1
|
Shen Y, Gleghorn JP. Class III Phosphatidylinositol-3 Kinase/Vacuolar Protein Sorting 34 in Cardiovascular Health and Disease. J Cardiovasc Transl Res 2025; 18:392-407. [PMID: 39821606 PMCID: PMC12043424 DOI: 10.1007/s12265-024-10581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis. VPS34 is found to have crucial functions in the cardiovascular system, including dictating the proliferation and survival of vascular smooth muscle cells and cardiomyocytes and the formation of thrombosis. This review aims to summarize our current knowledge and recent advances in understanding the function and regulation of VPS34 in cardiovascular health and disease. We also discuss the current development of VPS34 inhibitors and their potential to treat CVDs.
Collapse
Affiliation(s)
- Yuanjun Shen
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- School of Pharmacy and Pharmceutical Sciences, Binghamton University, Johnson City, NY, USA.
| | - Jason P Gleghorn
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Zhang T, Zhang M, Guo L, Liu D, Zhang K, Bi C, Zhang P, Wang J, Fan Y, He Q, Chang ACY, Zhang J. Angiopoietin-like protein 2 inhibits thrombus formation. Mol Cell Biochem 2025; 480:1169-1181. [PMID: 38880861 PMCID: PMC11835982 DOI: 10.1007/s11010-024-05034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingliang Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lingyu Guo
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex C Y Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
4
|
Severin S, Gratacap MP, Bouvet L, Borret M, Kpotor AO, Chicanne G, Xuereb JM, Viaud J, Payrastre B. Phosphoinositides take a central stage in regulating blood platelet production and function. Adv Biol Regul 2024; 91:100992. [PMID: 37793962 DOI: 10.1016/j.jbior.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.
Collapse
Affiliation(s)
- Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Laura Bouvet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Maxime Borret
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Afi Oportune Kpotor
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Jean-Marie Xuereb
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France; Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432, Toulouse, France.
| |
Collapse
|
5
|
Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology. Thromb Res 2023; 231:170-181. [PMID: 36058760 PMCID: PMC10286736 DOI: 10.1016/j.thromres.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT 59718, USA.
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Pulmonary Medicine and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Sang L, Ding L, Hao K, Zhang C, Shen X, Sun H, Fu D, Qi X. LncRNA MSTRG.22719.16 mediates the reduction of enoxaparin sodium high-viscosity bone cement-induced thrombosis by targeting the ocu-miR-326-5p/CD40 axis. J Orthop Surg Res 2023; 18:716. [PMID: 37736740 PMCID: PMC10514947 DOI: 10.1186/s13018-023-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Polymethylmethacrylate (PMMA) bone cement promotes the development of local thrombi. Our study found that a novel material, ES-PMMA bone cement, can reduce local thrombosis. We used a simple and reproducible animal model to confirm the reduction in local thrombosis and explored the associated molecular mechanism. METHODS New Zealand rabbits, which were used to model thrombosis using extracorporeal carotid artery shunts, were divided into the following two groups, with 3 rabbits in each group: the PMMA bone cement group and the ES-PMMA bone cement group. Four hours after modelling, experimental samples, including thrombotic and vascular tissues, were collected. Thrombotic samples from the PMMA group and ES-PMMA group were subjected to lncRNA sequencing, and a lncRNA microarray was used to screen the differentially expressed lncRNAs. The expression of thrombomodulin in endothelial cells was quantified in vascular tissue samples. Differences in the lncRNA expression profiles between the thrombotic samples of the PMMA group and ES-PMMA group were assessed by base-to-base alignment in the intergenic regions of genomes. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. Thrombosis was observed in the PMMA group and ES-PMMA group. RESULTS The thrombotic weight was 0.00706 ± 0.00136 g/cm in the PMMA group and 0.00551 ± 0.00115 g/cm in the ES-PMMA group. Quantitative real-time polymerase chain reaction (RT-q-CR) and Western blotting revealed that the expression of CD40, which can regulate thrombosis in vascular endothelial cells, was significantly lower in the ES-PMMA group than in the PMMA group. High-throughput sequencing was used to identify 111 lncRNAs with lower expression in the ES-PMMA group than in the PMMA group. Through bioinformatics investigation, lncRNA MSTRG22719.16/ocu-miR-326-5p/CD40 binding sites were selected. Fluorescent in situ RNA hybridization (FISH) was performed to verify the lower expression of lncRNA MSTRG.22719.16 in vascular tissues from the ES-PMMA group. A dual-luciferase reporter gene assay was applied to verify that ocu-miR-326-5p binds the CD40 3'-UTR and targets lncRNA MSTRG.22719.16. CONCLUSION Compared with PMMA bone cement, ES-PMMA bone cement can reduce thrombosis through the lncRNA MSTRG.22719.16/ocu-miR-326-5p/CD40 axis.
Collapse
Affiliation(s)
- Linchao Sang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luobin Ding
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 People’s Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem 2023; 256:115467. [PMID: 37178482 DOI: 10.1016/j.ejmech.2023.115467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.
