1
|
Widjaja SL, Anniazi ML, Artiko B, Moelyo AG, Ahmadwirawan MT. BMPR-II, caspase-3, HIF-1α, and VE-cadherin profile in Down syndrome children with and without congenital heart disease and pulmonary hypertension. NARRA J 2025; 5:e1244. [PMID: 40352250 PMCID: PMC12059882 DOI: 10.52225/narra.v5i1.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 05/14/2025]
Abstract
Several cellular markers have been identified as effective in detecting vascular remodeling recently. The reduced activity of bone morphogenetic protein receptor type-II (BMPR-II), commonly observed in Down syndrome, results in insufficient production of vascular endothelial cadherin (VE-cadherin). This, in turn, increases hypoxia-inducible factor-1α (HIF-1α) levels and leads to excessive production of caspase-3. The aim of this study was to compare the plasma levels of BMPR-II, VE-cadherin, HIF-1α, and caspase-3 between pediatric Down syndrome with and without congenital heart disease (CHD) and pulmonary hypertension (PH). This was to investigate the role of these biomarkers in the pathogenesis of PH associated or not associated with CHD. A cross-sectional study was conducted on Down syndrome children aged two months to five years at a tertiary hospital between January and December 2023. The children were classified into four groups: CHD with PH, CHD without PH, non-CHD with PH and normal heart. Plasma levels of BMPR-II, caspase-3, HIF-1α, and VE-cadherin were measured using ELISA and compared based on the presence or absence of CHD and PH using Kruskal-Wallis followed by post hoc Bonferroni tests. Elevated plasma HIF-1α levels were observed in all patients with PH, with significantly higher levels in those with CHD-PH. Elevated levels of caspase-3 were also observed among children with PH groups, with the highest levels observed in the non-CHD PH group. Plasma levels of BMPR-II and VE-cadherin were elevated in PH, with significantly higher levels in the non-CHD PH group compared to other groups.
Collapse
Affiliation(s)
- Sri L. Widjaja
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Masayu L. Anniazi
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Bagus Artiko
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Annang G. Moelyo
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Mylco T. Ahmadwirawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
2
|
Sharma M, Paudyal V, Syed SK, Thapa R, Kassam N, Surani S. Management of Pulmonary Arterial Hypertension: Current Strategies and Future Prospects. Life (Basel) 2025; 15:430. [PMID: 40141775 PMCID: PMC11943839 DOI: 10.3390/life15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Primary pulmonary hypertension (PPH), now known as pulmonary arterial hypertension (PAH), has induced significant treatment breakthroughs in the past decade. Treatment has focused on improving patient survival and quality of life, and delaying disease progression. Current therapies are categorized based on targeting different pathways known to contribute to PAH, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 inhibitors (PDE-5 inhibitors), prostacyclin analogs, soluble guanylate cyclase stimulators, and activin signaling inhibitors such as Sotatercept. The latest addition to treatment options is soluble guanylate cyclase stimulators, such as Riociguat, which directly stimulates the nitric oxide pathway, facilitating vasodilation. Looking to the future, advancements in PAH treatment focus on precision medicine involving the sub-stratification of patients through a deep characterization of altered Transforming Growth Factor-β(TGF-β) signaling and molecular therapies. Gene therapy, targeting specific genetic mutations linked to PAH, and cell-based therapies, such as mesenchymal stem cells, are under investigation. Besides prevailing therapies, emerging PH treatments target growth factors and inflammation-modulating pathways, with ongoing trials assessing their long-term benefits and safety. Hence, this review explores current therapies that delay progression and improve survival, as well as future treatments with curative potential.
