1
|
Nassar M, Gill AS, Marte E. Investigating the impact of intestinal glucagon-like peptide-1 on hypoglycemia in type 1 diabetes. World J Diabetes 2025; 16:99142. [PMID: 40093284 PMCID: PMC11885982 DOI: 10.4239/wjd.v16.i3.99142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/30/2024] [Accepted: 01/02/2025] [Indexed: 01/21/2025] Open
Abstract
Recent advances in understanding type 1 diabetes (T1D) highlight the complexity of managing hypoglycemia, a frequent and perilous complication of diabetes therapy. This letter delves into a novel study by Jin et al, which elucidates the role of intestinal glucagon-like peptide-1 (GLP-1) in the counterregulatory response to hypoglycemia in T1D models. The study employed immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay to track changes in GLP-1 and its receptor expression in diabetic mice subjected to recurrent hypoglycemic episodes. Findings indicate a significant increase in intestinal GLP-1 and GLP-1 receptor expression, correlating with diminished adrenal and glucagon responses, crucial for glucose stabilization during hypoglycemic events. This letter aims to explore the implications of these findings for future therapeutic strategies and the broader understanding of T1D management.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare (ASIDE), Lewes, DE 19958, United States
| | - Angad Singh Gill
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare (ASIDE), Lewes, DE 19958, United States
| | - Erlin Marte
- Department of Endocrine, WNY VA Hospital, Buffalo, NY 14215, United States
| |
Collapse
|
2
|
Jalleh RJ, Plummer MP, Marathe CS, Umapathysivam MM, Quast DR, Rayner CK, Jones KL, Wu T, Horowitz M, Nauck MA. Clinical Consequences of Delayed Gastric Emptying With GLP-1 Receptor Agonists and Tirzepatide. J Clin Endocrinol Metab 2024; 110:1-15. [PMID: 39418085 PMCID: PMC11651700 DOI: 10.1210/clinem/dgae719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are established therapeutics for type 2 diabetes and obesity. Among other mechanisms, they slow gastric emptying and motility of the small intestine. This helps to limit postprandial glycemic excursions and reduce chylomicron formation and triglyceride absorption. Conversely, motility effects may have detrimental consequences, eg, retained gastric contents at endoscopy or general anesthesia, potentially complicated by pulmonary aspiration or bowel obstruction. DATA ACQUISITION We searched the PubMed database for studies involving GLP-1RA therapy and adverse gastrointestinal/biliary events. DATA SYNTHESIS Retained gastric contents at the time of upper gastrointestinal endoscopy are found more frequently with GLP-1 RAs but rarely are associated with pulmonary aspiration. Well-justified recommendations for the periprocedural management of GLP-1RAs (eg, whether to withhold these medications and for how long) are compromised by limited evidence. Important aspects to be considered are (1) their long half-lives, (2) the capacity of GLP-1 receptor agonism to slow gastric emptying even at physiological GLP-1 concentrations, (c) tachyphylaxis observed with prolonged treatment, and (d) the limited effect on gastric emptying in individuals with slow gastric emptying before initiating treatment. Little information is available on the influence of diabetes mellitus itself (ie, in the absence of GLP-1 RA treatment) on retained gastric contents and pulmonary aspiration. CONCLUSION Prolonged fasting periods regarding solid meal components, point-of-care ultrasound examination for retained gastric content, and the use of prokinetic medications like erythromycin may prove helpful and represent an important area needing further study to increase patient safety for those treated with GLP-1 RAs.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mark P Plummer
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Chinmay S Marathe
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mahesh M Umapathysivam
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Southern Adelaide Diabetes and Endocrine Service, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Daniel R Quast
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, Sankt Josef-Hospital, Ruhr-University, D-44791 Bochum, Germany
| | - Christopher K Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, Sankt Josef-Hospital, Ruhr-University, D-44791 Bochum, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| |
Collapse
|
3
|
Alnima T, Smits MM, Hanssen NMJ. Are the lipid-lowering effects of incretin-based therapies relevant for cardiovascular benefit? Curr Opin Lipidol 2024; 35:259-267. [PMID: 39082103 DOI: 10.1097/mol.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review examines the impact of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on lipid profiles in individuals with type 2 diabetes mellitus and/or obesity, crucial for optimizing cardiovascular risk management. RECENT FINDINGS GLP-1RAs affect lipid levels by reducing intestinal apolipoprotein B48 production and mesenteric lymph flow, while increasing catabolism of apolipoprotein B100. It remains unknown whether these effects are direct or indirect, but the improvements in lipid levels are strongly correlated to the drug-induced weight loss. Clinical trials demonstrate improvements in lipid profiles, with different effects per agent and dose. We deem it unlikely that improved lipid levels are sufficient to explain the beneficial effects of GLP-1RA on cardiovascular risk, especially given the improvement of many other risk factors (body weight, glycemic control, inflammation) while using these agents. Posthoc mediation analyses of large cardiovascular outcome trials may shed some light on the relative importance of each risk factor. SUMMARY GLP-1RAs improve lipid profiles in clinical trials, but their complete cardiovascular benefits likely involve multifactorial mechanisms beyond lipid modulation.
