1
|
Costa-Beber LC, Dantas RM, Peres AM, Obelar Ramos JM, Farias HR, Santos Silva Bast RK, Custódio de Souza IC, Gioda A, de Oliveira J, Costa Rodrigues Guma FT. The effects of direct and macrophage-mediated exposure to aqueous fine particulate matter on vascular endothelial dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126407. [PMID: 40348271 DOI: 10.1016/j.envpol.2025.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fine particulate matter (PM2.5) is an independent risk factor for vascular diseases. In this context, activated macrophages release inflammatory molecules that can contribute to endothelial dysfunction. While the effects of PM2.5's solid fraction on vascular endothelial cells are well-documented, the effect of its polar compounds circulating in the bloodstream remains unclear. In this study, we examined the effects of direct and indirect (macrophage-mediated) exposure to aqueous PM2.5 on the endothelium. CF-1 mice received intranasal instillations of PM2.5 (30 μg in 10 μL) or saline, 5 days per week for two weeks. These animals exhibited considerable endothelial dysfunction linked to oxidative stress. Similarly, macrophages (RAW264.7 lineage) exposed to aqueous PM2.5 (10-fold dilution) exhibited oxidative stress and inflammation, indicating that their reactive phenotype may contribute to the outcomes observed in vivo. Interestingly, their conditioned medium (10 % v/v) enhanced endothelial cell function (EOMA lineage) by reducing reactive oxygen species (ROS) production and promoting an endothelial nitric oxide synthase (eNOS)-dependent increase in nitrite levels, with the exact opposite effect observed in cells directly exposed to aqueous PM2.5. These findings suggest that the macrophage secretome, rather than residual metals, may be responsible for these effects. Consistent with these findings, incubation with the animals' plasma (1 % v/v) also stimulated nitrite production. Additionally, caveolin-1, a key mediator of vesicle uptake, was overexpressed in endothelial cells exposed to conditioned medium, suggesting its involvement in monocyte-endothelium crosstalk. Finally, our results indicated that the macrophage secretome might serve as a mild stimulus, activating protective mechanisms in endothelial cells, whereas direct exposure to aqueous PM2.5 induces dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ricardo Maia Dantas
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ariadni Mesquita Peres
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hémelin Resende Farias
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Jade de Oliveira
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
2
|
Gomez-Delgado F, Raya-Cruz M, Romero-Cabrera JL, Perez-Martinez P. Environmental pollution and cardiovascular health. Challenges and new perspectives. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025:500802. [PMID: 40345876 DOI: 10.1016/j.arteri.2025.500802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
Environmental pollution is a key factor in cardiovascular disease (CVD) development. Several evidences support its impact at the pathophysiology of arteriosclerosis, highlighting the role of the "exposome", a concept that encompasses all environmental factors such as air pollution, water pollution, climate change and noise and light pollution. These factors are associated with an increased risk of ischemic heart disease (IHD), stroke, high blood pressure (HBP), heart failure (HF) and atrial fibrillation (AF). Currently, air pollution is the main environmental factor related to CVD. Components such as particulates matter (PM0.1, PM2.5, PM10), sulfur dioxide (SO2), nitrogen oxide and dioxide (NOx), carbon monoxide (CO) and ozone (O3) have a high capacity to penetrate the body and trigger both local and systemic inflammatory processes. These effects promote a proinflammatory, procoagulant state and an increase in oxidative stress. Similarly, aquatic pollution exposes the body to pollutants such as heavy metals, pesticides and microplastics, both through direct contact and via the food chain, thus contributing to the phenomena mentioned above. On the other hand, factors such as noise and light pollution, together with effects caused from climate change (extreme temperatures, wildfires, desertification, among others), have been closely linked to pathophysiological processes that favour the development and progression of atherosclerosis. These mechanisms include sympathetic nervous system (SNS) activation, stress hormones release such as cortisol and catecholamines, as well as chronodisruption. This review analyses the role of factors related to the exposome (air pollution, water pollution, noise and light pollution and phenomena associated with climate change) in atherosclerosis progression, as well as their involvement in the incidence, prevalence and prognosis of CVD. Physicians should promote awareness of environmental pollution impact on cardiovascular health, integrating the assessment of environmental factors into their clinical practice, advocating for sustainable policies to prevent diseases and protect present and future health.
Collapse
Affiliation(s)
- Francisco Gomez-Delgado
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Jaén, Jaén, España; Grupo CTS-990 del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Universidad de Jaén, Jaén, España
| | - Manuel Raya-Cruz
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Jaén, Jaén, España; Grupo CTS-990 del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Universidad de Jaén, Jaén, España
| | - Juan L Romero-Cabrera
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/IMIBIC, Córdoba, España; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/IMIBIC, Córdoba, España; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
3
|
He Y, Zhang Q, Zhou T, Lan Y. Global, Regional, and National Burden of Cardiovascular Diseases Associated with Particulate Matter Pollution: A Systematic Analysis of Deaths and Disability-Adjusted Life Years with Projections to 2030. Rev Cardiovasc Med 2025; 26:27056. [PMID: 40351694 PMCID: PMC12059744 DOI: 10.31083/rcm27056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 05/14/2025] Open
Abstract
Background This research assesses how fine particulate matter (PM2.5) pollution influences cardiovascular diseases (CVDs) globally. Methods Utilizing data from the 2021 Global Burden of Disease (GBD) study, we assessed the impact of PM2.5 pollution on CVDs in individuals aged 25 and older. The health burden was quantified using measures such as disability-adjusted life years (DALYs), age-standardized rates (ASRs), and the effective annual percentage change (EAPC). Joinpoint regression models were used to describe the temporal trends of CVD burdens, while the Bayesian age-period-cohort (BAPC) models were employed to project the CVD burdens through 2030. Frontier analysis was conducted to identify potential areas for improvement and gaps between the development statuses of different countries. Decomposition analysis was applied to assess the impact of population growth, aging, and epidemiological changes on the burden of CVDs. Results Despite a decline in ASRs for both sexes, males continued to bear a disproportionate burden of CVDs. While substantial reductions in ASRs have been noted in Western Europe and High-income North America, smaller decreases in the EAPC have been seen in South Asia, Oceania, and Western Sub-Saharan Africa; however, Oceania faces the highest mortality burden. An inverse relationship between the sociodemographic index (SDI) and ASRs is evident nationally. Meanwhile, Afghanistan and Egypt reported elevated ASRs, and Iceland recorded the lowest rate. Projections suggest a potential reversal in ASRs by 2021. A decomposition analysis revealed that intracerebral hemorrhage poses the greatest burden in middle SDI regions, while ischemic heart disease is notably burdensome in high SDI and high-middle SDI regions. Conclusions This study highlights the disproportionate burden of CVDs associated with PM2.5 pollution, particularly in males and lower SDI regions, with significant regional disparities and projections indicating potential reversals in trends.
Collapse
Affiliation(s)
- Yi He
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, 400038 Chongqing, China
| | - Qiongyue Zhang
- Department of Nephrology, Daping Hospital, Army Medical Center, Third Military Medical University (Army Medical University), 400042 Chongqing, China
| | - Ting Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, 400038 Chongqing, China
| | - Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, 610081 Chengdu, Sichuan, China
| |
Collapse
|
4
|
Moreira RP, da Silva CBC, de Sousa TC, Leitão FLBF, Morais HCC, de Oliveira ASS, Duarte-Clíments G, Gómez MBS, Cavalcante TF, Costa AC. The Influence of Climate, Atmospheric Pollution, and Natural Disasters on Cardiovascular Diseases and Diabetes Mellitus in Drylands: A Scoping Review. Public Health Rev 2024; 45:1607300. [PMID: 39176255 PMCID: PMC11338784 DOI: 10.3389/phrs.2024.1607300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives In the face of escalating global aridification, this study examines the complex relationship between climate variability, air pollution, natural disasters, and the prevalence of cardiovascular disease (CVD) and diabetes mellitus (DM) in arid regions. Methods The study conducted a scoping review of multiple databases using JBI guidelines and included 74 studies. Results The results show that acute myocardial infarction (n = 20) and stroke (n = 13) are the primary CVDs affected by these factors, particularly affecting older adults (n = 34) and persons with hypertension (n = 3). Elevated air temperature and heat waves emerge as critical risk factors for CVD, exacerbating various cardiovascular mechanisms. Atmospheric pollutants and natural disasters increase this risk. Indirect effects of disasters amplify risk factors such as socioeconomic vulnerability (n = 4), inadequate medical care (n = 3), stress (n = 3), and poor diet (n = 2), increasing CVD and DM risk. Conclusion The study underscores the need for nations to adhere to the Paris Agreement, advocating for reduced air pollutants, resilient environments, and collaborative, multidisciplinary research to develop targeted health interventions to mitigate the adverse effects of climate, pollution, and natural disasters.
Collapse
Affiliation(s)
- Rafaella Pessoa Moreira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Clara Beatriz Costa da Silva
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Tainara Chagas de Sousa
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | | | | | | | - Gonzalo Duarte-Clíments
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- School of Nursing, Valencian International University, Castelló de la Plana, Spain
| | - María Begoña Sánchez Gómez
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- Department of Nursing, UCAM Catholic University of Murcia, Guadalupe, Spain
| | - Tahissa Frota Cavalcante
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Alexandre Cunha Costa
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
5
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G. Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Vitucci ECM, Simmons AE, Martin EM, McCullough SD. Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure. Part Fibre Toxicol 2024; 21:15. [PMID: 38468337 PMCID: PMC10926573 DOI: 10.1186/s12989-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alysha E Simmons
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shaun D McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA.
