal function and decreased VT/VF. These data suggest that cardiac spinal nociceptive afferents directly contribute to VT/VF susceptibility and MI-induced autonomic remodeling, including oxidative stress, inflammation, glial activation, and reduced vagal function, providing novel insights into the causal role of these afferents in driving sympathovagal imbalance after MI.
Collapse
|
2
|
van Weperen V, Hoang JD, Jani N, Atmani K, Chan CA, Cao K, Avasthi S, Lokhandwala ZA, Emamimeybodi M, Vaseghi M. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645120. [PMID: 40196476 PMCID: PMC11974784 DOI: 10.1101/2025.03.28.645120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
After myocardial infarction (MI), pathological autonomic remodeling, including vagal dysfunction and sympathoexcitation, occurs and predisposes to ventricular arrhythmias (VT/VF). The underlying factors that drive this remodeling, including the observed neuroinflammation and glial activation, remain unknown. We hypothesized that sympathetic nociceptive afferents underlie this remodeling post-MI. Epidural resiniferatoxin (RTX, to ablate sympathetic cardiac afferent neurons) vs. saline was administered in pigs prior to MI and autonomic and electrophysiological effects assessed four to six weeks post-infarction. Acute effects of afferent ablation after chronic MI were also assessed in a separate group of animals. Baroreflex sensitivity and vagal tone, as measured by parasympathetic neuronal activity and cardiac nociceptive responses, were improved in infarcted animals which received epidural RTX prior to MI. These animals also demonstrated reduced spinal cord inflammation and glial activation, downregulation of circulating stress and inflammatory pathways, and stabilization of electrophysiological parameters, with reduced VT/VF-inducibility. Epidural RTX after chronic MI also acutely restored vagal function and decreased VT/VF. These data suggest that cardiac spinal nociceptive afferents directly contribute to VT/VF susceptibility and MI-induced autonomic remodeling, including oxidative stress, inflammation, glial activation, and reduced vagal function, providing novel insights into the causal role of these afferents in driving sympathovagal imbalance after MI.
Collapse
|
3
|
Xiong LY, Zhao W, Hu FQ, Zhou XM, Zheng YJ. Ubiquitination in diabetes and its complications: A perspective from bibliometrics. World J Diabetes 2025; 16:100099. [PMID: 39817224 PMCID: PMC11718460 DOI: 10.4239/wjd.v16.i1.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches. AIM To uncover the research trends and advances in diabetes ubiquitination and its complications, we conducted a bibliometric analysis. METHODS Studies on ubiquitination in diabetes mellitus and its complications were retrieved from the Web of Science Core Collection. Visual mapping analysis was conducted using the CiteSpace software. RESULTS We gathered 791 articles published over the past 23 years, focusing on ubiquitination in diabetes and its associated complications. These articles originated from 54 countries and 386 institutions, with China as the leading contributor. Shanghai Jiao Tong University has the highest number of publications in this field. The most prominent authors contributing to this research area include Wei-Hua Zhang, with Zhang Y being the most frequently cited author. Additionally, The Journal of Biological Chemistry is noted as the most cited in this field. The predominant keywords included expression, activation, oxidative stress, phosphorylation, ubiquitination, degradation, and insulin resistance. CONCLUSION The role of ubiquitination in diabetes and its complications, such as diabetic nephropathy and cardiomyopathy, is a key research focus. However, these areas require further investigations.
Collapse
Affiliation(s)
- Li-Yuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Wei Zhao
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Fa-Quan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Xue-Mei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Yu-Jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| |
Collapse
|
4
|
Wang P, Fan S, Hu X, Luo L, Ying J, Li J. MG132, Attenuates the Retinal Vascular Injury Through the Upregulation of Nrf2 Expression. J Ocul Pharmacol Ther 2023; 39:661-671. [PMID: 37729070 DOI: 10.1089/jop.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Purpose: This study clarifies the beneficial effects of MG132, a proteasomal inhibitor, on retinal vascular injury mediated by diabetes-induced oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2). Methods: Diabetic rats and control animals were randomly assigned to receive MG132 or vehicle for 24 weeks, and human retinal endothelial cells (HRECs) were incubated with normal or high glucose with or without MG132. 26S proteasome activity in the rat retinas or cultured HRECs was measured using Suc-LLVY-7-amido-4-methylcoumarin. NADPH-quinone oxidoreduc-tase (NQO1), heme oxygenase (HO)-1, kelch-like ECH-associated protein 1 (Keap1) and Nrf2 were examined by Western blotting and real-time reverse transcription polymerase chain reaction. Cell apoptosis is measured through flow cytometry assay, mitochondrial reactive oxygen species (ROS) production, and retinal vascular leakage were assayed using CM-H2DCFDA fluorescent probes and Evans blue, respectively. Results: MG132 significantly inhibited the activation of 26S proteasome induced by diabetes or elevated glucose, and subsequently increased the expression of Nrf2, NQO1, and HO-1, and further reduced ROS accumulation. These changes were associated with a decrease of diabetes-induced retinal vascular leakage and retinal capillary cell apoptosis. Conclusions: MG132 decreases diabetes-induced 26S proteasome activation and exerts protective effects against retinal microvascular dysfunction in diabetic rats in association with the alleviation of retinal oxidative stress mediated by Nrf2.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Stomatology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| | - Shipei Fan
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| | - Xin Hu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| | - Li Luo
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| | - Jia Ying
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| | - Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, P.R. China
| |
Collapse
|
5
|
Suzuki M, Kuromi H, Shindo M, Sakata N, Niimi N, Fukui K, Saitoe M, Sango K. A Drosophila model of diabetic neuropathy reveals a role of proteasome activity in the glia. iScience 2023; 26:106997. [PMID: 37378316 PMCID: PMC10291573 DOI: 10.1016/j.isci.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common chronic, progressive complication of diabetes mellitus. The main symptom is sensory loss; the molecular mechanisms are not fully understood. We found that Drosophila fed a high-sugar diet, which induces diabetes-like phenotypes, exhibit impairment of noxious heat avoidance. The impairment of heat avoidance was associated with shrinkage of the leg neurons expressing the Drosophila transient receptor potential channel Painless. Using a candidate genetic screening approach, we identified proteasome modulator 9 as one of the modulators of impairment of heat avoidance. We further showed that proteasome inhibition in the glia reversed the impairment of noxious heat avoidance, and heat-shock proteins and endolysosomal trafficking in the glia mediated the effect of proteasome inhibition. Our results establish Drosophila as a useful system for exploring molecular mechanisms of diet-induced peripheral neuropathy and propose that the glial proteasome is one of the candidate therapeutic targets for DPN.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Hiroshi Kuromi
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Nozomi Sakata
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Koji Fukui
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Minoru Saitoe
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
6
|
Dauth A, Bręborowicz A, Ruan Y, Tang Q, Zadeh JK, Böhm EW, Pfeiffer N, Khedkar PH, Patzak A, Vujacic-Mirski K, Daiber A, Gericke A. Sulodexide Prevents Hyperglycemia-Induced Endothelial Dysfunction and Oxidative Stress in Porcine Retinal Arterioles. Antioxidants (Basel) 2023; 12:antiox12020388. [PMID: 36829947 PMCID: PMC9952154 DOI: 10.3390/antiox12020388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Diabetes mellitus may cause severe damage to retinal blood vessels. The central aim of this study was to test the hypothesis that sulodexide, a mixture of glycosaminoglycans, has a protective effect against hyperglycemia-induced endothelial dysfunction in the retina. Functional studies were performed in isolated porcine retinal arterioles. Vessels were cannulated and incubated with highly concentrated glucose solution (HG, 25 mM D-glucose) +/- sulodexide (50/5/0.5 μg/mL) or normally concentrated glucose solution (NG, 5.5 mM D-glucose) +/- sulodexide for two hours. Endothelium-dependent and endothelium-independent vasodilatation were measured by videomicroscopy. Reactive oxygen species (ROS) were quantified by dihydroethidium (DHE) fluorescence. Using high-pressure liquid chromatography (HPLC), the intrinsic antioxidant properties of sulodexide were investigated. Quantitative PCR was used to determine mRNA expression of regulatory, inflammatory, and redox genes in retinal arterioles, some of which were subsequently quantified at the protein level by immunofluorescence microscopy. Incubation of retinal arterioles with HG caused significant impairment of endothelium-dependent vasodilation, whereas endothelium-independent responses were not affected. In the HG group, ROS formation was markedly increased in the vascular wall. Strikingly, sulodexide had a protective effect against hyperglycemia-induced ROS formation in the vascular wall and had a concentration-dependent protective effect against endothelial dysfunction. Although sulodexide itself had only negligible antioxidant properties, it prevented hyperglycemia-induced overexpression of the pro-oxidant redox enzymes, NOX4 and NOX5. The data of the present study provide evidence that sulodexide has a protective effect against hyperglycemia-induced oxidative stress and endothelial dysfunction in porcine retinal arterioles, possibly by modulation of redox enzyme expression.