Collapse
Affiliation(s)
- Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qilin Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
8
|
Jana S, Heaven MR, Dahiya N, Stewart C, Anderson J, MacGregor S, Maclean M, Alayash AI, Atreya C. Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112672. [PMID: 36871490 DOI: 10.1016/j.jphotobiol.2023.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Continued efforts to reduce the risk of transfusion-transmitted infections (TTIs) through blood and blood components led to the development of ultraviolet (UV) light irradiation technologies known as pathogen reduction technologies (PRT) to enhance blood safety. While these PRTs demonstrate germicidal efficiency, it is generally accepted that these photoinactivation techniques have limitations as they employ treatment conditions shown to compromise the quality of the blood components. During ex vivo storage, platelets having mitochondria for energy production suffer most from the consequences of UV irradiation. Recently, application of visible violet-blue light in the 400-470 nm wavelength range has been identified as a relatively more compatible alternative to UV light. Hence, in this report, we evaluated 405 nm light-treated platelets to assess alterations in energy utilization by measuring different mitochondrial bioenergetic parameters, glycolytic flux, and reactive oxygen species (ROS). Furthermore, we employed untargeted data-independent acquisition mass spectrometry to characterize platelet proteomic differences in protein regulation after the light treatment. Overall, our analyses demonstrate that ex vivo treatment of human platelets with antimicrobial 405 nm violet-blue light leads to mitochondrial metabolic reprogramming to survive the treatment, and alters a fraction of platelet proteome.
Collapse
Affiliation(s)
- Sirsendu Jana
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Michael R Heaven
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Abdu I Alayash
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Chintamani Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
9
|
Abstract
BACKGROUND We investigated the effects and mechanism of swimming on platelet function in mice fed with a high-fat diet. MATERIAL AND METHODS Mice were randomly divided into the control group (NC), high-fat group (HF), and high-fat diet combined with swimming group (FE). The FE group swam for 60 min a day, 5 days a week, for 8 weeks. RESULTS Compared with the NC group, the HF group had significant weight gain, dyslipidemia, abbreviated bleeding time after tail breakage, increased clot retraction, increased platelet aggregation rate, increased spread of platelets on fibrinogen, and increased pAKT level in platelets. Compared with the HF group, the FE group had lower body weight, improved dyslipidemia, prolonged bleeding time, reduced clot retraction, reduced platelet aggregation rate, decreased spread of platelets on fibrinogen, and decreased pAKT level in platelets. CONCLUSIONS By inhibiting the level of pAKT in platelets, swimming improves platelet dysfunction in mice fed with a high-fat diet.
Collapse
Affiliation(s)
- Xinyong Su
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Xiao Yu
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Ruzhuan Chen
- Department of Physical Education, Harbin University of Science and Technology Rongcheng Campus, Weihai, China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
11
|
Phosphoinositide 3-Kinases as Potential Targets for Thrombosis Prevention. Int J Mol Sci 2022; 23:ijms23094840. [PMID: 35563228 PMCID: PMC9105564 DOI: 10.3390/ijms23094840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
As integral parts of pathological arterial thrombi, platelets are the targets of pharmacological regimens designed to treat and prevent thrombosis. A detailed understanding of platelet biology and function is thus key to design treatments that prevent thrombotic cardiovascular disease without significant disruption of the haemostatic balance. Phosphoinositide 3-kinases (PI3Ks) are a group of lipid kinases critical to various aspects of platelet biology. There are eight PI3K isoforms, grouped into three classes. Our understanding of PI3K biology has recently progressed with the targeting of specific isoforms emerging as an attractive therapeutic strategy in various human diseases, including for thrombosis. This review will focus on the role of PI3K subtypes in platelet function and subsequent thrombus formation. Understanding the mechanisms by which platelet function is regulated by the various PI3Ks edges us closer toward targeting specific PI3K isoforms for anti-thrombotic therapy.
Collapse
|
12
|
Autophagy Ameliorates Reactive Oxygen Species-Induced Platelet Storage Lesions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1898844. [PMID: 36046681 PMCID: PMC9423982 DOI: 10.1155/2022/1898844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/19/2022] [Indexed: 01/18/2023]
Abstract
Platelet transfusion is a life-saving therapy to prevent bleeding; however, the availability of platelets for transfusion is limited by the markedly short shelf life owing to the development of platelet storage lesions (PSLs). The mechanism of PSLs remains obscure. Dissection of the intracellular biological changes in stored platelets may help to reduce PSLs and improve platelet transfusion efficiency. In the present study, we explore the changes of stored platelets at room temperature under constant agitation. We found that platelets during storage showed an increased reactive oxygen species (ROS) generation accompanied with receptor shedding, apoptosis, and diminished platelet aggregation. ROS scavenger reduced platelet shedding but also impaired platelet aggregation. Autophagy is a conserved catabolic process that sequesters protein aggregates and damaged organelles into lysosomes for degradation and platelets’ own intact autophagic system. We revealed that there exist a stable autophagic flux in platelets at the early stage of storage, and the autophagic flux in platelets perished after long-term storage. Treatment stored platelets with rapamycin, which stimulates autophagy in eukaryotic cells, markedly ameliorated PSLs, and improved platelet aggregation in response to extracellular stimuli.