Collapse
Affiliation(s)
- Teba Alnima
- Radboud University Medical Center, Department of Internal Medicine, sections Vascular Medicine and Diabetology, Nijmegen
| | - Mark M Smits
- Amsterdam University Medical Center, Department of Internal Medicine
| | - Nordin M J Hanssen
- Amsterdam University Medical Center, Department of Internal Medicine
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jalleh RJ, Marathe CS, Rayner CK, Jones KL, Umapathysivam MM, Wu T, Quast DR, Plummer MP, Nauck MA, Horowitz M. Physiology and Pharmacology of Effects of GLP-1-based Therapies on Gastric, Biliary and Intestinal Motility. Endocrinology 2024; 166:bqae155. [PMID: 39568409 PMCID: PMC11630531 DOI: 10.1210/endocr/bqae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists and the dual GLP-1- and glucose-dependent insulinotropic polypeptide receptor co-agonist tirzepatide (referred to here collectively as "GLP-1-based therapy") are incretin-based therapies being used increasingly in the management of both type 2 diabetes and obesity. They are now recognized to have beneficial effects beyond improved glycemic control and weight loss, including cardiovascular and renal protection. GLP-1-based therapy also slows gastric emptying, which has benefits (lowering postprandial glucose), but also potential risks (eg, hypoglycemia in individuals on insulin or sulphonylurea therapy). Their effects on the gallbladder may also be beneficial, contributing to reducing postprandial triglycerides, but they also potentially increase the risk of biliary disease. In this review, we summarize the effects of GLP-1 and incretin-based therapeutics on gastric, biliary and small intestinal function. An improved understanding of these effects will optimize the use of these drugs.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Chinmay S Marathe
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Christopher K Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mahesh M Umapathysivam
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Southern Adelaide Diabetes and Endocrine Service, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Daniel R Quast
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, Sankt Josef-Hospital, Ruhr-University, D-44791 Bochum, Germany
| | - Mark P Plummer
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, Sankt Josef-Hospital, Ruhr-University, D-44791 Bochum, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Griffin JD, Zhu Y, Reeves A, Buhman KK, Greenberg AS. Intestinal Acyl-CoA synthetase 5 (ACSL5) deficiency potentiates postprandial GLP-1 & PYY secretion, reduces food intake, and protects against diet-induced obesity. Mol Metab 2024; 83:101918. [PMID: 38499083 PMCID: PMC10990902 DOI: 10.1016/j.molmet.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE In the small intestine, the products of digestion of dietary triacylglycerol (TAG), fatty acids (FA) and monoacylglycerol, are taken up by absorptive cells, enterocytes, for systemic energy delivery. These digestion products can also bind receptors on endocrine cells to stimulate the release of hormones capable of influencing systemic energy metabolism. The initial phase of intestinal FA absorption involves the acylation of FAs to acyl-CoA by the acyl-CoA long chain synthetase (ACSL) enzymes. ACSL5 is abundantly expressed in the small intestinal epithelium where it is the major ACSL isoform, contributing approximately 80% of total ACSL activity. In mice with whole body deficiency of ACSL5, the rate of dietary fat absorption is reduced and energy expenditure is increased. However, the mechanisms by which intestinal ACSL5 contributes to intestinal FA metabolism, enteroendocrine signaling, and regulation of energy expenditure remain undefined. Here, we test the hypothesis that intestinal ACSL5 regulates energy metabolism by influencing dietary fat absorption and enteroendocrine signaling. METHODS To explore the role of intestinal ACSL5 in energy balance and intestinal dietary fat absorption, a novel mouse model of intestine specific ACSL5 deficiency (ACSL5IKO) was generated by breeding ACSL5 floxed (ACSL5loxP/loxP) to mice harboring the tamoxifen inducible, villin-Cre recombinase. ACSL5IKO and control, ACSL5loxP/loxP mice were fed chow (low in fat) or a 60% high fat diet (HFD), and metabolic phenotyping was performed