1
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
2
|
Ekundayo B, Arullampalam P, Gerber CE, Hämmerli AF, Guichard S, Boukenna M, Ross-Kaschitza D, Lochner M, Rougier JS, Stahlberg H, Abriel H, Ni D. Identification of a binding site for small molecule inhibitors targeting human TRPM4. Nat Commun 2025; 16:833. [PMID: 39828793 PMCID: PMC11743598 DOI: 10.1038/s41467-025-56131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Transient receptor potential (TRP) melastatin 4 (TRPM4) protein is a calcium-activated monovalent cation channel associated with various genetic and cardiovascular disorders. The anthranilic acid derivative NBA is a potent and specific TRPM4 inhibitor, but its binding site in TRPM4 has been unknown, although this information is crucial for drug development targeting TRPM4. We determine three cryo-EM structures of full-length human TRPM4 embedded in native lipid nanodiscs without inhibitor, bound to NBA, and an anthranilic acid derivative, IBA. We found that the small molecules NBA and IBA were bound in a pocket formed between the S3, S4, and TRP helices and the S4-S5 linker of TRPM4. Our structural data and results from patch clamp experiments enable validation of a binding site for small molecule inhibitors, paving the way for further drug development targeting TRPM4.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland
| | - Prakash Arullampalam
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Christian E Gerber
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Anne-Flore Hämmerli
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Mey Boukenna
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Jean-Sebastien Rougier
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland.
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland.
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland
- International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Weng LC, Rämö JT, Jurgens SJ, Khurshid S, Chaffin M, Hall AW, Morrill VN, Wang X, Nauffal V, Sun YV, Beer D, Lee S, Nadkarni GN, Duong T, Wang B, Czuba T, Austin TR, Yoneda ZT, Friedman DJ, Clayton A, Hyman MC, Judy RL, Skanes AC, Orland KM, Treu TM, Oetjens MT, Alonso A, Soliman EZ, Lin H, Lunetta KL, van der Pals J, Issa TZ, Nafissi NA, May HT, Leong-Sit P, Roselli C, Choi SH, Khan HR, Knight S, Karlsson Linnér R, Bezzina CR, Ripatti S, Heckbert SR, Gaziano JM, Loos RJF, Psaty BM, Smith JG, Benjamin EJ, Arking DE, Rader DJ, Shah SH, Roden DM, Damrauer SM, Eckhardt LL, Roberts JD, Cutler MJ, Shoemaker MB, Haggerty CM, Cho K, Palotie A, Wilson PWF, Ellinor PT, Lubitz SA. The impact of common and rare genetic variants on bradyarrhythmia development. Nat Genet 2025; 57:53-64. [PMID: 39747593 PMCID: PMC11735381 DOI: 10.1038/s41588-024-01978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/09/2024] [Indexed: 01/04/2025]
Abstract
To broaden our understanding of bradyarrhythmias and conduction disease, we performed common variant genome-wide association analyses in up to 1.3 million individuals and rare variant burden testing in 460,000 individuals for sinus node dysfunction (SND), distal conduction disease (DCD) and pacemaker (PM) implantation. We identified 13, 31 and 21 common variant loci for SND, DCD and PM, respectively. Four well-known loci (SCN5A/SCN10A, CCDC141, TBX20 and CAMK2D) were shared for SND and DCD, while others were more specific for SND or DCD. SND and DCD showed a moderate genetic correlation (rg = 0.63). Cardiomyocyte-expressed genes were enriched for contributions to DCD heritability. Rare-variant analyses implicated LMNA for all bradyarrhythmia phenotypes, SMAD6 and SCN5A for DCD and TTN, MYBPC3 and SCN5A for PM. These results show that variation in multiple genetic pathways (for example, ion channel function, cardiac developmental programs, sarcomeric structure and cellular homeostasis) appear critical to the development of bradyarrhythmias.
Collapse
Grants
- R01 HL141901 NHLBI NIH HHS
- R01 HL139738 NHLBI NIH HHS
- 18SFRN34250007 American Heart Association (American Heart Association, Inc.)
- TNE FANTASY 19CV03 Fondation Leducq
- R01 HL092577 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL139731 NHLBI NIH HHS
- U01 AG068221 NIA NIH HHS
- 23CDA1050571 American Heart Association (American Heart Association, Inc.)
- T32 HL007101 NHLBI NIH HHS
- R01 AG083735 NIA NIH HHS
- 18SFRN34110082 American Heart Association (American Heart Association, Inc.)
- 18SFRN34230127 American Heart Association (American Heart Association, Inc.)
- IK2 CX001780 CSRD VA
- 75N92019D00031 NHLBI NIH HHS
- K23 HL169839 NHLBI NIH HHS
- 03-007-2022-0035 Hartstichting (Dutch Heart Foundation)
- R21 HL175584 NHLBI NIH HHS
- R01 HL163987 NHLBI NIH HHS
- National Institutes of Health:R01HL139731 & R01HL157635
- Sigrid Juséliuksen Säätiö (Sigrid Jusélius Foundation)
- National Institutes of Health: K23HL169839
- National Institutes of Health: RO1HL092577
- National Institutes of Health: T32HL007101
- Swedish Heart-Lung Foundation (2022-0344, 2022-0345), the Swedish Research Council (2021-02273), the European Research Council (ERC-STG-2015-679242), Gothenburg University, Skane University Hospital, the Scania county, governmental funding of clinical research within the Swedish National Health Service, a generous donation from the Knut and Alice Wallenberg foundation to the Wallenberg Center for Molecular Medicine in Lund, and funding from the Swedish Research Council (Linnaeus grant Dnr 349-2006-237, Strategic Research Area Exodiab Dnr 2009-1039) and Swedish Foundation for Strategic Research (Dnr IRC15-0067) to the Lund University Diabetes Center.
- US Department of Veterans Affairs Clinical Research and Development award IK2-CX001780
- National Institutes of Health: R01HL163987-01 and R01HL139738-01
- Academy of Finland Centre of Excellence in Complex Disease Genetics (grant no. 312074 and 336824)
- National Institutes of Health: R01HL139731, R01HL157635, and RO1HL092577 European Union: MAESTRIA 965286
Collapse
Affiliation(s)
- Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Shaan Khurshid
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amelia Weber Hall
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Valerie N Morrill
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Yan V Sun
- VA Atlanta Healthcare System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | - Simon Lee
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tomasz Czuba
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Friedman
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne Clayton
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Matthew C Hyman
- Division of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan C Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Kate M Orland
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew T Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesper van der Pals
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Tariq Z Issa
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navid A Nafissi
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Heidi T May
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Peter Leong-Sit
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Habib R Khan
- Section of Cardiac Electrophysiology, Western University, London, Ontario, Canada
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Richard Karlsson Linnér
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Economics, Leiden Law School, Leiden University, Leiden, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Emelia J Benjamin
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- NHLBI and BU's Framingham Heart Study, Framingham, MA, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dan M Roden
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lee L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher M Haggerty
- Heart Institute, Geisinger, Danville, PA, USA
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peter W F Wilson
- VA Atlanta Healthcare System, Decatur, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Ban T, Dong X, Ma Z, Jin J, Li J, Cui Y, Fu Y, Wang Y, Xue Y, Tong T, Zhang K, Han Y, Shen M, Zhao Y, Zhao L, Xiong L, Lv H, Liu Y, Huo R. Brg1 and RUNX1 synergy in regulating TRPM4 channel in mouse cardiomyocytes. Front Pharmacol 2024; 15:1494205. [PMID: 39726787 PMCID: PMC11669506 DOI: 10.3389/fphar.2024.1494205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Background Transient Receptor Potential Melastatin 4 (TRPM4), a non-selective cation channel, plays a critical role in cardiac conduction abnormalities. Brg1, an ATP-dependent chromatin remodeler, is essential for regulating gene expression in both heart development and disease. Our previous studies demonstrated Brg1 impacted on cardiac sodium/potassium channels and electrophysiological stability, its influence on TRPM4 expression and function remained unexplored. Methods We investigated the role of Brg1 in regulating TRPM4 expression and function through overexpression and knockdown experiments in mouse cardiomyocytes and TRPM4-overexpressing HEK293 cells by western blot, qPCR, immunofluorescence staining and patch clamp techniques. Cardiomyocytes were exposed to hypoxia for 12 h to mimic cardiac stress, and Brg1 inhibition was performed to assess its impact on TRPM4 under hypoxia. Bioinformatic analyses (STRING and JASPAR databases), Co-immunoprecipitation (Co-IP), dual luciferase reporter assays, and Chromatin Immunoprecipitation (ChIP) were employed to study the interaction between Brg1, RUNX1, and TRPM4 transcription regulation. Results Brg1 positively regulated TRPM4 expression in mouse cardiomyocytes and modulated TRPM4 current in TRPM4-overexpressing HEK293 cells. Brg1 inhibition markedly diminishes TRPM4's hyperexpression in cardiomyocytes exposed to hypoxia. Integrative analyses utilizing STRNG databases and Protein Data Bank unveiled a putative interaction between Brg1 and the transcription factor RUNX1, and we substantiated the interaction between Brg1 and RUNX1. Several binding sites of RUNX1 with the TRPM4 promoter region were predicted by the JASPAR database, and empirical validation substantiated Brg1 modulated TRPM4 promoter activity via RUNX1 engagement. ChIP confirmed that Brg1 interacted with RUNX1 forming a transcriptional complex that located in TRPM4 promoter. Conclusion Our study demonstrated that Brg1 and RUNX1 formed a transcriptional complex that modulated TRPM4 expression and function, especially under hypoxic conditions. These findings provided new insights into TRPM4 regulation and highlighted its potential as a therapeutic target for cardiac hypoxia-related disorders.