Collapse
Affiliation(s)
- Munish Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White, Temple, TX 76508, USA;
| | - Vivek Paudyal
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Saifullah Khalid Syed
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rubi Thapa
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Nadeem Kassam
- Department of Medicine, Aga Khan University, Nairobi 30270, Kenya;
| | - Salim Surani
- Department of Medicine and Pharmacy, Texas A&M, College Station, TX 77840, USA
| |
Collapse
|
3
|
Ghofrani HA, Gomberg-Maitland M, Zhao L, Grimminger F. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2025; 22:105-120. [PMID: 39112561 DOI: 10.1038/s41569-024-01064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 11/28/2024]
Abstract
Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Department of Medicine, Washington, DC, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
4
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
7
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Lotsios NS, Keskinidou C, Dimopoulou I, Kotanidou A, Langleben D, Orfanos SE, Vassiliou AG. Effects of Modulating BMP9, BMPR2, and AQP1 on BMP Signaling in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2024; 25:8043. [PMID: 39125626 PMCID: PMC11311989 DOI: 10.3390/ijms25158043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive increase in mean pulmonary arterial pressure. Mutations in the BMPR2 and AQP1 genes have been described in familial PAH. The bone morphogenetic proteins BMP9 and BMP10 bind with high affinity to BMPR2. Administration of BMP9 has been proposed as a potential therapeutic strategy against PAH, although recent conflicting evidence dispute the effect of such a practice. Considering the involvement of the above molecules in PAH onset, progression, and therapeutic value, we examined the effects of modulation of BMP9, BMPR2, and AQP1 on BMP9, BMP10, BMPR2, AQP1, and TGFB1 expression in human pulmonary microvascular endothelial cells in vitro. Our results demonstrated that silencing the BMPR2 gene resulted in increased expression of its two main ligands, namely BMP9 and BMP10. Exogenous administration of BMP9 caused the return of BMP10 to basal levels, while it restored the decreased AQP1 protein levels and the decreased TGFB1 mRNA and protein expression levels caused by BMPR2 silencing. Moreover, AQP1 gene silencing also resulted in increased expression of BMP9 and BMP10. Our results might possibly imply that the effect of exogenously administered BMP9 on molecules participating in the BMP signaling pathway could depend on the expression levels of BMPR2. Taken together, these results may provide insight into the highly complex interactions of the BMP signaling pathway.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
9
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
10
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Grynblat J, Bogaard HJ, Eyries M, Meyrignac O, Savale L, Jaïs X, Ghigna MR, Celant L, Meijboom L, Houweling AC, Levy M, Antigny F, Chaouat A, Cottin V, Guignabert C, Coulet F, Sitbon O, Bonnet D, Humbert M, Montani D. Pulmonary vascular phenotype identified in patients with GDF2 ( BMP9) or BMP10 variants: an international multicentre study. Eur Respir J 2024; 63:2301634. [PMID: 38514094 DOI: 10.1183/13993003.01634-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Harm Jan Bogaard
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mélanie Eyries
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle Adulte, Biomaps - Laboratoire d'Imagerie Multimodale - CEA-INSERM-CNRS, Hôpital de Bicêtre, DMU 14 Smart Imaging, AP-HP, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Department of Pathology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France
| | - Lucas Celant
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lilian Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marilyne Levy
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | | | - Ari Chaouat
- Département de Pneumologie, Université de Lorraine, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases and Centre for Pulmonary Hypertension, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
| | - Florence Coulet
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Singh N, Al-Naamani N, Brown MB, Long GM, Thenappan T, Umar S, Ventetuolo CE, Lahm T. Extrapulmonary manifestations of pulmonary arterial hypertension. Expert Rev Respir Med 2024; 18:189-205. [PMID: 38801029 PMCID: PMC11713041 DOI: 10.1080/17476348.2024.2361037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Extrapulmonary manifestations of pulmonary arterial hypertension (PAH) may play a critical pathobiological role and a deeper understanding will advance insight into mechanisms and novel therapeutic targets. This manuscript reviews our understanding of extrapulmonary manifestations of PAH. AREAS COVERED A group of experts was assembled and a complimentary PubMed search performed (October 2023 - March 2024). Inflammation is observed throughout the central nervous system and attempts at manipulation are an encouraging step toward novel therapeutics. Retinal vascular