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Liu W, Wang Z, Gu Y, So HS, Kook SH, Park Y, Kim SH. Effects of short-term exercise and endurance training on skeletal muscle mitochondria damage induced by particular matter, atmospherically relevant artificial PM2.5. Front Public Health 2024; 12:1302175. [PMID: 38481847 PMCID: PMC10933037 DOI: 10.3389/fpubh.2024.1302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/19/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.
Collapse
Affiliation(s)
- Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yu Gu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Fawzy A, Woo H, Raju S, Belz DC, Putcha N, Williams MS, McCormack MC, Kohler K, Hansel NN. Indoor particulate matter concentrations and air cleaner intervention association with biomarkers in former smokers with COPD. ENVIRONMENTAL RESEARCH 2024; 243:117874. [PMID: 38070852 PMCID: PMC10872275 DOI: 10.1016/j.envres.2023.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Indoor pollutants have been associated with worse clinical outcomes in chronic obstructive pulmonary disease (COPD). Elevated biomarkers are associated with ambient pollution exposure, however the association with indoor pollution remains unclear. METHODS Former smokers with spirometry-confirmed COPD were randomized to portable air cleaner or placebo. Indoor particulate matter (PM2.5, PM10, and ultrafine particles [UFP; PM<0.1]) and biomarkers were measured longitudinally at pre-specified intervals and course PM fraction (PM10-2.5) was calculated. Biomarkers were categorized based on associations with biologic mechanisms: inflammation (white blood cell count, interleukin [IL]-6, IL-8, IL-1β, tumor necrosis factor-α, interferon-γ, serum amyloid A), platelet activation (P-selectin, CD40 ligand [CD40L], 11-dehdydro-thromboxane-B2 [11dTxB2]), endothelial dysfunction (Vascular Cell Adhesion Molecule [VCAM]-1, Intercellular Adhesion Molecule [ICAM]-1), and oxidative stress (thiobarbituric acid reactive substances [TBARS], 8-hydroxydeoxyguanosine, 8-isoprostane). Associations between PM concentrations and each biomarker were analyzed using multivariable linear mixed models. An intention-to-treat analysis was performed to evaluate the air cleaner intervention on the biomarker levels longitudinally. RESULTS Fifty-eight participants were randomized to each group. Finer PM was more strongly associated with higher IL-8 (mean difference per doubling: UFP 13.9% [p = 0.02], PM2.5 6.8% [p = 0.002], PM10-2.5 5.0% [p = 0.02]) while interferon-γ was associated with UFP and IL-1β with PM10-2.5. UFP and PM2.5 were associated with elevated levels of the oxidative stress biomarkers TBARS and 8-isoprostane respectively. For platelet activation markers, UFP was associated with higher 11dTxB2 while PM2.5 was associated with higher P-selectin and CD40L. Pollutants were not associated with biomarkers of endothelial dysfunction. In intention-to-treat analysis there was no association of the air cleaner intervention with any of the biomarkers. DISCUSSION Among former smokers with COPD, elevated levels of indoor air pollutants, particularly ultrafine particles (PM<0.1), were associated with elevated biomarkers of inflammation, platelet activation, and oxidative stress. However, an air cleaner intervention that reduced PM did not significantly reduce biomarker levels.
Collapse
Affiliation(s)
- Ashraf Fawzy
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA.
| | - Han Woo
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Sarath Raju
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel C Belz
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | | | - Meredith C McCormack
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kirsten Kohler
- Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
10
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Vallée A. Sex Associations Between Air Pollution and Estimated Atherosclerotic Cardiovascular Disease Risk Determination. Int J Public Health 2023; 68:1606328. [PMID: 37841972 PMCID: PMC10569126 DOI: 10.3389/ijph.2023.1606328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Objective: The purpose of this study was to investigate the sex correlations of particulate matters (PM2.5, PM10, PM2.5-10), NO2 and NOx with ASCVD risk in the UK Biobank population. Methods: Among 285,045 participants, pollutants were assessed and correlations between ASCVD risk were stratified by sex and estimated using multiple linear and logistic regressions adjusted for length of time at residence, education, income, physical activity, Townsend deprivation, alcohol, smocking pack years, BMI and rural/urban zone. Results: Males presented higher ASCVD risk than females (8.63% vs. 2.65%, p < 0.001). In males PM2.5, PM10, NO2, and NOx each were associated with an increased ASCVD risk >7.5% in the adjusted logistic models, with ORs [95% CI] for a 10 μg/m3 increase were 2.17 [1.87-2.52], 1.15 [1.06-1.24], 1.06 [1.04-1.08] and 1.05 [1.04-1.06], respectively. In females, the ORs for a 10 μg/m3 increase were 1.55 [1.19-2.05], 1.22 [1.06-1.42], 1.07 [1.03-1.10], and 1.04 [1.02-1.05], respectively. No association was observed in both sexes between ASCVD risk and PM2.5-10. Conclusion: Our findings may suggest the possible actions of air pollutants on ASCVD risk.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
13
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Lv S, Shi Y, Xue Y, Hu Y, Hu M, Li S, Xie W, Li Y, Ouyang Y, Li Z, Liu M, Wei J, Guo X, Liu X. Long-term effects of particulate matter on incident cardiovascular diseases in middle-aged and elder adults: The CHARLS cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115181. [PMID: 37393817 DOI: 10.1016/j.ecoenv.2023.115181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Although there is evidence of long-term effects of particulate matter (PM) on cardiovascular diseases (CVD), researches about long-term effects of PM1 on CVD are limited. We aimed to examine the long-term effects and magnitude of PM, especially PM1, on incident CVD in China. METHODS We included 6016 participants aged ≥ 45 years without CVD at baseline in 2011 from the China Health and Retirement Longitudinal Study. Personal PM (PM1, PM2.5, and PM10) concentrations were estimated using geocoded residential address. Generalized linear mixed models and SHapley Additive exPlanation were utilized to calculate the impacts and contributions of PM on CVD. Sensitivity analyses were used to check the robustness. RESULTS After a follow up of 4-year, 481 (7.99 %) participants developed CVD. Per 10 μg/m3 uptick in 1-year average concentrations of PM1, PM2.5 and PM10 was associated with a 1.20 [95 % confidence interval (CI): 1.05-1.37], 1.13 (95 % CI: 1.11-1.15), and 1.10 (95 % CI: 1.06-1.13) fold risk of incident CVD, respectively. The 2-year average concentrations of PM1, PM2.5 and PM10 were associated with incident CVD, corresponding to a 1.03 (95 % CI: 0.96-1.10), 1.11 (95 % CI: 1.02-1.21), and 1.09 (95 % CI: 1.03-1.15) fold risk, respectively. The SHapley Additive exPlanation values of PM1, PM2.5, and PM10 were 0.170, 0.153, and 0.053, respectively, corresponding to the first, second, and fifth among all air pollutants. Effects of PM1, PM2.5 and PM10 on CVD remained statistically significant in two-pollutant models. The elderly, males, smokers and alcohol drinkers tended to have slightly higher effects, while the differences were not statistically significant (all P-values > 0.05) between subgroups. CONCLUSION Long-term exposure to PM1, PM2.5, and PM10 was associated with an increased incidence of CVD. The smaller the particle size, the more important it was for incident CVD indicating that emphasis should be placed on small size of PM.
Collapse
Affiliation(s)
- Shiyun Lv
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yongxi Xue
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Meiling Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shuting Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenhan Xie
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuan Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yixin Ouyang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiwei Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China.
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| |
Collapse
|
15
|
Ribble A, Hellmann J, Conklin DJ, Bhatnagar A, Haberzettl P. Fine particulate matter (PM 2.5)-induced pulmonary oxidative stress contributes to increases in glucose intolerance and insulin resistance in a mouse model of circadian dyssynchrony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162934. [PMID: 36934930 PMCID: PMC10164116 DOI: 10.1016/j.scitotenv.2023.162934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.