Collapse
Affiliation(s)
- Tao Ban
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianhui Dong
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Ziyue Ma
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Jing Jin
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Jing Li
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yunfeng Cui
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yuyang Fu
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yongzhen Wang
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yadong Xue
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Tingting Tong
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Kai Zhang
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yuxuan Han
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Meimei Shen
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yu Zhao
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Ling Zhao
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Lingzhao Xiong
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Hongzhao Lv
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Yang Liu
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| | - Rong Huo
- Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China
| |
Collapse
|
5
|
Shao S, Liao H, Zhou S, Li Y, Yu H, Dai X, Zhu Q, Hua Y, Wang C, Zhou K. Isolated non-immune-mediated second-degree atrioventricular block in the fetus: natural history and predictive factors for spontaneous recovery. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:486-492. [PMID: 38642334 DOI: 10.1002/uog.27662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES To determine the clinical course of fetal isolated non-immune-mediated second-degree atrioventricular block (AVB) and the factors associated with spontaneous recovery in these cases. METHODS Fetuses with isolated non-immune-mediated second-degree AVB were recruited prospectively between 2014 and 2022. These fetuses were divided into two groups: those which recovered spontaneously and those which did not. Maternal and fetal characteristics and intrauterine and postnatal outcomes were compared between the two groups. RESULTS The study cohort included 20 fetuses with isolated non-immune-mediated second-degree AVB, diagnosed at a median gestational age of 22.0 (range, 17.0-35.0) weeks. In 12 fetuses, 1:1 atrioventricular conduction was restored spontaneously in utero and there was no recurrence during the postnatal follow-up period. In the remaining eight fetuses, second-degree AVB was maintained and, in six of these, the pregnancy was terminated on parental request. Of the two liveborn children who had persistent second-degree AVB prenatally, one had progressed to complete AVB at the latest follow-up, at the age of 34 months, but was asymptomatic, without heart enlargement or dysfunction. The other child progressed to complete AVB after delivery and was diagnosed with type-2 long QT syndrome. This infant died aged 2 months. Fetuses in the group that recovered spontaneously had earlier gestational age at diagnosis (median, 20.0 (range, 17.0-26.0) vs 24.5 (range, 18.0-35.0) weeks; P = 0.004) and higher atrial rate at diagnosis (median, 147 (range, 130-160) vs 138 (range, 125-149) bpm; P = 0.006) in comparison with the group that did not recover spontaneously. The best cut-off values for prediction of failure to recover spontaneously were 22.5 weeks' gestational age at diagnosis and 144 bpm atrial rate at diagnosis, with sensitivities of 87.5% and 75.0%, respectively, and specificities of 92.0% and 87.5%, respectively. CONCLUSIONS The outcome of 60% of fetuses with isolated non-immune-mediated second-degree AVB was favorable. Earlier gestational age and higher atrial rate at diagnosis were associated with spontaneous reversion to normal sinus rhythm. Prenatal genetic testing should be performed in cases with persistent AVB, to exclude heritable disorders including long QT syndrome. These findings provide important information for clinical management and prenatal counseling in these cases. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Shao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - H Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - S Zhou
- Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - H Yu
- Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Dai
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Q Zhu
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - C Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - K Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Shlobin NA, Thijs RD, Benditt DG, Zeppenfeld K, Sander JW. Sudden death in epilepsy: the overlap between cardiac and neurological factors. Brain Commun 2024; 6:fcae309. [PMID: 39355001 PMCID: PMC11443455 DOI: 10.1093/braincomms/fcae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
People with epilepsy are at risk of premature death, of which sudden unexpected death in epilepsy (SUDEP), sudden cardiac death (SCD) and sudden arrhythmic death syndrome (SADS) are the primary, partly overlapping, clinical scenarios. We discuss the epidemiologies, risk factors and pathophysiological mechanisms for these sudden death events. We reviewed the existing evidence on sudden death in epilepsy. Classification of sudden death depends on the presence of autopsy and expertise of the clinician determining aetiology. The definitions of SUDEP, SCD and SADS lead to substantial openings for overlap. Seizure-induced arrhythmias constitute a minority of SUDEP cases. Comorbid cardiovascular conditions are the primary determinants of increased SCD risk in chronic epilepsy. Genetic mutations overlap between the states, yet whether these are causative, associated or incidentally present is often unclear. Risk stratification for sudden death in people with epilepsy requires a multidisciplinary approach, including a review of clinical history, toxicological analysis and complete autopsy with histologic and, preferably, genetic examination. We recommend pursuing genetic testing of relatives of people with epilepsy who died suddenly, mainly if a post-mortem genetic test contained a Class IV/V (pathogenic/likely pathogenic) gene variant. Further research may allow more precise differentiation of SUDEP, SCD and SADS and the development of algorithms for risk stratification and preventative strategies.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
| | - David G Benditt
- Cardiac Arrhythmia and Syncope Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Balla C, Margutti A, De Carolis B, Canovi L, Di Domenico A, Vivaldi I, Vitali F, De Raffele M, Malagù M, Sassone B, Biffi M, Selvatici R, Ferlini A, Gualandi F, Bertini M. Cardiac conduction disorders in young adults: Clinical characteristics and genetic background of an underestimated population. Heart Rhythm 2024; 21:1363-1369. [PMID: 38467355 DOI: 10.1016/j.hrthm.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Cardiac conduction disorder (CCD) in patients <50 years old is a rare and mostly unknown condition. OBJECTIVE We aimed to assess clinical characteristics and genetic background of patients <50 years old with CCD of unknown origin. METHODS We retrospectively reviewed a consecutive series of patients with a diagnosis of CCD before the age of 50 years referred to our center between January 2019 and December 2021. Patients underwent complete clinical examination and genetic evaluation. RESULTS We enrolled 39 patients with a median age of 40 years (28-47 years) at the onset of symptoms. A cardiac implantable electronic device was implanted in 69% of the patients. In 15 of 39 CCD index patients (38%), we found a total of 13 different gene variations (3 pathogenic, 6 likely pathogenic, and 4 variants of uncertain significance), mostly in 3 genes (SCN5A, TRPM4, and LMNA). In our cohort, genetic testing led to the decision to implant an implantable cardioverter-defibrillator in 2 patients for the increased risk of sudden cardiac death. CONCLUSION Patients with the occurrence of CCD before the age of 50 years present with a high rate of pathologic gene variations, mostly in 3 genes (SCN5A, TRPM4, and LMNA). The presence of pathogenic variations may add information about the prognosis and lead to an individualized therapeutic approach.
Collapse
Affiliation(s)
- Cristina Balla
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy.