imaging holds promise as a noninvasive method of detecting early disease and monitoring treatment responses. PAH patients have gut flora alterations and dysbiosis likely plays a role in systemic inflammation. Despite inconsistent observations, the roles of obesity, insulin resistance and dysregulated metabolism may be illuminated by deep phenotyping of body composition. Skeletal muscle dysfunction is perpetuated by metabolic dysfunction, inflammation, and hypoperfusion, but exercise training shows benefit. Renal, hepatic, and bone marrow abnormalities are observed in PAH and may represent both end-organ damage and disease modifiers. EXPERT OPINION Insights into systemic manifestations of PAH will illuminate disease mechanisms and novel therapeutic targets. Additional study is needed to understand whether extrapulmonary manifestations are a cause or effect of PAH and how manipulation may affect outcomes.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA
| | - Gary Marshall Long
- Department of Kinesiology, Health and Sport Sciences, University of Indianapolis, Indianapolis, IN
| | - Thenappan Thenappan
- Section of Advanced Heart Failure and Pulmonary Hypertension, Cardiovascular Division, University of Minnesota, Minneapolis, MN
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Corey E. Ventetuolo
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI
- Department of Health Services, Policy and Practice, Brown University, Providence, RI
| | - Tim Lahm
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine, University of Colorado, Aurora, CO
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| |
Collapse
|
13
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
14
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
15
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
16
|
Robert F, Berrebeh N, Guignabert C, Humbert M, Bailly S, Tu L, Savale L. [Dysfunction of endothelial BMP-9 signaling in pulmonary vascular disease]. Rev Mal Respir 2023; 40:234-238. [PMID: 36828679 DOI: 10.1016/j.rmr.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
The signaling pathway of the bone morphogenetic protein (BMP)-9 binding to the endothelial receptor BMP receptor type II (BMPR-II), activin receptor-like kinase-1 (ALK1) and the coreceptor endoglin is essential to maintain the pulmonary vascular integrity. Dysregulation of this pathway is implicated in numerous vascular diseases, such as pulmonary arterial hypertension (PAH), hereditary hemorrhagic telangiectasia (HHT) and hepatopulmonary syndrome (HPS). This article aims to provide a comprehensive review of the implication of the BMP-9/BMPR-II/ALK1/endoglin pathway in the pathophysiology of these diseases.
Collapse
Affiliation(s)
- F Robert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - N Berrebeh
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - C Guignabert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - M Humbert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France; Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris (AP-HP), 94276 Le Kremlin-Bicêtre, France
| | - S Bailly
- Laboratoire BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - L Tu
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - L Savale
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France; Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris (AP-HP), 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
17
|
Bhagwani AR, Ali M, Piper B, Liu M, Hudson J, Kelly N, Bogamuwa S, Yang H, Londino JD, Bednash JS, Farkas D, Mallampalli RK, Nicolls MR, Ryan JJ, Thompson AR, Chan SY, Gomez D, Goncharova EA, Farkas L. A p53-TLR3 axis ameliorates pulmonary hypertension by inducing BMPR2 via IRF3. iScience 2023; 26:105935. [PMID: 36685041 PMCID: PMC9852960 DOI: 10.1016/j.isci.2023.105935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.
Collapse
Affiliation(s)
- Aneel R. Bhagwani
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mehboob Ali
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bryce Piper
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jaylen Hudson
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Neil Kelly
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Srimathi Bogamuwa
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hu Yang
- Chemical & Biochemical Engineering, Missouri S&T, Rolla, MO 65409, USA
| | - James D. Londino
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Daniela Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark R. Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John J. Ryan
- College of Humanities & Sciences, Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - A.A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Quist-Løkken I, Andersson-Rusch C, Kastnes MH, Kolos JM, Jatzlau J, Hella H, Olsen OE, Sundan A, Knaus P, Hausch F, Holien T. FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells. Cell Commun Signal 2023; 21:25. [PMID: 36717825 PMCID: PMC9885706 DOI: 10.1186/s12964-022-01033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The immunophilin FKBP12 binds to TGF-β family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.
