1
|
Peter‐Okaka U, Boison D. Adenosine Kinase: An Epigenetic Modulator and Drug Target. J Inherit Metab Dis 2025; 48:e70033. [PMID: 40393929 PMCID: PMC12092209 DOI: 10.1002/jimd.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/22/2025]
Abstract
Adenosine kinase (ADK, EC: 2.7.1.20) is an evolutionarily ancient ribokinase, which acts as a metabolic regulator by transferring a phosphoryl group to adenosine to form AMP. The enzyme is of interest as a therapeutic target because its inhibition is one of the most effective means to raise the levels of adenosine and hence adenosine receptor activation. For these reasons, ADK has received significant attention in drug discovery efforts in the early 2000s for indications such as epilepsy, chronic pain, and inflammation; however, the report of adverse events regarding cardiovascular and hepatic function as well as instances of microhemorrhage in the brain of preclinical models prevented further development efforts. Recent findings emphasize the importance of compartmentalization of the adenosine system reflected by two distinct isoforms of the enzyme, ADK-S and ADK-L, expressed in the cytoplasm and the cell nucleus, respectively. Newly identified adenosine receptor independent functions of adenosine as a regulator of biochemical transmethylation reactions, which include DNA and histone methylation, identify ADK-L as a distinct therapeutic target for the regulation of the nuclear methylome. This newly recognized role of ADK-L as an epigenetic regulator points toward the potential disease-modifying properties of the next generation of ADK inhibitors. Continued efforts to develop therapeutic strategies to separate nuclear from extracellular functions of adenosine would enable the development of targeted therapeutics with reduced adverse event potential. This review will summarize recent advances in the discovery of novel ADK inhibitors and discuss their potential therapeutic use in conditions ranging from epilepsy to cancer.
Collapse
Affiliation(s)
- Uchenna Peter‐Okaka
- Department of NeurosurgeryRutgers New Jersey Medical School and Robert Wood Johnson Barnabas HealthNew BrunswickNew JerseyUSA
| | - Detlev Boison
- Department of NeurosurgeryRobert Wood Johnson and New Jersey Medical Schools, Rutgers HealthPiscatawayNew JerseyUSA
- Brain Health InstituteRutgers UniversityPiscatawayNew JerseyUSA
- Rutgers HealthRutgers Cancer InstituteNew BrunswickNew JerseyUSA
| |
Collapse
|
2
|
Cui Z, Feng L, Rao S, Huang Z, Huang S, Liu L, Liao Y, Lan Z, Chen Q, Deng J, Wang L, Yin Y, Tan C. Adenosine Monophosphate Improves Lipolysis in Obese Mice by Reducing DNA Methylation via ADORA2A Activation by Ecto-5'-Nucleotidase (CD73). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405079. [PMID: 39976204 PMCID: PMC11984851 DOI: 10.1002/advs.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/16/2024] [Indexed: 02/21/2025]
Abstract
The previous work discovers the potential of adenosine monophosphate (AMP) to alleviate obesity-related metabolic diseases, but the underlying molecular mechanisms remain incompletely understood. Here, AMP is confirmed to enhance white fat decomposition and improve abnormal glucose and lipid metabolism in mice fed with a high-fat (HF) diet. Mechanically, AMP is converted to adenosine (ADO) through ecto-5'-nucleotidase (CD73), and adenosine A2A receptor (ADORA2A) signaling activation is involved in the down-regulation of methylation in white adipose tissue, thereby reducing the hormone-sensitive lipase (HSL) methylation level and promoting HSL transcription and white fat decomposition. Moreover, the metabolic benefits of AMP are found to be partially eliminated in ADORA2A knockout mice, but re-expression of ADORA2A can reproduce the AMP-induced metabolic regulation in white fat. These findings reveal the mechanism that AMP, as the upstream of ADO, stimulates ADORA2A signaling and white fat DNA methylation to participate in the anti-obesity effect.