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Beatrice De Carolis
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Luca Canovi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Assunta Di Domenico
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Ilaria Vivaldi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Vitali
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Martina De Raffele
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Michele Malagù
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Biagio Sassone
- Division of Cardiology, SS.ma Annunziata Hospital, Department of Emergency, AUSL Ferrara, Cento (Ferrara), Italy
| | - Mauro Biffi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Bertini
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| |
Collapse
|
8
|
Karuppan S, Schrag LG, Pastrano CM, Jara-Oseguera A, Zubcevic L. Structural dynamics at cytosolic interprotomer interfaces control gating of a mammalian TRPM5 channel. Proc Natl Acad Sci U S A 2024; 121:e2403333121. [PMID: 38923985 PMCID: PMC11228501 DOI: 10.1073/pnas.2403333121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The transient receptor potential melastatin (TRPM) tetrameric cation channels are involved in a wide range of biological functions, from temperature sensing and taste transduction to regulation of cardiac function, inflammatory pain, and insulin secretion. The structurally conserved TRPM cytoplasmic domains make up >70 % of the total protein. To investigate the mechanism by which the TRPM cytoplasmic domains contribute to gating, we employed electrophysiology and cryo-EM to study TRPM5-a channel that primarily relies on activation via intracellular Ca2+. Here, we show that activation of mammalian TRPM5 channels is strongly altered by Ca2+-dependent desensitization. Structures of rat TRPM5 identify a series of conformational transitions triggered by Ca2+ binding, whereby formation and dissolution of cytoplasmic interprotomer interfaces appear to control activation and desensitization of the channel. This study shows the importance of the cytoplasmic assembly in TRPM5 channel function and sets the stage for future investigations of other members of the TRPM family.
Collapse
Affiliation(s)
- Sebastian Karuppan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| | - Lynn Goss Schrag
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| | - Caroline M. Pastrano
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Andrés Jara-Oseguera
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Lejla Zubcevic
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
9
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 PMCID: PMC12146881 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 845] [Impact Index Per Article: 845.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
11
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Tarnovskaya SI, Kostareva AA, Zhorov BS. In silico analysis of TRPM4 variants of unknown clinical significance. PLoS One 2023; 18:e0295974. [PMID: 38100498 PMCID: PMC10723691 DOI: 10.1371/journal.pone.0295974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND TRPM4 is a calcium-activated channel that selectively permeates monovalent cations. Genetic variants of the channel in cardiomyocytes are associated with various heart disorders, such as progressive familial heart block and Brugada syndrome. About97% of all known TRPM4 missense variants are classified as variants of unknown clinical significance (VUSs). The very large number of VUSs is a serious problem in diagnostics and treatment of inherited heart diseases. METHODS AND RESULTS We collected 233 benign or pathogenic missense variants in the superfamily of TRP channels from databases ClinVar, Humsavar and Ensembl Variation to compare performance of 22 algorithms that predict damaging variants. We found that ClinPred is the best-performing tool for TRP channels. We also used the paralogue annotation method to identify disease variants across the TRP family. In the set of 565 VUSs of hTRPM4, ClinPred predicted pathogenicity of 299 variants. Among these, 12 variants are also categorized as LP/P variants in at least one paralogue of hTRPM4. We further used the cryo-EM structure of hTRPM4 to find scores of contact pairs between parental (wild type) residues of VUSs for which ClinPred predicts a high probability of pathogenicity of variants for both contact partners. We propose that 68 respective missense VUSs are also likely pathogenic variants. CONCLUSIONS ClinPred outperformed other in-silico tools in predicting damaging variants of TRP channels. ClinPred, the paralogue annotation method, and analysis of residue contacts the hTRPM4 cryo-EM structure collectively suggest pathogenicity of 80 TRPM4 VUSs.
Collapse
Affiliation(s)
- Svetlana I. Tarnovskaya
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna A. Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Department of Women’s and Children’s Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Boris S. Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
13
|
Kamkin AG, Kamkina OV, Kazansky VE, Mitrokhin VM, Bilichenko A, Nasedkina EA, Shileiko SA, Rodina AS, Zolotareva AD, Zolotarev VI, Sutyagin PV, Mladenov MI. Identification of RNA reads encoding different channels in isolated rat ventricular myocytes and the effect of cell stretching on L-type Ca 2+current. Biol Direct 2023; 18:70. [PMID: 37899484 PMCID: PMC10614344 DOI: 10.1186/s13062-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 μm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Andre G Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Olga V Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Viktor E Kazansky
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim M Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Andrey Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Elizaveta A Nasedkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Stanislav A Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasia S Rodina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Alexandra D Zolotareva
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valentin I Zolotarev
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Pavel V Sutyagin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mitko I Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, Skopje, North, Macedonia.
| |
Collapse
|
14
|
Arullampalam P, Essers MC, Boukenna M, Guichard S, Rougier J, Abriel H. Knockdown of the TRPM4 channel alters cardiac electrophysiology and hemodynamics in a sex- and age-dependent manner in mice. Physiol Rep 2023; 11:e15783. [PMID: 37604672 PMCID: PMC10442522 DOI: 10.14814/phy2.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
TRPM4 is a calcium-activated, voltage-modulated, nonselective ion channel widely expressed in various cells and tissues. TRPM4 regulates the influx of sodium ions, thus playing a role in regulating the membrane potential. In the heart, TRPM4 is expressed in both cardiomyocytes and cells of the conductive pathways. Clinical studies have linked TRPM4 mutations to several cardiac disorders. While data from experimental studies have demonstrated TRPM4's functional significance in cardiac physiology, its exact roles in the heart have remained unclear. In this study, we investigated the role of TRPM4 in cardiac physiology in a newly generated Trpm4 knockdown mouse model. Male and female Trpm4 knockdown (Trpm4-/- ) and wild-type mice of different ages (5- to 12- week-old (young) and 24-week-old or more (adult)) were characterized using a multimodal approach, encompassing surface electrocardiograms (ECG), echocardiography recordings, ex vivo ECGs in isolated heart, endocardial mappings, Western blots, and mRNA quantifications. The assessment of cardiac electrophysiology by surface ECGs revealed no significant differences between wild-type and Trpm4-/- young (5- to 12-week-old) mice of either sex. Above 24 weeks of age, adult male Trpm4-/- mice showed reduced heart rate and increased heart rate variability. Echocardiography revealed that only adult male Trpm4-/- mice exhibited slight left ventricular hypertrophic alterations compared to controls, illustrated by alterations of the mitral valve pressure halftime, the mitral valve E/A ratio, the isovolumetric relaxation time, and the mitral valve deceleration. In addition, an assessment of the right ventricular systolic function by scanning the pulmonary valve highlighted an alteration in pulmonary valve peak velocity and pressure in adult male Trpm4-/- mice. Endocardial mapping recordings showed that applying 5 μM of the new TRPM4 inhibitor NBA triggered a third-degree atrioventricular block on 40% of wild-type hearts. These results confirm the key role of TRPM4 in the proper structure and electrical function of the heart. It also reveals differences between male and female animals that have never been reported. In addition, the investigation of the effects of NBA on heart function confirms the role of TRPM4 in atrioventricular conduction.
Collapse
Affiliation(s)
- Prakash Arullampalam
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Maria C. Essers
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Mey Boukenna
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Jean‐Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| |
Collapse
|
15
|
Hu Y, Cang J, Hiraishi K, Fujita T, Inoue R. The Role of TRPM4 in Cardiac Electrophysiology and Arrhythmogenesis. Int J Mol Sci 2023; 24:11798. [PMID: 37511555 PMCID: PMC10380800 DOI: 10.3390/ijms241411798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel is a non-selective cation channel that activates in response to increased intracellular Ca2+ levels but does not allow Ca2+ to pass through directly. It plays a crucial role in regulating diverse cellular functions associated with intracellular Ca2+ homeostasis/dynamics. TRPM4 is widely expressed in the heart and is involved in various physiological and pathological processes therein. Specifically, it has a significant impact on the electrical activity of cardiomyocytes by depolarizing the membrane, presumably via Na+ loading. The TRPM4 channel likely contributes to the development of cardiac arrhythmias associated with specific genetic backgrounds and cardiac remodeling. This short review aims to overview what is known so far about the TRPM4 channel in cardiac electrophysiology and arrhythmogenesis, highlighting its potential as a novel therapeutic target to effectively prevent and treat cardiac arrhythmias.
