1
|
Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. Cells 2022; 11:cells11172669. [PMID: 36078077 PMCID: PMC9455034 DOI: 10.3390/cells11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe−/−) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.
Collapse
|
2
|
Regional Variation in Genetic Control of Atherosclerosis in Hyperlipidemic Mice. G3-GENES GENOMES GENETICS 2020; 10:4679-4689. [PMID: 33109727 PMCID: PMC7718748 DOI: 10.1534/g3.120.401856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a polygenic disorder that often affects multiple arteries. Carotid arteries are common sites for evaluating subclinical atherosclerosis, and aortic root is the standard site for quantifying atherosclerosis in mice. We compared genetic control of atherosclerosis between the two sites in the same cohort derived from two phenotypically divergent Apoe-null (Apoe -/-) mouse strains. Female F2 mice were generated from C57BL/6 (B6) and C3H/He (C3H) Apoe -/- mice and fed 12 weeks of Western diet. Atherosclerotic lesions in carotid bifurcation and aortic root and plasma levels of fasting lipids and glucose were measured. 153 genetic markers across the genome were typed. All F2 mice developed aortic atherosclerosis, while 1/5 formed no or little carotid lesions. Genome-wide scans revealed 3 significant loci on chromosome (Chr) 1, Chr15, 6 suggestive loci for aortic atherosclerosis, 2 significant loci on Chr6, Chr12, and 6 suggestive loci for carotid atherosclerosis. Only 2 loci for aortic lesions showed colocalization with loci for carotid lesions. Carotid lesion sizes were moderately correlated with aortic lesion sizes (r = 0.303; P = 4.6E-6), but they showed slight or no association with plasma HDL, non-HDL cholesterol, triglyceride, or glucose levels among F2 mice. Bioinformatics analyses prioritized Cryge as a likely causal gene for Ath30, Cdh6 and Dnah5 as causal genes for Ath22 Our data demonstrate vascular site-specific effects of genetic factors on atherosclerosis in the same animals and highlight the need to extend studies of atherosclerosis to sites beyond aortas of mice.
Collapse
|
3
|
Fuller DT, Grainger AT, Manichaikul A, Shi W. Data on genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Data Brief 2020; 29:105165. [PMID: 32025547 PMCID: PMC6997804 DOI: 10.1016/j.dib.2020.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/30/2022] Open
Abstract
The data presented here are related to the research article, entitled Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains, published in Atherosclerosis 2019 Dec 3;293:1–10 (D. Fuller, A.T. Grainger, A. Manichaikul, W. Shi). The supporting materials include original genotypic and phenotypic data obtained from 266 female F2 mice derived from an intercross between C57BL/6 (B6) and BALB/cJ (BALB) Apoe−/- mice. F2 mice were fed 12 weeks of Western diet, starting at 6 weeks of age. Plasma levels of HDL, LDL cholesterol, triglycerides, glucose and malondialdehyde (MDA) and atherosclerosis in the aortic root and the left carotid artery were measured. 127 microsatellite markers across the entire genome were genotyped. The data is provided in the format ready for QTL analysis with J/qtl and MapManager QTX.