Collapse
|
13
|
Ruan Y, Ding Y, Li X, Zhang C, Wang M, Liu M, Wang L, Xing J, Hu L, Zhao X, Ding Z, Dong J, Liu Y. Saccharides from Arctium lappa L. root reduce platelet activation and thrombus formation in a laser injury thrombosis mouse model. Exp Ther Med 2022; 23:344. [PMID: 35401796 PMCID: PMC8988163 DOI: 10.3892/etm.2022.11274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Arctium lappa L., also known as burdock, is a popular medicinal plant in traditional Chinese medicine due to its potential therapeutic properties. Saccharides from Arctium lappa L. root (ALR-S) have been extensively studied for their anti-inflammatory and anti-diabetes effects. Platelets play a pivotal role in thrombosis. The present study describes the effects of ALR-S on platelet activation and thrombosis using a laser injury thrombosis in vivo model. The study also measured the effects of ALR-S on platelet activation by analysing aggregation, ATP release, platelet spreading, adhesion and clot retraction in vitro. Specifically, the effects were ALR-S concentration-dependent inhibition of platelet aggregation and ATP release. Activated platelets pretreated with ALR-S showed diminished CD62P expression levels and fibrinogen binding, as measured by flow cytometry. ALR-S inhibited platelet spreading on fibrinogen and adhesion on collagen under shear. ALR-S attenuated platelet activation by decreasing oxidative stress and thrombus formation. These results demonstrated the antiplatelet effects of ALR-S, suggesting the antithrombotic and cardiovascular protective activities of ALR-S as a functional food.
Collapse
Affiliation(s)
- Yongjuan Ruan
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanzhong Ding
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaowei Li
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chunyang Zhang
- Department of General Thoracic Surgery, Hami Central Hospital, Hami, Xinjiang 839000, P.R. China
| | - Mengyu Wang
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mengduan Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lu Wang
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junhui Xing
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyan Zhao
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhongren Ding
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianzeng Dong
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yangyang Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Schrottmaier WC, Mussbacher M, Salzmann M, Kral-Pointner JB, Assinger A. PI3K Isoform Signalling in Platelets. Curr Top Microbiol Immunol 2022; 436:255-285. [PMID: 36243848 DOI: 10.1007/978-3-031-06566-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iβ, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Class III PI3K Biology. Curr Top Microbiol Immunol 2022; 436:69-93. [DOI: 10.1007/978-3-031-06566-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
17
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K, Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N, Du X. Shear and Integrin Outside-In Signaling Activate NADPH-Oxidase 2 to Promote Platelet Activation. Arterioscler Thromb Vasc Biol 2021; 41:1638-1653. [PMID: 33691478 PMCID: PMC8057529 DOI: 10.1161/atvbaha.120.315773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Ying Liang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - M. Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Dupage Medical Technology, Inc (M.K.D.)
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Department of Medicine (Cardiology), Vascular Biology Center, Medical College of Georgia at Augusta University (M.U.-F.)
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| |
Collapse
|
18
|
Lee TY, Lu WJ, Changou CA, Hsiung YC, Trang NTT, Lee CY, Chang TH, Jayakumar T, Hsieh CY, Yang CH, Chang CC, Chen RJ, Sheu JR, Lin KH. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism. Autophagy 2021; 17:4141-4158. [PMID: 33749503 DOI: 10.1080/15548627.2021.1904495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.
Collapse
Affiliation(s)
- Tzu-Yin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun A Changou
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | | | - Nguyen T T Trang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
19
|
Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2021; 477:4327-4342. [PMID: 33242335 DOI: 10.1042/bcj20190402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.
Collapse
|
20
|
Ngo ATP, Parra-Izquierdo I, Aslan JE, McCarty OJT. Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease. Small GTPases 2021; 12:440-457. [PMID: 33459160 DOI: 10.1080/21541248.2021.1878001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Platelets are master regulators and effectors of haemostasis with increasingly recognized functions as mediators of inflammation and immune responses. The Rho family of GTPase members Rac1, Cdc42 and RhoA are known to be major components of the intracellular signalling network critical to platelet shape change and morphological dynamics, thus playing a major role in platelet spreading, secretion and thrombus formation. Initially linked to the regulation of actomyosin contraction and lamellipodia formation, recent reports have uncovered non-canonical functions of platelet RhoGTPases in the regulation of reactive oxygen species (ROS), where intrinsically generated ROS modulate platelet function and contribute to thrombus formation. Platelet RhoGTPases orchestrate oxidative processes and cytoskeletal rearrangement in an interconnected manner to regulate intracellular signalling networks underlying platelet activity and thrombus formation. Herein we review our current knowledge of the regulation of platelet ROS generation by RhoGTPases and their relationship with platelet cytoskeletal reorganization, activation and function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Pan G, Chang L, Zhang J, Liu Y, Hu L, Zhang S, Zhang J, Qiao J, Jakopin Ž, Hu H, Dong J, Ding Z. GSK669, a NOD2 receptor antagonist, inhibits thrombosis and oxidative stress via targeting platelet GPVI. Biochem Pharmacol 2020; 183:114315. [PMID: 33152345 DOI: 10.1016/j.bcp.2020.114315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Previously, we discovered that the activation of nucleotide-binding oligomerization domain 2 (NOD2) enhances platelet activation. We here investigated the antiplatelet and antithrombotic potential of GSK669, a NOD2 antagonist. EXPERIMENTAL APPROACH Effects of GSK669 on platelet functions, reactive oxygen species (ROS) and proinflammatory cytokine generation were detected. NOD2-/- platelets were used to confirm GSK669 target. The interaction between GSK669 and glycoprotein VI (GPVI) was detected using surface plasmon resonance (SPR) spectroscopy. GPVI downstream signaling was examined by Western blot. The antithrombotic and antioxidative effects