Collapse
Affiliation(s)
- Yaopeng Hu
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Jiehui Cang
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
16
|
Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells 2023; 12:1654. [PMID: 37371124 DOI: 10.3390/cells12121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33604 Pessac, France
| | - Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Romain Guinamard
- UR4650, Physiopathologie et Stratégies d'Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Université de Caen Normandie, 14032 Caen, France
| | - David Benoist
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
17
|
Simard C, Aize M, Chaigne S, Mpweme Bangando H, Guinamard R. Ion Channels in the Development and Remodeling of the Aortic Valve. Int J Mol Sci 2023; 24:5860. [PMID: 36982932 PMCID: PMC10055105 DOI: 10.3390/ijms24065860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.
Collapse
Affiliation(s)
- Christophe Simard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Margaux Aize
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Foundation Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33600 Pessac, France
| | - Harlyne Mpweme Bangando
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Romain Guinamard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| |
Collapse
|
18
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2322] [Impact Index Per Article: 1161.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
19
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
20
|
Auricchio A, Demarchi A, Özkartal T, Campanale D, Caputo ML, di Valentino M, Menafoglio A, Regoli F, Facchini M, Del Bufalo A, Foglia P, Ferrari N, Bomio F, Medeiros-Domingo A, Moccetti T, Pedrazzini GB, Klersy C, Conte G. Role of genetic testing in young patients with idiopathic atrioventricular conduction disease. Europace 2022; 25:643-650. [PMID: 36352534 PMCID: PMC9934995 DOI: 10.1093/europace/euac196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS To investigate the role of genetic testing in patients with idiopathic atrioventricular conduction disease requiring pacemaker (PM) implantation before the age of 50 years. METHODS AND RESULTS All consecutive PM implantations in Southern Switzerland between 2010 and 2019 were evaluated. Inclusion criteria were: (i) age at the time of PM implantation: < 50 years; (ii) atrioventricular block (AVB) of unknown aetiology. Study population was investigated by ajmaline challenge and echocardiographic assessment over time. Genetic testing was performed using next-generation sequencing panel, containing 174 genes associated to inherited cardiac diseases, and Sanger sequencing confirmation of suspected variants with clinical implication. Of 2510 patients who underwent PM implantation, 15 (0.6%) were young adults (median age: 44 years, male predominance) presenting with advanced AVB of unknown origin. The average incidence of idiopathic AVB computed over the 2010-2019 time window was 0.7 per 100 000 persons per year (95% CI 0.4-1.2). Most of patients (67%) presented with specific genetic findings (pathogenic variant) or variants of uncertain significance (VUS). A pathogenic variant of PKP2 gene was found in one patient (6.7%) with no overt structural cardiac abnormalities. A VUS of TRPM4, MYBPC3, SCN5A, KCNE1, LMNA, GJA5 genes was found in other nine cases (60%). Of these, three unrelated patients (20%) presented the same heterozygous missense variant c.2531G > A p.(Gly844Asp) in TRPM4 gene. Diagnostic re-assessment over time led to a diagnosis of Brugada syndrome and long-QT syndrome in two patients (13%). No cardiac events occurred during a median follow-up of 72 months. CONCLUSION Idiopathic AVB in adults younger than 50 years is a very rare condition with an incidence of 0.7 per 100 000 persons/year. Systematic investigations, including genetic testing and ajmaline challenge, can lead to the achievement of a specific diagnosis in up to 20% of patients. Heterozygous missense variant c.2531G > A p.(Gly844Asp) in TRPM4 gene was found in an additional 20% of unrelated patients, suggesting possible association of the variant with the disease.
Collapse
Affiliation(s)
- Angelo Auricchio
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Andrea Demarchi
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Tardu Özkartal
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland,Division of Cardiology, Ospedale di Bellinzona, Bellinzona 6500, Switzerland
| | - Daniela Campanale
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Maria Luce Caputo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | | | - Andrea Menafoglio
- Division of Cardiology, Ospedale di Bellinzona, Bellinzona 6500, Switzerland
| | - Francois Regoli
- Division of Cardiology, Ospedale di Bellinzona, Bellinzona 6500, Switzerland
| | - Marco Facchini
- Division of Cardiology, Ospedale di Locarno, Locarno 6600, Switzerland
| | - Alessandro Del Bufalo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Pietro Foglia
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Nicola Ferrari
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Fulvio Bomio
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | | | - Tiziano Moccetti
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Giovanni B Pedrazzini
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland
| | - Catherine Klersy
- Service Clinical Epidemiology and Biometry, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | | |
Collapse
|
21
|
Yamada D, Vu S, Wu X, Shi Z, Morris D, Bloomstein JD, Huynh M, Zheng J, Hwang ST. Gain-of-function of TRPM4 predisposes mice to psoriasiform dermatitis. Front Immunol 2022; 13:1025499. [PMID: 36341417 PMCID: PMC9632438 DOI: 10.3389/fimmu.2022.1025499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated, monovalent cation channel that is expressed in a wide range of cells. We previously reported two gain-of-function (GoF) mutations of TRPM4 as the cause of progressive symmetric erythrokeratodermia (PSEK), which shares similar clinical and histopathological features with psoriasis. Using CRISPR/Cas9 technology, we generated TRPM4I1029M mice that have the equivalent mutation to one of the two genetic mutations found in human PSEK (equivalent to human TRPM4I1033M). Using this mutant mice, we examined the effects of TRPM4 GoF at the cellular and phenotypic levels to elucidate the pathological mechanisms underlying PSEK. In the absence of experimental stimulation, TRPM4I1029M mice did not show a phenotype. When treated with imiquimod (IMQ), however, TRPM4I1029M mice were predisposed to more severe psoriasiform dermatitis (PsD) than wild-type (WT), which was characterized by greater accumulation of CCR6-expressing γδ T cells and higher mRNA levels of Il17a. In TRPM4I1029M mice, dendritic cells showed enhanced migration and keratinocytes exhibited increased proliferation. Moreover, a TRPM4 inhibitor, glibenclamide, ameliorated PsD in WT and TRPM4I1029M mice. Our results indicate elevated TRPM4 activities boosted susceptibility to cutaneous stimuli, likely through elevation of membrane potential and alteration of downstream cellular signaling, resulting in enhanced inflammation. Our results further suggest a possible therapeutic application of TRPM4 inhibitors in psoriasis.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Simon Vu
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Desiree Morris
- Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las, Vegas, NV, United States
| | - Joshua D Bloomstein
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Mindy Huynh
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Samuel T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
22
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
23
|
In Vitro Drug Screening Using iPSC-Derived Cardiomyocytes of a Long QT-Syndrome Patient Carrying KCNQ1 & TRPM4 Dual Mutation: An Experimental Personalized Treatment. Cells 2022; 11:cells11162495. [PMID: 36010573 PMCID: PMC9406448 DOI: 10.3390/cells11162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and drug screening using patient-derived cardiomyocytes represents a more effective way to identify potential cures. We identified a long QT syndrome patient carrying a heterozygous KCNQ1 c.656G>A mutation and a heterozygous TRPM4 c.479C>T mutation. Implantation of implantable cardioverter defibrillator in combination with conventional medication demonstrated limited success in ameliorating long-QT-syndrome-related symptoms. Frequent defibrillator discharge also caused deterioration of patient quality of life. Aiming to identify better therapeutic agents and treatment strategy, we established a patient-specific iPSC line carrying the dual mutations and differentiated these patient-specific iPSCs into cardiomyocytes. We discovered that both verapamil and lidocaine substantially shortened the QT interval of the long QT syndrome patient-specific cardiomyocytes. Verapamil treatment was successful in reducing defibrillator discharge frequency of the KCNQ1/TRPM4 dual mutation patient. These results suggested that verapamil and lidocaine could be alternative therapeutic agents for long QT syndrome patients that do not respond well to conventional treatments. In conclusion, our approach indicated the usefulness of the in vitro disease model based on patient-specific iPSCs in identifying pharmacological mechanisms and drug screening. The long QT patient-specific iPSC line carrying KCNQ1/TRPM4 dual mutations also represents a tool for further understanding long QT syndrome pathogenesis.