including, body weight, body composition, insulin and glucose tolerance tests, energy expenditure, physical activity, and food intake studies. Pair-feeding studies were performed to determine the role of food intake in regulating development of obesity. Studies of dietary fat absorption, fecal lipid excretion, intestinal mucosal FA content, and circulating levels of glucagon like peptide 1 (GLP-1) and peptide YY (PYY) in response to a TAG challenge were performed. Treatment with a GLP-1 receptor antagonist was performed to determine the contribution of GLP-1 to acute regulation of food intake. RESULTS We found that ACSL5IKO mice experienced rapid and sustained protection from body weight and fat mass accumulation during HFD feeding. While intestine specific deficiency of ACSL5 delayed gastric emptying and reduced dietary fat secretion, it did not result in increased excretion of dietary lipid in feces. Energy expenditure and physical activity were not increased in ACSL5IKO mice. Mice deficient in intestinal ACSL5 display significantly reduced energy intake during HFD, but not chow feeding. When HFD intake of control mice was matched to ACSL5IKO during pair-feeding studies, no differences in body weight or fat mass gain were observed between groups. Postprandial GLP-1 and PYY were significantly elevated in ACSL5IKO mice secondary to increased FA content in the distal small intestine. Blockade of GLP-1 signaling by administration of a long-acting GLP-1 receptor antagonist partially restored HFD intake of ACSL5IKO. CONCLUSIONS These data indicate that intestinal ACSL5 serves as a critical regulator of energy balance, protecting mice from diet-induced obesity exclusively by increasing satiety and reducing food intake during HFD feeding. The reduction in food intake observed in ACSL5IKO mice is driven, in part, by increased postprandial GLP-1 and PYY secretion. These effects are only observed during HFD feeding, suggesting that altered processing of dietary fat following intestinal ACSL5 ablation contributes to GLP-1 and PYY mediated increases in satiety.
Collapse
Affiliation(s)
- John D Griffin
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, USA
| | - Ying Zhu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, USA
| | - Andrew Reeves
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, USA
| | | | - Andrew S Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, USA; Tufts University School of Medicine, USA; Friedman School of Nutrition Science and Policy at Tufts University, USA.
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
8
|
Malick WA, Do R, Rosenson RS. Severe hypertriglyceridemia: Existing and emerging therapies. Pharmacol Ther 2023; 251:108544. [PMID: 37848164 DOI: 10.1016/j.pharmthera.2023.108544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Severe hypertriglyceridemia (sHTG), defined as a triglyceride (TG) concentration ≥ 500 mg/dL (≥ 5.7 mmol/L) is an important risk factor for acute pancreatitis. Although lifestyle, some medications, and certain conditions such as diabetes may lead to HTG, sHTG results from a combination of major and minor genetic defects in proteins that regulate TG lipolysis. Familial chylomicronemia syndrome (FCS) is a rare disorder caused by complete loss of function in lipoprotein lipase (LPL) or LPL activating proteins due to two homozygous recessive traits or compound heterozygous traits. Multifactorial chylomicronemia syndrome (MCS) and sHTG are due to the accumulation of rare heterozygous variants and polygenic defects that predispose individuals to sHTG phenotypes. Until recently, treatment of sHTG focused on lifestyle interventions, control of secondary factors, and nonselective pharmacotherapies that had modest TG-lowering efficacy and no corresponding reductions in atherosclerotic cardiovascular disease events. Genetic discoveries have allowed for the development of novel pathway-specific therapeutics targeting LPL modulating proteins. New targets directed towards inhibition of apolipoprotein C-III (apoC-III), angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like protein 4 (ANGPTL4), and fibroblast growth factor-21 (FGF21) offer far more efficacy in treating the various phenotypes of sHTG and opportunities to reduce the risk of acute pancreatitis and atherosclerotic cardiovascular disease events.