were investigated using mouse mesenteric arteriole thrombosis model and pulmonary embolism model. KEY RESULTS GSK669 significantly inhibits platelet proinflammatory cytokine release induced by muramyl dipeptide, platelet aggregation, ATP release, and ROS generation induced by collagen and collagen related peptide (CRP). Platelet spreading and clot retraction are also inhibited. GSK669 also decreases collagen-induced phosphorylation of Src, Syk, PLCγ2, and Akt. The antiplatelet effect of GSK669 is NOD2-independent and mediated by GPVI antagonism. Consistent with its antiplatelet activity as a GPVI antagonist, GSK669 inhibits platelet adhesion on collagen in flow condition. Notably, GSK669 inhibits mouse mesenteric arteriole thrombosis similarly to aspirin without bleeding. The antithrombotic effect of GSK669 is further confirmed in the pulmonary embolism model; decreased malonaldehyde (MDA) and increased superoxide dismutase (SOD) levels in mouse plasma reveal a significant antioxidant effect of GSK669. CONCLUSION AND IMPLICATIONS Beyond its anti-inflammatory effect as a NOD2 antagonist, GSK669 is also an efficient and safe antiplatelet agent combined with antioxidant effect by targeting GPVI. An antiplatelet agent bearing antioxidative and anti-inflammatory activities without bleeding risk may have therapeutic advantage over current antiplatelet drugs for atherothrombosis.
Collapse
Affiliation(s)
- Guanxing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Liang Hu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jian Zhang
- Department of Pathophysiology, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jianlin Qiao
- Department of Hematology, Blood Disease Institute, Xuzhou Medical University, Xuzhou 221004, China
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Hu Hu
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Zhongren Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
23
|
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13:120. [PMID: 32887634 PMCID: PMC7471641 DOI: 10.1186/s13045-020-00954-7] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.
Collapse
Affiliation(s)
- Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yangyang Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haishan Li
- Department of Emergency, Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengduan Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jianzeng Dong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongren Ding
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
25
|
Bertović I, Kurelić R, Milošević I, Bender M, Krauss M, Haucke V, Jurak Begonja A. Vps34 derived phosphatidylinositol 3-monophosphate modulates megakaryocyte maturation and proplatelet production through late endosomes/lysosomes. J Thromb Haemost 2020; 18:1756-1772. [PMID: 32056354 DOI: 10.1111/jth.14764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Development of platelet precursor cells, megakaryocytes (MKs), implies an increase in their size; formation of the elaborate demarcation membrane system (DMS); and extension of branched cytoplasmic structures, proplatelets, that will release platelets. The membrane source(s) for MK expansion and proplatelet formation have remained elusive. OBJECTIVE We hypothesized that traffic of membranes regulated by phosphatidylinositol 3-monophosphate (PI3P) contributes to MK maturation and proplatelet formation. RESULTS In immature MKs, PI3P produced by the lipid kinase Vps34 is confined to perinuclear early endosomes (EE), while in mature MKs PI3P shifts to late endosomes and lysosomes (LE/Lys). PI3P partially colocalized with the plasma membrane marker phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) and with LE/Lys in mature MKs, suggests that PI3P-containing LE/Lys membranes contribute to MK expansion and proplatelet formation. Consistently, we found that sequestration of PI3P, specific pharmacological inhibition of Vps34-mediated PI3P production, or depletion of PI3P by PI3-phosphatase (MTM1)-mediated hydrolysis potently blocked proplatelet formation. Moreover, Vps34 inhibition led to the intracellular accumulation of enlarged LE/Lys, and decreased expression of surface LE/Lys markers. Inhibiting Vps34 at earlier MK stages caused aberrant DMS development. Finally, inhibition of LE/Lys membrane fusion by a dominant negative mutant of the small GTPase Rab7 or pharmacological inhibition of PI3P conversion into PI(3,5)P2 led to enlarged LE/Lys, reduced surface levels of LE/Lys markers, and decreased proplatelet formation. CONCLUSION Our results suggest that PI3P-positive LE/Lys contribute to the membrane growth and proplatelet formation in MKs by their translocation to the cell periphery and fusion with the plasma membrane.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Roberta Kurelić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ira Milošević
- European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital, and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | |
Collapse
|
26
|
Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice. Blood Adv 2020; 3:1272-1284. [PMID: 30995985 DOI: 10.1182/bloodadvances.2018025569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Deficiency of the Nox2 (gp91phox) catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a genetic cause of X-linked chronic granulomatous disease, a condition in which patients are prone to infection resulting from the loss of oxidant production by neutrophils. Some studies have suggested a role for superoxide derived from Nox2 NADPH oxidase in platelet activation and thrombosis, but data are conflicting. Using a rigorous and comprehensive approach, we tested the hypothesis that genetic deficiency of Nox2 attenuates platelet activation and arterial thrombosis. Our study was designed to test the genotype differences within male and female mice. Using chloromethyl-dichlorodihydrofluorescein diacetate, a fluorescent dye, as well as high-performance liquid chromatography analysis with dihydroethidium as a probe to detect intracellular reactive oxygen species (ROS), we observed no genotype differences in ROS levels in platelets. Similarly, there were no genotype-dependent differences in levels of mitochondrial ROS. In addition, we did not observe any genotype-associated differences in platelet activation, adhesion, secretion, or aggregation in male or female mice. Platelets from chronic granulomatous disease patients exhibited similar adhesion and aggregation responses as platelets from healthy subjects. Susceptibility to carotid artery thrombosis in a photochemical injury model was similar in wild-type and Nox2-deficient male or female mice. Our findings indicate that Nox2 NADPH oxidase is not an essential source of platelet ROS or a mediator of platelet activation or arterial thrombosis in large vessels, such as the carotid artery.