Collapse
Affiliation(s)
- Alice Dauth
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence:
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, 60-512 Poznań, Poland
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenia K. Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co. KG, 65189 Wiesbaden, Germany
| | - Elsa W. Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Pratik H. Khedkar
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ksenija Vujacic-Mirski
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 2022; 10:901320. [PMID: 36060813 PMCID: PMC9428126 DOI: 10.3389/fcell.2022.901320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
Collapse
Affiliation(s)
| | - Cristina Quesada-Candela
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Makaelah Murray
- Department of Biology, Howard University, Washington, DC, United States
| | - Caroline Ugoaru
- Department of Biology, Howard University, Washington, DC, United States
| | - Judith L. Yanowitz
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Developmental Biology, Microbiology, and Molecular Genetics, The Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| | - Anna K. Allen
- Department of Biology, Howard University, Washington, DC, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| |
Collapse
|
8
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
9
|
Mao X, Wan Y, Huang S, Wang Y, Wu Y, Zhou S, Feng X, Gao C, Wu C. High-sugar high-fat treatment induces autophagy of retinal microvascular endothelial cells. Biochem Biophys Res Commun 2022; 600:22-28. [PMID: 35182971 DOI: 10.1016/j.bbrc.2022.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the role of high-sugar high-fat treatment in inducing autophagy of rat retinal microvascular endothelial cells. METHODS The optimal concentrations and time points of glucose and oxidized low-density lipoprotein (ox-LDL) in inducing rat retinal microvascular endothelial cells were determined by examining the proliferate rate by CCK-8 assay. They were divided into control group (blank control), model group (treatment of 50 mM glucose and 10 μg/ml ox-LDL for 24 h), chloroquine group (treatment of 20 μM chloroquine, 50 mM glucose and 10 μg/ml ox-LDL for 24 h), resveratrol group (treatment of 50 μM resveratrol, 50 mM glucose and 10 μg/ml ox-LDL for 24 h) and MITO-Tempol group (treatment of 20 μM MITO-Tempol, 50 mM glucose and 10 μg/ml ox-LDL for 24 h). Reactive oxygen species (ROS) level in rat retinal microvascular endothelial cells induced with high sugar high-fat treatment was measured by flow cytometry. In addition, protein levels of cathepsin B and cathepsin D in rat retinal microvascular endothelial cells induced with high sugar high-fat treatment were examined by immunofluorescence, and protein levels of LC3 A/B and the autophagy substrate P62 were detected by Western blot. RESULTS Primary retinal microvascular endothelial cells were isolated from neonatal Sprague-Dawley (SD) rats. ROS level was significantly higher in model group than that of control group (P < 0.05). Compared with that of model group, ROS level was significantly reduced in chloroquine group and MITO-Tempol group, which was significantly elevated in resveratrol group (P < 0.05). Positive expressions of cathepsin B and cathepsin D were significantly reduced in model group than those of control group (P < 0.05). They were significantly elevated in chloroquine group and MITO-Tempol group, and reduced in resveratrol group than those of model group (P < 0.05). LC3 A/B and P62 were significantly upregulated in model group than those of control group (P < 0.05). Compared with those of model group, LC3 A/B and P62 were significantly downregulated in chloroquine group and MITO-Tempol group, and upregulated in resveratrol group (P < 0.05). CONCLUSION High-sugar high-fat treatment induces autophagy of rat retinal microvascular endothelial cells, which can be intervened to a certain extent by chloroquine and MITO-Tempol.
Collapse
Affiliation(s)
- Xinbang Mao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yuwen Wan
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Sidan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yunfei Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Shenghong Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xia Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Caixia Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Chen Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
10
|
Zhao H, Wang Y, Liu Y, Yin K, Wang D, Li B, Yu H, Xing M. ROS-Induced Hepatotoxicity under Cypermethrin: Involvement of the Crosstalk between Nrf2/Keap1 and NF-κB/iκB-α Pathways Regulated by Proteasome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6171-6183. [PMID: 33843202 DOI: 10.1021/acs.est.1c00515] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CMN) is a man-made insecticide, and its abuse has led to potential adverse effects, particularly in sensitive populations such as aquatic organisms. The present study was focused on the toxic phenotype and detoxification mechanism in grass carp (Ctenopharyngodon idella) after treatment with waterborne CMN (0.651 μg/L) for 6 weeks in vivo or 6.392 μM for 24 h in vitro. In vivo, we describe the toxic phenotype of the liver of grass carp in terms of pathological changes, serum transaminase levels, oxidative stress indexes, and apoptosis rates. RNA-Seq analysis (2 × 3 cDNA libraries) suggested a compromise of proteasome and oxidative phosphorylation signaling pathways under CMN exposure. Thus, these two pathways were chosen for the in vitro study, which suggested that the CMN intoxication-induced proteasome pathway caused hepatotoxicity in the liver cell line of grass carp (L8824 cells). Moreover, pretreatment with MG132, a proteasome inhibitor, displayed protection against the toxic effects of CMN by enhancing antioxidative and anti-inflammatory capability by directly inhibiting the proteasomal degradation of nuclear factor erythroid-2 related factor (Nrf2) and IκB-α, thus turning on the transcription of downstream genes of Nrf2 and NF-κB, respectively. Taken together, these results suggest proteasome activity as a reason for CMN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| |
Collapse
|
11
|
Gupta A, Behl T, Aleya L, Rahman MH, Yadav HN, Pal G, Kaur I, Arora S. Role of UPP pathway in amelioration of diabetes-associated complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19601-19614. [PMID: 33660172 DOI: 10.1007/s11356-021-12781-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as "life style" disease. Due to the alarming number of patients, there is great need to therapies targeting functions which can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. Detailed analysis was done through various research and review papers which was searched using MEDLINE, BIOSIS, and EMBASE using various keywords. This search retrieved the most appropriate content on these molecules targeting UPP pathway. From this extensive review involving UPP pathway, it was concluded that the role of ubiquitin's is not only limited to neurodegenerative disorders but also plays a critical role in progression of diabetes including obesity, insulin resistance, and various neurogenerative disorders but it also targets proteasomal degradation including mediation of cellular signaling pathways. Thus, drugs targeting UPP not only may show effect against diabetes but also are therapeutically beneficial in the treatment of diabetes-associated complications which may be obtained. Thus, based on the available information and data on UPP functions, it can be concluded that regulation of UPP pathway via downstream regulators mainly E1, E2, and E3 may bring promising results. Drugs targeting these transcriptional factors may emerge as a novel therapy in the treatment of diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | | | - Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
Mao D, Cao H, Shi M, Wang CC, Kwong J, Li JJX, Hou Y, Ming X, Lee HM, Tian XY, Wong CK, Chow E, Kong APS, Lui VWY, Chan PKS, Chan JCN. Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study. EBioMedicine 2021; 65:103242. [PMID: 33684886 PMCID: PMC7938253 DOI: 10.1016/j.ebiom.2021.103242] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) increases the risk of many types of cancer. Dysregulation of proteasome-related protein degradation leads to tumorigenesis, while Exendin-4, a glucagon-like peptide 1 receptor (GLP-1R) agonist, possesses anti-cancer effects. METHODS We explored the co-expression of proteasome alpha 2 subunit (PSMA2) and GLP-1R in the Cancer Genome Atlas (TCGA) database and human cervical cancer specimens, supplemented by in vivo and in vitro studies using multiple cervical cancer cell lines. FINDINGS PSMA2 expression was increased in 12 cancer types in TCGA database and cervical cancer specimens from patients with T2D (T2D vs non-T2D: 3.22 (95% confidence interval CI: 1.38, 5.05) vs 1.00 (0.66, 1.34) fold change, P = 0.01). psma2-shRNA decreased cell proliferation in vitro, and tumour volume and Ki67 expression in vivo. Exendin-4 decreased psma2 expression, tumour volume and Ki67 expression in vivo. There was no change in GLP-1R expression in 12 cancer types in TCGA database. However, GLP-1R expression (T2D vs non-T2D: 5.49 (3.0, 8.1) vs 1.00 (0.5, 1.5) fold change, P < 0.001) was increased and positively correlated with PSMA2 expression in T2D-related (r = 0.68) but not in non-T2D-related cervical cancer specimens. This correlation was corroborated by in vitro experiments where silencing glp-1r decreased psma2 expression. Exendin-4 attenuated phospho-p65 and -IκB expression in the NF-κB pathway. INTERPRETATION PSMA2 and GLP-1R expression in T2D-related cervical cancer specimens was increased and positively correlated, suggesting hyperglycaemia might promote cancer growth by increasing PSMA2 expression which could be attenuated by Exendin-4. FUNDING This project was supported by Postdoctoral Fellowship Scheme, Direct Grant, Diabetes Research and Education Fund from the Chinese University of Hong Kong (CUHK).