Collapse
Affiliation(s)
- Amanda Ribble
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jason Hellmann
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Petra Haberzettl
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Pariona-Vargas F, Mun KT, Lo EH, Starkman S, Sanossian N, Hosseini MB, Stratton S, Eckstein M, Conwit RA, Liebeskind DS, Sharma LK, Rao NM, Shkirkova K, Avila G, Kim-Tenser MA, Saver JL. Circadian variation in stroke onset: Differences between ischemic and hemorrhagic stroke and weekdays versus weekends. J Stroke Cerebrovasc Dis 2023; 32:107106. [PMID: 37116446 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023] Open
Abstract
OBJECTIVES To delineate diurnal variation onset distinguishing ischemic from hemorrhagic stroke, wake from sleep onset, and weekdays from weekends/holidays. MATERIALS AND METHODS We analyzed patients enrolled in the FAST-MAG trial of field-initiated neuroprotective agent in patients with hyperacute stroke within 2h of symptoms onset. Stroke onset times were analyzed in 1h, 4h, and 12h time blocks throughout the 24h day-night cycle. Patient demographic, clinical features, stroke severity, and prehospital workflow were evaluated for association with onset times. RESULTS Among 1615 acute cerebrovascular disease patients, final diagnoses were acute cerebral ischemia in 76.5% and Intracerebral hemorrhage in 23.5%. Considering all acute cerebrovascular disease patients, frequency of wake onset times showed a bimodal pattern, with peaks on onsets at 09:00-13:59 and 17:00-18:59 and early morning (00:00-05:59) onset in only 3.8%. Circadian rhythmicity differed among stroke subtypes: in acute cerebral ischemia, a single broad plateau of elevated incidences was seen from 10:00-21:59; in Intracerebral hemorrhage, bimodal peaks occurred at 09:00 and 19:00. The ratio of Intracerebral hemorrhage to acute cerebral ischemia occurrence was highest in early morning, 02:00-06:59. Marked weekday vs weekends pattern variation was noted for acute cerebral ischemia, with a broad plateau between 09:00 and 21:59 on weekdays but a unimodal peak at 14:00-15:59 on weekends. CONCLUSIONS Wake onset of acute cerebrovascular disease showed a marked circadian variation, with distinctive patterns of a broad elevated plateau among acute cerebral ischemia patients; a bimodal peak among intracerebral hemorrhage patients; and a weekend change in acute cerebral ischemia pattern to a unimodal peak.
Collapse
Affiliation(s)
- Fatima Pariona-Vargas
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States.
| | - Katherine T Mun
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Eng H Lo
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States; Department of Radiology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Sidney Starkman
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Nerses Sanossian
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Mersedeh Bahr Hosseini
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Samuel Stratton
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Marc Eckstein
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Robin A Conwit
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States; Department of Neurology, Indiana University, United States
| | - David S Liebeskind
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Latisha K Sharma
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Neal M Rao
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Kristina Shkirkova
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Gilda Avila
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - May A Kim-Tenser
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Jeffrey L Saver
- Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
17
|
Kaumbekova S, Amouei Torkmahalleh M, Umezawa M, Wang Y, Shah D. Effect of carbonaceous ultrafine particles on the structure and oligomerization of Aβ 42 peptide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121273. [PMID: 36780974 DOI: 10.1016/j.envpol.2023.121273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The impact of pervasive air pollutants on human health is a growing concern in scientific communities. Among different air pollutants, ultrafine particles (UFPs; with aerodynamic diameter <100 nm) might pass through biological barriers and have a severe impact on human health, including early progression of neurodegenerative diseases such as Alzheimer's disease (AD). A significant fraction of UFPs consists of carbonaceous compounds, composed of elemental and organic carbon (EC and OC). While in-vivo experimental studies showed the neurotoxicity of typical OC and polycyclic aromatic hydrocarbons (PAHs), the molecular interactions involved in the progression of AD remain unclear. In this study, molecular dynamics simulations were performed to investigate the impact of carbonaceous UFPs on the structure of the Aβ42 monomer and the oligomerization of four Aβ42 peptides, associated with the development of AD. For the simulations, a fullerene (C60) was used for the modeling of EC, while benzo [a]pyrene (B[a]P) was used for the modeling of OC. The results revealed that the presence of C60 accelerated the tetramerization of Aβ42 peptides by 2.5 times, while C60/B[a]P promoted the unfolding of the peptide monomer showing the strongest interactions with the Aβ42 monomer. Similarly, C60/4B[a]P decreased the number of helices in the secondary structure of the peptide monomer by 60%. The simplified UFP models in this study, promoted the early aggregation of peptides to dimers, suggesting the progression of AD.
Collapse
Affiliation(s)
- Samal Kaumbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Yanwei Wang
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Dhawal Shah
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan.
| |
Collapse
|
18
|
Niu Z, Duan Z, Yu H, Xue L, Liu F, Yu D, Zhang K, Han D, Wen W, Xiang H, Qin W. Association between long-term exposure to ambient particulate matter and blood pressure, hypertension: an updated systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:268-283. [PMID: 34983264 DOI: 10.1080/09603123.2021.2022106] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Evidence of more recent studies should be updated to evaluate the effect of long-term exposure to particulate matter (PM) on blood pressure and hypertension. Studies of long-term effects of PM1, PM2.5 and PM10 on blood pressure (SBP, DBP, MAP), hypertension were searched in Pubmed, Web of Science and Embase before May, 2021. Meta-analysis of 41 studies showed that exposure to PM1, PM2.5 was associated with SBP (1.76 mmHg (95%CI:0.71, 2.80) and 0.63 mmHg (95%CI:0.40, 0.85), per 10 μg/m3 increase in PM), all three air pollutants (PM1, PM2.5, PM10) was associated with DBP (1.16 mmHg (95%CI:0.34, 1.99), 0.31 mmHg (95%CI:0.16, 0.47), 1.17 mmHg (95%CI:0.24, 2.09), respectively. As for hypertension, PM1, PM2.5 and PM10 were all significantly associated with higher risk of hypertension (OR=1.27 (95%CI:1.06, 1.52), 1.15 (95%CI:1.10, 1.20) and 1.11 (95%CI:1.07, 1.16). In conclusion, our study indicated a positive association between long-term exposure to particulate matter and increased blood pressure, hypertension.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Jiangxi, China
| | - Hongmei Yu
- Pukou District Center for Disease Control and Prevention, Nanjing, China
| | - Lina Xue
- Department of Medical Affairs, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Dong Yu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Kurlawala Z, Singh P, Hill BG, Haberzettl P. Fine Particulate Matter (PM2.5)-Induced Pulmonary Oxidative Stress Contributes to Changes in the Plasma Lipidome and Liver Transcriptome in Mice. Toxicol Sci 2023; 192:kfad020. [PMID: 36857595 PMCID: PMC10109534 DOI: 10.1093/toxsci/kfad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.
Collapse
Affiliation(s)
- Zimple Kurlawala
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Parul Singh
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Petra Haberzettl
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
20
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
21
|
Transplantation of Endothelial Progenitor Cells: Summary and prospect. Acta Histochem 2023; 125:151990. [PMID: 36587456 DOI: 10.1016/j.acthis.2022.151990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Endothelial Progenitor Cells (EPCs) are precursor cells of endothelial cells (ECs), which can differentiate into vascular ECs, protect from endothelial dysfunction and tissue ischemia, and reduce vascular hyperplasia. Due to these functions, EPCs are used as a candidate cell source for transplantation strategies. In recent years, a great progress was achieved in EPCs biology research, and EPCs transplantation has become a research hotspot. At present, transplanted EPCs have been used to treat ischemic diseases due to their powerful vasculogenesis and beneficial paracrine effects. Although EPCs transplantation has been proved to play an important role, the clinical application of EPCs still faces many challenges. This review briefly summarized the basic characteristics of EPCs, the process of EPCs transplantation promoting the healing of ischemic tissue, and the ways to improve the efficiency of EPCs transplantation. In addition, the application of EPCs in neurological improvement, cardiovascular and respiratory diseases and the challenges and problems in clinical application of EPCs were also discussed. In the end, the application of EPCs transplantation in regenerative medicine and tissue engineering was discussed.
Collapse
|
22
|
Fu C, Kuang D, Zhang H, Ren J, Chen J. Different components of air pollutants and neurological disorders. Front Public Health 2022; 10:959921. [PMID: 36518583 PMCID: PMC9742385 DOI: 10.3389/fpubh.2022.959921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
The harmful effects of air pollution can cause various diseases. Most research on the hazards of air pollution focuses on lung and cardiovascular diseases. In contrast, the impact of air pollution on neurological disorders is not widely recognized. Air pollution can cause various neurological conditions and diseases, such as neural inflammation, neurodegeneration, and cerebrovascular barrier disorder; however, the mechanisms underlying the neurological diseases induced by various components of air pollutants remain unclear. The present paper summarizes the effects of different components of air pollutants, including particulate matter, ozone, sulfur oxides, carbon oxides, nitrogen oxides, and heavy metals, on the nervous system and describes the impact of various air pollutants on neurological disorders, providing ideas for follow-up research.
Collapse
Affiliation(s)
- Chunlia Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Daibing Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - He Zhang
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinxin Ren
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
23
|
Bae HR, Chandy M, Aguilera J, Smith EM, Nadeau KC, Wu JC, Paik DT. Adverse effects of air pollution-derived fine particulate matter on cardiovascular homeostasis and disease. Trends Cardiovasc Med 2022; 32:487-498. [PMID: 34619335 PMCID: PMC9063923 DOI: 10.1016/j.tcm.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Air pollution is a rapidly growing major health concern around the world. Atmospheric particulate matter that has a diameter of less than 2.5 µm (PM2.5) refers to an air pollutant composed of particles and chemical compounds that originate from various sources. While epidemiological studies have established the association between PM2.5 exposure and cardiovascular diseases, the precise cellular and molecular mechanisms by which PM2.5 promotes cardiovascular complications are yet to be fully elucidated. In this review, we summarize the various sources of PM2.5, its components, and the concentrations of ambient PM2.5 in various settings. We discuss the experimental findings to date that evaluate the potential adverse effects of PM2.5 on cardiovascular homeostasis and function, and the possible therapeutic options that may alleviate PM2.5-driven cardiovascular damage.