Collapse
Affiliation(s)
- Ingrid Quist-Løkken
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Clara Andersson-Rusch
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Martin Haugrud Kastnes
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jürgen Markus Kolos
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jerome Jatzlau
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hanne Hella
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Oddrun Elise Olsen
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Anders Sundan
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
| | - Petra Knaus
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Felix Hausch
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Toril Holien
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Biomedical Laboratory Science, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| |
Collapse
|
19
|
Abstract
Pulmonary arterial hypertension forms the first and most severe of the 5 categories of pulmonary hypertension. Disease pathogenesis is driven by progressive remodeling of peripheral pulmonary arteries, caused by the excessive proliferation of vascular wall cells, including endothelial cells, smooth muscle cells and fibroblasts, and perivascular inflammation. Compelling evidence from animal models suggests endothelial cell dysfunction is a key initial trigger of pulmonary vascular remodeling, which is characterised by hyperproliferation and early apoptosis followed by enrichment of apoptosis-resistant populations. Dysfunctional pulmonary arterial endothelial cells lose their ability to produce vasodilatory mediators, together leading to augmented pulmonary arterial smooth muscle cell responses, increased pulmonary vascular pressures and right ventricular afterload, and progressive right ventricular hypertrophy and heart failure. It is recognized that a range of abnormal cellular molecular signatures underpin the pathophysiology of pulmonary arterial hypertension and are enhanced by loss-of-function mutations in the BMPR2 gene, the most common genetic cause of pulmonary arterial hypertension and associated with worse disease prognosis. Widespread metabolic abnormalities are observed in the heart, pulmonary vasculature, and systemic tissues, and may underpin heterogeneity in responsivity to treatment. Metabolic abnormalities include hyperglycolytic reprogramming, mitochondrial dysfunction, aberrant polyamine and sphingosine metabolism, reduced insulin sensitivity, and defective iron handling. This review critically discusses published mechanisms linking metabolic abnormalities with dysfunctional BMPR2 (bone morphogenetic protein receptor 2) signaling; hypothesized mechanistic links requiring further validation; and their relevance to pulmonary arterial hypertension pathogenesis and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Iona Cuthbertson
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Paola Caruso
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| |
Collapse
|
20
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
21
|
Cantu A, Gutierrez MC, Dong X, Leek C, Sajti E, Lingappan K. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L5-L31. [PMID: 36283964 PMCID: PMC9799156 DOI: 10.1152/ajplung.00269.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) predisposes to bronchopulmonary dysplasia (BPD), which is characterized by abnormal alveolarization and pulmonary vascular development, in preterm neonates. Neonatal hyperoxia exposure is used to recapitulate the phenotype of human BPD in murine models. Male sex is considered an independent predictor for the development of BPD, but the main mechanisms underlying sexually dimorphic outcomes are unknown. Our objective was to investigate sex-specific and cell-type specific transcriptional changes that drive injury in the neonatal lung exposed to hyperoxia at single-cell resolution and delineate the changes in cell-cell communication networks in the developing lung. We used single-cell RNA sequencing (scRNAseq) to generate transcriptional profiles of >35,000 cells isolated from the lungs of neonatal male and female C57BL/6 mice exposed to 95% [Formula: see text] between PND1-5 (saccular stage of lung development) or normoxia and euthanized at PND7 (alveolar stage of lung development). ScRNAseq identified 22 cell clusters with distinct populations of endothelial, epithelial, mesenchymal, and immune cells. Our data identified that the distal lung vascular endothelium (composed of aerocytes and general capillary endothelial cells) is exquisitely sensitive to hyperoxia exposure with the emergence of an intermediate capillary endothelial population with both general capillaries (gCap) and aerocytes or alveolar capillaries (aCap) markers. We also identified a myeloid-derived suppressor cell population from the lung neutrophils. Sex-specific differences were evident in all lung cell subpopulations but were striking among the lung immune cells. Finally, we identified that the specific intercellular communication networks and the ligand-receptor pairs that are impacted by neonatal hyperoxia exposure.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manuel C Gutierrez