Collapse
Affiliation(s)
- Zhijuan Cui
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Li Feng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Sujuan Rao
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Zihao Huang
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Shuangbo Huang
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Yuan Liao
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Zheng Lan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Qiling Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Jinping Deng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Leli Wang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionChangsha410125China
| | - Yulong Yin
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionChangsha410125China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
3
|
Chen T, Yu J, Guo X, Wang S, Wang Z, Chen Y, Hu X, Li H, Chen L, Zheng J. Adenosine kinase inhibits β-cell proliferation by upregulating DNA methyltransferase 3A expression. Diabetes Obes Metab 2024; 26:2956-2968. [PMID: 38699782 DOI: 10.1111/dom.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024]
Abstract
AIM To investigate the effects of adenosine kinase (ADK), a key enzyme in determining intracellular adenosine levels, on β cells, and their underlying mechanism. METHODS Genetic animal models and transgenic immortalized cells were applied to study the effect of ADK on islet beta-cell proliferation and function. The beta-cell mass and response to glucose were measured in vivo using mice with beta-cell-specific ADK overexpression, and in vitro using ADK-overexpressed immortalized beta-cell. RESULTS The expression of ADK in human islets at high abundance, especially in β cells, was decreased during the process of β-cell proliferation. Additionally, a transgenic mouse model (ADKtg/tg /Mip-Cre) was generated wherein the mouse Insulin1 gene promoter specifically overexpressed ADK in pancreatic β cells. The ADKtg/tg /Mip-Cre model exhibited impaired glucose tolerance, decreased fasting plasma insulin, loss of β-cell mass, and inhibited β-cell proliferation. Proteomic analysis revealed that ADK overexpression inhibited the expression of several proteins that promote cell proliferation and insulin secretion. Upregulating ADK in the β-cell line inhibited the expression of β-cell related regulatory molecules, including FoxO1, Appl1, Pxn, Pdx-1, Creb and Slc16a3. Subsequent in vitro experiments indicated that the inhibition of β-cell proliferation and the decreased expression of Pdx-1, Creb and Slc16a3 were rescued by DNA methyltransferase 3A (DNMT3A) knockdown in β cells. CONCLUSION In this study, we found that the overexpression of ADK decreased the expression of several genes that regulate β cells, resulting in the inhibition of β-cell proliferation and dysfunction by upregulating the expression of DNMT3A.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Zhihua Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
4
|
Yu J, Zheng J, Wu C. An essential role for hepatocyte adenosine kinase in regulating fat metabolism and inflammation. CELL SIGNALING 2024; 2:58-60. [PMID: 39391763 PMCID: PMC11466238 DOI: 10.46439/signaling.2.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas 77845, USA
| |
Collapse
|
5
|
Wang P, Gao R, Wu T, Zhang J, Sun X, Fan F, Wang C, Qian S, Li B, Zou Y, Huo Y, Fassett J, Chen Y, Ge J, Sun A. Accumulation of endogenous adenosine improves cardiomyocyte metabolism via epigenetic reprogramming in an ischemia-reperfusion model. Redox Biol 2023; 67:102884. [PMID: 37725888 PMCID: PMC10507380 DOI: 10.1016/j.redox.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R. Evans blue/TTC staining and echocardiography were used to assess the extent of I/R injury in mice. Glucose metabolism was evaluated by positron emission tomography and computed tomography (PET/CT). Methylated DNA immunoprecipitation (MeDIP) and bisulfite sequencing PCR (BSP) were used to evaluate DNA methylation. Lentiviral/adenovirus transduction was used to overexpress DNMT1, and the OSI-906 was administered to inhibit IGF-1. Cardiomyocyte-specific ADK/IGF-1-knockout mice were used for mechanistic experiments.Cardiomyocyte-specific ADK knockout enhanced glucose metabolism and ameliorated myocardial I/R injury in vivo. Mechanistically, ADK deletion caused cellular adenosine accumulation, decreased DNA methyltransferase 1 (DNMT1) expression and caused hypomethylation of multiple metabolic genes, including insulin growth factor 1 (IGF-1). DNMT1 overexpression abrogated these beneficial effects by enhancing apoptosis and decreasing IGF-1 expression. Inhibition of IGF-1 signaling with OSI-906 or genetic knocking down of IGF-1 also abrogated the cardioprotective effects of ADK knockout, revealing the therapeutic potential of increasing IGF-1 expression in attenuating myocardial I/R injury. In conclusion, the present study demonstrated that cardiomyocyte ADK deletion ameliorates myocardial I/R injury via epigenetic upregulation of IGF-1 expression via the cardiomyocyte adenosine/DNMT1/IGF-1 axis.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rifeng Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Cardiac Surgery Department, The Second Affiliated Hospital Zhejiang University School of Medicine, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyan Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Yingjie Chen