Collapse
|
24
|
Tan M, Wang X, Liu H, Peng X, Yang Y, Yu H, Xu L, Li J, Cao H. Genetic Diagnostic Yield and Novel Causal Genes of Congenital Heart Disease. Front Genet 2022; 13:941364. [PMID: 35910219 PMCID: PMC9326225 DOI: 10.3389/fgene.2022.941364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation in fetuses and neonates, which also represents a leading cause of mortality. Although significant progress has been made by emerging advanced technologies in genetic etiology diagnosis, the causative genetic mechanisms behind CHD remain poorly understood and more than half of CHD patients lack a genetic diagnosis. Unlike carefully designed large case-control cohorts by multicenter trials, we designed a reliable strategy to analyze case-only cohorts to utilize clinical samples sufficiently. Combined low-coverage whole-genome sequencing (WGS) and whole-exome sequencing (WES) were simultaneously conducted in a patient-only cohort for identifying genetic etiologies and exploring candidate, or potential causative CHD-related genes. A total of 121 sporadic CHD patients were recruited and 34.71% (95% CI, 26.80 to 43.56) was diagnosed with genetic etiologies by low-coverage WGS and WES. Chromosomal abnormalities and damaging variants of CHD-related genes could explain 24.79% (95% CI, 17.92 to 33.22) and 18.18% (95% CI, 12.26 to 26.06) of CHD patients, separately, and 8.26% (95% CI, 4.39 to 14.70) of them have simultaneously detected two types of variants. Deletion of chromosome 22q11.2 and pathogenic variants of the COL3A1 gene were the most common recurrent variants of chromosomal abnormalities and gene variants, respectively. By in-depth manual interpretation, we identified eight candidate CHD-causing genes. Based on rare disease-causing variants prediction and interaction analysis with definitive CHD association genes, we proposed 86 genes as potential CHD-related genes. Gene Ontology (GO) enrichment analysis of the 86 genes revealed regulation-related processes were significantly enriched and processes response to regulation of muscle adaptation might be one of the underlying molecular mechanisms of CHD. Our findings and results provide new insights into research strategies and underlying mechanisms of CHD.
Collapse
Affiliation(s)
- Meihua Tan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Genomics Co., Ltd, Shenzhen, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Hongjie Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Peng
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - You Yang
- BGI Genomics Co., Ltd, Shenzhen, China
| | - Haifei Yu
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Affiliated Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, China
- *Correspondence: Liangpu Xu, ; Jia Li, ; Hua Cao,
| | - Jia Li
- BGI Genomics Co., Ltd, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics Co., Ltd, Shijiazhuang, China
- *Correspondence: Liangpu Xu, ; Jia Li, ; Hua Cao,
| | - Hua Cao
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Liangpu Xu, ; Jia Li, ; Hua Cao,
| |
Collapse
|
25
|
Jiang X, Wang Z, Lin Z, Xu Z, Wang H. Incompletely penetrant TRPM4-associated progressive symmetric erythrokeratodermia responses to methotrexate. J Dermatol 2022; 49:e422-e423. [PMID: 35796031 DOI: 10.1111/1346-8138.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xingyuan Jiang
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Zhaoyang Wang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimiao Lin
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3192] [Impact Index Per Article: 1064.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
27
|
Unraveling the Cardiac Effects Induced by Carvacrol in Spontaneously Hypertensive Rats: Involvement of Transient Receptor Potential Melastatin Subfamily 4 and 7 Channels. J Cardiovasc Pharmacol 2022; 79:206-216. [PMID: 35099165 DOI: 10.1097/fjc.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence indicates that transient receptor potential (TRP) channels are involved in the pathophysiological process in the heart, and monoterpenes, such as carvacrol, are able to modulate these channels activity. In this article, our purpose was to evaluate the direct cardiac effect of carvacrol on the contractility of cardiomyocytes and isolated right atria from spontaneously hypertensive and Wistar Kyoto rats. In this way, in vitro experiments were used to evaluate the ventricular cardiomyocytes contractility and the Ca2+ transient measuring, in addition to heart rhythm in the right atria. The role of TRPM channels in carvacrol-mediated cardiac activities was also investigated. The results demonstrated that carvacrol induced a significant reduction in ventricular cell contractility, without changes in transient Ca2+. In addition, carvacrol promoted a significant negative chronotropic response in spontaneously hypertensive and Wistar Kyoto rats' atria. Selective blockage of TRPM channels suggests the involvement of TRP melastatin subfamily 2 (TRPM2), TRPM4, and TRPM7 in the carvacrol-mediated cardiac effects. In silico studies were conducted to further investigate the putative role of TRPM4 in carvacrol-mediated cardiac action. FTMap underscores a conserved pocket in both TRPM4 and TRPM7, revealing a potential carvacrol binding site, and morphological similarity analysis demonstrated that carvacrol shares a more than 85% similarity to 9-phenanthrol. Taken together, these results suggest that carvacrol has direct cardiac actions, leading to reduced cellular contractility and inducing a negative chronotropic effect, which may be related to TRPM7 and TRPM4 modulation.
Collapse
|
28
|
Palladino A, Papa AA, Petillo R, Scutifero M, Morra S, Passamano L, Nigro V, Politano L. The Role of TRPM4 Gene Mutations in Causing Familial Progressive Cardiac Conduction Disease: A Further Contribution. Genes (Basel) 2022; 13:genes13020258. [PMID: 35205305 PMCID: PMC8871839 DOI: 10.3390/genes13020258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Progressive cardiac conduction disease (PCCD) is a relatively common condition in young and elderly populations, related to rare mutations in several genes, including SCN5A, SCN1B, LMNA and GJA5, TRPM4. Familial cases have also been reported. We describe a family with a large number of individuals necessitating pacemaker implantation, likely due to varying degrees of PCCD. The proband is a 47-year-old-patient, whose younger brother died at 25 years of unexplained sudden cardiac death. Three paternal uncles needed a pacemaker (PM) implantation between 40 and 65 years for unspecified causes. At the age of 42, he was implanted with a PM for two episodes of syncope and the presence of complete atrioventricular block (AVB). NGS analysis revealed the missense variation c. 2351G>A, p.Gly844Asp in the exon 17 of the TRPM4 gene. This gene encodes the TRPM4 channel, a calcium-activated nonselective cation channel of the transient receptor potential melastatin (TRPM) ion channel family. Variations in TRPM4 have been shown to cause an increase in cell surface current density, which results in a gain of gene function. Our report broadens and supports the causative role of TRPM4 gene mutations in PCCD. Genetic screening and identification of the causal mutation are critical for risk stratification and family counselling.
Collapse
Affiliation(s)
- Alberto Palladino
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Andrea Antonio Papa
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy;
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Salvatore Morra
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Luigia Passamano
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Luisa Politano
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
- Correspondence:
| |
Collapse
|
29
|
Csípő T, Czikora Á, Fülöp GÁ, Gulyás H, Rutkai I, Tóth EP, Pórszász R, Szalai A, Bölcskei K, Helyes Z, Pintér E, Papp Z, Ungvári Z, Tóth A. A Central Role for TRPM4 in Ca 2+-Signal Amplification and Vasoconstriction. Int J Mol Sci 2022; 23:1465. [PMID: 35163382 PMCID: PMC8836177 DOI: 10.3390/ijms23031465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.
Collapse
Affiliation(s)
- Tamás Csípő
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
- Doctoral School of Kálmán Laki, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Czikora
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
| | - Gábor Á. Fülöp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
- Doctoral School of Kálmán Laki, University of Debrecen, 4032 Debrecen, Hungary
| | - Hajnalka Gulyás
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.P.); (A.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Ibolya Rutkai
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
| | - Enikő Pásztorné Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.P.); (A.S.)
| | - Andrea Szalai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.P.); (A.S.)