Collapse
|
27
|
El Alaoui MZ, Guy A, Khalki L, Limami Y, Benomar A, Zaid N, Cherrah Y, Mekhfi H, Cadi R, Zaid Y. [Current antiplatelet agents, new inhibitors and therapeutic targets]. Med Sci (Paris) 2020; 36:348-357. [PMID: 32356711 DOI: 10.1051/medsci/2020061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases are the leading cause of deaths in the world. Platelets play a major role in the occurrence of these diseases and the development of antiplatelet drugs is a priority in the fight against cardiovascular diseases-associated mortality. Aspirin and thienopyridine-based P2Y12 inhibitors are the main drugs currently used. These molecules target the initiation of platelets activation and are responsible for a moderate inhibitory action. Other antiplatelet agents, as glycoprotein (GP) IIb/IIIa antagonists, inhibit platelet aggregation independently of initial activation-associated pathways, but are responsible for increased hemorrhagic events. Regarding each antiplatelet agent's specific characteristics, the prescription of these drugs must take into account the type of cardiovascular event, the age of the patient, the past medical history, and the potential hemorrhagic adverse events. Thus, there is a need for the development of new molecules with a more targeted effect, maintaining optimal efficiency but with a reduction of the hemorrhagic risk, which is the principal limitation of these treatments.
Collapse
Affiliation(s)
| | - Alexandre Guy
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Maroc
| | - Loubna Khalki
- Research Center of Mohammed VI University of Health Sciences, Casablanca, Maroc
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Ali Benomar
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Maroc
| | - Yahia Cherrah
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Hassan Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, Oujda, Maroc
| | - Rachida Cadi
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Maroc
| | - Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc - Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Maroc
| |
Collapse
|
28
|
Valet C, Levade M, Bellio M, Caux M, Payrastre B, Severin S. Phosphatidylinositol 3-monophosphate: A novel actor in thrombopoiesis and thrombosis. Res Pract Thromb Haemost 2020; 4:491-499. [PMID: 32548550 PMCID: PMC7292656 DOI: 10.1002/rth2.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Phosphoinositides are lipid second messengers regulating in time and place the formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking, and cytoskeleton/membrane dynamics. One of these lipids, phosphatidylinositol 3 monophosphate (PtdIns3P), is present in small amounts in mammalian cells and is involved in the control of endocytic/endosomal trafficking and in autophagy. Its metabolism is finely regulated by specific kinases and phosphatases including class II phosphoinositide 3-kinases (PI3KC2s) and the class III PI3K, Vps34. Recently, PtdIns3P has emerged as an important regulator of megakaryocyte/platelet structure and functions. Here, we summarize the current knowledge in the role of different pools of PtdIns3P regulated by class II and III PI3Ks in platelet production and thrombosis. Potential new antithrombotic therapeutic perspectives based on the use of inhibitors targeting specifically PtdIns3P-metabolizing enzymes will also be discussed. Finally, we provide report of new research in this area presented at the International Society of Thrombosis and Haemostasis 2019 Annual Congress.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Levade
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Bellio
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Manuella Caux
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Bernard Payrastre
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
- Hematology LaboratoryToulouse University HospitalToulouseFrance
| | - Sonia Severin
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| |
Collapse
|
29
|
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci 2020; 21:E1918. [PMID: 32168908 PMCID: PMC7139897 DOI: 10.3390/ijms21061918] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.