Collapse
Affiliation(s)
- Waqas A Malick
- Metabolism and Lipids Program, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert S Rosenson
- Metabolism and Lipids Program, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
10
|
Lee SH, Park H, Yang EK, Lee BR, Jung IH, Kim TH, Goo MJ, Chae Y, Kim MK. GPR119 activation by DA-1241 alleviates hepatic and systemic inflammation in MASH mice through inhibition of NFκB signaling. Biomed Pharmacother 2023; 166:115345. [PMID: 37657264 DOI: 10.1016/j.biopha.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND PURPOSE GPR119 activation has been suggested to improve hyperglycemia, dyslipidemia and hepatic steatosis. But its therapeutic potential for metabolic dysfunction-associated steatohepatitis (MASH) are underexplored. Here, we investigated the effects of DA-1241, a novel GPR119 agonist, on MASH and explored its underlying mechanism of anti-inflammatory effects. EXPERIMENTAL APPROACH The in vivo anti-MASH effect was assessed by examining the preventive effect in MS-MASH and Ob-MASH mice and the therapeutic effect in MASH with severe hyperglycemia and diet-induced obese (DIO)-MASH mice. Histological and biochemical changes in liver tissue were assessed. Both plasma and hepatic biomarkers related to inflammation and fibrosis were comprehensively analyzed. To understand its mode of action, changes in NFκB signaling were determined in HepG2 and THP-1 cells. KEY RESULTS DA-1241 attenuated MASH progression and alleviated the MASH phenotypes in MASH mouse models with different etiologies, regardless of glucose-lowering activity. In DIO-MASH mice, DA-1241 significantly reduced biochemical parameters related to steatosis, inflammation and fibrosis in the liver with reduced plasma liver enzymes. When used in combination with a dipeptidyl peptidase 4 (DPP4) inhibitor, DA-1241 further improved the MASH phenotype by increasing endogenous glucagon-like peptide-1 effect. Notably, DA-1241 alone and in combination reduced liver inflammation and restored inflammation-related hepatic gene expression, leading to remission of systemic inflammation as assessed by plasma inflammatory cytokines and chemokines. We demonstrated that DA-1241 reduces macrophage differentiation through downregulation of NFκB signaling by activating GPR119. CONCLUSION Our data suggest the therapeutic potential of DA-1241, alone and in combination with a DPP4 inhibitor, for MASH.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Hansu Park
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Eun-Kyoung Yang
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Bo Ram Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Il-Hoon Jung
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Tae-Hyoung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Moon Jung Goo
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Yuna Chae
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Mi-Kyung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea.
| |
Collapse
|
11
|
Leuthardt AS, Boyle CN, Raun K, Lutz TA, John LM, Le Foll C. Body weight lowering effect of glucose-dependent insulinotropic polypeptide and glucagon-like peptide receptor agonists is more efficient in RAMP1/3 KO than in WT mice. Eur J Pharmacol 2023; 955:175912. [PMID: 37454968 DOI: 10.1016/j.ejphar.2023.175912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The glucose-dependent insulinotropic polypeptide (GIPR) and glucagon-like peptide (GLP-1R) receptor agonists are insulin secretagogues that have long been shown to improve glycemic control and dual agonists have demonstrated successful weight loss in the clinic. GIPR and GLP-1R populations are located in the dorsal vagal complex where receptor activity-modifying proteins (RAMPs) are also present. According to recent literature, RAMPs not only regulate the signaling of the calcitonin receptor, but also that of other class B G-protein coupled receptors, including members of the glucagon receptor family such as GLP-1R and GIPR. The aim of this study was to investigate whether the absence of RAMP1 and RAMP3 interferes with the action of GIPR and GLP-1R agonists on body weight maintenance and glucose control. To this end, WT and RAMP 1/3 KO mice were fed a 45% high fat diet for 22 weeks and were injected daily with GLP-1R agonist (2 nmol/kg/d; NN0113-2220), GIPR agonist (30 nmol/kg/d; NN0441-0329) or both for 3 weeks. While the mono-agonists exerted little to no body weight lowering and anorectic effects in WT or RAMP1/3 KO mice, but at the given doses, when both compounds were administered together, they synergistically reduced body weight, with a greater effect observed in KO mice. Finally, GLP-1R and GIP/GLP-1R agonist treatment led to improved glucose tolerance, but the absence of RAMPs resulted in an improvement of the HOMA-IR score. These data suggest that RAMPs may play a crucial role in modulating the pharmacological actions of GLP-1 and GIP receptors.