Collapse
Affiliation(s)
- Dandan Mao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joshua Jing Xi Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yong Hou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xing Ming
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| |
Collapse
|
13
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
14
|
Wu W, Yuan J, Shen Y, Yu Y, Chen X, Zhang L, Huang K, Zhan J, Dong GP, Fu J. Iron overload is related to elevated blood glucose levels in obese children and aggravates high glucose-induced endothelial cell dysfunction in vitro. BMJ Open Diabetes Res Care 2020; 8:e001426. [PMID: 32675293 PMCID: PMC7368571 DOI: 10.1136/bmjdrc-2020-001426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION This study was performed to investigate the role of iron overload in the early stage of hyperglycemia-induced vascular functional impairment. RESEARCH DESIGN AND METHODS A total of 196 obese children were enrolled, and data regarding ferritin levels, blood glucose levels, intima-media thickness of carotid arteries, liver function and fibrosis index, hemoglobin, blood pressure, blood lipids, and inflammation indicators were collected. Ferritin levels were compared with a control group, which consisted of 148 healthy non-obese children who were age-matched and gender-matched. Endothelial cells were cultured in high glucose medium and supplemented with ferric citrate with or without iron remover (deferoxamine), a reducing agent (N-acetyl-cysteine), or a nuclear factor-κB (NF-κB) inhibitor (BAY 11-7082). Apoptosis, oxidative stress, nitric oxide levels, and endothelin content were evaluated. DNA microarray analysis was performed to analyze the expression of genes in the NF-κB signaling pathway. RESULTS Obese children have significantly higher ferritin levels compared with the control group. Ferritin level was positively correlated with hemoglobin and was related to metabolic disorders, including impaired glucose tolerance, higher blood pressure, dyslipidemia, and impaired hepatic function. Endothelial cells treated with ferric citrate showed a significantly higher rate of apoptosis, higher levels of oxidative stress, and impaired vasomotor function under high glucose conditions. The above effects were rescued by treatment with an iron remover, reducing agent, or NF-κB inhibitor. Further, detection of phosphorylated-p65 distribution in cells confirmed activation of the NF-κB pathway. DNA microarrays and subsequent gene oncology enrichment analyses revealed the main processes activated in cells. CONCLUSION Increased ferritin levels are related to impaired glucose tolerance and other metabolic disorders in obese children. At the cellular level, iron overload aggravated the endothelial cell dysfunction caused by high glucose.
Collapse
Affiliation(s)
- Wei Wu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinna Yuan
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Shen
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxian Yu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuefeng Chen
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Huang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianying Zhan
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guan-Ping Dong
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
16
|
Tarannum A, Arif Z, Alam K, Ahmad S, Uddin M. Nitroxidized-Albumin Advanced Glycation End Product and Rheumatoid Arthritis. Arch Rheumatol 2019; 34:461-475. [PMID: 32010898 PMCID: PMC6974383 DOI: 10.5606/archrheumatol.2019.7285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose major clinical consequence is inflammation of small joints and contiguous structures. Oxidative and nitrosative stress along with increased formation of advanced glycation end products (AGEs) play an important role in the disease process. Generation of reactive species during glycation of proteins further adds to the oxidative and nitrosative stress. Albumin, being the most abundant plasma protein, is frequently targeted by different oxidizing and nitrating agents, including peroxynitrite (OONO-) anion. Albumin is also targeted and modified by dicarbonyl metabolites (glyoxal and methylglyoxal) which are formed in oxidative and non-oxidative processes during the synthesis of AGEs. The endogenously formed OONO- and dicarbonyls may modify plasma albumin including those albumin that have travelled or migrated to synovial cells and caused nitration, oxidation, and glycation. These modifications may produce crosslinks, aggregate in albumin and confer immunogenicity. Simultaneous modification of albumin by OONO- and dicarbonyls may generate nitroxidized-AGE-albumin which may persist in circulation for a longer duration compared to native albumin. Nitroxidized-AGE-albumin level (or serum autoantibodies against nitroxidized- AGE-albumin) along with other pre-clinical features may help predict the likely onset of RA.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Aligarh Muslim University, Jawaharlal Nehru Medical College, Aligarh, India
| | - Zarina Arif
- Department of Biochemistry, Aligarh Muslim University, Jawaharlal Nehru Medical College, Aligarh, India
| | - Khursheed Alam
- Department of Biochemistry, Aligarh Muslim University, Jawaharlal Nehru Medical College, Aligarh, India
| | - Shafeeque Ahmad
- Department of Biochemistry, Al-Falah School of Medical Science & Research Centre, AFU, Faridabad, Haryana, India
| | - Moin Uddin
- Department of Biochemistry, Aligarh Muslim University, Jawaharlal Nehru Medical College, Aligarh, India
| |
Collapse
|
17
|
Han X, Dong XX, Shi MY, Feng L, Wang XL, Zhang JS, Yan QC. SUMOylation and deacetylation affect NF-κB p65 activity induced by high glucose in human lens epithelial cells. Int J Ophthalmol 2019; 12:1371-1379. [PMID: 31544029 DOI: 10.18240/ijo.2019.09.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
AIM To explore the effects of IκBα SUMOylation and NF-κB p65 deacetylation on NF-κB p65 activity induced by high glucose in cultured human lens epithelial cells (HLECs). METHODS HLECs (SRA01/04) were cultured with 5.5, 25, and 50 mmol/L glucose media for 24h, and with 50 mmol/L glucose media for 0, 12, and 24h respectively. SUMO1 and SIRT1 expressions were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot (WB). IκBα and NF-κB p65 expressions were detected by WB. With NAC, DTT, MG132 or Resveratrol (RSV) treatment, SUMO1 and SIRT1 expressions were detected by WB. Protein expression localizations were examined by immunofluorescence and co-immunofluorescence. The effects of SUMO1 or SIRT1 overexpression, as well as MG132 and RSV, on the nuclear expression and activity of IκBα and NF-κB p65 were analyzed by immunoblot and dual luciferase reporter gene assay. RESULTS SUMO1 and SIRT1 expressions were influenced by high glucose in mRNA and protein levels, which could be blocked by NAC or DTT. SUMO1 was down-regulated by using MG132, and SIRT1 was up-regulated under RSV treatment. IκBα nuclear expression was attenuated and NF-κB p65 was opposite under high glucose, while IκBα and NF-κB p65 location was transferred to the nucleus. SUMO1 or SIRT1 overexpression and MG132 or RSV treatment affected the nuclear expression and activity of IκBα and NF-κB p65 under high glucose condition. CONCLUSION IκBα SUMOylation and NF-κB p65 deacetylation affect NF-κB p65 activity in cultured HLECs under high glucose, and presumably play a significant role in controlling diabetic cataract.
Collapse
Affiliation(s)
- Xiao Han
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Xiao-Xuan Dong
- Department of Ophthalmology, the Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| | - Ming-Yu Shi
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Li Feng
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Xin-Ling Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Qi-Chang Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province; Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| |
Collapse
|
18
|
Zerfas BL, Trader DJ. Monitoring the Immunoproteasome in Live Cells Using an Activity-Based Peptide-Peptoid Hybrid Probe. J Am Chem Soc 2019; 141:5252-5260. [PMID: 30862160 DOI: 10.1021/jacs.8b12873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Activity-based probes have greatly improved our understanding of the intrinsic roles and expression levels of various proteins within cells. To be useful in live cells, probes must be cell permeable and provide a read-out that can be measured without disrupting the cells or the activity of the target. Unfortunately, probes for the various forms of the proteasome that can be utilized in intact cells are limited; commercially available probes are most effectively used with purified protein or cell lysate. The proteasome, both the 26S and various isoforms of the 20S CP, is an important target with reported roles in cancer, autoimmune disorders, and neurodegenerative diseases. Here, we present the development of a selective probe for the immunoproteasome, a specialized isoform of the 20S proteasome, that becomes expressed in cells that encounter an inflammatory signal. Using a one-bead, one-compound library of small peptides, we discovered a trimer sequence efficiently cleaved by the immunoproteasome with significant selectivity over the standard proteasome. Upon conjugating this sequence to rhodamine 110 and a peptoid, we generated a probe with a considerable improvement in sensitivity compared to that of current aminomethylcoumarin-based proteasome probes. Importantly, our probe was capable of labeling immunoproteasome-expressing cells while maintaining its selectivity over other cellular proteases in live cell cultures. We anticipate this probe to find wide utility for those that wish to study the immunoproteasome's activity in a variety of cell lines and to be used as a reporter to discover small molecules that can perturb the activity of this proteasome isoform.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
19
|
Albai O, Frandes M, Timar R, Roman D, Timar B. Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsychiatr Dis Treat 2019; 15:167-175. [PMID: 30655669 PMCID: PMC6322491 DOI: 10.2147/ndt.s189905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dementia and cognitive dysfunction have many causes. There is strong evidence that diabetes mellitus (DM) increases the risk of cognitive impairment and dementia. Optimal glycemic control, identification of diabetic risk factors, and prophylactic approach are essential in the prevention of cognitive complications. AIMS The main purpose of this study was to establish the cognitive impairment in DM patients, cared for in the Diabetes Center from Timisoara. Also, we investigated the prevalence of dementia in our group as well as the risk factors involved in the progression of mild cognitive impairment (MCI) to dementia. PATIENTS AND METHODS We considered a sample of 207 type 2 DM (T2DM) patients, aged between 33 and 81 years, mean 57.49 (±11.37) years. We established the diagnosis of dementia based on the Mini-Mental State Examination (MMSE) test, as well as on the psychological testing, psychiatric and neurological investigations, and imaging tests (computerized tomography and MRI). RESULTS A percentage of 42.03% of patients presented MCI, mean age 63 (57.00-71.00) years, being older than patients without MCI, mean age 52.00 (45.00-61.00) years, P<0.001. We observed that diabetes duration was a significant risk factor for developing dementia. Also, patients with MCI presented higher values of body fat than patients without MCI. Moreover, we found that glucose levels, low-density lipoprotein cholesterol levels, the presence of stroke events, and the presence of cardiovascular disease were significant risk factors for MCI conversion to dementia. CONCLUSION Patients with T2DM at early to severe stages of MCI are more likely to develop dementia and should be regularly evaluated for their cognitive status. Regular administrations of the MMSE test can be done to detect early stages of MCI development. Also, to reduce the progression of cognitive impairment to dementia, it is worthwhile to give greater importance to glycemic control and overall DM management.