Collapse
Affiliation(s)
- Clemens Gutmann
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK;
| | - Richard Siow
- Vascular Biology & Inflammation Section, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, SE1 9NH, UK;
| | - Adam M. Gwozdz
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Prakash Saha
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Alberto Smith
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| |
Collapse
|
30
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Tang H, Gao M, Fu Y, Gui R, Ma X. The Effect of Autophagic Activity on the Function of Apheresis Platelets and on the Efficacy of Clinical Platelet Transfusion. Transfus Med Hemother 2020; 47:302-313. [PMID: 32884503 DOI: 10.1159/000504764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Platelet activation and survival jointly determine the efficacy of clinical platelet transfusion. This study aimed to discuss the effect of autophagic activity on activation and aggregation of apheresis platelets and on the efficacy of clinical platelet transfusion. In this study, we investigated the effects of autophagic activity of apheresis platelets for different blood types and after different storage durations on platelet activation and aggregation functions. By Western blot, immunofluorescence, and RT-qPCR detection, we found that with the prolongation of the storage duration, the expressions of both autophagy-related proteins and genes were upregulated in apheresis platelets and their expressions were insignificantly higher in the apheresis platelets of type A and O blood than in those of type B and type AB blood. After RAPA/IGF-1 pretreatment, there was a significant increase/reduction in autophagic activity. After RAPA and IGF-1 pretreatment, an opposite variation trend was observed with platelet activation and aggregation. Autophagic activity of platelets correlated negatively with the efficacy of clinical platelet transfusion. These research findings provide a theoretical basis for effective clinical platelet transfusion.
Collapse
Affiliation(s)
- Hao Tang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianjun Ma
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
32
|
Bellio M, Caux M, Vauclard A, Chicanne G, Gratacap MP, Terrisse AD, Severin S, Payrastre B. Phosphatidylinositol 3 monophosphate metabolizing enzymes in blood platelet production and in thrombosis. Adv Biol Regul 2019; 75:100664. [PMID: 31604685 DOI: 10.1016/j.jbior.2019.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023]
Abstract
Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, β and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.
Collapse
Affiliation(s)
- Marie Bellio
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Manuella Caux
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alicia Vauclard
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Gaëtan Chicanne
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marie-Pierre Gratacap
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Anne-Dominique Terrisse
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sonia Severin
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Laboratoire d'Hématologie, Hopital Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
33
|
Luo XL, Jiang JY, Huang Z, Chen LX. Autophagic regulation of platelet biology. J Cell Physiol 2019; 234:14483-14488. [PMID: 30714132 DOI: 10.1002/jcp.28243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Platelets, developed from megakaryocytes, are characterized by anucleate and short-life span hemocyte in mammal vessel. Platelets are very important in the cardiovascular system. Studies indicate the occurrence of autophagy platelets and megakaryocytes. Moreover, abnormal autophagy decreases the number of platelets and suppresses platelet aggregation. In addition, mitophagy, as a kind of selective autophagy, could inhibit platelet aggregation under oxidative stress or hypoxic, whereas promote platelet aggregation after reperfusion. Finally, autophagy regulates hemorrhagic and thrombosis diseases by influencing the number and function of platelets. In this paper, the role of autophagy in platelets and megakaryocytes, as well as coupled with the promotive or inhibitory role of hemorrhagic and thrombosis diseases are elucidated. Therefore, autophagy may be a potentially therapeutic target in modulating the platelet-related diseases.
Collapse
Affiliation(s)
- Xu-Ling Luo
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jin-Yong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lin-Xi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
34
|
Zhang W, Ma Q, Siraj S, Ney PA, Liu J, Liao X, Yuan Y, Li W, Liu L, Chen Q. Nix-mediated mitophagy regulates platelet activation and life span. Blood Adv 2019; 3:2342-2354. [PMID: 31391167 PMCID: PMC6693007 DOI: 10.1182/bloodadvances.2019032334] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/14/2019] [Indexed: 01/17/2023] Open
Abstract
Platelet activation requires fully functional mitochondria, which provide a vital energy source and control the life span of platelets. Previous reports have shown that both general autophagy and selective mitophagy are critical for platelet function. However, the underlying mechanisms remain incompletely understood. Here, we show that Nix, a previously characterized mitophagy receptor that plays a role in red blood cell maturation, also mediates mitophagy in platelets. Genetic ablation of Nix impairs mitochondrial quality, platelet activation, and FeCl3-induced carotid arterial thrombosis without affecting the expression of platelet glycoproteins (GPs) such as GPIb, GPVI, and αIIbβ3 Metabolic analysis revealed decreased mitochondrial membrane potential, enhanced mitochondrial reactive oxygen species level, diminished oxygen consumption rate, and compromised adenosine triphosphate production in Nix -/- platelets. Transplantation of wild-type (WT) bone marrow cells or transfusion of WT platelets into Nix-deficient mice rescued defects in platelet function and thrombosis, suggesting a platelet-autonomous role (acting on platelets, but not other cells) of Nix in platelet activation. Interestingly, loss of Nix increases the life span of platelets in vivo, likely through preventing autophagic degradation of the mitochondrial protein Bcl-xL. Collectively, our findings reveal a novel mechanistic link between Nix-mediated mitophagy, platelet life span, and platelet physiopathology. Our work suggests that targeting platelet mitophagy Nix might provide new antithrombotic strategies.