Collapse
Affiliation(s)
- Daniela T Fuller
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Fuller DT, Grainger AT, Manichaikul A, Shi W. Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Atherosclerosis 2019; 293:1-10. [PMID: 31821957 DOI: 10.1016/j.atherosclerosis.2019.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress is associated with cardiometabolic traits in observational studies, yet the underlying causal relationship remains unclear. Apolipoprotein E-deficient (Apoe-/-) mice develop significant hyperlipidemia and hyperglycemia on a Western diet. Here we conducted linkage analysis to investigate genetic connections between cardiometabolic traits and oxidative stress. METHODS 266 female F2 mice were generated from an intercross between C57BL/6 (B6) and BALB/c (BALB) Apoe-/- mice and fed 12 weeks of Western diet. Plasma levels of HDL, LDL cholesterol, triglycerides, glucose and malondialdehyde (MDA) and atherosclerosis in aortic root and left carotid artery were measured. 127 microsatellite markers across the genome were genotyped. RESULTS One significant locus at 78.3 cM on chromosome (Chr) 1 (LOD score: 3.85), named Mda1, and two suggestive loci near 60.3 cM on Chr1 (LOD score: 2.32, named Mda2 due to replication in a separate cross) and 19.6 cM on Chr4 (LOD score: 2.34) were identified for MDA levels. Mda1 coincided precisely with loci for LDL, triglyceride, glucose, and body weight and overlapped with a locus for atherosclerosis in the aortic root. Plasma LDL, triglyceride, and glucose explained 25.5, 19.2, and 24.2% of the variation in MDA levels of F2 mice, respectively. After correction for triglyceride or LDL, QTLs for MDA on Chr1 and Chr4 disappeared. QTLs on Chr1 disappeared, remained on Chr4, and additional QTLs on Chr12 and Chr13 were detected after correction for glucose. The QTL on Chr12, named Mda3, had a significant LOD score of 8.034 and peaked 62.22 at cM. CONCLUSIONS We demonstrated a causative role for cardiometabolic traits in oxidative stress and identified hyperlipidemia and hyperglycemia as a major driver of oxidative stress.
Collapse
Affiliation(s)
- Daniela T Fuller
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA; Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Zhao J, Huangfu C, Chang Z, Grainger AT, Liu Z, Shi W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J Vasc Res 2019; 56:241-254. [PMID: 31536996 DOI: 10.1159/000502691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Atherosclerosis in the carotid arteries is a common cause of ischemic stroke. We examined atherogenesis in the left carotid artery with and without interrupted blood flow of C57BL/6 (B6) and C3H-Apoe-deficient (Apoe-/-) mouse strains. METHODS Blood flow was interrupted by ligating the common carotid artery near its bifurcation in one group of mice and another group was not interrupted. RESULTS Without interference with blood flow, C3H-Apoe-/- mice developed no atherosclerosis in the carotid artery, while B6-Apoe-/- mice formed advanced atherosclerotic lesions (98,019 ± 10,594 μm2/section) after 12 weeks of a Western diet. When blood flow was interrupted by ligating the common carotid artery near its bifurcation, C3H-Apoe-/- mice showed fatty streak lesions 2 weeks after ligation, and by 4 weeks fibrous lesions had formed, although they were smaller than in B6-Apoe-/- mice. Neutrophil adhesion to endothelium and infiltration in lesions was observed in ligated arteries of both strains. Treatment of B6-Apoe-/- mice with antibody against neutrophils had little effect on lesion size. CONCLUSIONS These findings demonstrate the dramatic influences of genetic backgrounds and blood flow on atherogenesis in the carotid artery of hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Andrew T Grainger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA, .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
6
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
7
|
Grainger AT, Tustison NJ, Qing K, Roy R, Berr SS, Shi W. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One 2018; 13:e0204071. [PMID: 30235253 PMCID: PMC6147491 DOI: 10.1371/journal.pone.0204071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023] Open
Abstract
Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. However, quantifying body fat from numerous MRI slices is tedious and time-consuming. Here we developed a deep learning-based method for measuring visceral and subcutaneous fat in the abdominal region of mice. Congenic mice only differ from C57BL/6 (B6) Apoe knockout (Apoe-/-) mice in chromosome 9 that is replaced by C3H/HeJ genome. Male congenic mice had lighter body weight than B6-Apoe-/- mice after being fed 14 weeks of Western diet. Axial and coronal T1-weighted sequencing at 1-mm-thickness and 1-mm-gap was acquired with a 7T Bruker ClinScan scanner. A deep learning approach was developed for segmenting visceral and subcutaneous fat based on the U-net architecture made publicly available through the open-source ANTsRNet library—a growing repository of well-known neural networks. The volumes of subcutaneous and visceral fat measured through our approach were highly comparable with those from manual measurements. The Dice score, root-mean-square error (RMSE), and correlation analysis demonstrated the similarity between two methods in quantifying visceral and subcutaneous fat. Analysis with the automated method showed significant reductions in volumes of visceral and subcutaneous fat but not non-fat tissues in congenic mice compared to B6 mice. These results demonstrate the accuracy of deep learning in quantification of abdominal fat and its significance in determining body weight.