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.B.); (Z.H.); (E.P.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.B.); (Z.H.); (E.P.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.B.); (Z.H.); (E.P.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (Á.C.); (G.Á.F.); (H.G.); (I.R.); (E.P.T.); (Z.P.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| |
Collapse
|
30
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
31
|
Investigation of Novel Small Molecular TRPM4 Inhibitors in Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13215400. [PMID: 34771564 PMCID: PMC8582472 DOI: 10.3390/cancers13215400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Transient receptor potential melastatin 4 (TRPM4) ion channel malfunction or aberrant expression is implicated in many diseases, including different cancers and cardiovascular diseases. Currently, there is a need for specific and potent TRPM4 inhibitors. They would allow to study the role of TRPM4 in disease models and to validate it as a potential target in therapies, including anti-cancer therapy. In colorectal cancer (CRC), TRPM4 is upregulated, and its conductivity plays a role in the regulation of viability and cell cycle of CRC cells. In this study, we tested three novel TRPM4 inhibitors, CBA, NBA, and LBA, in CRC cells. In HCT116 cells, we show that NBA inhibits TRPM4 currents in the micromolar range and alters proliferation and cell cycle. Furthermore, NBA decreases the viability of Colo205 cells. This makes NBA a promising candidate for further evaluation as a specific TRPM4 inhibitor in other cellular systems and disease models. Abstract (1) Background: Transient receptor potential melastatin (TRPM4) ion channel aberrant expression or malfunction contributes to different types of cancer, including colorectal cancer (CRC). However, TRPM4 still needs to be validated as a potential target in anti-cancer therapy. Currently, the lack of potent and selective TRPM4 inhibitors limits further studies on TRPM4 in cancer disease models. In this study, we validated novel TRPM4 inhibitors, CBA, NBA, and LBA, in CRC cells. (2) Methods: The potency to inhibit TRPM4 conductivity in CRC cells was assessed with the whole-cell patch clamp technique. Furthermore, the impact of TRPM4 inhibitors on cellular functions, such as viability, proliferation, and cell cycle, were assessed in cellular assays. (3) Results: We show that in CRC cells, novel TRPM4 inhibitors irreversibly block TRPM4 currents in a low micromolar range. NBA decreases proliferation and alters the cell cycle in HCT116 cells. Furthermore, NBA reduces the viability of the Colo205 cell line, which highly expresses TRPM4. (4) Conclusions: NBA is a promising new TRPM4 inhibitor candidate, which could be used to study the role of TRPM4 in cancer disease models and other diseases.
Collapse
|
32
|
Dienes C, Hézső T, Kiss DZ, Baranyai D, Kovács ZM, Szabó L, Magyar J, Bányász T, Nánási PP, Horváth B, Gönczi M, Szentandrássy N. Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22179499. [PMID: 34502410 PMCID: PMC8430982 DOI: 10.3390/ijms22179499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) plays an important role in many tissues, including pacemaker and conductive tissues of the heart, but much less is known about its electrophysiological role in ventricular myocytes. Our earlier results showed the lack of selectivity of 9-phenanthrol, so CBA ((4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) was chosen as a new, potentially selective inhibitor. Goal: Our aim was to elucidate the effect and selectivity of CBA in canine left ventricular cardiomyocytes and to study the expression of TRPM4 in the canine heart. Experiments were carried out in enzymatically isolated canine left ventricular cardiomyocytes. Ionic currents were recorded with an action potential (AP) voltage-clamp technique in whole-cell configuration at 37 °C. An amount of 10 mM BAPTA was used in the pipette solution to exclude the potential activation of TRPM4 channels. AP was recorded with conventional sharp microelectrodes. CBA was used in 10 µM concentrations. Expression of TRPM4 protein in the heart was studied by Western blot. TRPM4 protein was expressed in the wall of all four chambers of the canine heart as well as in samples prepared from isolated left ventricular cells. CBA induced an approximately 9% reduction in AP duration measured at 75% and 90% of repolarization and decreased the short-term variability of APD90. Moreover, AP amplitude was increased and the maximal rates of phase 0 and 1 were reduced by the drug. In AP clamp measurements, CBA-sensitive current contained a short, early outward and mainly a long, inward current. Transient outward potassium current (Ito) and late sodium current (INa,L) were reduced by approximately 20% and 47%, respectively, in the presence of CBA, while L-type calcium and inward rectifier potassium currents were not affected. These effects of CBA were largely reversible upon washout. Based on our results, the CBA induced reduction of phase-1 slope and the slight increase of AP amplitude could have been due to the inhibition of Ito. The tendency for AP shortening can be explained by the inhibition of inward currents seen in AP-clamp recordings during the plateau phase. This inward current reduced by CBA is possibly INa,L, therefore, CBA is not entirely selective for TRPM4 channels. As a consequence, similarly to 9-phenanthrol, it cannot be used to test the contribution of TRPM4 channels to cardiac electrophysiology in ventricular cells, or at least caution must be applied.
Collapse
Affiliation(s)
- Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dénes Zsolt Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dóra Baranyai
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52255575; Fax: +36-52255116
| |
Collapse
|
33
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Arullampalam P, Preti B, Ross-Kaschitza D, Lochner M, Rougier JS, Abriel H. Species-Specific Effects of Cation Channel TRPM4 Small-Molecule Inhibitors. Front Pharmacol 2021; 12:712354. [PMID: 34335274 PMCID: PMC8321095 DOI: 10.3389/fphar.2021.712354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The Transient Receptor Potential Melastatin member 4 (TRPM4) gene encodes a calcium-activated non-selective cation channel expressed in several tissues. Mutations in TRPM4 have been reported in patients with different types of cardiac conduction defects. It is also linked to immune response and cancers, but the associated molecular mechanisms are still unclear. Thus far, 9-phenanthrol is the most common pharmacological compound used to investigate TRPM4 function. We recently identified two promising aryloxyacyl-anthranilic acid compounds (abbreviated CBA and NBA) inhibiting TRPM4. However, all aforementioned compounds were screened using assays expressing human TRPM4, whereas the efficacy of mouse TRPM4 has not been assessed. Mouse models are essential to investigate ion channel physiology and chemical compound efficacy. Aim: In this study, we performed comparative electrophysiology experiments to assess the effect of these TRPM4 inhibitors on human and mouse TRPM4 channels heterologously expressed in TsA-201 cells. Methods and Results: We identified striking species-dependent differences in TRPM4 responses. NBA inhibited both human and mouse TRPM4 currents when applied intracellularly and extracellularly using excised membrane patches. CBA inhibited human TRPM4, both intracellularly and extracellularly. Unexpectedly, the application of CBA had no inhibiting effect on mouse TRPM4 current when perfused on the extracellular side. Instead, its increased mouse TRPM4 current at negative holding potentials. In addition, CBA on the intracellular side altered the outward rectification component of the mouse TRPM4 current. Application of 9-phenanthrol, both intracellularly and extracellularly, inhibited human TRPM4. For mouse TRPM4, 9-phenanthrol perfusion led to opposite effects depending on the site of application. With intracellular 9-phenanthrol, we observed a tendency towards potentiation of mouse TRPM4 outward current at positive holding potentials. Conclusion: Altogether, these results suggest that pharmacological compounds screened using “humanised assays” should be extensively characterised before application in vivo mouse models.
Collapse
Affiliation(s)
- Prakash Arullampalam
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Barbara Preti
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Cai YX, Zhang BL, Yu M, Yang YC, Ao X, Zhu D, Wang QS, Lou J, Liang C, Tang LL, Wu MM, Zhang ZR, Ma HP. Cholesterol Stimulates the Transient Receptor Potential Melastatin 4 Channel in mpkCCD c14 Cells. Front Pharmacol 2021; 12:627875. [PMID: 34054517 PMCID: PMC8160378 DOI: 10.3389/fphar.2021.627875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
We have shown that cholesterol regulates the activity of ion channels in mouse cortical collecting duct (CCD) mpkCCDc14 cells and that the transient receptor potential melastatin 4 (TRPM4) channel is expressed in these cells. However, whether TRPM4 channel is regulated by cholesterol remains unclear. Here, we performed inside-out patch-clamp experiments and found that inhibition of cholesterol biosynthesis by lovastatin significantly decreased, whereas enrichment of cholesterol with exogenous cholesterol significantly increased, TRPM4 channel open probability (Po) by regulating its sensitivity to Ca2+ in mpkCCDc14 cells. In addition, inside-out patch-clamp data show that acute depletion of cholesterol in the membrane inner leaflet by methyl-β-cyclodextrin (MβCD) significantly reduced TRPM4 Po, which was reversed by exogenous cholesterol. Moreover, immunofluorescence microscopy, Western blot, cell-surface biotinylation, and patch clamp analysis show that neither inhibition of intracellular cholesterol biosynthesis with lovastatin nor application of exogenous cholesterol had effect on TRPM4 channel protein abundance in the plasma membrane of mpkCCDc14 cells. Sucrose density gradient centrifugation studies demonstrate that TRPM4 was mainly located in cholesterol-rich lipid rafts. Lipid-protein overlay experiments show that TRPM4 directly interacted with several anionic phospholipids, including PI(4,5)P2. Depletion of PI(4,5)P2 with either wortmannin or PGE2 abrogated the stimulatory effects of exogenous cholesterol on TRPM4 activity, whereas exogenous PI(4,5)P2 (diC8-PI(4,5)P2, a water-soluble analog) increased the effects. These results suggest that cholesterol stimulates TRPM4 via a PI(4,5)P2-dependent mechanism.