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eniko Sajti
- Department of Pediatrics, University of California, La Jolla, California
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Wang Y, Yang X, Li Q, Zhang Y, Chen L, Hong L, Xie Z, Yang S, Deng X, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals the Müller subtypes and inner blood-retinal barrier regulatory network in early diabetic retinopathy. Front Mol Neurosci 2022; 15:1048634. [PMID: 36533134 PMCID: PMC9754943 DOI: 10.3389/fnmol.2022.1048634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2023] Open
Abstract
As the basic pathological changes of diabetic retinopathy (DR), the destruction of the blood-retina barrier (BRB) and vascular leakage have attracted extensive attention. Without timely intervention, BRB damage will eventually lead to serious visual impairment. However, due to the delicate structure and complex function of the BRB, the mechanism underlying damage to the BRB in DR has not been fully clarified. Here, we used single-cell RNA sequencing (RNA-seq) technology to analyze 35,910 cells from the retina of healthy and streptozotocin (STZ)-induced diabetic rats, focusing on the degeneration of the main cells constituting the rat BRB in DR and the new definition of two subpopulations of Müller cells at the cell level, Ctxn3 +Müller and Ctxn3 -Müller cells. We analyzed the characteristics and significant differences between the two groups of Müller cells and emphasized the importance of the Ctxn3 +Müller subgroup in diseases. In endothelial cells, we found possible mechanisms of self-protection and adhesion and recruitment to pericytes. In addition, we constructed a communication network between endothelial cells, pericytes, and Müller subsets and clarified the complex regulatory relationship between cells. In summary, we constructed an atlas of the iBRB in the early stage of DR and elucidate the degeneration of its constituent cells and Müller cells and the regulatory relationship between them, providing a series of potential targets for the early treatment of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
VandenBroek MM, Skebo SI, Ormiston ML. Targeting BMPR-II in pulmonary arterial hypertension: a case of Hercules versus the Hydra? Expert Opin Ther Targets 2022; 26:1027-1030. [PMID: 36638064 DOI: 10.1080/14728222.2022.2168188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Affiliation(s)
| | - Sofia I Skebo
- Department of Biology, Queen's University, Kingston, K7L, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, K7L, Canada
- Departments of Biomedical and Molecular Sciences and Surgery, Queen's University, Kingston, K7L, Canada
| |
Collapse
|
24
|
Cober ND, VandenBroek MM, Ormiston ML, Stewart DJ. Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension 2022; 79:1580-1590. [PMID: 35582968 DOI: 10.1161/hypertensionaha.122.18261] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease, characterized by increased vascular resistance, pulmonary arteriolar loss, and occlusive arterial remodeling, leading to eventual right heart failure. Evidence increasingly points to the pulmonary endothelium as a central actor in PAH. Endothelial cell apoptosis can result directly in distal lung arteriolar pruning and indirectly in the formation of complex and occlusive arterial lesions, reflecting an imbalance between endothelial injury and repair in the development and progression of PAH. Many of the mutations implicated in PAH are in genes, which are predominantly, or solely, expressed in endothelial cells, and the endothelium is a major target for therapeutic interventions to restore BMP signaling. We explore how arterial pruning can promote the emergence of occlusive arterial remodeling mediated by ongoing endothelial injury secondary to hemodynamic perturbation and pathological increases in luminal shear stress. The emerging role of endothelial cell senescence is discussed in the transition from reversible to irreversible arterial remodeling in advanced PAH, and we review the sometimes conflicting evidence that female sex hormones can both protect or promote vascular changes in disease. Finally, we explore the contribution of the endothelium to metabolic changes and the altered inflammatory and immune state in the PAH lung, focusing on the role of excessive TGFβ signaling. Given the complexity of the endothelial pathobiology of PAH, we anticipate that emerging technologies that allow the study of molecular events at a single cell level will provide answers to many of the questions raised in this review.
Collapse
Affiliation(s)
- Nicholas D Cober
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| | - M Martin VandenBroek
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.).,Departments of Surgery, and Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada (M.L.O.)