Collapse
Affiliation(s)
- Andrew T. Grainger
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nicholas J. Tustison
- Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kun Qing
- Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rene Roy
- Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stuart S. Berr
- Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Weibin Shi
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Polygenic Control of Carotid Atherosclerosis in a BALB/cJ × SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains. G3-GENES GENOMES GENETICS 2017; 7:731-739. [PMID: 28040783 PMCID: PMC5295616 DOI: 10.1534/g3.116.037879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis in the carotid arteries is a major cause of ischemic stroke, which accounts for 85% of all stroke cases. Genetic factors contributing to carotid atherosclerosis remain poorly understood. The aim of this study was to identify chromosomal regions harboring genes contributing to carotid atherosclerosis in mice. From an intercross between BALB/cJ (BALB) and SM/J (SM) apolipoprotein E-deficient (Apoe-/-) mice, 228 female F2 mice were generated and fed a "Western" diet for 12 wk. Atherosclerotic lesion sizes in the left carotid artery were quantified. Across the entire genome, 149 genetic markers were genotyped. Quantitative trait locus (QTL) analysis revealed eight loci for carotid lesion sizes, located on chromosomes 1, 5, 12, 13, 15, 16, and 18. Combined cross-linkage analysis using data from this cross, and two previous F2 crosses derived from BALB, C57BL/6J and C3H/HeJ strains, identified five significant QTL on chromosomes 5, 9, 12, and 13, and nine suggestive QTL for carotid atherosclerosis. Of them, the QTL on chromosome 12 had a high LOD score of 9.95. Bioinformatic analysis prioritized Arhgap5, Akap6, Mipol1, Clec14a, Fancm, Nin, Dact1, Rtn1, and Slc38a6 as probable candidate genes for this QTL. Atherosclerotic lesion sizes were significantly correlated with non-HDL cholesterol levels (r = 0.254; p = 0.00016) but inversely correlated with HDL cholesterol levels (r = -0.134; p = 0.049) in the current cross. Thus, we demonstrated the polygenic control of carotid atherosclerosis in mice. The correlations of carotid lesion sizes with non-HDL and HDL suggest that genetic factors exert effects on carotid atherosclerosis partially through modulation of lipoprotein homeostasis.
Collapse
|
9
|
Grainger AT, Jones MB, Li J, Chen MH, Manichaikul A, Shi W. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. Atherosclerosis 2016; 254:124-132. [PMID: 27736672 DOI: 10.1016/j.atherosclerosis.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe-/- and BALB/cJ-Apoe-/- mice in atherosclerotic lesion formation. METHODS 206 female F2 mice generated from an intercross between the two Apoe-/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. RESULTS A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F2 cohort. CONCLUSIONS We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis.