Collapse
Affiliation(s)
- Yong-Xu Cai
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bao-Long Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Miao Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yan-Chao Yang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xue Ao
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Di Zhu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Qiu-Shi Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jie Lou
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chen Liang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Liang-Liang Tang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
36
|
Whole-Exome Sequencing Identifies a Novel TRPM4 Mutation in a Chinese Family with Atrioventricular Block. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9247541. [PMID: 33959666 PMCID: PMC8075657 DOI: 10.1155/2021/9247541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Atrioventricular block (AVB) is a leading cause of sudden cardiac death, and most of AVB cases are presented as autosomal dominant. The electrocardiogram of AVB patients presents an abnormal progressive cardiac conduction disorder between atria and ventricles. Transient receptor potential melastatin 4 (TRPM4) is a nonselective Ca2+-activated cation channel gene defined as a novel disease-causing gene of AVB. So far, 47 mutations of TRPM4 have been recorded in Human Gene Mutation Database. The aim of this study was to explore the relationship between TRPM4 mutation and pathogenesis of AVB. We investigated a Chinese family with AVB by whole-exome sequencing. An arrhythmia-related gene filtering strategy was used to analyze the disease-causing mutations. Three different bioinformatics programs were used to predict the effects of the mutation result. A novel mutation of TRPM4 was identified (c.2455C>T/p.R819C) and cosegregated in the affected family members. The three bioinformatics programs predicted that the novel mutation may lead to damage. Our study will contribute to expand the spectrum of TRPM4 mutations and supply accurate genetic testing information for further research and the clinical therapy of AVB.
Collapse
|
37
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
38
|
Deletion of Trpm4 Alters the Function of the Na v1.5 Channel in Murine Cardiac Myocytes. Int J Mol Sci 2021; 22:ijms22073401. [PMID: 33810249 PMCID: PMC8037196 DOI: 10.3390/ijms22073401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4−/− mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.
Collapse
|
39
|
Simard C, Ferchaud V, Sallé L, Milliez P, Manrique A, Alexandre J, Guinamard R. TRPM4 Participates in Aldosterone-Salt-Induced Electrical Atrial Remodeling in Mice. Cells 2021; 10:636. [PMID: 33809210 PMCID: PMC7998432 DOI: 10.3390/cells10030636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
Aldosterone plays a major role in atrial structural and electrical remodeling, in particular through Ca2+-transient perturbations and shortening of the action potential. The Ca2+-activated non-selective cation channel Transient Receptor Potential Melastatin 4 (TRPM4) participates in atrial action potential. The aim of our study was to elucidate the interactions between aldosterone and TRPM4 in atrial remodeling and arrhythmias susceptibility. Hyperaldosteronemia, combined with a high salt diet, was induced in mice by subcutaneously implanted osmotic pumps during 4 weeks, delivering aldosterone or physiological serum for control animals. The experiments were conducted in wild type animals (Trpm4+/+) as well as Trpm4 knock-out animals (Trpm4-/-). The atrial diameter measured by echocardiography was higher in Trpm4-/- compared to Trpm4+/+ animals, and hyperaldosteronemia-salt produced a dilatation in both groups. Action potentials duration and triggered arrhythmias were measured using intracellular microelectrodes on the isolated left atrium. Hyperaldosteronemia-salt prolong action potential in Trpm4-/- mice but had no effect on Trpm4+/+ mice. In the control group (no aldosterone-salt treatment), no triggered arrythmias were recorded in Trpm4+/+ mice, but a high level was detected in Trpm4-/- mice. Hyperaldosteronemia-salt enhanced the occurrence of arrhythmias (early as well as delayed-afterdepolarization) in Trpm4+/+ mice but decreased it in Trpm4-/- animals. Atrial connexin43 immunolabelling indicated their disorganization at the intercalated disks and a redistribution at the lateral side induced by hyperaldosteronemia-salt but also by Trpm4 disruption. In addition, hyperaldosteronemia-salt produced pronounced atrial endothelial thickening in both groups. Altogether, our results indicated that hyperaldosteronemia-salt and TRPM4 participate in atrial electrical and structural remodeling. It appears that TRPM4 is involved in aldosterone-induced atrial action potential shortening. In addition, TRPM4 may promote aldosterone-induced atrial arrhythmias, however, the underlying mechanisms remain to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Romain Guinamard
- EA 4650, Signalisation, Electrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion Myocardique, GIP Cyceron, Université de Caen Normandie, CHU de Caen, 14032 Caen, France; (C.S.); (V.F.); (L.S.); (P.M.); (A.M.); (J.A.)
| |
Collapse
|
40
|
Feng J, Zong P, Yan J, Yue Z, Li X, Smith C, Ai X, Yue L. Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients. Pflugers Arch 2021; 473:521-531. [PMID: 33594499 PMCID: PMC8857941 DOI: 10.1007/s00424-021-02525-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current-voltage (I-V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFβ1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFβ1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Pengyu Zong
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Jiajie Yan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xin Li
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Chevaughn Smith
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA.
| |
Collapse
|
41
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Development of an AAV9-RNAi-mediated silencing strategy to abrogate TRPM4 expression in the adult heart. Pflugers Arch 2021; 473:533-546. [PMID: 33580817 PMCID: PMC7940300 DOI: 10.1007/s00424-021-02521-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
The cation channel transient receptor potential melastatin 4 (TRPM4) is a calcium-activated non-selective cation channel and acts in cardiomyocytes as a negative modulator of the L-type Ca2+ influx. Global deletion of TRPM4 in the mouse led to increased cardiac contractility under β-adrenergic stimulation. Consequently, cardiomyocyte-specific inactivation of the TRPM4 function appears to be a promising strategy to improve cardiac contractility in heart failure patients. The aim of this study was to develop a gene therapy approach in mice that specifically silences the expression of TRPM4 in cardiomyocytes. First, short hairpin RNAmiR30 (shRNAmiR30) sequences against the TRPM4 mRNA were screened in vitro using lentiviral transduction for a stable expression of the shRNA cassettes. Western blot analysis identified three efficient shRNAmiR30 sequences out of six, which reduced the endogenous TRPM4 protein level by up to 90 ± 6%. Subsequently, the most efficient shRNAmiR30 sequences were delivered into cardiomyocytes of adult mice using adeno-associated virus serotype 9 (AAV9)-mediated gene transfer. Initially, the AAV9 vector particles were administered via the lateral tail vein, which resulted in a downregulation of TRPM4 by 46 ± 2%. Next, various optimization steps were carried out to improve knockdown efficiency in vivo. First, the design of the expression cassette was streamlined for integration in a self-complementary AAV vector backbone for a faster expression. Compared to the application via the lateral tail vein, intravenous application via the retro-orbital sinus has the advantage that the vector solution reaches the heart directly and in a high concentration, and eventually a TRPM4 knockdown efficiency of 90 ± 7% in the heart was accomplished by this approach. By optimization of the shRNAmiR30 constructs and expression cassette as well as the route of AAV9 vector application, a 90% reduction of TRPM4 expression was achieved in the adult mouse heart. In the future, AAV9-RNAi-mediated inactivation of TRPM4 could be a promising strategy to increase cardiac contractility in preclinical animal models of acute and chronic forms of cardiac contractile failure.