Collapse
Affiliation(s)
- Hye Ryeong Bae
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eric M Smith
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Abstract
Air pollutants are a complex mixture of gaseous substances and particulate matter (PM). Each component potentially has specific harmful effects on human health, but several experimental and clinical studies have shown a strong impact of fine particles on major adverse cardiovascular events. Most of the available evidence concerns the effects of exposure to PM with a diameter of <2.5 µm (PM2.5) and the risk of developing coronary heart disease through inflammation and oxidative stress. While prolonged exposure to PM2.5 has been shown to be associated with the development of atherosclerosis and cardio-metabolic risk factors, short-term exposure has instead proved to be a trigger for acute coronary events, and especially in subjects with pre-existing coronary artery disease. As such, environmental PM2.5 is a major risk element for global public health. This underlines on the one hand not only the need to adopt and encourage preventive measures especially for individuals with a higher risk profile but also to practice environmental policies that are effective in promoting the reduction of exposure to pollutants.
Collapse
|
25
|
Gao X, Huang J, Cardenas A, Zhao Y, Sun Y, Wang J, Xue L, Baccarelli AA, Guo X, Zhang L, Wu S. Short-Term Exposure of PM 2.5 and Epigenetic Aging: A Quasi-Experimental Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14690-14700. [PMID: 36197060 DOI: 10.1021/acs.est.2c05534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epigenetic age (EA) is an emerging DNA methylation-based biomarker of biological aging, but whether EA is causally associated with short-term PM2.5 exposure remains unknown. We conducted a quasi-experimental study of 26 healthy adults to test whether short-term PM2.5 exposure accelerates seven EAs with three health examinations performed before, during, and after multiple PM2.5 pollution waves. Seven EAs were derived from the DNA methylation profiles of the Illumina HumanMethylationEPIC BeadChip from CD4+ T-helper cells. We found that an increase of 10 μg/m3 in the 0-24 h personal PM2.5 exposure prior to health examinations was associated with a 0.035, 0.035, 0.050, 0.055, 0.052, and 0.037-unit increase in the changes of z-scored DNA methylation age acceleration (AA,Horvath), AA (Hannum), AA (GrimAge), DunedinPoAm, mortality risk score (MS), and epiTOC, respectively (p-values < 0.05). The same increase in the 24-48 h average personal PM2.5 exposure yielded smaller effects but was still robustly associated with the changes in AA (GrimAge), DunedinPoAm, and MS. Such acute aging effects of PM2.5 were mediated by the changes in several circulating biomarkers, including EC-SOD and sCD40L, with up to ∼28% mediated proportions. Our findings demonstrated that short-term PM2.5 exposure could accelerate aging reflected by DNA methylation profiles via blood coagulation, oxidative stress, and systematic inflammation.
Collapse
Affiliation(s)
- Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, California94720, United States
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing100069, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Andrea A Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, New York10032, United States
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing100069, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi710061, China
| |
Collapse
|
26
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
27
|
Joshi SS, Miller MR, Newby DE. Air pollution and cardiovascular disease: the Paul Wood Lecture, British Cardiovascular Society 2021. Heart 2022; 108:1267-1273. [PMID: 35074847 DOI: 10.1136/heartjnl-2021-319844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022] Open
Abstract
Air pollution is associated with up to 8.8 million excess deaths worldwide each year and is a major contributor to the global burden of disease. Cardiovascular conditions are the predominant cause for air pollution-related deaths and there is an urgent need to address the silent pandemic of air pollution on cardiovascular health. Air pollution exposure is associated with acute events like acute coronary syndrome and stroke, and with chronic conditions, such as atherosclerosis and heart failure. Several potential mechanisms have been proposed that link particle inhalation to cardiovascular disease including oxidative stress and inflammation, changes in autonomic balance and neuroendocrine regulation and the particle translocation into the circulation itself. This, in turn, can cause endothelial, vasomotor and fibrinolytic dysfunction and increased thrombogenicity and blood pressure which are implicated in the mediation of adverse cardiovascular events. Certain interventions can help mitigate these adverse effects. At an individual level, this includes the use of a facemask and indoor air purification systems. At an environmental level, interventions reducing the generation or release of combustion-derived pollutants are key and include public health policies to facilitate active transport, cleaner sources of energy and reductions in vehicular and fossil fuel emissions. In this review, we summarise the key pathways and mechanisms that draw together how air pollution can lead to adverse cardiovascular effects, as well as explore potential interventions to reduce the burden of air pollution-induced cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Shruti S Joshi
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Lin CM, Huang TH, Chi MC, Guo SE, Lee CW, Hwang SL, Shi CS. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6C high monocytes and lung inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113632. [PMID: 35594827 DOI: 10.1016/j.ecoenv.2022.113632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) may contribute to lung inflammation and injury. The therapeutic effect of N-acetylcysteine (NAC), a well-known antioxidant, with regards to the prevention and treatment of fine PM (PM2.5)-induced lung injury is poorly understood. This study aimed to determine the effect of PM2.5 on the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli and the production of proinflammatory proteins by stimulating the generation of reactive oxygen species (ROS), and to investigate the therapeutic effect of NAC on PM2.5-induced lung injury. METHODS C57BL/6 mice were exposed to a single administration of PM2.5 (200 μg/100 μl/mouse) or phosphate-buffered saline (control) via intratracheal instillation. The mice were injected intratracheally via a microsprayer aerosolizer with NAC (20 or 40 mg/kg) 1 h before PM2.5 instillation and 24 h after PM2.5 instillation. Total protein, VEGF, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured. Oxidative stress was evaluated by determining levels of malondialdehyde (MDA) and nitrite in BALF. Flow cytometric analysis was used to identify and quantify neutrophils and Ly6Chigh and Ly6Clow monocyte subsets. RESULTS Neutrophil count, total protein, and VEGF content in BALF significantly increased after PM2.5 exposure and reached the highest level on day 2. Increased levels of TNF-alpha, IL-6, nitrite, and MDA in BALF were also noted. Flow cytometric analysis showed increased recruitment of neutrophils and Ly6Chigh, but not Ly6Clow monocytes, into lung alveoli. Treatment with NAC via the intratracheal spray significantly attenuated the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli in PM2.5-treated mice in a dose-dependent manner. Furthermore, NAC significantly attenuated the production of total protein, VEGF, nitrite, and MDA in the mice with PM2.5-induced lung injury in a dose-dependent manner. CONCLUSION PM2.5-induced lung injury caused by the generation of oxidative stress led to the recruitment of neutrophils and Ly6Chigh monocytes, and production of inflammatory proteins. NAC treatment alleviated PM2.5-induced lung injury by attenuating the ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation.
Collapse
Affiliation(s)
- Chieh-Mo Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan
| | - Tzu-Hsiung Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Miao-Ching Chi
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Su-Er Guo
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Su-Lun Hwang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| |
Collapse
|
29
|
Costa A, Pasquinelli G. Air Pollution Exposure Induces Vascular Injury and Hampers Endothelial Repair by Altering Progenitor and Stem Cells Functionality. Front Cell Dev Biol 2022; 10:897831. [PMID: 35712669 PMCID: PMC9197257 DOI: 10.3389/fcell.2022.897831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Extensive evidence indicates an association of air pollution exposure with an increased risk of cardiovascular disease (CVD) development. Fine particulate matter (PM) represents one of the main components of urban pollution, but the mechanisms by which it exerts adverse effects on cardiovascular system remain partially unknown and under investigation. The alteration of endothelial functions and inflammation are among the earliest pathophysiological impacts of environmental exposure on the cardiovascular system and represent critical mediators of PM-induced injury. In this context, endothelial stem/progenitor cells (EPCs) play an important role in vascular homeostasis, endothelial reparative capacity, and vasomotor functionality modulation. Several studies indicate the impairment of EPCs' vascular reparative capacity due to PM exposure. Since a central source of EPCs is bone marrow (BM), their number and function could be related to the population and functional status of stem cells (SCs) of this district. In this review, we provide an overview of the potential mechanisms by which PM exposure hinders vascular repair by the alteration of progenitor and stem cells' functionality.
Collapse
Affiliation(s)
- Alice Costa
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
30
|
Haberzettl P. Reply to Della Guardia and Shin. Am J Physiol Heart Circ Physiol 2022; 322:H973-H974. [PMID: 35481792 DOI: 10.1152/ajpheart.00186.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Petra Haberzettl
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
31
|
Zazueta C, Jimenez-Uribe AP, Pedraza-Chaverri J, Buelna-Chontal M. Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. Antioxidants (Basel) 2022; 11:antiox11030507. [PMID: 35326157 PMCID: PMC8944632 DOI: 10.3390/antiox11030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Nrf2 is a master regulator of multiple cytoprotective genes that maintain redox homeostasis and exert anti-inflammatory functions. The Nrf2-Keap1 signaling pathway is a paramount target of many cardioprotective strategies, because redox homeostasis is essential in cardiovascular health. Nrf2 gene variations, including single nucleotide polymorphisms (SNPs), are correlated with cardiometabolic diseases and drug responses. SNPs of Nrf2, KEAP1, and other related genes can impair the transcriptional activation or the activity of the resulting protein, exerting differential susceptibility to cardiometabolic disease progression and prevalence. Further understanding of the implications of Nrf2 polymorphisms on basic cellular processes involved in cardiometabolic diseases progression and prevalence will be helpful to establish more accurate protective strategies. This review provides insight into the association between the polymorphisms of Nrf2-related genes with cardiometabolic diseases. We also briefly describe that SNPs of Nrf2-related genes are potential modifiers of the pharmacokinetics that contribute to the inter-individual variability.