Collapse
Affiliation(s)
- Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Michael B Jones
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Shi W, Wang Q, Choi W, Li J. Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLoS One 2016; 11:e0148462. [PMID: 26859786 PMCID: PMC4747551 DOI: 10.1371/journal.pone.0148462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Patients with dyslipidemia have an increased risk of developing type 2 diabetes, and diabetic patients often have dyslipidemia. Potential genetic connections of fasting plasma glucose with plasma lipid profile were evaluated using hyperlipidemic mice. Methods 225 male F2 mice were generated from BALB/cJ (BALB) and SM/J(SM) Apoe-deficient (Apoe−/−) mice and fed a Western diet for 5 weeks. Fasting plasma glucose and lipid levels of F2 mice were measured before and after 5 weeks of Western diet and quantitative trait locus (QTL) analysis was performed using data collected from these two time points. 144 SNP(single nucleotide polymorphism) markers across the entire genome were typed. Results One major QTL (logarithm of odds ratio (LOD): 6.46) peaked at 12.7 cM on chromosome 9,Bglu16, and 3 suggestive QTLs on chromosomes 15, 18 and X were identified for fasting glucose, and over 10 loci identified for lipid traits. Bglu16 was adjacent to a major QTL, Hdlq17, for high-density lipoprotein (HDL) cholesterol (LOD: 6.31, peak: 19.1 cM). A congenic strain with a donor chromosomal region harboring Bglu16 and Hdlq17 on the Apoe−/− background showed elevations in plasma glucose and HDL levels. Fasting glucose levels were significantly correlated with non-HDL cholesterol and triglyceride levels, especially on the Western diet, but only marginally correlated with HDL levels in F2 mice. Conclusions We have demonstrated a correlative relationship between fasting glucose and plasma lipids in a segregating F2 population under hyperlipidemic conditions, and this correlation is partially due to genetic linkage between the two disorders.
Collapse
Affiliation(s)
- Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qian Wang
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wonseok Choi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
11
|
Wang Q, Grainger AT, Manichaikul A, Farber E, Onengut-Gumuscu S, Shi W. Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC Genet 2015; 16:133. [PMID: 26555648 PMCID: PMC4641414 DOI: 10.1186/s12863-015-0292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals with dyslipidemia often develop type 2 diabetes, and diabetic patients often have dyslipidemia. It remains to be determined whether there are genetic connections between the 2 disorders. METHODS A female F2 cohort, generated from BALB/cJ (BALB) and SM/J (SM) Apoe-deficient (Apoe(-/-)) strains, was started on a Western diet at 6 weeks of age and maintained on the diet for 12 weeks. Fasting plasma glucose and lipid levels were measured before and after 12 weeks of Western diet. 144 genetic markers across the entire genome were used for quantitative trait locus (QTL) analysis. RESULTS One significant QTL on chromosome 9, named Bglu17 [26.4 cM, logarithm of odds ratio (LOD): 5.4], and 3 suggestive QTLs were identified for fasting glucose levels. The suggestive QTL near the proximal end of chromosome 9 (2.4 cM, LOD: 3.12) was replicated at both time points and named Bglu16. Bglu17 coincided with a significant QTL for HDL (high-density lipoprotein) and a suggestive QTL for non-HDL cholesterol levels. Plasma glucose levels were inversely correlated with HDL but positively correlated with non-HDL cholesterol levels in F2 mice on either chow or Western diet. A significant correlation between fasting glucose and triglyceride levels was also observed on the Western diet. Haplotype analysis revealed that "lipid genes" Sik3, Apoa1, and Apoc3 were probable candidates for Bglu17. CONCLUSIONS We have identified multiple QTLs for fasting glucose and lipid levels. The colocalization of QTLs for both phenotypes and the sharing of potential candidate genes demonstrate genetic connections between dyslipidemia and type 2 diabetes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| | - Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Charlottesville, VA, USA.