Collapse
Affiliation(s)
- Andrea S Leuthardt
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Kirsten Raun
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Linu M John
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Yildirim V, ter Horst KW, Gilijamse PW, van Harskamp D, Schierbeek H, Jansen H, Schimmel AW, Nieuwdorp M, Groen AK, Serlie MJ, van Riel NA, Dallinga-Thie GM. Bariatric surgery improves postprandial VLDL kinetics and restores insulin-mediated regulation of hepatic VLDL production. JCI Insight 2023; 8:e166905. [PMID: 37432744 PMCID: PMC10543721 DOI: 10.1172/jci.insight.166905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Public and Occupational Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | | | | | - Dewi van Harskamp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henk Schierbeek
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hans Jansen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alinda W.M. Schimmel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Natal A.W. van Riel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
14
|
Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022; 10:2061. [PMID: 36296337 PMCID: PMC9610230 DOI: 10.3390/microorganisms10102061] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The intestine represents the body's largest interface between internal organs and external environments except for its nutrient and fluid absorption functions. It has the ability to sense numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure. The intestine also harbours the largest population of microbes that interact with the host to maintain human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have received the most attention due to their critical role in intestinal function and food absorption as well as their application as key drug targets. In this review, we highlight the current state of the literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine-microbiota-immune system crosstalk to maintain intestinal barrier integrity, inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Nyan Abdalqadir
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Abstract
Postprandial hyperlipidaemia is an important feature of diabetic dyslipidaemia and plays an important role in the development of cardiovascular disease in individuals with type 2 diabetes. Postprandial hyperlipidaemia in type 2 diabetes is secondary to increased chylomicron production by the enterocytes and delayed catabolism of chylomicrons and chylomicron remnants. Insulin and some intestinal hormones (e.g. glucagon-like peptide-1 [GLP-1]) influence intestinal lipid metabolism. In individuals with type 2 diabetes, insulin resistance and possibly reduced GLP-1 secretion are involved in the pathophysiology of postprandial hyperlipidaemia. Several factors are involved in the overproduction of chylomicrons: (1) increased expression of microsomal triglyceride transfer protein, which is a key enzyme in chylomicron synthesis; (2) higher stability and availability of apolipoprotein B-48; and (3) increased de novo lipogenesis. Individuals with type 2 diabetes present with disorders of cholesterol metabolism in the enterocytes with reduced absorption and increased synthesis. The increased production of chylomicrons in type 2 diabetes is also associated with a reduction in their catabolism, mostly because of a reduction in activity of lipoprotein lipase. Modification of the microbiota, which is observed in type 2 diabetes, may also generate disorders of intestinal lipid metabolism, but human data remain limited. Some glucose-lowering treatments significantly influence intestinal lipid absorption and transport. Postprandial hyperlipidaemia is reduced by metformin, pioglitazone, alpha-glucosidase inhibitors, dipeptidyl peptidase 4 inhibitors and GLP-1 agonists. The most pronounced effect is observed with GLP-1 agonists, which reduce chylomicron production significantly in individuals with type 2 diabetes and have a direct effect on the intestine by reducing the expression of genes involved in intestinal lipoprotein metabolism. The effect of sodium-glucose cotransporter 2 inhibitors on intestinal lipid metabolism needs to be clarified.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital, Dijon, France.
- Inserm UMR 1231, Medical School, University of Burgundy-Franche Comté, Dijon, France.
| |
Collapse
|
16
|
Taskinen MR, Matikainen N, Björnson E, Söderlund S, Ainola M, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Andersson L, Adiels M, Hartmann B, Deacon CF, Holst JJ, Packard CJ, Borén J. Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism. Eur J Endocrinol 2022; 187:75-84. [PMID: 35521766 DOI: 10.1530/eje-21-1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. DESIGN AND METHODS A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). RESULTS Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. CONCLUSION We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Niina Matikainen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sanni Söderlund
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Ainola
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|