Collapse
|
43
|
Borgström A, Peinelt C, Stokłosa P. TRPM4 in Cancer-A New Potential Drug Target. Biomolecules 2021; 11:biom11020229. [PMID: 33562811 PMCID: PMC7914809 DOI: 10.3390/biom11020229] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is widely expressed in various organs and associated with cardiovascular and immune diseases. Lately, the interest in studies on TRPM4 in cancer has increased. Thus far, TRPM4 has been investigated in diffuse large B-cell lymphoma, prostate, colorectal, liver, breast, urinary bladder, cervical, and endometrial cancer. In several types of cancer TRPM4 is overexpressed and contributes to cancer hallmark functions such as increased proliferation and migration and cell cycle shift. Hence, TRPM4 is a potential prognostic cancer marker and a promising anticancer drug target candidate. Currently, the underlying mechanism by which TRPM4 contributes to cancer hallmark functions is under investigation. TRPM4 is a Ca2+-activated monovalent cation channel, and its ion conductivity can decrease intracellular Ca2+ signaling. Furthermore, TRPM4 can interact with different partner proteins. However, the lack of potent and specific TRPM4 inhibitors has delayed the investigations of TRPM4. In this review, we summarize the potential mechanisms of action and discuss new small molecule TRPM4 inhibitors, as well as the TRPM4 antibody, M4P. Additionally, we provide an overview of TRPM4 in human cancer and discuss TRPM4 as a diagnostic marker and anticancer drug target.
Collapse
|
44
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
45
|
Inherited Cardiac Arrhythmia Syndromes: Focus on Molecular Mechanisms Underlying TRPM4 Channelopathies. Cardiovasc Ther 2020; 2020:6615038. [PMID: 33381229 PMCID: PMC7759408 DOI: 10.1155/2020/6615038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Transient Receptor Potential Melastatin 4 (TRPM4) is a transmembrane N-glycosylated ion channel that belongs to the large family of TRP proteins. It has an equal permeability to Na+ and K+ and is activated via an increase of the intracellular calcium concentration and membrane depolarization. Due to its wide distribution, TRPM4 dysfunction has been linked with several pathophysiological processes, including inherited cardiac arrhythmias. Many pathogenic variants of the TRPM4 gene have been identified in patients with different forms of cardiac disorders such as conduction defects, Brugada syndrome, and congenital long QT syndrome. At the cellular level, these variants induce either gain- or loss-of-function of TRPM4 channels for similar clinical phenotypes. However, the molecular mechanisms associating these functional alterations to the clinical phenotypes remain poorly understood. The main objective of this article is to review the major cardiac TRPM4 channelopathies and recent advances regarding their genetic background and the underlying molecular mechanisms.
Collapse
|
46
|
Medert R, Pironet A, Bacmeister L, Segin S, Londoño JEC, Vennekens R, Freichel M. Genetic background influences expression and function of the cation channel TRPM4 in the mouse heart. Basic Res Cardiol 2020; 115:70. [PMID: 33205255 PMCID: PMC7671982 DOI: 10.1007/s00395-020-00831-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Transient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased β-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure-volume analysis. Surprisingly, an increased β-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.
Collapse
Affiliation(s)
- Rebekka Medert
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lucas Bacmeister
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Sebastian Segin
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Juan E Camacho Londoño
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany.
| |
Collapse
|
47
|
Hedon C, Lambert K, Chakouri N, Thireau J, Aimond F, Cassan C, Bideaux P, Richard S, Faucherre A, Le Guennec JY, Demion M. New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:105-117. [PMID: 33031824 DOI: 10.1016/j.pbiomolbio.2020.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.
Collapse
Affiliation(s)
- Christophe Hedon
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Karen Lambert
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Nourdine Chakouri
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Jérôme Thireau
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Franck Aimond
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Cécile Cassan
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Patrice Bideaux
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Sylvain Richard
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Adèle Faucherre
- IGF, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France.
| |
Collapse
|
48
|
Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020; 11:4283. [PMID: 32883967 PMCID: PMC7471119 DOI: 10.1038/s41467-020-18031-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the spatiotemporal regulation of cardiogenesis is hindered by the difficulties in modeling this complex organ currently by in vitro models. Here we develop a method to generate heart organoids from mouse embryonic stem cell-derived embryoid bodies. Consecutive morphological changes proceed in a self-organizing manner in the presence of the laminin-entactin (LN/ET) complex and fibroblast growth factor 4 (FGF4), and the resulting in vitro heart organoid possesses atrium- and ventricle-like parts containing cardiac muscle, conducting tissues, smooth muscle and endothelial cells that exhibited myocardial contraction and action potentials. The heart organoids exhibit ultrastructural, histochemical and gene expression characteristics of considerable similarity to those of developmental hearts in vivo. Our results demonstrate that this method not only provides a biomimetic model of the developing heart-like structure with simplified differentiation protocol, but also represents a promising research tool with a broad range of applications, including drug testing. Our understanding of the development of the heart has been limited by a lack of in vitro cellular models. Here, the authors treat mouse embryonic stem cell-derived embryoid bodies with laminin-entactin (to mimic the developing microenvironment) and FGF4 to form heart organoids, with atrial and ventricular-like parts.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Rin Kaneko
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Jun Takeuchi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kentaro Takahashi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Masahiro Yamazoe
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
49
|
Xian W, Wang H, Moretti A, Laugwitz KL, Flockerzi V, Lipp P. Domain zipping and unzipping modulates TRPM4's properties in human cardiac conduction disease. FASEB J 2020; 34:12114-12126. [PMID: 32681584 DOI: 10.1096/fj.202000097rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cation channel linked to human cardiac diseases. The human mutation K914R within TRPM4's S4-S5 linker was identified in patients with atrioventricular block. During UV-flash-mediated Ca2+ transients, TRPM4K914R generated a threefold augmented membrane current concomitant with 2 to 3-fold slowed down activation and deactivation kinetics resulting in excessive membrane currents during human cardiac action potentials. Mutagenesis of K914 paired with molecular modeling suggested the importance of the nanoscopic interface between the S4-S5 linker, the MHR4-, and TRP-domain as a major determinant for TRPM4's behavior. Rational mutagenesis of an interacting amino acid (R1062Q) in the TRP domain was able to offset K914R`s gain-of-function by zipping and unzipping of this nanoscopic interface. In conclusion, repulsion and attraction between the amino acids at positions 914 and 1062 alters the flexibility of the nanoscopic interface suggesting a zipping and unzipping mechanism that modulates TRPM4's functions. Pharmacological modulation of this intramolecular mechanism might represent a novel therapeutic strategy for the management of TRPM4-mediated cardiac diseases.
Collapse
Affiliation(s)
- Wenying Xian
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Hongmei Wang
- Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Alessandra Moretti
- First Medical Department (Cardiology), Klinikum rechts der Isar, Technische Universität München, München, Germany.,DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Medical Department (Cardiology), Klinikum rechts der Isar, Technische Universität München, München, Germany.,DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Peter Lipp
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
50
|
Rivas J, Díaz N, Silva I, Morales D, Lavanderos B, Álvarez A, Saldías MP, Pulgar E, Cruz P, Maureira D, Flores G, Colombo A, Blanco C, Contreras HR, Jaña F, Gallegos I, Concha ML, Vergara-Jaque A, Poblete H, González W, Varela D, Trimmer JS, Cáceres M, Cerda O. KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB J 2020; 34:7847-7865. [PMID: 32301552 DOI: 10.1096/fj.201901195rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.
Collapse
Affiliation(s)
- José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Danna Morales
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Alhejandra Álvarez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Eduardo Pulgar
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Guillermo Flores
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Héctor R Contreras
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabián Jaña
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Ivan Gallegos
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Miguel L Concha
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Millennium Nucleus on Physics of Active Matter, Santiago, Chile
| | - Ariela Vergara-Jaque
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Multidisciplinary Scientific Nucleus, Universidad de Talca, Talca, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Horacio Poblete
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Multidisciplinary Scientific Nucleus, Universidad de Talca, Talca, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Wendy González
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|