| | - Ani Manichaikul
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Emily Farber
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Suna Onengut-Gumuscu
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|
12
|
Variation in Type 2 Diabetes-Related Phenotypes among Apolipoprotein E-Deficient Mouse Strains. PLoS One 2015; 10:e0120935. [PMID: 25946019 PMCID: PMC4422683 DOI: 10.1371/journal.pone.0120935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/09/2015] [Indexed: 01/12/2023] Open
Abstract
We recently have found that apolipoprotein E-deficient (Apoe(-/-)) mice with the C57BL/6 background develop type 2 diabetes when fed a Western diet for 12 weeks. In the present study we constructed multiple Apoe(-/-) mouse strains to find diabetes-related phenotyptic variations that might be linked to atherosclerosis development. Evaluation of both early and advanced lesion formation in aortic root revealed that C57BL/6, SWR/J, and SM/J Apoe(-/-) mice were susceptible to atherosclerosis and that C3H/HeJ and BALB/cJ Apoe(-/-) mice were relatively resistant. On a chow diet, fasting plasma glucose varied among strains with C3H/HeJ having the highest (171.1 ± 9.7 mg/dl) and BALB/cJ the lowest level (104.0 ± 6.6 mg/dl). On a Western diet, fasting plasma glucose rose significantly in all strains, with C57BL/6, C3H/HeJ and SWR/J exceeding 250 mg/dl. BALB/cJ and C3H/HeJ were more tolerant to glucose loading than the other 3 strains. C57BL/6 was sensitive to insulin while other strains were not. Non-fasting blood glucose was significantly lower in C3H/HeJ and BALB/cJ than C57BL/6, SM/J, and SWR/J. Glucose loading induced the 1st and the 2nd phase of insulin secretion in BALB/cJ, but the 2nd phase was not observed in other strains. Morphological analysis showed that BALB/cJ had the largest islet area (1,421,493 ± 61,244 μm(2)) and C57BL/6 had the smallest one (747,635 ± 41,798 μm(2)). This study has demonstrated strain-specific variations in the metabolic and atherosclerotic phenotypes, thus laying the basis for future genetic characterization.
Collapse
|
13
|
Zhou W, Chen MH, Shi W. Influence of phthalates on glucose homeostasis and atherosclerosis in hyperlipidemic mice. BMC Endocr Disord 2015; 15:13. [PMID: 25881014 PMCID: PMC4382848 DOI: 10.1186/s12902-015-0015-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/27/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Phthalates are widely used as plasticizer and are considered as a typical endocrine-disrupting chemical. Epidemiological studies have associated serum or urinary phthalate metabolites with the prevalence of type 2 diabetes or related phenotypes. However, direct evidence supporting a causal role for exposure to phthalates in type 2 diabetes is lacking. METHODS To determine the potential influence of phthalates on glucose homeostasis and atherosclerosis, female apolipoprotein E-deficient (Apoe(-/-)) mice were started at 6 weeks of age on a Western diet together with or without Bis-(2-ethylhexyl) phthalate. Phthalate was administered in drinking water at a daily dosage of 100 mg/kg. We examined glucose and insulin tolerance, plasma glucose and triglyceride levels, body weight, and atherosclerotic lesions in the aortic root. RESULTS Two weeks after treatment, phthalate-exposed mice had significantly higher fasting blood glucose level (97.9 ± 2.1 vs. 84.3 ± 5.3 mg/dl, P = 0.034) and exhibited a trend of increased glucose intolerance compared to control mice. Insulin tolerance test on non-fasted mice 3 weeks after treatment revealed that phthalate had little influence on insulin sensitivity though phthalate-treated mice had a higher glucose concentration (159.2 ± 6.0 vs. 145.2 ± 3.6 mg/dl; P = 0.086). On the Western diet, Apoe(-/-) mice showed a time-dependent rise in fasting plasma glucose and triglyceride levels. However, no significant differences were observed between phthalate-treated and control mice in either phenotype after 4, 8, and 12 weeks of phthalate exposure. Neither body weight nor atherosclerotic lesions of Apoe(-/-) mice was affected. CONCLUSION This study indicates that exposure to phthalates gives rise to a brief interference of glucose homeostasis but has little impact on the development of type 2 diabetes and atherosclerosis in Apoe(-/-) mice.
Collapse
Affiliation(s)
- Wei Zhou
- Departments of Radiology & Medical Imaging and of Biochemistry & Molecular Genetics, University of Virginia, PO Box 801339, , 266 Snyder Bldg, 480 Ray C Hunt Drive, Charlottesville, VA, 22908, USA.