Collapse
Affiliation(s)
- Cecilia Zazueta
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
| | - Alexis Paulina Jimenez-Uribe
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - Mabel Buelna-Chontal
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
32
|
Marchini T, Magnani N, Garces M, Kelly J, Paz M, Caceres L, Calabro V, Lasagni Vitar R, Caltana L, Contin M, Reynoso S, Lago N, Vico T, Vanasco V, Wolf D, Tripodi V, Gonzalez Maglio D, Alvarez S, Buchholz B, Berra A, Gelpi R, Evelson P. Chronic exposure to polluted urban air aggravates myocardial infarction by impaired cardiac mitochondrial function and dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118677. [PMID: 34906594 DOI: 10.1016/j.envpol.2021.118677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Air pollution exposure positively correlates with increased cardiovascular morbidity and mortality rates, mainly due to myocardial infarction (MI). Herein, we aimed to study the metabolic mechanisms underlying this association, focusing on the evaluation of cardiac mitochondrial function and dynamics, together with its impact over MI progression. An initial time course study was performed in BALB/c mice breathing filtered air (FA) or urban air (UA) in whole-body exposure chambers located in Buenos Aires City downtown for up to 16 weeks (n = 8 per group and time point). After 12 weeks, lung inflammatory cell recruitment was evident in UA-exposed mice. Interestingly, impaired redox metabolism, characterized by decreased lung SOD activity and increased GSSG levels and NOX activity, precede local inflammation in this group. At this selected time point, additional mice were exposed to FA or UA (n = 12 per group) and alveolar macrophage PM uptake and nitric oxide (NO) production was observed in UA-exposed mice, together with increased pro-inflammatory cytokine levels (TNF-α and IL-6) in BAL and plasma. Consequently, impaired heart tissue oxygen metabolism and altered mitochondrial ultrastructure and function were observed in UA-exposed mice after 12 weeks, characterized by decreased active state respiration and ATP production rates, and enhanced mitochondrial H2O2 production. Moreover, disturbed cardiac mitochondrial dynamics was detected in this group. This scenario led to a significant increase in the area of infarcted tissue following myocardial ischemia reperfusion injury in vivo, from 43 ± 3% of the area at risk in mice breathing FA to 66 ± 4% in UA-exposed mice (n = 6 per group, p < 0.01), together with a sustained increase in LVEDP during myocardial reperfusion. Taken together, our data unravel cardiac mitochondrial mechanisms that contribute to the understanding of the adverse health effects of urban air pollution exposure, and ultimately highlight the importance of considering environmental factors in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Jazmin Kelly
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Mariela Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Lourdes Caceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Valeria Calabro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Romina Lasagni Vitar
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Laura Caltana
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias (IBCN), Buenos Aires, C1121ABG, Argentina
| | - Mario Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Sofia Reynoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Nestor Lago
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Dennis Wolf
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Daniel Gonzalez Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Bruno Buchholz
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Alejandro Berra
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Ricardo Gelpi
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina.
| |
Collapse
|
33
|
Tempol Preserves Endothelial Progenitor Cells in Male Mice with Ambient Fine Particulate Matter Exposure. Biomedicines 2022; 10:biomedicines10020327. [PMID: 35203535 PMCID: PMC8869086 DOI: 10.3390/biomedicines10020327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
Ambient fine particulate matter (PM) exposure associates with an increased risk of cardiovascular diseases (CVDs). Major sex differences between males and females exist in epidemiology, pathophysiology, and outcome of CVDs. Endothelial progenitor cells (EPCs) play a vital role in the development and progression of CVDs. PM exposure-induced reduction of EPCs is observed in male, not female, mice with increased reactive oxygen species (ROS) production and oxidative stress. The lung is considered an important source of ROS in mice with PM exposure. The aim of the present study was to investigate the sex differences in pulmonary superoxide dismutase (SOD) expression and ROS production, and to test the effect of SOD mimic Tempol on the populations of EPCs in mice with PM exposure. Both male and female C57BL/6 mice (8–10 weeks) were exposed to intranasal PM or vehicle for 6 weeks. Flow cytometry analysis demonstrated that PM exposure significantly decreased the levels of EPCs (CD34+/CD133+) in both blood and bone marrow with increased ROS production in males, but not in females. ELISA analysis showed higher levels of serum IL-6 and IL-1βin males than in females. Pulmonary expression of the antioxidant enzyme SOD1 was significantly decreased in males after PM exposure, but not in females. Administration of the SOD mimic Tempol in male mice with PM exposure attenuated the production of ROS and inflammatory cytokines, and preserved EPC levels. These data indicated that PM exposure-induced reduction of EPC population in male mice may be due to decreased expression of pulmonary SOD1 in male mice.
Collapse
|
34
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
35
|
Wang Y, Xiong L, Yao Y, Ma Y, Liu Q, Pang Y, Tang M. The involvement of DRP1-mediated caspase-1 activation in inflammatory response by urban particulate matter in EA.hy926 human vascular endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117369. [PMID: 34182399 DOI: 10.1016/j.envpol.2021.117369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric particulate matter (PM) has been reported to be closely related to cardiovascular adverse events. However, the underlying mode of action remains to be elucidated. Previous studies have documented that PM induces mitochondrial damage and inflammation, the relation between these two biological outcomes is still unclear though. In this study, we used EA.hy926 human vascular endothelial cells and a standard PM, PM SRM1648a to study the potential effects of mitochondrial dysfunction on endothelial inflammatory responses. As a result, PM SRM1648a changes mitochondrial morphology and interrupts mitochondrial dynamics with a persistent tendency of fission in a dose-dependent manner. Additionally, the caspase-1/IL-1β axis is involved in inflammatory responses but not cell pyroptosis in EA.hy926 cells following the exposure to PM SRM1648a. The activation of caspase-1 has implications in inflammation but not pyroptosis, because caspase-1-dependent pyroptosis is not the main modality of cell death in PM SRM1648a-treated EA.hy926 cells. With regard to the association between mitochondrial damage and inflammation in the case of particle stimulation, DRP1-mediated mitochondrial fission is responsible for inflammatory responses as a result of caspase-1 activation. The current study showed that PM SRM1648a has the ability to disturb mitochondrial dynamics, and trigger endothelial inflammation via DRP1/caspase-1/IL-1β regulatory pathway. In a conclusion, mitochondrial fission enables EA.hy926 cells to facilitate caspase-1 activation in response to PM SRM1648a, which is a crucial step for inflammatory reaction in vascular endothelial cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
36
|
Abstract
Inhalation of fine particulate matter (PM2.5), produced by the combustion of fossil fuels, is an important risk factor for cardiovascular disease. Exposure to PM2.5 has been linked to increases in blood pressure, thrombosis, and insulin resistance. It also induces vascular injury and accelerates atherogenesis. Results from animal models corroborate epidemiological evidence and suggest that the cardiovascular effects of PM2.5 may be attributable, in part, to oxidative stress, inflammation, and the activation of the autonomic nervous system. Although the underlying mechanisms remain unclear, there is robust evidence that long-term exposure to PM2.5 is associated with premature mortality due to heart failure, stoke, and ischemic heart disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA;
| |
Collapse
|
37
|
Zhu Q, Hao H, Xu H, Fichman Y, Cui Y, Yang C, Wang M, Mittler R, Hill MA, Cowan PJ, Zhang G, He X, Zhou S, Liu Z. Combination of Antioxidant Enzyme Overexpression and N-Acetylcysteine Treatment Enhances the Survival of Bone Marrow Mesenchymal Stromal Cells in Ischemic Limb in Mice With Type 2 Diabetes. J Am Heart Assoc 2021; 10:e023491. [PMID: 34569277 PMCID: PMC8649154 DOI: 10.1161/jaha.121.023491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Therapy with mesenchymal stem cells remains a promising but challenging approach to critical limb ischemia in diabetes because of the dismal cell survival. Methods and Results Critical limb ischemia in type 2 diabetes mouse model was used to explore the impact of diabetic limb ischemia on the survival of bone marrow mesenchymal stromal cells (bMSCs). Inhibition of intracellular reactive oxygen species was achieved with concomitant overexpression of superoxide dismutase (SOD)‐1 and glutathione peroxidase‐1 in the transplanted bMSCs, and extracellular reactive oxygen species was attenuated using SOD‐3 overexpression and N‐acetylcysteine treatment. In vivo optical fluorescence imaging and laser Doppler perfusion imaging were used to track cell retention and determine blood flow in diabetic ischemic limb, respectively. Survival of the transplanted bMSCs was significantly decreased in diabetic ischemic limb compared with the control. In vitro study indicated that advanced glycation end products, not high glucose, significantly decreased the proliferation of bMSCs and increased their apoptosis associated with increased reactive oxygen species production and selective reduction of SOD‐1 and SOD‐3. In vivo study demonstrated that concomitant overexpression of SOD‐1, SOD‐3, and glutathione peroxidase‐1, or host treatment with N‐acetylcysteine, significantly enhanced in vivo survival of transplanted bMSCs, and improved critical limb ischemia in diabetic mice. Combination of triple antioxidant enzyme overexpression in bMSCs with host N‐acetylcysteine treatment further improved bMSC survival with enhanced circulatory and functional recovery from diabetic critical limb ischemia. Conclusions Simultaneous suppression of reactive oxygen species from transplanted bMSCs and host tissue could additively enhance bMSC survival in diabetic ischemic limb with increased therapeutic efficacy in diabetes.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO.,Department of Cardiology Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Huifang Xu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Yosef Fichman