- Department of Physiology & Biophysics, University Mississippi Medical Center, MS, 39216, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhao Y, Liu Y, Zhao G, Lu H, Liu Y, Xue C, Chang Z, Liu H, Deng Y, Liang W, Wang H, Rom O, Garcia-Barrio MT, Zhu T, Guo Y, Chang L, Lin J, Chen YE, Zhang J. Myeloid BAF60a deficiency alters metabolic homeostasis and exacerbates atherosclerosis. Cell Rep 2023; 42:113171. [PMID: 37768825 PMCID: PMC10842557 DOI: 10.1016/j.celrep.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuhao Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71103, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Zhang M, Wang C, Wang R, Xu J, Wang Z, Yan J, Cai Y, Li L, Huo Y, Dong S. Adenosine kinase promotes post-infarction cardiac repair by epigenetically maintaining reparative macrophage phenotype. J Mol Cell Cardiol 2023; 174:88-100. [PMID: 36473288 PMCID: PMC10420407 DOI: 10.1016/j.yjmcc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Caiping Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Rongning Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhefeng Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jianlong Yan
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Yongfeng Cai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liangping Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Institute of Clinical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, GA 30912, United States
| | - Shaohong Dong
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China.
| |
Collapse
|
9
|
Li H, Zheng J, Xu Q, Yang Y, Zhou J, Guo X, Cai Y, Cai JJ, Xie L, Awika J, Han X, Li Q, Kennedy L, Francis H, Glaser S, Huo Y, Alpini G, Wu C. Hepatocyte Adenosine Kinase Promotes Excessive Fat Deposition and Liver Inflammation. Gastroenterology 2023; 164:134-146. [PMID: 36181835 PMCID: PMC9772177 DOI: 10.1053/j.gastro.2022.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is highly associated with obesity and progresses to nonalcoholic steatohepatitis when the liver develops overt inflammatory damage. While removing adenosine in the purine salvage pathway, adenosine kinase (ADK) regulates methylation reactions. We aimed to study whether hepatocyte ADK functions as an obesogenic gene/enzyme to promote excessive fat deposition and liver inflammation. METHODS Liver sections of human subjects were examined for ADK expression using immunohistochemistry. Mice with hepatocyte-specific ADK disruption or overexpression were examined for hepatic fat deposition and inflammation. Liver lipidomics, hepatocyte RNA sequencing (RNA-seq), and single-cell RNA-seq for liver nonparenchymal cells were performed to analyze ADK regulation of hepatocyte metabolic responses and hepatocyte-nonparenchymal cells crosstalk. RESULTS Whereas patients with nonalcoholic fatty liver disease had increased hepatic ADK levels, mice with hepatocyte-specific ADK disruption displayed decreased hepatic fat deposition on a chow diet and were protected from diet-induced excessive hepatic fat deposition and inflammation. In contrast, mice with hepatocyte-specific ADK overexpression displayed increased body weight and adiposity and elevated degrees of hepatic steatosis and inflammation compared with control mice. RNA-seq and epigenetic analyses indicated that ADK increased hepatic DNA methylation and decreased hepatic Ppara expression and fatty acid oxidation. Lipidomic and single-cell RNA-seq analyses indicated that ADK-driven hepatocyte factors, due to mitochondrial dysfunction, enhanced macrophage proinflammatory activation in manners involving increased expression of stimulator of interferon genes. CONCLUSIONS Hepatocyte ADK functions to promote excessive fat deposition and liver inflammation through suppressing hepatocyte fatty acid oxidation and producing hepatocyte-derived proinflammatory mediators. Therefore, hepatocyte ADK is a therapeutic target for managing obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Juan Zheng
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jing Zhou
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Yongfeng Cai
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Joseph Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas; Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes, University of Texas Health San Antonio, San Antonio, Texas