- Department of Endocrinology of Jianghuai Hospital, Huaian, Jiangsu Province, 223001, China.
| | - Mei-Hua Chen
- Departments of Radiology & Medical Imaging and of Biochemistry & Molecular Genetics, University of Virginia, PO Box 801339, , 266 Snyder Bldg, 480 Ray C Hunt Drive, Charlottesville, VA, 22908, USA.
| | - Weibin Shi
- Departments of Radiology & Medical Imaging and of Biochemistry & Molecular Genetics, University of Virginia, PO Box 801339, , 266 Snyder Bldg, 480 Ray C Hunt Drive, Charlottesville, VA, 22908, USA.
| |
Collapse
|
14
|
Kayashima Y, Makhanova NA, Matsuki K, Tomita H, Bennett BJ, Maeda N. Identification of aortic arch-specific quantitative trait loci for atherosclerosis by an intercross of DBA/2J and 129S6 apolipoprotein E-deficient mice. PLoS One 2015; 10:e0117478. [PMID: 25689165 PMCID: PMC4331513 DOI: 10.1371/journal.pone.0117478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/23/2014] [Indexed: 01/16/2023] Open
Abstract
The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1–Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalia A. Makhanova
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kota Matsuki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hirofumi Tomita
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian J. Bennett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3-GENES GENOMES GENETICS 2014; 4:2353-63. [PMID: 25344410 PMCID: PMC4267931 DOI: 10.1534/g3.114.014704] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inbred mice exhibit strain-specific variation in susceptibility to atherosclerosis and dyslipidemia that renders them useful in dissecting the genetic architecture of these complex diseases. Traditional quantitative trait locus (QTL) mapping studies using inbred strains often identify large genomic regions, containing many genes, due to limited recombination and/or sample size. This hampers candidate gene identification and translation of these results into possible risk factors and therapeutic targets. An alternative approach is the use of multiparental outbred lines for genetic mapping, such as the Diversity Outbred (DO) mouse panel, which can be more informative than traditional two-parent crosses and can aid in the identification of causal genes and variants associated with QTL. We fed 292 female DO mice either a high-fat, cholesterol-containing (HFCA) diet, to induce atherosclerosis, or a low-fat, high-protein diet for 18 wk and measured plasma lipid levels before and after diet treatment. We measured markers of atherosclerosis in the mice fed the HFCA diet. The mice were genotyped on a medium-density single-nucleotide polymorphism array and founder haplotypes were reconstructed using a hidden Markov model. The reconstructed haplotypes were then used to perform linkage mapping of atherosclerotic lesion size as well as plasma total cholesterol, triglycerides, insulin, and glucose. Among our highly significant QTL we detected a ~100 kb QTL interval for atherosclerosis on Chromosome 6, as well as a 1.4 Mb QTL interval on Chromosome 9 for triglyceride levels at baseline and a coincident 22.2 Mb QTL interval on Chromosome 9 for total cholesterol after dietary treatment. One candidate gene within the Chromosome 6 peak region associated with atherosclerosis is Apobec1, the apolipoprotein B (ApoB) mRNA-editing enzyme, which plays a role in the regulation of ApoB, a critical component of low-density lipoprotein, by editing ApoB mRNA. This study demonstrates the value of the DO population to improve mapping resolution and to aid in the identification of potential therapeutic targets for cardiovascular disease. Using a DO mouse population fed an HFCA diet, we were able to identify an A/J-specific isoform of Apobec1 that contributes to atherosclerosis.