- College of Agriculture, Food and Natural Resources University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Ron Mittler
- College of Agriculture, Food and Natural Resources University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Michael A Hill
- Dalton Cardiovascular Research Center University of Missouri Columbia MO.,Department of Surgery University of Missouri School of MedicineChristopher S. Bond Life Sciences CenterUniversity of Missouri Columbia MO
| | - Peter J Cowan
- Department of Medicine University of Melbourne Australia.,Immunology Research Centre St. Vincent's Hospital Melbourne Australia
| | - Guangsen Zhang
- Institute of Molecular Hematopathy Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Xiaoming He
- Fischell Department of Bioengineering University of Maryland College Park MD
| | - Shenghua Zhou
- Department of Cardiology Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| |
Collapse
|
38
|
Zhu QY, Tai S, Tang L, Xiao YC, Tang JJ, Chen YQ, Shen L, He J, Ouyang MQ, Zhou SH. N-acetyl cysteine ameliorates aortic fibrosis by promoting M2 macrophage polarization in aging mice. Redox Rep 2021; 26:170-175. [PMID: 34530696 PMCID: PMC8451627 DOI: 10.1080/13510002.2021.1976568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Vascular fibrosis is a universal phenomenon associated with aging, and oxidative stress plays an important role in the genesis of vascular damage in line with the aging process. However, whether antioxidants can ameliorate vascular fibrosis remains unclear. Objectives: The present study was to determine antioxidant N-acetylcysteine (NAC) could ameliorates aortic fibrosis in aging wild-type C57BL/6 mice. Methods: The aortas were harvested from both 12-week and 60-week wild-type mice. The 60-week mice were treated with and without the NAC for 12 weeks starting at the age of 48 weeks. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining of aortic samples were performed, and the levels of reactive oxygen species (ROS), RNA expression of GAPDH, TNF-α, MCP-1, IL-6, IL-10, IL-4, SIRT-1, SIRT-3, FOXO-1, and macrophage polarization were determined. Results: There is a positive relationship between collagen deposition and the M1/M2 macrophage ratio in the aortic wall of aged wild-type C57BL/6 mice. The higher collagen area percentage in the aortas of 60-week-old mice than in 12-week-old mice was reversed by NAC. NAC could not impact the total number of macrophages, but partly promoted M2 macrophage polarization. By performing qRT-PCR using aortic samples from these mice, we identified that SIRT-1, SIRT-3, FOXO-1 could be somehow responsible for aging-related fibrosis. Conclusions: NAC ameliorates aortic fibrosis in aging wild type mice partly by promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Qing-Yi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Liang Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi-Chao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jian-Jun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ya-Qin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jia He
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ming-Qi Ouyang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sheng-Hua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
39
|
Haberzettl P, Jin L, Riggs DW, Zhao J, O’Toole TE, Conklin DJ. Fine particulate matter air pollution and aortic perivascular adipose tissue: Oxidative stress, leptin, and vascular dysfunction. Physiol Rep 2021; 9:e14980. [PMID: 34327871 PMCID: PMC8322754 DOI: 10.14814/phy2.14980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Exposure to fine particulate matter (PM2.5 ) air pollution increases blood pressure, induces vascular inflammation and dysfunction, and augments atherosclerosis in humans and rodents; however, the understanding of early changes that foster chronic vascular disease is incomplete. Because perivascular adipose tissue (PVAT) inflammation is implicated in chronic vascular diseases, we investigated changes in aortic PVAT following short-term air pollution exposure. Mice were exposed to HEPA-filtered or concentrated ambient PM2.5 (CAP) for 9 consecutive days, and the abundance of inflammatory, adipogenic, and adipokine gene mRNAs was measured by gene array and qRT-PCR in thoracic aortic PVAT. Responses of the isolated aorta with and without PVAT to contractile (phenylephrine, PE) and relaxant agonists (acetylcholine, ACh; sodium nitroprusside, SNP) were measured. Exposure to CAP significantly increased the urinary excretion of acrolein metabolite (3HPMA) as well as the abundance of protein-acrolein adducts (a marker of oxidative stress) in PVAT and aorta, upregulated PVAT leptin mRNA expression without changing mRNA levels of several proinflammatory genes, and induced PVAT insulin resistance. In control mice, PVAT significantly depressed PE-induced contractions-an effect that was dampened by CAP exposure. Pulmonary overexpression of extracellular dismutase (ecSOD-Tg) prevented CAP-induced effects on urinary 3HPMA levels, PVAT Lep mRNA, and alterations in PVAT and aortic function, reflecting a necessary role of pulmonary oxidative stress in all of these deleterious CAP-induced changes. More research is needed to address how exactly short-term exposure to PM2.5 perturbs PVAT and aortic function, and how these specific genes and functional changes in PVAT could lead over time to chronic inflammation, endothelial dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Petra Haberzettl
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Lexiao Jin
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Daniel W. Riggs
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Jingjing Zhao
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Timothy E. O’Toole
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Daniel J. Conklin
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
40
|
Li X, Haberzettl P, Conklin DJ, Bhatnagar A, Rouchka EC, Zhang M, O’Toole TE. Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice. Genes (Basel) 2021; 12:1058. [PMID: 34356074 PMCID: PMC8307414 DOI: 10.3390/genes12071058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to fine particulate matter (PM2.5) air pollution is associated with quantitative deficits of circulating endothelial progenitor cells (EPCs) in humans. Related exposures of mice to concentrated ambient PM2.5 (CAP) likewise reduces levels of circulating EPCs and induces defects in their proliferation and angiogenic potential as well. These changes in EPC number or function are predictive of larger cardiovascular dysfunction. To identify global, PM2.5-dependent mRNA and miRNA expression changes that may contribute to these defects, we performed a transcriptomic analysis of cells isolated from exposed mice. Compared with control samples, we identified 122 upregulated genes and 44 downregulated genes in EPCs derived from CAP-exposed animals. Functions most impacted by these gene expression changes included regulation of cell movement, cell and tissue development, and cellular assembly and organization. With respect to miRNA changes, we found that 55 were upregulated while 53 were downregulated in EPCs from CAP-exposed mice. The top functions impacted by these miRNA changes included cell movement, cell death and survival, cellular development, and cell growth and proliferation. A subset of these mRNA and miRNA changes were confirmed by qRT-PCR, including some reciprocal relationships. These results suggest that PM2.5-induced changes in gene expression may contribute to EPC dysfunction and that such changes may contribute to the adverse cardiovascular outcomes of air pollution exposure.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA;
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA;
| | - Petra Haberzettl
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Daniel J. Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA;
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40202, USA
| | - Mei Zhang
- Department of Medicine, University of Louisville Genomics Facility, Louisville, KY 40202, USA;
| | - Timothy E. O’Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Liu X, Xiao Y, Zhu Q, Cui Y, Hao H, Wang M, Cowan PJ, Korthuis RJ, Li G, Sun Q, Liu Z. Circulating Endothelial Progenitor Cells Are Preserved in Female Mice Exposed to Ambient Fine Particulate Matter Independent of Estrogen. Int J Mol Sci 2021; 22:ijms22137200. [PMID: 34281260 PMCID: PMC8268796 DOI: 10.3390/ijms22137200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
Males have a higher risk for cardiovascular diseases (CVDs) than females. Ambient fine particulate matter (PM) exposure increases CVD risk with increased reactive oxygen species (ROS) production and oxidative stress. Endothelial progenitor cells (EPCs) are important to vascular structure and function and can contribute to the development of CVDs. The aims of the present study were to determine if sex differences exist in the effect of PM exposure on circulating EPCs in mice and, if so, whether oxidative stress plays a role. Male and female C57BL/6 mice (8–10 weeks old) were exposed to PM or a vehicle control for six weeks. ELISA analysis showed that PM exposure substantially increased the serum levels of IL-6 and IL-1β in both males and females, but the concentrations were significantly higher in males. PM exposure only increased the serum levels of TNF-α in males. Flow cytometry analysis demonstrated that ROS production was significantly increased by PM treatment in males but not in females. Similarly, the level of circulating EPCs (CD34+/CD133+ and Sca-1+/Flk-1+) was significantly decreased by PM treatment in males but not in females. Antioxidants N-acetylcysteine (NAC) effectively prevented PM exposure-induced ROS and inflammatory cytokine production and restored circulating EPC levels in male mice. In sharp contrast, circulating EPC levels remained unchanged in female mice with PM exposure, an effect that was not altered by ovariectomy. In conclusion, PM exposure selectively decreased the circulating EPC population in male mice via increased oxidative stress without a significant impact on circulating EPCs in females independent of estrogen.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Yichao Xiao
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
| | - Qingyi Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
| | - Yuqi Cui
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
| | - Hong Hao
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
| | - Meifang Wang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Peter J. Cowan
- Immunology Research Centre, Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne 3065, Australia;
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Guangfu Li
- Department of Surgery and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Qinghua Sun
- College of Public Health, Ohio State University, Columbus, OH 43210, USA;
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (X.L.); (Y.X.); (Q.Z.); (Y.C.); (H.H.); (M.W.)