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Zhang J, Ma C, Qin H, Wang Z, Zhu C, Liu X, Hao X, Liu J, Li L, Cai Z. Construction and validation of a metabolic-related genes prognostic model for oral squamous cell carcinoma based on bioinformatics. BMC Med Genomics 2022; 15:269. [PMID: 36566175 PMCID: PMC9789624 DOI: 10.1186/s12920-022-01417-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for a frequently-occurring head and neck cancer, which is characterized by high rates of morbidity and mortality. Metabolism-related genes (MRGs) show close association with OSCC development, metastasis and progression, so we constructed an MRGs-based OSCC prognosis model for evaluating OSCC prognostic outcome. METHODS This work obtained gene expression profile as well as the relevant clinical information from the The Cancer Genome Atlas (TCGA) database, determined the MRGs related to OSCC by difference analysis, screened the prognosis-related MRGs by performing univariate Cox analysis, and used such identified MRGs for constructing the OSCC prognosis prediction model through Lasso-Cox regression. Besides, we validated the model with the GSE41613 dataset based on Gene Expression Omnibus (GEO) database. RESULTS The present work screened 317 differentially expressed MRGs from the database, identified 12 OSCC prognostic MRGs through univariate Cox regression, and then established a clinical prognostic model composed of 11 MRGs by Lasso-Cox analysis. Based on the optimal risk score threshold, cases were classified as low- or high-risk group. As suggested by Kaplan-Meier (KM) analysis, survival rate was obviously different between the two groups in the TCGA training set (P < 0.001). According to subsequent univariate and multivariate Cox regression, risk score served as the factor to predict prognosis relative to additional clinical features (P < 0.001). Besides, area under ROC curve (AUC) values for patient survival at 1, 3 and 5 years were determined as 0.63, 0.70, and 0.76, separately, indicating that the prognostic model has good predictive accuracy. Then, we validated this clinical prognostic model using GSE41613. To enhance our model prediction accuracy, age, gender, risk score together with TNM stage were incorporated in a nomogram. As indicated by results of ROC curve and calibration curve analyses, the as-constructed nomogram had enhanced prediction accuracy compared with clinicopathological features alone, besides, combining clinicopathological characteristics with risk score contributed to predicting patient prognosis and guiding clinical decision-making. CONCLUSION In this study, 11 MRGs prognostic models based on TCGA database showed superior predictive performance and had a certain clinical application prospect in guiding individualized.
Collapse
Affiliation(s)
- Jingfei Zhang
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Chenxi Ma
- grid.27255.370000 0004 1761 1174Department of Human Microbiome, School and Hospital of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, 250000 Shandong China
| | - Han Qin
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Zhi Wang
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Chao Zhu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiujuan Liu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiuyan Hao
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Jinghua Liu
- grid.415946.b0000 0004 7434 8069Department of Hepatobiliary Surgery and Minimally Invasive Institute of Digestive Surgery and Prof. Cai’s Laboratory, Linyi People’s Hospital, Shandong University, Linyi, 264000 Shandong China
| | - Ling Li
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Zhen Cai
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| |
Collapse
|
11
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
12
|
Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase, in Cancer. Biomolecules 2022; 12:biom12030418. [PMID: 35327609 PMCID: PMC8946555 DOI: 10.3390/biom12030418] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive effect of adenosine in the microenvironment of a tumor is well established. Presently, researchers are developing approaches in immune therapy that target inhibition of adenosine or its signaling such as CD39 or CD73 inhibiting antibodies or adenosine A2A receptor antagonists. However, numerous enzymatic pathways that control ATP-adenosine balance, as well as understudied intracellular adenosine regulation, can prevent successful immunotherapy. This review contains the latest data on two adenosine-lowering enzymes: adenosine kinase (ADK) and adenosine deaminase (ADA). ADK deletes adenosine by its phosphorylation into 5′-adenosine monophosphate. Recent studies have revealed an association between a long nuclear ADK isoform and an increase in global DNA methylation, which explains epigenetic receptor-independent role of adenosine. ADA regulates the level of adenosine by converting it to inosine. The changes in the activity of ADA are detected in patients with various cancer types. The article focuses on the biological significance of these enzymes and their roles in the development of cancer. Perspectives of future studies on these enzymes in therapy for cancer are discussed.