Collapse
|
16
|
Kayashima Y, Tomita H, Zhilicheva S, Kim S, Kim HS, Bennett BJ, Maeda N. Quantitative trait loci affecting atherosclerosis at the aortic root identified in an intercross between DBA2J and 129S6 apolipoprotein E-null mice. PLoS One 2014; 9:e88274. [PMID: 24586312 PMCID: PMC3930552 DOI: 10.1371/journal.pone.0088274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein E-null mice on a DBA/2J genetic background (DBA-apoE) are highly susceptible to atherosclerosis in the aortic root area compared with those on a 129S6 background (129-apoE). To explore atherosclerosis-responsible genetic regions, we performed a quantitative trait locus (QTL) analysis using 172 male and 137 female F2 derived from an intercross between DBA-apoE and 129-apoE mice. A genome-wide scan identified two significant QTL for the size of lesions at the root: one is Ath44 on Chromosome (Chr) 1 at 158 Mb, and the other Ath45 on Chr 2 at 162 Mb. Ath44 co-localizes with but appears to be independent of a previously reported QTL, Ath1, while Ath45 is a novel QTL. DBA alleles of both Ath44 and Ath45 confer atherosclerosis-susceptibility. In addition, a QTL on Chr 14 at 73 Mb was found significant only in males, and 129 allele conferring susceptibility. Further analysis detected female-specific interactions between a second QTL on Chr 1 at 73 Mb and a QTL on Chr 3 at 21 Mb, and between Chr 7 at 84 Mb and Chr 12 at 77 Mb. These loci for the root atherosclerosis were independent of QTLs for plasma total cholesterol and QTLs for triglycerides, but a QTL for HDL (Chr 1 at 126 Mb) overlapped with the Ath44. Notably, haplotype analysis among 129S6, DBA/2J and C57BL/6 genomes and their gene expression data narrowed the candidate regions for Ath44 and Ath45 to less than 5 Mb intervals where multiple genome wide associations with cardiovascular phenotypes have also been reported in humans. SNPs in or near Fmo3, Sele and Selp for Ath44, and Lbp and Pkig for Ath45 were suggested for further investigation as potential candidates underlying the atherosclerosis susceptibility.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hirofumi Tomita
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Svetlana Zhilicheva
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shinja Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian J. Bennett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Rowlan JS, Li Q, Manichaikul A, Wang Q, Matsumoto AH, Shi W. Atherosclerosis susceptibility Loci identified in an extremely atherosclerosis-resistant mouse strain. J Am Heart Assoc 2013; 2:e000260. [PMID: 23938286 PMCID: PMC3828785 DOI: 10.1161/jaha.113.000260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background C3H/HeJ (C3H) mice are extremely resistant to atherosclerosis, especially males. To understand the underlying genetic basis, we performed quantitative trait locus (QTL) analysis on a male F2 (the second generation from an intercross between 2 inbred strains) cohort derived from an intercross between C3H and C57BL/6 (B6) apolipoprotein E–deficient (Apoe−/−) mice. Methods and Results Two hundred forty‐six male F2 mice were started on a Western diet at 8 weeks of age and kept on the diet for 5 weeks. Atherosclerotic lesions in the aortic root and fasting plasma lipid levels were measured. One hundred thirty‐four microsatellite markers across the entire genome were genotyped. Four significant QTLs on chromosomes (Chr) 2, 4, 9, and 15 and 4 suggestive loci on Chr1, Chr4, and Chr7 were identified for atherosclerotic lesions. Unexpectedly, the C3H allele was associated with increased lesion formation for 2 of the 4 significant QTLs. Six loci for high‐density lipoprotein (HDL), 6 for non‐HDL cholesterol, and 3 for triglycerides were also identified. The QTL for atherosclerosis on Chr9 replicated Ath29, originally mapped in a female F2 cohort derived from B6 and C3H Apoe−/− mice. This locus coincided with a QTL for HDL, and there was a moderate, but statistically significant, correlation between atherosclerotic lesion sizes and plasma HDL cholesterol levels in F2 mice. Conclusions These data indicate that most atherosclerosis susceptibility loci are distinct from those for plasma lipids except for the Chr9 locus, which exerts effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S. Rowlan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Qiongzhen Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Ani Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA (A.M.)
| | - Qian Wang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Alan H. Matsumoto
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
- Department Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA (W.S.)