Collapse
Affiliation(s)
- Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Ma
- State Key Laboratory of Membrane Biology and
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Sami Siraj
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Paul A Ney
- Department of Cell and Molecular Biology and
- Lindsley Kimball Research Institute, New York Blood Center, New York, NY
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, Shanghai, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects and
- MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital/Capital Medical University/National Center for Children's Health, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China; and
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects and
- MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital/Capital Medical University/National Center for Children's Health, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China; and
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
36
|
Wang M, Hao H, Leeper NJ, Zhu L. Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol 2019; 38:e90-e95. [PMID: 29793992 DOI: 10.1161/atvbaha.118.310367] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.) .,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Huifeng Hao
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | | - Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | |
Collapse
|
37
|
Grover SP, Bergmeier W, Mackman N. Platelet Signaling Pathways and New Inhibitors. Arterioscler Thromb Vasc Biol 2019; 38:e28-e35. [PMID: 29563117 DOI: 10.1161/atvbaha.118.310224] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill
| | - Wolfgang Bergmeier
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill.
| |
Collapse
|
38
|
Banerjee M, Huang Y, Ouseph MM, Joshi S, Pokrovskaya I, Storrie B, Zhang J, Whiteheart SW, Wang QJ. Autophagy in Platelets. Methods Mol Biol 2019; 1880:511-528. [PMID: 30610718 DOI: 10.1007/978-1-4939-8873-0_32] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anucleate platelets are produced by fragmentation of megakaryocytes. Platelets circulate in the bloodstream for a finite period: upon vessel injury, they are activated to participate in hemostasis; upon senescence, unused platelets are cleared. Platelet hypofunction leads to bleeding. Conversely, pathogenic platelet activation leads to occlusive events that precipitate strokes and heart attacks. Recently, we and others have shown that autophagy occurs in platelets and is important for platelet production and normal functions including hemostasis and thrombosis. Due to the unique properties of platelets, such as their lack of nuclei and their propensity for activation, methods for studying platelet autophagy must be specifically tailored. Here, we describe useful methods for examining autophagy in both human and mouse platelets.
Collapse
Affiliation(s)
- Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yunjie Huang
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Irina Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinchao Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
39
|
Maffei A, Lembo G, Carnevale D. PI3Kinases in Diabetes Mellitus and Its Related Complications. Int J Mol Sci 2018; 19:ijms19124098. [PMID: 30567315 PMCID: PMC6321267 DOI: 10.3390/ijms19124098] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that phosphoinositide 3-kinases (PI3Ks) have become the target of many pharmacological treatments, both in clinical trials and in clinical practice. PI3Ks play an important role in glucose regulation, and this suggests their possible involvement in the onset of diabetes mellitus. In this review, we gather our knowledge regarding the effects of PI3K isoforms on glucose regulation in several organs and on the most clinically-relevant complications of diabetes mellitus, such as cardiomyopathy, vasculopathy, nephropathy, and neurological disease. For instance, PI3K α has been proven to be protective against diabetes-induced heart failure, while PI3K γ inhibition is protective against the disease onset. In vessels, PI3K γ can generate oxidative stress, while PI3K β inhibition is anti-thrombotic. Finally, we describe the role of PI3Ks in Alzheimer’s disease and ADHD, discussing the relevance for diabetic patients. Given the high prevalence of diabetes mellitus, the multiple effects here described should be taken into account for the development and validation of drugs acting on PI3Ks.
Collapse
Affiliation(s)
- Angelo Maffei
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
40
|
Sevoflurane prevents hypoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibiting PI3KC3-mediated autophagy. Hum Cell 2018; 32:150-159. [DOI: 10.1007/s13577-018-00230-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022]
|
41
|
Selvadurai MV, Brazilek RJ, Moon MJ, Rinckel J, Eckly A, Gachet C, Meikle PJ, Nandurkar HH, Nesbitt WS, Hamilton JR. The
PI
3‐kinase
PI
3
KC
2α regulates mouse platelet membrane structure and function independently of membrane lipid composition. FEBS Lett 2018; 593:88-96. [DOI: 10.1002/1873-3468.13295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Rose J. Brazilek
- Australian Centre for Blood Diseases Monash University Melbourne Australia
| | - Mitchell J. Moon
- Australian Centre for Blood Diseases Monash University Melbourne Australia
| | | | - Anita Eckly
- INSERM EFS GEST BPPS UMR_S1225 FMTS Université de Strasbourg France
| | - Christian Gachet
- INSERM EFS GEST BPPS UMR_S1225 FMTS Université de Strasbourg France
| | - Peter J. Meikle
- Metabolomics Laboratory Baker IDI Heart and Diabetes Institute Melbourne Australia
| | | | - Warwick S. Nesbitt
- Australian Centre for Blood Diseases Monash University Melbourne Australia
- Microplatforms Research Group School of Engineering RMIT University Melbourne Australia
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases Monash University Melbourne Australia
| |
Collapse
|
42
|
Lopes Pires ME, Antunes Naime AC, Oliveira JGF, Anhe GF, Garraud O, Cognasse F, Antunes E, Marcondes S. Signalling pathways involved in p47 phox -dependent reactive oxygen species in platelets of endotoxemic rats. Basic Clin Pharmacol Toxicol 2018; 124:394-403. [PMID: 30318767 DOI: 10.1111/bcpt.13148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Thrombocytopenia during sepsis is associated with a less favourable clinical outcome. Overproduction of reactive oxygen species (ROS) by different cell types contributes to sepsis. Platelets generate ROS, but the upstream pathways of NADPH oxidase activation are not completely understood. Here, we designed experiments in washed platelets from lipopolysaccharide (LPS)-treated rats to investigate the p47phox activation and ROS generation, and its modulation by c-Src family kinase (c-Src), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC) and protein kinase G (PKG). Rats were injected intraperitoneally with LPS (1 mg/kg), and at 48 hours thereafter, arterial blood was collected and washed platelets were obtained. Washed platelets were pre-incubated with different inhibitors and subsequently activated or not with ADP. Flow cytometry, Western blotting and ELISA were performed. We found that LPS significantly increased the p47phox phosphorylation and ROS generation compared with the control group (P < 0.05). The enhanced ROS production in the LPS group was unaffected by the non-selective SFKs inhibitor PP2, the PI3K inhibitor wortmannin or the Akt inhibitor PPI-1. The cyclic GMP levels were 115% higher in activated platelets of LPS compared with the saline group (P < 0.05). Moreover, in the LPS group, the sGC inhibitor ODQ, the PKG inhibitor Rp-8-Br and the PKC inhibitor GF109203X abrogated the increased p47phox phosphorylation and reduced the ROS levels. In conclusion, selective inhibitors of cGMP-PKG and PKC-p47phox pathways that regulate ROS generation by LPS in platelets may help control the redox balance in sepsis improving the survival of patients.