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| |
Collapse
|
25
|
Klumpe HE, Langley MA, Linton JM, Su CJ, Antebi YE, Elowitz MB. The context-dependent, combinatorial logic of BMP signaling. Cell Syst 2022; 13:388-407.e10. [PMID: 35421361 PMCID: PMC9127470 DOI: 10.1016/j.cels.2022.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be classified into equivalence groups based on their profile of positive and negative synergies with other ligands. These groups varied with receptor expression, explaining how ligands can functionally replace each other in one context but not another. Context-dependent combinatorial interactions could be explained by a biochemical model based on the competitive formation of alternative signaling complexes with distinct activities. Together, these results provide insights into the roles of BMP combinations in developmental and therapeutic contexts and establish a framework for analyzing other combinatorial, context-dependent signaling systems.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina J Su
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
27
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases. Semin Immunopathol 2022; 44:259-268. [PMID: 35233690 PMCID: PMC8887661 DOI: 10.1007/s00281-022-00925-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
As the field of medicine is striving forward heralded by a new era of next-generation sequencing (NGS) and integrated technologies such as bioprinting and biological material development, the utility of rare monogenetic vascular disease modeling in this landscape is starting to emerge. With their genetic simplicity and broader applicability, these patient-specific models are at the forefront of modern personalized medicine. As a collective, rare diseases are a significant burden on global healthcare systems, and rare vascular diseases make up a significant proportion of this. High costs are due to a lengthy diagnostic process, affecting all ages from infants to adults, as well as the severity and chronic nature of the disease. Their complex nature requires sophisticated disease models and integrated approaches involving multidisciplinary teams. Here, we review these emerging vascular disease models, how they contribute to our understanding of the pathomechanisms in rare vascular diseases and provide useful platforms for therapeutic discovery.
Collapse
|
29
|
Guo R, Xing QS. Roles of Wnt Signaling Pathway and ROR2 Receptor in Embryonic Development: An Update Review Article. Epigenet Insights 2022; 15:25168657211064232. [PMID: 35128307 PMCID: PMC8808015 DOI: 10.1177/25168657211064232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
The Wnt family is a large class of highly conserved cysteine-rich secretory glycoproteins that play a vital role in various cellular and physiological courses through different signaling pathways during embryogenesis and tissue homeostasis 3. Wnt5a is a secreted glycoprotein that belongs to the noncanonical Wnt family and is involved in a wide range of developmental and tissue homeostasis. A growing body of evidence suggests that Wnt5a affects embryonic development, signaling through various receptors, starting with the activation of β-catenin by Wnt5a. In addition to affecting planar cell polarity and Ca2+ pathways, β-catenin also includes multiple signaling cascades that regulate various cell functions. Secondly, Wnt5a can bind to Ror receptors to mediate noncanonical Wnt signaling and a significant ligand for Ror2 in vertebrates. Consistent with the multiple functions of Wnt5A/Ror2 signaling, Wnt5A knockout mice exhibited various phenotypic defects, including an inability to extend the anterior and posterior axes of the embryo. Numerous essential roles of Wnt5a/Ror2 in development have been demonstrated. Therefore, Ror signaling pathway become a necessary target for diagnosing and treating human diseases. The Wnt5a- Ror2 signaling pathway as a critical factor has attracted extensive attention.
Collapse
Affiliation(s)
- Rui Guo
- Qingdao University, Qingdao, China
| | - Quan Sheng Xing
- Qingdao University-Affiliated Hospital of Women and Children, Qingdao, China
- Quan Sheng Xing, Qingdao University-Affiliated Hospital of Women and Children, tongfu road 6, shibei district, Qingdao 266000, China.
| |
Collapse
|
30
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
31
|
Harry JA, Ormiston ML. Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Front Oncol 2021; 11:772305. [PMID: 34926282 PMCID: PMC8678517 DOI: 10.3389/fonc.2021.772305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer affecting women and is the second leading cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel development from pre-existing vasculature, has been implicated in the growth, progression, and metastasis of cancer. Tumor angiogenesis has been explored as a key therapeutic target for decades, as the blockade of this process holds the potential to reduce the oxygen and nutrient supplies that are required for tumor growth. However, many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-effects, limited survival advantage, and enhanced cancer regrowth rates. To address these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are being explored, including those involving Bone Morphogenetic Protein-9 signaling, the Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase, and Chemokine Ligand 18. This review article will introduce the concept of tumor angiogenesis in the context of breast cancer, followed by an overview of current anti-angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.