Collapse
|
13
|
Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, Weintraub NL, Fulton DJ, Hong M, Dong Z, Smith LEH, Caldwell RB, Sodhi A, Huo Y. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med 2021; 12:12/555/eaay1371. [PMID: 32759274 DOI: 10.1126/scitranslmed.aay1371] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/02/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis-associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow-derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl-coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Zhiping Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyu Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lina Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amany Tawfik
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Akrit Sodhi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. .,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Tual-Chalot S, Stellos K. Therapeutic potential of adenosine kinase inhibition in vascular disease. Cardiovasc Res 2021; 117:354-356. [PMID: 32533148 DOI: 10.1093/cvr/cvaa122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Rd, High Heaton, Newcastle Upon Tyne NE7 7DN, UK
| |
Collapse
|
15
|
Murugan M, Fedele D, Millner D, Alharfoush E, Vegunta G, Boison D. Adenosine kinase: An epigenetic modulator in development and disease. Neurochem Int 2021; 147:105054. [PMID: 33961946 DOI: 10.1016/j.neuint.2021.105054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Adenosine kinase (ADK) is the key regulator of adenosine and catalyzes the metabolism of adenosine to 5'-adenosine monophosphate. The enzyme exists in two isoforms: a long isoform (ADK-long, ADK-L) and a short isoform (ADK-short, ADK-S). The two isoforms are developmentally regulated and are differentially expressed in distinct subcellular compartments with ADK-L localized in the nucleus and ADK-S localized in the cytoplasm. The nuclear localization of ADK-L and its biochemical link to the transmethylation pathway suggest a specific role for gene regulation via epigenetic mechanisms. Recent evidence reveals an adenosine receptor-independent role of ADK in determining the global methylation status of DNA and thereby contributing to epigenomic regulation. Here we summarize recent progress in understanding the biochemical interactions between adenosine metabolism by ADK-L and epigenetic modifications linked to transmethylation reactions. This review will provide a comprehensive overview of ADK-associated changes in DNA methylation in developmental, as well as in pathological conditions including brain injury, epilepsy, vascular diseases, cancer, and diabetes. Challenges in investigating the epigenetic role of ADK for therapeutic gains are briefly discussed.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - David Millner
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
| | - Enmar Alharfoush
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ 08901, USA
| | - Geetasravya Vegunta
- Department of Biology, Albert Dorman Honors College, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA; Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Wang Y, Xu Y, Yan S, Cao K, Zeng X, Zhou Y, Liu Z, Yang Q, Pan Y, Wang X, Boison D, Su Y, Jiang X, Patel VS, Fulton D, Weintraub NL, Huo Y. Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovasc Res 2021; 117:561-575. [PMID: 32065618 PMCID: PMC7820850 DOI: 10.1093/cvr/cvaa040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS Adenosine receptors and extracellular adenosine have been demonstrated to modulate vascular smooth muscle cell (VSMC) proliferation and neointima formation. Adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels but is function in VSMC remains unclear. Here, we investigated the role of ADK in vascular injury-induced smooth muscle proliferation and delineated the mechanisms underlying its action. METHODS AND RESULTS We found that ADK expression was higher in the neointima of injured vessels and in platelet-derived growth factor-treated VSMCs. Genetic and pharmacological inhibition of ADK was enough to attenuate arterial injury-induced neointima formation due to inhibition of VSMC proliferation. Mechanistically, using infinium methylation assays and bisulfite sequencing, we showed that ADK metabolized the intracellular adenosine and potentiated the transmethylation pathway, then induced the aberrant DNA hypermethylation. Pharmacological inhibition of aberrant DNA hypermethylation increased KLF4 expression and suppressed VSMC proliferation as well as the neointima formation. Importantly, in human femoral arteries, we observed increased ADK expression and DNA hypermethylation as well as decreased KLF4 expression in neointimal VSMCs of stenotic vessels suggesting that our findings in mice are relevant for human disease and may hold translational significance. CONCLUSION Our study unravels a novel mechanism by which ADK promotes VSMC proliferation via inducing aberrant DNA hypermethylation, thereby down-regulating KLF4 expression and promoting neointima formation. These findings advance the possibility of targeting ADK as an epigenetic modulator to combat vascular injury.