- Correspondence: ; Tel.: +1-573-884-3278
| |
Collapse
|
42
|
Wang F, Chen Q, Zhan Y, Yang H, Zhang A, Ling X, Zhang H, Zhou W, Zou P, Sun L, Huang L, Chen H, Ao L, Liu J, Cao J, Zhou N. Acute effects of short-term exposure to ambient air pollution on reproductive hormones in young males of the MARHCS study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145691. [PMID: 33611002 DOI: 10.1016/j.scitotenv.2021.145691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which is associated with male reproductive health. However, it is unknown the acute effects of ambient air pollutants exposure on male reproductive hormones. The current study, we measured serum levels of reproductive hormone in 2030 blood samples gathered from The Male Reproductive Health in Chongqing College Students (MARHCS) cohort study. We derived a full coverage of ambient air pollutant (PM10, PM2.5, SO2, NO2, CO and O3) concentrations by employing machine learning algorithms, and used a mixed-effect model to estimate single-day and cumulative effects of air pollutants exposure on serum reproductive hormones. Our results showed that (1) PM10 and PM2.5 concentrations were positively associated with estradiol (E2) in both single and cumulative lag days, but were negatively associated with the ratio of Testosterone/E2 (the T/E2 ratio). NO2 was positively associated with estradiol at lag day 2 (95% CI: 0.290, 0.881; corrected P = 0.048) and lag 0-2 days (95% CI: 0.523, 1.337; corrected P = 0.003), with progesterone (P) at lag day 2 and lag day 3 (corrected P < 0.05). There was also a positive association between CO exposure and progesterone at lag day 2. (2) SO2 was inversely associated with E2 at lag day 3, 4 and lag 0-4 days, and progesterone at lag day 0, 1, 2 and lag 0-1, 0-2, 0-4 days, but positively associated with the T/E2 ratio at lag day 3, 4 and lag 0-4 days (corrected P < 0.05). O3 exposure was negatively associated with E2 at lag day 3 (95% CI: -0.216, -0.074, corrected P = 0.03). (3) No significant associations were found between the cumulative daily average air pollutant exposure of CO, O3 and hormone outcomes. This study suggests that short-term exposure to air pollutants may thus alter reproductive hormone levels, especially on serum estradiol, progesterone levels and the T/E2 ratio.
Collapse
Affiliation(s)
- Furong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Zhang
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenzheng Zhou
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
43
|
Zhang H, Zhang X, Wang Q, Xu Y, Feng Y, Yu Z, Huang C. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116752. [PMID: 33689950 DOI: 10.1016/j.envpol.2021.116752] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM2.5] and ≤10 μm [PM10]) and gaseous pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO] and ozone [O3]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran's Q test and I2 statistic. Publication bias was assessed using funnel plots and Egger's tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM2.5 and CO exposure (per 10 μg/m3 increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008-1.180) and 1.0009 (95% CI: 1.0001-1.0017), respectively. Entire pregnancy exposure to PM2.5 was also associated with stillbirth (OR: 1.103, 95% CI: 1.074-1.131). A 10 μg/m3 increment in O3 in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001-1.055). Short-term exposure (on lag day 4) to O3 was also associated with stillbirth (OR: 1.002, 95% CI: 1.001-1.004). PM10, SO2 and NO2 exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Xu
- Department of Clinical Medicine, Medical School of Zhengzhou University, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Hill BG, Rood B, Ribble A, Haberzettl P. Fine particulate matter (PM 2.5) inhalation-induced alterations in the plasma lipidome as promoters of vascular inflammation and insulin resistance. Am J Physiol Heart Circ Physiol 2021; 320:H1836-H1850. [PMID: 33666505 PMCID: PMC8163652 DOI: 10.1152/ajpheart.00881.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Fine particulate matter (PM2.5) air pollution exposure increases the risk of developing cardiovascular disease (CVD). Although the precise mechanisms by which air pollution exposure increases CVD risk remain uncertain, research indicates that PM2.5-induced endothelial dysfunction contributes to CVD risk. Previous studies demonstrate that concentrated ambient PM2.5 (CAP) exposure induces vascular inflammation and impairs insulin and vascular endothelial growth factor (VEGF) signaling dependent on pulmonary oxidative stress. To assess whether CAP exposure induces these vascular effects via plasmatic factors, we incubated aortas from naïve mice with plasma isolated from mice exposed to HEPA-filtered air or CAP (9 days) and examined vascular inflammation and insulin and VEGF signaling. We found that treatment of naïve aortas with plasma from CAP-exposed mice activates NF-κBα and induces insulin and VEGF resistance, indicating transmission by plasmatic factor(s). To identify putative factors, we exposed lung-specific ecSOD-transgenic (ecSOD-Tg) mice and wild-type (WT) littermates to CAP at concentrations of either ∼60 µg/m3 (CAP60) or ∼100 µg/m3 (CAP100) and measured the abundance of plasma metabolites by mass spectrometry. In WT mice, both CAP concentrations increased levels of fatty acids such as palmitate, myristate, and palmitoleate and decreased numerous phospholipid species; however, these CAP-induced changes in the plasma lipidome were prevented in ecSOD-Tg mice. Consistent with the literature, we found that fatty acids such as palmitate are sufficient to promote endothelial inflammation. Collectively, our findings suggest that PM2.5 exposure, by inducing pulmonary oxidative stress, promotes unique lipidomic changes characterized by high levels of circulating fatty acids, which are sufficient to trigger vascular pathology.NEW & NOTEWORTHY We found that circulating plasma constituents are responsible for air pollution-induced vascular pathologies. Inhalation of fine particulate matter (≤PM2.5) promotes a unique form of dyslipidemia that manifests in a manner dependent upon pulmonary oxidative stress. The air pollution-engendered dyslipidemic phenotype is characterized by elevated free fatty acid species and diminished phospholipid species, which could contribute to vascular inflammation and loss of insulin sensitivity.
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Benjamin Rood
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Amanda Ribble
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Petra Haberzettl
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
45
|
Wang YW, Wu YH, Zhang JZ, Tang JH, Fan RP, Li F, Yu BY, Kou JP, Zhang YY. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacol Sin 2021; 42:726-734. [PMID: 32855531 PMCID: PMC8114925 DOI: 10.1038/s41401-020-00502-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg-1·d-1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1β, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.
Collapse
Affiliation(s)
- Yu-Wei Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Hao Wu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhi Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hui Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui-Ping Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuan-Yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
46
|
Singh P, O'Toole TE, Conklin DJ, Hill BG, Haberzettl P. Endothelial progenitor cells as critical mediators of environmental air pollution-induced cardiovascular toxicity. Am J Physiol Heart Circ Physiol 2021; 320:H1440-H1455. [PMID: 33606580 PMCID: PMC8260385 DOI: 10.1152/ajpheart.00804.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 01/15/2023]
Abstract
Environmental air pollution exposure is a leading cause of death worldwide, and with increasing industrialization and urbanization, its disease burden is expected to rise even further. The majority of air pollution exposure-associated deaths are linked to cardiovascular disease (CVD). Although ample research demonstrates a strong correlation between air pollution exposure and CVD risk, the mechanisms by which inhalation of polluted air affects cardiovascular health are not completely understood. Inhalation of environmental air pollution has been associated with endothelial dysfunction, which suggests that air pollution exposure impacts CVD health by inducing endothelial injury. Interestingly, recent studies demonstrate that air pollution exposure affects the number and function of endothelial progenitor cells (EPCs), subpopulations of bone marrow-derived proangiogenic cells that have been shown to play an essential role in maintaining cardiovascular health. In line with their beneficial function, chronically low levels of circulating EPCs and EPC dysfunction (e.g., in diabetic patients) have been associated with vascular dysfunction, poor cardiovascular health, and increases in the severity of cardiovascular outcomes. In contrast, treatments that improve EPC number and function (e.g., exercise) have been found to attenuate cardiovascular dysfunction. Considering the critical, nonredundant role of EPCs in maintaining vascular health, air pollution exposure-induced impairments in EPC number and function could lead to endothelial dysfunction, consequently increasing the risk for CVD. This review article covers novel aspects and new mechanistic insights of the adverse effects of air pollution exposure on cardiovascular health associated with changes in EPC number and function.