Collapse
Affiliation(s)
- Maria E Lopes Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana C Antunes Naime
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jessica G F Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriel F Anhe
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Oliver Garraud
- GIMAP-EA3064, Université de Lyon, Saint Etienne, France.,Etablissement Français du Sang (EFS) Rhône-Alpes-Auvergne, Saint-Etienne, France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint Etienne, France.,Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
43
|
Akbar H, Duan X, Piatt R, Saleem S, Davis AK, Tandon NN, Bergmeier W, Zheng Y. Small molecule targeting the Rac1-NOX2 interaction prevents collagen-related peptide and thrombin-induced reactive oxygen species generation and platelet activation. J Thromb Haemost 2018; 16:2083-2096. [PMID: 30007118 PMCID: PMC6472274 DOI: 10.1111/jth.14240] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/29/2022]
Abstract
Essentials Reactive oxygen species (ROS) generation by NOX2 plays a critical role in platelet activation. Rac1 regulation of NOX2 is important for ROS generation. Small molecule inhibitor of the Rac1-p67phox interaction prevents platelet activation. Pharmacologic targeting of Rac1-NOX2 axis can be a viable approach for antithrombotic therapy. SUMMARY Background Platelets from patients with X-linked chronic granulomatous disease or mice deficient in nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase isoform NOX2 exhibit diminished reactive oxygen species (ROS) generation and platelet activation. Binding of Rac1 GTPase to p67phox plays a critical role in NOX2 activation by facilitating the assembly of the NOX2 enzyme complex. Objective We tested the hypothesis that Phox-I, a rationally designed small molecule inhibitor of Rac-p67phox interaction, may serve as an antithrombosis agent by suppressing ROS production and platelet activation. Results Collagen-related peptide (CRP) induced ROS generation in a time-dependent manner. Platelets from Rac1-/- mice or human platelets treated with NSC23766, a specific Rac inhibitor, produced significantly less ROS in response to CRP. Treatment of platelets with Phox-I inhibited diverse CRP-induced responses, including: (i) ROS generation; (ii) release of P-selectin; (iii) secretion of ATP; (iv) platelet aggregation; and (v) phosphorylation of Akt. Similarly, incubation of platelets with Phox-I inhibited thrombin-induced: (i) secretion of ATP; (ii) platelet aggregation; (iii) rise in cytosolic calcium; and (iv) phosphorylation of Akt. In mouse models, intraperitoneal administration of Phox-I inhibited: (i) collagen-induced platelet aggregation without affecting the tail bleeding time and (ii) in vivo platelet adhesion/accumulation at the laser injury sites on the saphenous vein without affecting the time for complete cessation of blood loss. Conclusions Small molecule targeting of the Rac1-p67phox interaction may present an antithrombosis regimen by preventing GPVI- and non-GPVI-mediated NOX2 activation, ROS generation and platelet function without affecting the bleeding time.
Collapse
Affiliation(s)
- H Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - X Duan
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - R Piatt
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - S Saleem
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - A K Davis
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - W Bergmeier
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Y Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
44
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Sonkar VK, Lentz SR, Dayal S. Letter by Sonkar et al Regarding Article, "Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase". Arterioscler Thromb Vasc Biol 2018; 38:e25. [PMID: 29467222 DOI: 10.1161/atvbaha.117.310686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vijay K Sonkar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City
| | - Steven R Lentz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
46
|
Liu Y, Hu H. Response by Liu and Hu to Letter Regarding Article, "Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase". Arterioscler Thromb Vasc Biol 2018; 38:e26-e27. [PMID: 29467223 DOI: 10.1161/atvbaha.118.310712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yangyang Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|