Collapse
Affiliation(s)
- Oana Albai
- Second Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Frandes
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania,
| | - Romulus Timar
- Second Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Deiana Roman
- Municipal Clinical Emergency Hospital, Timisoara, Romania
| | - Bogdan Timar
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania,
| |
Collapse
|
20
|
Mohajeri M, Banach M, Atkin SL, Butler AE, Ruscica M, Watts GF, Sahebkar A. MicroRNAs: Novel Molecular Targets and Response Modulators of Statin Therapy. Trends Pharmacol Sci 2018; 39:967-981. [PMID: 30249403 DOI: 10.1016/j.tips.2018.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death globally. Addressing cardiovascular risk factors, particularly dyslipidemia, represents the most robust clinical strategy towards reducing the CVD burden. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and represent the main therapeutic approach for lowering cholesterol and reducing plaque formation/rupture. The protective effects of statins extend beyond lowering cholesterol. MicroRNAs (miRNAs or miRs), small noncoding regulatory RNAs, likely mediate the positive pleiotropic effects of statins via modulation of lipid metabolism, enhancement of endothelial function, inhibition of inflammation, improvement of plaque stability, and immune regulation. miRNAs are implicated in statin-related interindividual variations in therapeutic response, directly via HMG-CoA reductase, or indirectly through targeting cytochrome P450 3A (CYP3A) functionality and proprotein convertase subtilisin/kexin type9 (PCSK9) biology.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona-Gora, Poland
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Education City, Doha, Qatar
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Wang F, Ma H, Liang WJ, Yang JJ, Wang XQ, Shan MR, Chen Y, Jia M, Yin YL, Sun XY, Zhang JN, Peng QS, Chen YG, Liu LY, Li P, Guo T, Wang SX. Lovastatin upregulates microRNA-29b to reduce oxidative stress in rats with multiple cardiovascular risk factors. Oncotarget 2018; 8:9021-9034. [PMID: 28061433 PMCID: PMC5354712 DOI: 10.18632/oncotarget.14462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
AIMS Proteasome-linked oxidative stress is believed to cause endothelial dysfunction, an early event in cardiovascular diseases (CVD). Statin, as HMG-CoA reductase inhibitor, prevents endothelial dysfunction in CVD. However, the molecular mechanism of statin-mediated normalization of endothelial function is not completely elucidated. METHODS AND RESULTS Lovastatin time/dose-dependently increased miR-29b expression and decreased proteasome activity in cultured human umbilical vein endothelial cells (HUVECs). Anti-miR-29b or overexpression of PA200 abolished lovastatin-induced inhibition of proteasome activity in HUVECs. In contrast, pre-miR-29b or PA200 siRNA mimics these effects of lovastatin on proteasome activity. Lovastatin inhibited oxidative stress induced by multiple oxidants including ox-LDL, H2O2, TNFα, homocysteine thiolactone (HTL), and high glucose (HG), which were reversed by inhibition of miR-29b in HUVECs. Ex vivo analysis indicated that lovastatin normalized the acetylcholine-induced endothelium-dependent relaxation and the redox status in isolated rat aortic arteries exposure to multiple cardiovascular risk factors. In vivo analysis revealed that administration of lovastatin remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats with hyperglycemia, dyslipidemia, and hyperhomocysteinemia, as well as increased miR-29b expressions, reduced PA200 protein levels, and suppression of proteasome activity in aortic tissues. CONCLUSION Upregulation of miR-29b expression is a common mechanism contributing to endothelial dysfunction induced by multiple cardiovascular risk factors through PA200-dependent proteasome-mediated oxidative stress, which is prevented by lovastatin.
Collapse
Affiliation(s)
- Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Hui Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Wen-Jing Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Jing-Jing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Min Jia
- Department of Rehabilitation Medicine, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ya-Ling Yin
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xue-Ying Sun
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Jia-Ning Zhang
- Biology and Chemistry, Denison University, Granville, OH, USA
| | - Qi-Sheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
22
|
Gong W, Chen Z, Zou Y, Zhang L, Huang J, Liu P, Huang H. CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys. Free Radic Biol Med 2018; 115:338-350. [PMID: 29248720 DOI: 10.1016/j.freeradbiomed.2017.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Our previous study indicated that Casein kinase 2 interacting protein-1 (CKIP-1) could promote the activation of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway, playing a significant role in inhibiting the fibrosis of diabetic nephropathy (DN). However, the underlying mechanism is still unknown. Here, we investigated whether CKIP-1 affects the polyubiquitination of Nrf2 and its cytosolic inhibitor kelch like ECH-associated protein 1 (Keap1) via mediating Smad ubiquitylation regulatory factor-1 (Smurf1) to promote the activation of the Nrf2/ARE signaling and resist high glucose (HG)-induced renal fibrosis in glomerular mesangial cells (GMCs) and diabetic mice kidneys. Results showed that the expression of Smurf1 increased in HG-induced GMCs, with a paramount upregulation at 1h. Overexpression of wild-type Smurf1 plasmid further promoted the HG-induced the over-production of fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1), and depletion of Smurf1 dramatically reduced the expression of FN and ICAM-1. Overexpression of CKIP-1 decreased the K48-linked polyubiquitination and increased the K63-linked polyubiquitination of Nrf2 as well as enhanced the K48-linked polyubiquitination and reduced K63-linked polyubiquitination of Keap1, promoting the activation of the Nrf2/ARE pathway. Overexpression of Smurf1 increased the K48-linked polyubiquitination and decreased the K63-linked polyubiquitination of Nrf2, and down-regulated the K48-linked polyubiquitination and up-regulated the K63-linked polyubiquitination of Keap1, inhibiting the activation of the Nrf2/ARE pathway. CKIP-1 promoted the degradation of Smurf1 by increasing the ubiquitination of Smurf1. Treatment of CKIP-1 adenovirus infection reduced the Smurf1 levels, promoted the activation of the Nrf2/ARE pathway as well as suppressed the production of reactive oxygen species (ROS), and then improved the failure of renal function of diabetic mice. Experiments above suggested that CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 and promotes the Nrf2-ARE pathway through down-regulating Smurf1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys.