Collapse
Affiliation(s)
- Parul Singh
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Timothy E O'Toole
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Petra Haberzettl
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
47
|
Alexeeff SE, Liao NS, Liu X, Van Den Eeden SK, Sidney S. Long-Term PM 2.5 Exposure and Risks of Ischemic Heart Disease and Stroke Events: Review and Meta-Analysis. J Am Heart Assoc 2020; 10:e016890. [PMID: 33381983 PMCID: PMC7955467 DOI: 10.1161/jaha.120.016890] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Fine particulate matter <2.5 µm in diameter (PM2.5) has known effects on cardiovascular morbidity and mortality. However, no study has quantified and compared the risks of incident myocardial infarction, incident stroke, ischemic heart disease (IHD) mortality, and cerebrovascular mortality in relation to long‐term PM2.5 exposure. Methods and Results We sought to quantitatively summarize studies of long‐term PM2.5 exposure and risk of IHD and stroke events by conducting a review and meta‐analysis of studies published by December 31, 2019. The main outcomes were myocardial infarction, stroke, IHD mortality, and cerebrovascular mortality. Random effects meta‐analyses were used to estimate the combined risk of each outcome among studies. We reviewed 69 studies and included 42 studies in the meta‐analyses. In meta‐analyses, we found that a 10‐µg/m3 increase in long‐term PM2.5 exposure was associated with an increased risk of 23% for IHD mortality (95% CI, 15%–31%), 24% for cerebrovascular mortality (95% CI, 13%–36%), 13% for incident stroke (95% CI, 11%–15%), and 8% for incident myocardial infarction (95% CI, −1% to 18%). There were an insufficient number of studies of recurrent stroke and recurrent myocardial infarction to conduct meta‐analyses. Conclusions Long‐term PM2.5 exposure is associated with increased risks of IHD mortality, cerebrovascular mortality, and incident stroke. The relationship with incident myocardial infarction is suggestive of increased risk but not conclusive. More research is needed to understand the relationship with recurrent events.
Collapse
Affiliation(s)
| | | | - Xi Liu
- Kaiser Permanente Division of Research Oakland CA
| | | | | |
Collapse
|
48
|
O'Toole TE, Amraotkar AA, DeFilippis AP, Rai SN, Keith RJ, Baba SP, Lorkiewicz P, Crandell CE, Pariser GL, Wingard CJ, Pope Iii CA, Bhatnagar A. Protocol to assess the efficacy of carnosine supplementation in mitigating the adverse cardiovascular responses to particulate matter (PM) exposure: the Nucleophilic Defense Against PM Toxicity (NEAT) trial. BMJ Open 2020; 10:e039118. [PMID: 33372072 PMCID: PMC7772308 DOI: 10.1136/bmjopen-2020-039118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Exposure to airborne particulate matter (PM) is associated with cardiovascular disease. These outcomes are believed to originate from pulmonary oxidative stress and the systemic delivery of oxidised biomolecules (eg, aldehydes) generated in the lungs. Carnosine is an endogenous di-peptide (β-alanine-L-histidine) which promotes physiological homeostasis in part by conjugating to and neutralising toxic aldehydes. We hypothesise that an increase of endogenous carnosine by dietary supplementation would mitigate the adverse cardiovascular outcomes associated with PM exposure in humans. METHODS AND ANALYSIS To test this, we designed the Nucleophilic Defense Against PM Toxicity trial. This trial will enroll 240 participants over 2 years and determine if carnosine supplementation mitigates the adverse effects of PM inhalation. The participants will have low levels of endogenous carnosine to facilitate identification of supplementation-specific outcomes. At enrollment, we will measure several indices of inflammation, preclinical cardiovascular disease and physical function. Participants will be randomly allocated to carnosine or placebo groups and instructed to take their oral supplement for 12 weeks with two return clinical visits and repeated assessments during times of peak PM exposure (June-September) in Louisville, Kentucky, USA. Statistical modelling approaches will be used to assess the efficacy of carnosine supplementation in mitigating adverse outcomes. ETHICS AND DISSEMINATION This study protocol has been approved by the Institutional Review Board at the University of Louisville. Results from this study will be disseminated at scientific conferences and in peer-reviewed publications.Trial registration: NCT03314987; Pre-results.
Collapse
Affiliation(s)
- Timothy E O'Toole
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
| | - Alok A Amraotkar
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | | | - Shesh N Rai
- Department of Biostatistics and Bioinfomatics, University of Louisville, Louisville, Kentucky, USA
| | - Rachel J Keith
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
| | - Shahid P Baba
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
| | - Pawel Lorkiewicz
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Catherine E Crandell
- Department of Physical Therapy, Bellarmine University, Louisville, Kentucky, USA
| | - Gina L Pariser
- Department of Physical Therapy, Bellarmine University, Louisville, Kentucky, USA
| | | | - C Arden Pope Iii
- Department of Economics, Brigham Young University, Provo, Utah, USA
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
49
|
Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. Ambient Air Pollution and Atherosclerosis: Insights Into Dose, Time, and Mechanisms. Arterioscler Thromb Vasc Biol 2020; 41:628-637. [PMID: 33327745 DOI: 10.1161/atvbaha.120.315219] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ambient air pollution due to particulate matter ≤2.5 μ is the leading environmental risk factor contributing to global mortality, with a preponderant majority of these deaths attributable to atherosclerotic cardiovascular disease (ASCVD) causes such as stroke and myocardial infarction. Epidemiological studies in humans have provided refined estimates of exposure risk, with evidence suggesting that risk association with particulate matter ≤2.5 levels and ASCVD continues at levels well below air quality guidelines in North America and Europe. Mechanistic studies in animals and humans have provided a framework of understanding of the duration and pathways by which air pollution exposure may predispose to atherosclerosis. Although acute exposure to particulate matter ≤2.5 is associated with oxidative stress and inflammation, system transmission of signals from the lungs to extrapulmonary sites may involve direct translocation of components, biologic intermediates, and autonomic nervous system activation. End-organ effector pathways such as endothelial barrier disruption/dysfunction, thrombosis, vasoconstriction/increased blood pressure, and plaque instability, may contribute to ASCVD. The strength of the association of air pollution with ASCVD offers an opportunity to mitigate its consequences. Although elimination of anthropogenic sources of air pollution with a switch to clean energy provides the ultimate solution, this may not be possible in the interim and may require personal protection efforts and an integrated approach to managing risk posed by air pollution for ASCVD.
Collapse
Affiliation(s)
- Graham H Bevan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and School of Medicine, OH (G.H.B., S.G.A.-K., S.R.).,Case Western Reserve University, Cleveland, OH (G.H.B., S.G.A.-K., S.R.)
| | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and School of Medicine, OH (G.H.B., S.G.A.-K., S.R.).,Case Western Reserve University, Cleveland, OH (G.H.B., S.G.A.-K., S.R.)
| | - Robert D Brook
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI (R.D.B.)
| | - Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany (T.M.).,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (T.M.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and School of Medicine, OH (G.H.B., S.G.A.-K., S.R.)
| |
Collapse
|
50
|
Shiwakoti S, Adhikari D, Lee JP, Kang KW, Lee IS, Kim HJ, Oak MH. Prevention of Fine Dust-Induced Vascular Senescence by Humulus lupulus Extract and Its Major Bioactive Compounds. Antioxidants (Basel) 2020; 9:E1243. [PMID: 33297587 PMCID: PMC7762380 DOI: 10.3390/antiox9121243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Both short- and long-term exposure to fine dust (FD) from air pollution has been linked to various cardiovascular diseases (CVDs). Endothelial cell (EC) senescence is an important risk factor for CVDs, and recent evidence suggests that FD-induced premature EC senescence increases oxidative stress levels. Hop plant (Humulus lupulus) is a very rich source of polyphenols known to have nutritional and therapeutic properties, including antioxidant behavior. The aims of this study were to evaluate whether Humulus lupulus extract prevents FD-induced vascular senescence and dysfunction and, if so, to characterize the underlying mechanisms and active components. Porcine coronary arteries and endothelial cells were treated with FD in the presence or absence of hop extract (HOP), and the senescence-associated-beta galactosidase (SA-β-gal) activity, cell-cycle progression, expression of senescence markers, oxidative stress level, and vascular function were evaluated. Results indicated that HOP inhibited FD-induced SA-β-gal activity, cell-cycle arrest, and oxidative stress, suggesting that HOP prevents premature induction of senescence by FD. HOP also ameliorated FD-induced vascular dysfunction. Additionally, xanthohumol (XN) and isoxanthohumol (IX) were found to produce the protective effects of HOP. Treatment with HOP and its primary active components XN and IX downregulated the expression of p22phox, p53, and angiotensin type 1 receptor, which all are known FD-induced redox-sensitive EC senescence inducers. Taken together, HOP and its active components protect against FD-induced endothelial senescence most likely via antioxidant activity and may be a potential therapeutic agent for preventing and/or treating air-pollution-associated CVDs.
Collapse
Affiliation(s)
- Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, Jeonnam, Muan-gun 58554, Korea; (S.S.); (D.A.); (J.P.L.)
| | - Deepak Adhikari
- College of Pharmacy, Mokpo National University, Jeonnam, Muan-gun 58554, Korea; (S.S.); (D.A.); (J.P.L.)
| | - Jeong Pyo Lee
- College of Pharmacy, Mokpo National University, Jeonnam, Muan-gun 58554, Korea; (S.S.); (D.A.); (J.P.L.)
| | - Ki-Woon Kang
- Division of Cardiology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| | - Hyun Jung Kim
- College of Pharmacy, Mokpo National University, Jeonnam, Muan-gun 58554, Korea; (S.S.); (D.A.); (J.P.L.)
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Jeonnam, Muan-gun 58554, Korea; (S.S.); (D.A.); (J.P.L.)
| |
Collapse
|