Collapse
Affiliation(s)
- Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Kaixiang Cao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianqiu Zeng
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Yaqi Zhou
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Yue Pan
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Vijay S Patel
- Department of Anesthesiology and Perioperative Medicine, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Hou H, Zhao H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2020; 512:7-11. [PMID: 33232735 DOI: 10.1016/j.cca.2020.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a complex disease, influenced by both genetic and non-genetic factors. The most important epigenetic mechanism in the pathogenesis of atherosclerosis is DNA methylation, which involves modification of the gene without changes in the gene sequence. Nutrients involved in one-carbon metabolism interact to regulate DNA methylation, especially folic acid and B vitamins. Deficiencies in folic acid and other nutrients, such as vitamins B6 and B12, can increase homocysteine levels, induce endothelial dysfunction, and accelerate atherosclerotic pathological processes. Supplemented nutrients can improve DNA methylation status, reduce levels of inflammatory factors, and delay the process of atherosclerosis. In this review, the influence of intestinal flora on folate metabolism and epigenetics is also considered.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
19
|
Shamloo B, Kumar N, Owen RH, Reemmer J, Ost J, Perkins RS, Shen HY. Dysregulation of adenosine kinase isoforms in breast cancer. Oncotarget 2019; 10:7238-7250. [PMID: 31921385 PMCID: PMC6944449 DOI: 10.18632/oncotarget.27364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Dysregulated adenosine signaling pathway has been evidenced in the pathogenesis of breast cancer. However, the role of adenosine kinase (ADK) in tumorigenesis remains unclear while it crucially regulates the removal and availability of adenosine. ADK has two isoforms that localize to discrete subcellular spaces: i.e., nuclear, long-isoform (ADK-L) and cytosolic, short-isoform (ADK-S). We hypothesized that these two ADK isoforms would be differentially expressed in breast cancer and may contribute to divergent cellular actions in cancer. In this study, we examined the expression profiles of ADK isoforms in breast cancer tissues from 46 patient and followed up with an in vitro investigation by knocking down the expression of ADK-L or ADK-S using CRISPR gene editing to evaluate the role of ADK isoform in cancer progression and metastasis of cultured triple-negative breast cancer cell line MDA-MB-231. We demonstrated that (i) ADK-L expression level was significantly increased in breast cancer tissues versus paired normal tissues adjacent to tumor, whereas the ADK-S expression levels were not significantly different between cancerous and normal tissues; (ii) CRISPR/Cas9-mediated downregulation of ADK isoforms, led to suppressed cellular proliferation, division, and migration of cultured breast cancer cells; (iii) ADK-L knockdown significantly upregulated gene expression of matrix metalloproteinase (ADAM23, 9.93-fold; MMP9, 24.58-fold) and downregulated expression of cyclin D2 (CCND2, -30.76-fold), adhesive glycoprotein THBS1 (-8.28-fold), and cystatin E/M (CST6, -16.32-fold). Our findings suggest a potential role of ADK-L in mitogenesis, tumorigenesis, and tumor-associated tissue remodeling and invasion; and the manipulation of ADK-L holds promise as a therapeutic strategy for aggressive breast cancer.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Nandita Kumar
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Randall H Owen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Jesica Reemmer
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - John Ost
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA.,Mid-Columbia Medical Center, The Dalles, OR 97058, USA
| | - Hai-Ying Shen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
20
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|