Collapse
Affiliation(s)
- Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Yang JJ, Li P, Wang F, Liang WJ, Ma H, Chen Y, Ma ZM, Li QZ, Peng QS, Zhang Y, Wang SX. Activation of activator protein 2 alpha by aspirin alleviates atherosclerotic plaque growth and instability in vivo. Oncotarget 2018; 7:52729-52739. [PMID: 27391154 PMCID: PMC5288144 DOI: 10.18632/oncotarget.10400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
AIMS Aspirin has been used for the secondary prevention and treatment of cardiovascular disease for several decades. We investigated the roles of transcriptional factor activator protein 2α (AP-2α) in the beneficial effects of aspirin in the growth and vulnerability of atherosclerotic plaque. METHODS AND RESULTS In mice deficient of apolipoprotein E (Apoe-/-), aspirin (20, 50 mg/kg/day) suppressed the progression of atherosclerosis in aortic roots and increased the plaque stability in carotid atherosclerotic plaques induced by collar-placement. In vivo lentivirus-mediated RNA interference of AP-2α reversed the inhibitory effects of aspirin on atherosclerosis in Apoe-/- mice. Mechanically, aspirin increased AP-2α phosphorylation and its activity, upregulated IkBα mRNA and protein levels, and reduced oxidative stress in cultured vascular smooth muscle cells. Furthermore, deficiency of AP-2α completely abolished aspirin-induced upregulation of IkBα levels and inhibition of oxidative stress in Apoe-/- mice. Clinically, conventional doses of aspirin increased AP-2α phosphorylation and IkBα protein expression in humans subjects. CONCLUSION Aspirin activates AP-2α to upregulate IkBα gene expression, resulting in attenuations of plaque development and instability in atherosclerosis.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fu Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Liang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Hui Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Yuan Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Zhi-Min Ma
- Division of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Quan-Zhong Li
- Division of Cardiology, The Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Qi-Sheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, School of Medicine, Shandong University, Jinan, China.,Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
24
|
Novel reno-protective mechanism of Aspirin involves H2AK119 monoubiquitination and Set7 in preventing type 1 diabetic nephropathy. Pharmacol Rep 2017; 70:497-502. [PMID: 29656179 DOI: 10.1016/j.pharep.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Even after several novel therapeutic approaches, the number of people with diabetic nephropathy (DN) still continues to increase globally, this suggest to find novel therapeutic strategies to prevent it completely. Recent reports, are indicating the ubiquitin proteasome system alterations in DN. Recently, we also showed that, histone H2AK119 mono-ubiquitination (H2AK119-Ub) found to regulate Set7, a key epigenetic enzyme in the development of renal fibrosis under type 1 diabetic condition. Hence, we aimed to study the role of a known 20s proteasome inhibitor Aspirin, on histone ubiquitination in the progression of DN. METHODS Male Wistar rats were rendered diabetic using a single dose of Streptozotocin (55mgkg-1, ip). After 4 weeks, diabetic animals were grouped into respective groups and the drug, aspirin, low dose (25mgkg-1day-1), high dose (50mgkg-1day-1) was administered through po route. At the end of the study, kidneys from all the groups were collected and processed separately for glomerular isolation, protein isolation, and for histopathological studies. RESULTS Aspirin administration, reduced the protein expression of Mysm1, increased the protein expression of H2AK119-Ub and thereby reduced the Set7 protein expression in glomeruli isolated from diabetic animals and prevented renal fibrosis. CONCLUSIONS In conclusion, our results are clearly indicating that, aspirin prevents renal fibrosis in diabetic animals through decreasing the expression of Mysm1, increasing the expression of H2AK119-Ub and thereby decreasing the protein expression of Set7, which is a novel mechanism. Moreover, this mechanism may lay down a novel strategy to prevent DN completely in future.
Collapse
|
25
|
Laubertová L, Koňariková K, Gbelcová H, Ďuračková Z, Muchová J, Garaiova I, Žitňanová I. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutr Res 2017; 46:49-58. [PMID: 28893413 DOI: 10.1016/j.nutres.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Diabetes-related complications, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, are a significant cause of increased morbidity and mortality among people with diabetes. Previous studies have confirmed that hyperglycemia has pro-oxidative and proinflammatory properties which cause diabetic complications. We hypothesized that supplementation of fish oil emulsion (FOE), rich in omega-3 polyunsaturated fatty acids, to diabetic patients might reduce hyperglycemia-induced pathological changes due to specific properties of FOE. Omega-3 polyunsaturated fatty acids have a wide range of biological effects. In this project, we have examined the potential protective effect of the FOE on hyperglycemia-induced oxidative stress and cytokine generation in monocytes/macrophages U937 system in vitro. The monocytes/macrophages U937 were cultivated under normal or hyperglycemic (35 mmol/L glucose) conditions with/without FOE for 72 hours. We have focused on specific markers of oxidative stress (antioxidant capacity; superoxide dismutase activity; oxidative damage to DNA, proteins, and lipids) and inflammation (tumor necrosis factor, interleukin-6, interleukin-8, monocytic chemotactic protein-1). Hyperglycemia caused reduction of antioxidant capacity, induction of DNA damage, and proinflammatory cytokine secretion. FOE significantly increased antioxidant capacity of cells as well as superoxide dismutase activity and significantly reduced tumor necrosis factor, interleukin-6, interleukin-8, and monocytic chemotactic protein-1 release. No effect was observed on oxidative damage to DNA, proteins, and lipids. Our results indicate that FOE can reduce hyperglycemia-induced pathological mechanisms by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Katarína Koňariková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72 Bratislava, Slovakia.
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Iveta Garaiova
- Research and Development Department, Cultech Ltd, Port Talbot, SA12 7BZ, United Kingdom.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| |
Collapse
|
26
|
Goru SK, Kadakol A, Gaikwad AB. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy. Pharmacol Res 2017; 120:170-179. [PMID: 28363724 DOI: 10.1016/j.phrs.2017.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of end stage renal failure. Although, several therapeutic targets have emerged to prevent the progression of DN, the number of people with DN still continues to rise worldwide, suggesting an urgent need of novel targets to prevent DN completely. Currently, the role of ubiquitin proteasome system (UPS) has been highlighted in the pathogenesis and progression of various diseases like obesity, insulin resistance, atherosclerosis, cancers, neurodegerative disorders and including secondary complications of diabetes. UPS mainly involves in protein homeostatis through ubiquitination (post translational modification) and proteasomal degradation of various proteins. Ubiquitination, not only involves in proteasomal degradation, but also directs the substrate proteins to participate in multitude of cell signalling pathways. However, very little is known about ubiquitination and UPS in the progression of DN. This review mainly focuses on UPS and its components including E2 conjugating enzymes, E3 ligases and deubiquitinases (DUBs) in the development of DN and thus may help us to find novel therapeutic targets with in UPS to prevent DN completely in future.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Since the metabolic syndrome (MS) and pathologies associated with/resulting from metabolic dysregulations became a worldwide spreading and growing problem, the mechanisms mediating the according cellular changes got into a focus of interest. The ubiquitin-proteasomal system (UPS) is the main regulator of both the functional and dysfunctional protein pool of (not only) mammalian cells-thus, it is obvious that an impact on this system may also affect cellular functionality that directly depends on permanent regulation/adaption of the cell's proteostasis. However, the according research is still at the beginning. Recent Advances: It was also recently shown that maintaining a highly functional UPS positively correlates with increased health or even life span, thus modulation or restoration of UPS function may be an effective approach alleviating or even preventing MS detrimental consequences. CRITICAL ISSUES Even if many consequences of metabolic dysregulation such as a slight but chronic redox shift to a more oxidative state (i.e., a low-grade systemic inflammation that increases reactive oxygen species formation, lipid peroxidation, protein oxidation, formation of advanced glycation end products, glycosylation, S-glutathionylation, redox shifts, endoplasmic reticulum stress, unfolded protein response, expression of transcription factors, and release of cytokines) are already known to affect the highly redox-regulated UPS, experimental data about UPS changes that are directly mediated by glucotoxic and/or lipotoxic stress are still rarely published. FUTURE DIRECTIONS It may be taken into account that many MS-related pathologic changes result from UPS dysfunction or dysregulation. In this review, the main interface between MS effects and their impact on the UPS are highlighted since they may direct to new therapeutic approaches. Antioxid. Redox Signal. 25, 902-917.
Collapse
Affiliation(s)
- Annika Höhn
- 1 Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) , Nuthetal, Germany .,2 German Center for Diabetes Research (DZD) , Neuherberg, Germany
| | - Jeannette König
- 1 Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) , Nuthetal, Germany
| | - Tobias Jung
- 1 Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) , Nuthetal, Germany
| |
Collapse
|
28
|
Peroxynitrite: From interception to signaling. Arch Biochem Biophys 2016; 595:153-60. [PMID: 27095233 DOI: 10.1016/j.abb.2015.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Peroxynitrite is a strong oxidant and nitrating species that mediates certain biological effects of superoxide and nitrogen monoxide. These biological effects include oxidative damage to proteins as well as the formation of 3-nitrotyrosyl moieties in proteins. As a consequence, such proteins may lose their activity, gain altered function, or become prone to proteolytic degradation - resulting in modulation of cellular protein turnover and in the modulation of signaling cascades. In analogy to hydrogen peroxide, peroxynitrite may be scavenged by selenoproteins like glutathione peroxidase-1 (GPx-1) or by selenocompounds with a GPx-like activity, such as ebselen; in further analogy to H2O2, peroxiredoxins have also been established as contributors to peroxynitrite reduction. This review covers three aspects of peroxynitrite biochemistry, (i) the interaction of selenocompounds/-proteins with peroxynitrite, (ii) peroxynitrite-induced modulation of cellular proteolysis, and (iii) peroxynitrite-induced modulation of cellular signaling.