Collapse
Affiliation(s)
- Jordan A Harry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
32
|
Condon DF, Agarwal S, Chakraborty A, Auer N, Vazquez R, Patel H, Zamanian RT, de Jesus Perez VA, Condon DF. "NOVEL MECHANISMS TARGETED BY DRUG TRIALS IN PULMONARY ARTERIAL HYPERTENSION". Chest 2021; 161:1060-1072. [PMID: 34655569 PMCID: PMC9005865 DOI: 10.1016/j.chest.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease associated with abnormally elevated pulmonary pressures and right heart failure resulting in high morbidity and mortality. While PAH prognosis has improved with the introduction of pulmonary vasodilators, disease progression remains a major problem. Given that available therapies are inadequate for preventing small vessel loss and obstruction, there is an active interest in identifying drugs capable of targeting angiogenesis and mechanisms involved in regulation of cell growth and fibrosis. Among the mechanisms linked to PAH pathogenesis, recent preclinical studies have identified promising compounds that are currently being tested in clinical trials. These drugs target seven of the major mechanisms associated with PAH pathogenesis: BMP signaling, tyrosine kinase receptors, estrogen metabolism, extracellular matrix, angiogenesis, epigenetics, and serotonin metabolism. In this review, we will discuss the preclinical studies that led to prioritization of these mechanisms and will discuss recently completed and ongoing phase 2/3 trials using novel interventions such as sotatercept, anastrozole, rodatristat ethyl, tyrosine kinase inhibitors, and endothelial progenitor cells among others. We anticipate that the next generation of compounds will build upon the success of the current standard of care and improve clinical outcomes and quality of life of patients afflicted with PAH.
Collapse
Affiliation(s)
- David F Condon
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Stuti Agarwal
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Ananya Chakraborty
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Natasha Auer
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Rocio Vazquez
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Hiral Patel
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Roham T Zamanian
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA.
| | | |
Collapse
|
33
|
Abstract
Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) β influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.
Collapse
Affiliation(s)
- Zahra Alvandi
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|
34
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
35
|
Zhang L, Yao J, Yao Y, Boström KI. Contributions of the Endothelium to Vascular Calcification. Front Cell Dev Biol 2021; 9:620882. [PMID: 34079793 PMCID: PMC8165270 DOI: 10.3389/fcell.2021.620882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification (VC) increases morbidity and mortality and constitutes a significant obstacle during percutaneous interventions and surgeries. On a cellular and molecular level, VC is a highly regulated process that involves abnormal cell transitions and osteogenic differentiation, re-purposing of signaling pathways normally used in bone, and even formation of osteoclast-like cells. Endothelial cells have been shown to contribute to VC through a variety of means. This includes direct contributions of osteoprogenitor cells generated through endothelial-mesenchymal transitions in activated endothelium, with subsequent migration into the vessel wall. The endothelium also secretes pro-osteogenic growth factors, such as bone morphogenetic proteins, inflammatory mediators and cytokines in conditions like hyperlipidemia, diabetes, and renal failure. High phosphate levels caused by renal disease have deleterious effects on the endothelium, and induction of tissue non-specific alkaline phosphatase adds to the calcific process. Furthermore, endothelial activation promotes proteolytic destruction of the internal elastic lamina that serves, among other things, as a stabilizer of the endothelium. Appropriate bone mineralization is highly dependent on active angiogenesis, but it is unclear whether the same relationship exists in VC. Through its location facing the vascular lumen, the endothelium is the first to encounter circulating factor and bone marrow-derived cells that might contribute to osteoclast-like versus osteoblast-like cells in the vascular wall. In the same way, the endothelium may be the easiest target to reach with treatments aimed at limiting calcification. This review provides a brief summary of the contributions of the endothelium to VC as we currently know them.
Collapse
Affiliation(s)
- Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, Los Angeles, CA, United States
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|