- Correspondence to: Weibin Shi, University of Virginia, Box 801339, Snyder 266, 480 Ray C Hunt Drive, Charlottesville, VA 22908. E‐mail:
| |
Collapse
|
18
|
Rowlan JS, Zhang Z, Wang Q, Fang Y, Shi W. New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. Physiol Genomics 2013; 45:332-42. [PMID: 23463770 PMCID: PMC3633429 DOI: 10.1152/physiolgenomics.00099.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid atherosclerosis is the primary cause of ischemic stroke. To identify genetic factors contributing to carotid atherosclerosis, we performed quantitative trait locus (QTL) analysis using female mice derived from an intercross between C57BL/6J (B6) and BALB/cJ (BALB) apolipoprotein E (Apoe−/−) mice. We started 266 F2 mice on a Western diet at 6 wk of age and fed them the diet for 12 wk. Atherosclerotic lesions in the left carotid bifurcation and plasma lipid levels were measured. We genotyped 130 microsatellite markers across the entire genome. Three significant QTLs, Cath1 on chromosome (Chr) 12, Cath2 on Chr5, and Cath3 on Chr13, and four suggestive QTLs on Chr6, Chr9, Chr17, and Chr18 were identified for carotid lesions. The Chr6 locus replicated a suggestive QTL and was named Cath4. Six QTLs for HDL, three QTLs for non-HDL cholesterol, and three QTLs for triglyceride were found. Of these, a significant QTL for non-HDL on Chr1 at 60.3 cM, named Nhdl13, and a suggestive QTL for HDL on ChrX were new. A significant locus for HDL (Hdlq5) was overlapping with a suggestive locus for carotid lesions on Chr9. A significant correlation between carotid lesion sizes and HDL cholesterol levels was observed in the F2 population (R = −0.153, P = 0.0133). Thus, we have identified several new QTLs for carotid atherosclerosis and the locus on Chr9 may exert effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S Rowlan
- Departments of Radiology & Medical Imaging and Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
19
|
Li J, Lu Z, Wang Q, Su Z, Bao Y, Shi W. Characterization of Bglu3, a mouse fasting glucose locus, and identification of Apcs as an underlying candidate gene. Physiol Genomics 2012; 44:345-51. [PMID: 22274563 DOI: 10.1152/physiolgenomics.00087.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bglu3 is a quantitative trait locus for fasting glucose on distal chromosome 1 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate mouse intercrosses. The objective of this study was to characterize Bglu3 through construction and analysis of a congenic strain and identify underlying candidate genes. Congenic mice were constructed by introgressing a genomic region harboring Bglu3 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Mice were started with a Western diet at 6 wk of age and maintained on the diet for 12 wk. Gene expression in the liver was analyzed by microarrays. Congenic mice had significantly higher fasting glucose levels and developed more significant glucose intolerance compared with B6.apoE(-/-) mice on the Western diet. Microarray analysis revealed 336 genes to be differentially expressed in the liver of congenic mice. Further pathway analysis suggested a role for acute phase response signaling in regulating glucose intolerance. Apcs, encoding an acute phase response protein serum amyloid P (SAP), is located underneath the linkage peak of Bglu3. Multiple single nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Apcs. Apcs expression in the liver was significantly higher in congenic and C3H mice compared with B6 mice. The Western diet consumption led to a gradual rise in plasma SAP levels, which was accompanied by rising fasting glucose in both B6 and C3H apoE(-/-) mice. Expression of C3H Apcs in B6.apoE(-/-) mice aggravated glucose intolerance. Bglu3 is confirmed to be a locus affecting diabetes susceptibility, and Apcs is a probable candidate gene.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, USA
| | | | | | | | | | | |
Collapse
|