Collapse
|
29
|
Histone H2AK119 and H2BK120 mono-ubiquitination modulate SET7/9 and SUV39H1 in type 1 diabetes-induced renal fibrosis. Biochem J 2016; 473:3937-3949. [PMID: 27582499 DOI: 10.1042/bcj20160595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Hyperglycaemia-induced expression of extracellular matrix (ECM) components plays a major role in the development of diabetic nephropathy (DN). The epigenetic mechanisms that modulate ECM gene expression in DN remain unclear. Therefore, we examined the role of histone H2A and H2B monoubiquitination on epigenetic chromatin marks, such as histone H3 lysine dimethylation (H3K4Me2, H3K9Me2 and H3K79Me2) in type 1 diabetic rat kidney. Hyperglycaemia increased collagen deposition and Col1a1 gene expression. In whole kidney of diabetic animals, both H2AK119 mono-ubiquitination (H2AK119Ub) and H2BK120 mono-ubiquitination (H2BK120Ub) were found to be increased, whereas, in glomeruli of diabetic animals, expression of both H2AK119Ub and H2BK120Ub was reduced. Changes in ubiquitin proteasome system components like increased Rnf2 (H2A-specific E3 ligase) and decreased H2A- and H2B-specific deubiquitinases (ubiquitin-specific proteases 7, 16, 21 and 22) were also observed. Globally increased levels of chromatin marks associated with active genes (H3K4Me2 and H3K79Me2) and decreased levels of repressive marks (H3K9Me2) were also observed. Hyperglycaemia also increased the protein expression of SET7/9 and decreased the expression of SUV39H1. We also showed the decreased occupancy of H2AK119Ub and H2BK120Ub on the promoters of Set7/9 and Suv39h1 in diabetic kidney. In addition, methylation marks regulated by H2AK119Ub (H3K27Me2 and H3K36Me2) and H2BK120Ub (H3K4Me2 and H3K79Me2) were also found to be altered on the promoters of Set7/9 and Suv39h1 Taken together, these results show the functional role of H2AK119Ub and H2BK120Ub in regulating histone H3K4Me2 and H3K9Me2 through modulating the expression of SET7/9 and SUV39H1 in the development of diabetic renal fibrosis.
Collapse
|
30
|
Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats. J Surg Res 2016; 202:413-21. [PMID: 27229117 DOI: 10.1016/j.jss.2016.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Here, we examined proteasome activator 28 (PA28) after arterial injury in different diabetic environments, with or without NO. We hypothesize that NO differentially affects PA28 levels based on metabolic environment. MATERIALS AND METHODS Vascular smooth muscle cell (VSMC) lysates from male, nondiabetic Lean Zucker (LZ) and Zucker Diabetic Fatty (ZDF) rats were assayed for 26S proteasome activity with or without PA28 and S-nitroso-N-acetylpenicillamine. LZ and ZDF VSMCs were treated with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate for 24 h. Balloon-injured carotid arteries from LZ, streptozotocin-injected LZ (STZ, type 1), and ZDF (type 2) rats treated with disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate were harvested at 3 or 14 d. PA28α was assessed by Western blotting and immunofluorescent staining. RESULTS S-nitroso-N-acetylpenicillamine reversed PA28-stimulated increases in 26S proteasome activity in LZ and ZDF VSMCs. Increased (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate lowered PA28α in LZ VSMCs but increased PA28α in ZDF VSMCs. At 3 d after injury, disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate potentiated injury-induced PA28α decreases in LZ, STZ, and ZDF rats, suggesting VSMCs, depleted at this early time point, are major sources of PA28α. At 14 d after injury, total PA28α staining returned to baseline. However, although intimal and medial PA28α staining increased in injured STZ rats, adventitial PA28α staining increased in injured ZDF rats. CONCLUSIONS PA28 dysregulation may explain the differential ability of NO to inhibit neointimal hyperplasia in type 1 versus type 2 diabetes.
Collapse
|
31
|
Abstract
OBJECTIVE Hemorrhagic shock may contribute to acute kidney injury (AKI) by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin 1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. METHODS Using a decompensated hemorrhagic shock model, male Long-Evans rats (n = 6 per group) were killed prior to hemorrhage (sham), at severe shock, and following either lactated Ringer's (LR) resuscitation or LR + RSV resuscitation (RSV: 30 mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen, and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (complexes I, II, and IV) using high-resolution respirometry. Total mitochondria reactive oxygen species were measured using fluorometry, and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. Quantitative polymerase chain reaction was used quantify mRNA from peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α) SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. RESULTS Resveratrol supplementation during resuscitation restored mitochondrial respiratory capacity and decreased mitochondrial reactive oxygen species and lipid peroxidation. Compared with standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both superoxide dismutase 2 and catalase expression. Although RSV was associated with decreased lactate production, pH, blood urea nitrogen, and serum creatinine values did not differ between resuscitation strategies. CONCLUSIONS Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock.
Collapse
|
32
|
Zhang H, Wang X. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil. Future Cardiol 2015; 11:177-89. [PMID: 25760877 DOI: 10.2217/fca.15.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprotective was recently found to facilitate proteasomal degradation of misfolded proteins in cardiomyocytes; sildenafil was shown to activate myocardial protein kinase G, improve cardiac protein quality control and slow down the progression of cardiac proteinopathy in mice. This identifies the first clinically used drug that is capable of benign proteasome enhancement and unveils a potentially novel cardioprotective mechanism for sildenafil.
Collapse
Affiliation(s)
- Hanming Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
33
|
Ošiņa K, Rostoka E, Sokolovska J, Paramonova N, Bisenieks E, Duburs G, Sjakste N, Sjakste T. 1,4-Dihydropyridine derivatives without Ca2+-antagonist activity up-regulate Psma6 mRNA expression in kidneys of intact and diabetic rats. Cell Biochem Funct 2015; 34:3-6. [PMID: 26634809 DOI: 10.1002/cbf.3160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022]
Abstract
Impaired degradation of proteins by the ubiquitin-proteasome system (UPS) is observed in numerous pathologies including diabetes mellitus (DM) and its complications. Dysregulation of proteasomal degradation might be because of altered expression of genes and proteins involved in the UPS. The search for novel compounds able to normalize expression of the UPS appears to be a topical problem. A novel group of 1,4-dihydropyridine (1,4-DHP) derivatives lacking Ca2+-antagonists activities, but capable to produce antidiabetic, antioxidant and DNA repair enhancing effects, were tested for ability to modify Psma6 mRNA expression levels in rat kidneys and blood in healthy animals and in rats with streptozotocin (STZ) induced DM. Psma6 gene was chosen for the study, as polymorphisms of its human analogue are associated with DM and cardiovascular diseases. 1,4-DHP derivatives (metcarbatone, etcarbatone, glutapyrone, J-9-125 and AV-153-Na) were administered per os for three days (0.05 mg/kg and/or 0.5 mg/kg). Psma6 gene expression levels were evaluated by quantitative PCR. Psma6 expression was higher in kidneys compared to blood. Induction of diabetes caused increase of Psma6 expression in kidneys, although it was not changed in blood. Several 1,4-DHP derivatives increased expression of the gene both in kidneys and blood of control and model animals, but greater impact was observed in kidneys. The observed effect might reflect coupling of antioxidant and proteolysis-promoting activities of the compounds.
Collapse
Affiliation(s)
- Kristīne Ošiņa
- Genomics and Bioinformatics Group, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Evita Rostoka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Natalia Paramonova
- Genomics and Bioinformatics Group, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Tatjana Sjakste
- Genomics and Bioinformatics Group, Institute of Biology of the University of Latvia, Salaspils, Latvia
| |
Collapse
|
34
|
Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V, Abraham E, Zmijewski JW. Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cell Signal 2015; 27:1186-97. [PMID: 25728513 PMCID: PMC4380640 DOI: 10.1016/j.cellsig.2015.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/04/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
Although activation of the AMP-activated protein kinase (AMPK) as well as of ubiquitin/proteasome degradative pathways play an essential role in the preservation of metabolic homeostasis, little is known concerning interactions between protein turnover and AMPK activity. In the present studies, we found that inhibition of the 26S proteasome resulted in rapid activation of AMPK in macrophages, epithelial and endothelial cells. This was associated with increased levels of non-degraded Ub-protein conjugates, in both cytosolic and mitochondrial fractions. Selective inhibitors of ubiquitination or siRNA-dependent knockdown of Ub-ligase E1 diminished AMPK activation in cells treated with MG132, a 26S proteasome inhibitor. In addition to inhibition of AMPK activation by Ub-ligase E1 inhibitors, deficiency in Park2 mitochondria-associated Ub-ligase E3 also reduced AMPK activation upon dissipation of mitochondrial membrane potential (Δψm). Accumulation of Ub-proteins was correlated with decreases in cellular bioenergetics, including mitochondria oxidative phosphorylation, and an increase in ROS formation. Antioxidants, such as N-acetyl-L-cysteine or mitochondria-targeted MitoTEMPO, effectively diminished MG132-induced AMPK activation. Glucose-dependent regulation of AMPK or AMPK-mediated autophagy was modulated by alterations in intracellular levels of Ub-protein conjugates. Our results indicate that accumulation of ubiquitinated proteins alter cellular bioenergetics and redox status, leading to AMPK activation.
Collapse
Affiliation(s)
- Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA; Division of Infectious Diseases, Korea University Ansan Hospital, Ansan 425-707, Republic of Korea
| | - Yong Gao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | - Saranya Ravi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | - Edward Abraham
- Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| |
Collapse
|
35
|
L. Hopper J, Begum N, Smith L, A. Hughes T. The role of PSMD9 in human disease: future clinical and therapeutic implications. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One 2014; 9:e116165. [PMID: 25541949 PMCID: PMC4277463 DOI: 10.1371/journal.pone.0116165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
SIRT1 is central to the lifespan and vascular health, but undergoes degradation that contributes to several medical conditions, including diabetes. How SIRT1 turnover is regulated remains unclear. However, emerging evidence suggests that endothelial nitric oxide synthase (eNOS) positively regulates SIRT1 protein expression. We recently identified NO as an endogenous inhibitor of 26S proteasome functionality with a cellular reporter system. Here we extended this finding to a novel pathway that regulates SIRT1 protein breakdown. In cycloheximide (CHX)-treated endothelial cells, NONOate, an NO donor, and A23187, an eNOS activator, significantly stabilized SIRT1 protein. Similarly, NO enhanced SIRT1 protein, but not mRNA expression, in CHX-free cells. NO also stabilized an autophagy-related protein unc-51 like kinase (ULK1), but did not restore SIRT1 protein levels in ULK1-siRNA-treated cells or in mouse embryonic fibroblasts (MEF) from Ulk1-/- mice. This suggests that ULK1 mediated the NO regulation of SIRT1. Furthermore, adenoviral overexpression of ULK1 increased SIRT1 protein expression, while ULK1 siRNA treatment decreased it. Rapamycin-induced autophagy did not mimic these effects, suggesting that the effects of ULK1 were autophagy-independent. Treatment with MG132, a proteasome inhibitor, or siRNA of β-TrCP1, an E3 ligase, prevented SIRT1 reduction induced by ULK1-siRNA. Mechanistically, ULK1 negatively regulated 26S proteasome functionality, which was at least partly mediated by O-linked-GlcNAc transferase (OGT), probably by increased O-GlcNAc modification of proteasomal subunit Rpt2. The NO-ULK1-SIRT1 axis was likely operative in the whole animal: both ULK1 and SIRT1 protein levels were significantly reduced in tissue homogenates in eNOS-knockout mice (lung) and in db/db mice where eNOS is downregulated (lung and heart). Taken together, the results show that NO stabilizes SIRT1 by regulating 26S proteasome functionality through ULK1 and OGT, but not autophagy, in endothelial cells.
Collapse
|
37
|
Wilck N, Ludwig A. Targeting the ubiquitin-proteasome system in atherosclerosis: status quo, challenges, and perspectives. Antioxid Redox Signal 2014; 21:2344-63. [PMID: 24506455 DOI: 10.1089/ars.2013.5805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a vascular disease of worldwide significance with fatal complications such as myocardial infarction, stroke, and peripheral artery disease. Atherosclerosis is recognized as a chronic inflammatory disease leading to arterial plaque formation and vessel narrowing in different vascular beds. Besides the strong inflammatory nature of atherosclerosis, it is also characterized by proliferation, apoptosis, and enhanced oxidative stress. The ubiquitin-proteasome system (UPS) is the major intracellular degradation system in eukaryotic cells. Besides its essential role in the degradation of dysfunctional and oxidatively damaged proteins, it is involved in many processes that influence disease progression in atherosclerosis. Hence, it is logical to ask whether targeting the proteasome is a reasonable and feasible option for the treatment of atherosclerosis. RECENT ADVANCES Several lines of evidence suggest stage-specific dysfunction of the UPS in atherogenesis. Regulation of key processes by the proteasome in atherosclerosis, as well as the modulation of these processes by proteasome inhibitors in vascular cells, is outlined in this review. The treatment of atherosclerotic animal models with proteasome inhibitors yielded partly opposing results, the potentially underlying reasons of which are discussed here. CRITICAL ISSUES AND FUTURE DIRECTIONS Targeting UPS function in atherosclerosis is a promising but challenging option. Limitations of current proteasome inhibitors, dose dependency, and the cell specificity of effects, as well as the potential of future therapeutics are discussed. A stage-specific in-depth exploration of UPS function in atherosclerosis in the future will help identify targets and windows for beneficial intervention.
Collapse
Affiliation(s)
- Nicola Wilck
- 1 Medizinische Klinik für Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin , Campus Mitte, Berlin, Germany
| | | |
Collapse
|
38
|
Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol Res 2014; 91:104-14. [PMID: 25447793 DOI: 10.1016/j.phrs.2014.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The pathogenic processes involving in the development of diabetes range from autoimmune destruction of pancreatic β-cells with consequent insulin deficiency to abnormalities that result in resistance to insulin action. The major contributing factor for excessive β-cell death includes oxidative stress-mediated mitochondrial damage, which creates an imbalance in redox homeostasis. Yet, β-cells have evolved adaptive mechanisms to endure a wide range of stress conditions to safeguard its potential functions. These include 'Nrf2/Keap1' pathway, a key cellular defense mechanism, to combat oxidative stress by regulating phase II detoxifying and antioxidant genes. During diabetes, redox imbalance provokes defective Nrf2-dependent signaling and compromise antioxidant capacity of the pancreas which turnout β-cells to become highly vulnerable against various insults. Hence, identification of small molecule activators of Nrf2/Keap1 pathway remains significant to enhance cellular defense to overcome the burden of oxidative stress related disturbances. This review summarizes the molecular mechanism behind Nrf2 activation and the impact of Nrf2 activators in diabetes and its complications.
Collapse
Affiliation(s)
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - Palanisamy Rajaguru
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
39
|
Jaisson S, Gillery P. Impaired proteostasis: role in the pathogenesis of diabetes mellitus. Diabetologia 2014; 57:1517-27. [PMID: 24816368 DOI: 10.1007/s00125-014-3257-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
In living organisms, proteins are regularly exposed to 'molecular ageing', which corresponds to a set of non-enzymatic modifications that progressively cause irreversible damage to proteins. This phenomenon is greatly amplified under pathological conditions, such as diabetes mellitus. For their survival and optimal functioning, cells have to maintain protein homeostasis, also called 'proteostasis'. This process acts to maintain a high proportion of functional and undamaged proteins. Different mechanisms are involved in proteostasis, among them degradation systems (the main intracellular proteolytic systems being proteasome and lysosomes), folding systems (including molecular chaperones), and enzymatic mechanisms of protein repair. There is growing evidence that the disruption of proteostasis may constitute a determining event in pathophysiology. The aim of this review is to demonstrate how such a dysregulation may be involved in the pathogenesis of diabetes mellitus and in the onset of its long-term complications.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Medical Biochemistry and Molecular Biology, University of Reims Champagne Ardenne, Reims, France,
| | | |
Collapse
|
40
|
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Department of Medicine, NYU Langone Medical Center, New York, NY
| |
Collapse
|
41
|
Liu H, Yu S, Zhang H, Xu J. Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells. PLoS One 2014; 9:e98486. [PMID: 24853093 PMCID: PMC4031199 DOI: 10.1371/journal.pone.0098486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shujie Yu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hua Zhang
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jian Xu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
42
|
Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res 2014; 103:131-9. [PMID: 24788415 DOI: 10.1093/cvr/cvu116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Hypoxia induces vascular inflammation by a mechanism not fully understood. Emerging evidence implicates O-GlcNAc transferase (OGT) in inflammation. This study explored the role of OGT in hypoxia-induced vascular endothelial inflammatory response. METHODS AND RESULTS Hypoxia was either induced (1% O2 chamber) or mimicked by exposure to hypoxia-mimetic agents in cultured endothelial cells. Hypoxia increased hypoxia-inducible factor (HIF-1α) and inflammatory response (gene and protein expression of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and E-selectin) but, surprisingly, reduced OGT protein (not mRNA) levels. Hypoxia-mimetic CoCl2 failed to reduce OGT when proteasome inhibitors were present, suggesting proteasome involvement. Indeed, CoCl2 enhanced 26S proteasome functionality evidenced by diminished reporter (Ub(G76V)-GFP) proteins in proteasome reporter cells, likely due to increased chymotrypsin-like activities. Mechanistically, β-TrCP1 mediated OGT degradation, since siRNA ablation of this E3 ubiquitin ligase stabilized OGT. Administration of the oxidative stress inhibitors reversed both proteasome activation and OGT degradation. Furthermore, up-regulation of OGT by stabilization, overexpression, or activation mitigated CoCl2-elicited inflammatory response. These observations were recapitulated in a mouse (C57BL/6J) model mimicking hypoxia, in which lung tissues presented higher levels of HIF-1α, proteasome activity, and inflammatory response, but lower levels of OGT (n = 5/group, hypoxia vs. normoxia, P < 0.05). However, administration of an activator of OGT (glucosamine: 1 mg/g/day, vehicle: saline, ip, 5 days) abolished the up-regulation of proteasome activity and inflammatory response (n = 5/group, the treated vs. untreated hypoxia groups, P < 0.05). CONCLUSIONS 26S proteasome-mediated OGT reduction contributed to hypoxia-induced vascular endothelial inflammatory response. Modulation of OGT may represent a new approach to treat diseases characterized by hypoxic inflammation.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shujie Yu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian Xu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
43
|
Taneera J, Storm P, Groop L. Downregulation of type II diabetes mellitus and maturity onset diabetes of young pathways in human pancreatic islets from hyperglycemic donors. J Diabetes Res 2014; 2014:237535. [PMID: 25379510 PMCID: PMC4212628 DOI: 10.1155/2014/237535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022] Open
Abstract
Although several molecular pathways have been linked to type 2 diabetes (T2D) pathogenesis, it is uncertain which pathway has the most implication on the disease. Changes in the expression of an entire pathway might be more important for disease pathogenesis than changes in the expression of individual genes. To identify the molecular alterations in T2D, DNA microarrays of human pancreatic islets from donors with hyperglycemia (n = 20) and normoglycemia (n = 58) were subjected to Gene Set Enrichment Analysis (GSEA). About 178 KEGG pathways were investigated for gene expression changes between hyperglycemic donors compared to normoglycemic. Pathway enrichment analysis showed that type II diabetes mellitus (T2DM) and maturity onset diabetes of the young (MODY) pathways are downregulated in hyperglycemic donors, while proteasome and spliceosome pathways are upregulated. The mean centroid of gene expression of T2DM and MODY pathways was shown to be associated positively with insulin secretion and negatively with HbA1c level. To conclude, downregulation of T2DM and MODY pathways is involved in islet function and might be involved in T2D. Also, the study demonstrates that gene expression profiles from pancreatic islets can reveal some of the biological processes related to regulation of glucose hemostats and diabetes pathogenesis.
Collapse
Affiliation(s)
- Jalal Taneera
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University Diabetes Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden
- *Jalal Taneera:
| | - Petter Storm
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University Diabetes Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University Diabetes Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
44
|
Li Y, Liu H, Xu QS, Du YG, Xu J. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym 2013; 99:568-78. [PMID: 24274545 DOI: 10.1016/j.carbpol.2013.08.082] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 02/06/2023]
Abstract
It is known that chitosan oligosaccharides (COS) suppress LPS-induced vascular endothelial inflammatory response by mechanism involving NF-κB blockade. It remains unknown how COS inhibit NF-κB. We provided evidence both in cultured endothelial cells and mouse model supporting a new mechanism. Regardless of the endothelial cell types, the LPS-induced NF-κB-dependent inflammatory gene expression was suppressed by COS, which was associated with reduced NF-κB nucleus translocation. LPS enhanced O-GlcNAc modification of NF-κB/p65 and activated NF-κB pathway, which could be prevented either by siRNA knockdown of O-GlcNAc transferase (OGT) or pretreatment with COS. Inhibition of either mitogen-activated protein kinase or superoxide generation abolishes LPS-induced NF-κB O-GlcNAcylation. Consistently, aortic tissues from LPS-treated mice presented enhanced NF-κB/p65 O-GlcNAcylation in association with upregulated gene expression of inflammatory cytokines in vascular tissues; however, pre-administration of COS prevented these responses. In conclusion, COS decreased OGT-dependent O-GlcNAcylation of NF-κB and thereby attenuated LPS-induced vascular endothelial inflammatory response.
Collapse
Affiliation(s)
- Yu Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
45
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Miao X, Cui W, Sun W, Xin Y, Wang B, Tan Y, Cai L, Miao L, Fu Y, Su G, Wang Y. Therapeutic effect of MG132 on the aortic oxidative damage and inflammatory response in OVE26 type 1 diabetic mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:879516. [PMID: 23589759 PMCID: PMC3622385 DOI: 10.1155/2013/879516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
Abstract
The present study tested whether MG132 increases vascular nuclear factor E2-related factor-2 (Nrf2) expression and transcription to provide a therapeutic effect on diabetes-induced pathogenic changes in the aorta. To this end, three-month-old OVE26 diabetic and age-matched control mice were intraperitoneally injected with MG-132, 10 μ g/kg daily for 3 months. OVE26 transgenic type 1 diabetic mice develop hyperglycemia at 2-3 weeks of age and exhibit albuminuria at 3 months of age with mild increases in TNF- α expression and 3-NT accumulation in the aorta. Diabetes-induced significant increases in the wall thickness and structural derangement of aorta were found in OVE26 mice with significant increases in aortic oxidative and nitrosative damage, inflammation, and remodeling at 6 months of diabetes, but not at 3 months of diabetes. However, these pathological changes seen at the 6 months of diabetes were abolished in OVE26 mice treated with MG-132 for 3 months that were also associated with a significant increase in Nrf2 expression in the aorta as well as transcription of downstream genes. These results suggest that chronic treatment with low-dose MG132 can afford an effective therapy for diabetes-induced pathogenic changes in the aorta, which is associated with the increased Nrf2 expression and transcription.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun 130041, China
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Wenpeng Cui
- The Second Hospital of Jilin University, Changchun 130041, China
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Weixia Sun
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Normal Bethune Medical College of Jilin University, Changchun 130021, China
| | - Bo Wang
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, Inner Mongolia 022150, China
| | - Yi Tan
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Chinese American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325000, China
| | - Lu Cai
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Chinese American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325000, China
- Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guanfang Su
- The Second Hospital of Jilin University, Changchun 130041, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Yuehui Wang
- The Second Hospital of Jilin University, Changchun 130041, China
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
47
|
Cui W, Bai Y, Luo P, Miao L, Cai L. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:306073. [PMID: 23533688 PMCID: PMC3606804 DOI: 10.1155/2013/306073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/14/2013] [Indexed: 12/25/2022]
Abstract
So far, cardiovascular and renal diseases have brought us not only huge economic burden but also serious society problems. Since effective therapeutic strategies are still limited, to find new methods for the prevention or therapy of these diseases is important. Oxidative stress has been found to play a critical role in the initiation and progression of cardiovascular and renal diseases. In addition, activation of nuclear-factor-E2-related-factor-2- (Nrf2-) antioxidant-responsive element (ARE) signaling pathway protects cells and tissues from oxidative damage. As a proteasomal inhibitor, MG132 was reported to activate Nrf2 expression and function, which was accompanied with significant preventive and/or therapeutic effect on cardiovascular and renal diseases under most conditions; therefore, MG132 seems to be a potentially effective drug to be used in the prevention of oxidative damage. In this paper, we will summarize the information available regarding the effect of MG132 on oxidative stress-induced cardiovascular and renal damage, especially through Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| | - Yang Bai
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
- Department of Cardiology, The People's Hospital of Jilin Province, Changchun 130021, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
| | - Lu Cai
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| |
Collapse
|
48
|
Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN, Fu Y, Cai L. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Physiol Heart Circ Physiol 2013; 304:H567-H578. [PMID: 23220333 DOI: 10.1152/ajpheart.00650.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2-3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Yuehui Wang
- The Second Hospital, Jilin University, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aghdam SY, Gurel Z, Ghaffarieh A, Sorenson CM, Sheibani N. High glucose and diabetes modulate cellular proteasome function: Implications in the pathogenesis of diabetes complications. Biochem Biophys Res Commun 2013; 432:339-44. [PMID: 23391566 DOI: 10.1016/j.bbrc.2013.01.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 11/17/2022]
Abstract
The precise link between hyperglycemia and its deleterious effects on retinal and kidney microvasculature, and more specifically loss of retinal perivascular supporting cells including smooth muscle cell/pericytes (SMC/PC), in diabetes are not completely understood. We hypothesized that differential cellular proteasome activity contributes to sensitivity of PC to high glucose-mediated oxidative stress and vascular rarefaction. Here we show that retinal endothelial cells (EC) have significantly higher proteasome peptidase activity compared to PC. High glucose treatment (HGT) increased the level of total ubiquitin-conjugated proteins in cultured retinal PC and EC, but not photoreceptor cells. In addition, in vitro proteasome activity assays showed significant impairment of proteasome chymotrypsin-like peptidase activity in PC, but not EC. The PA28-α/-β and PA28-β/-γ protein levels were also higher in the retina and kidney glomeruli of diabetic mice, respectively. Our results demonstrate, for the first time, that high glucose has direct biological effects on cellular proteasome function, and this modulation might be protective against cellular stress or damage induced by high glucose.
Collapse
Affiliation(s)
- Saeed Yadranji Aghdam
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-4673, USA
| | | | | | | | | |
Collapse
|
50
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|