1
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
2
|
Vanmaele A, Bouwens E, Hoeks SE, Kindt A, Lamont L, Fioole B, Budde RP, Ten Raa S, Hussain B, Oliveira-Pinto J, Ijpma AS, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, de Bruin JL, Hankemeier T, de Rijke Y, Verhagen HJ, Boersma E, Kardys I. Targeted plasma multi-omics propose glutathione, glycine and serine as biomarkers for abdominal aortic aneurysm growth on serial CT scanning. Atherosclerosis 2024; 398:118620. [PMID: 39378678 DOI: 10.1016/j.atherosclerosis.2024.118620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) patients undergo uniform imaging surveillance until reaching the surgical threshold. In spite of the ongoing exploration of AAA pathophysiology, biomarkers for personalized surveillance are lacking. This study aims to identify potential circulating biomarkers for AAA growth on serial CT scans. METHODS Patients with an AAA (maximal diameter ≥40 mm) were included in this multicentre, prospective cohort study. Participants underwent baseline blood sampling and yearly CT-imaging to determine AAA diameter and volume. Proteins and metabolites were measured using proximity extension assay (Olink Cardiovascular III) or separate ELISA panels, and mass-spectrometry (LC-TQMS), respectively. Linear mixed-effects, orthogonal partial least squares, and Cox regression were used to explore biomarker associations with AAA volume growth rate and the risk of surpassing the surgical threshold, as formulated by current guidelines. RESULTS 271 biomarkers (95 proteins, 176 metabolites) were measured in 109 (90.8 % male) patients with mean age 72. Median baseline maximal AAA diameter was 47.8 mm, volume 109 mL. Mean annual AAA volume growth rate was 11.5 %, 95 % confidence interval (CI) (10.4, 12.7). Median follow-up time was 23.2 months, 49 patients reached the surgical threshold. Patients with one standard deviation (SD) higher glutathione and glycine levels at baseline had an AAA volume growth rate that respectively was 1.97 %, 95%CI (0.97, 2.97) and 1.74 %, 95%CI (0.78, 2.71) larger, relative to the actual aneurysm size. Serine was associated with the risk of reaching the surgical threshold, independent of age and baseline AAA size (cause-specific hazard ratio per SD difference 1.78, 95%CI (1.30, 2.44)). CONCLUSIONS Among multiple intertwined biomarkers related to AAA pathophysiology and progression, glutathione, glycine and serine were most promising.
Collapse
Affiliation(s)
- Alexander Vanmaele
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Elke Bouwens
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Ricardo Pj Budde
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology, Beatrix Hospital, Gorinchem, the Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Arne S Ijpma
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jorg L de Bruin
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands
| | - Hence Jm Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Zhu D, Li X, Man Q, Zhao R, Zhang S, Han X, Jiang Y, Xu K, Chen X, Suo C, Xiong L. Sleep Pattern, Genetic Susceptibility, and Abdominal Aortic Aneurysm in UK Biobank Participants: Large-Scale Cohort Study. JACC. ADVANCES 2024; 3:100967. [PMID: 38938869 PMCID: PMC11198196 DOI: 10.1016/j.jacadv.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 06/29/2024]
Abstract
Background Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality. Objectives The authors aimed to explore the associations between sleep patterns and genetic susceptibility to AAA. Methods We included 344,855 UK Biobank study participants free of AAA at baseline. A sleep pattern was defined by chronotype, sleep duration, insomnia, snoring, and daytime sleepiness, and an overall sleep score was constructed with a range from 0 to 5, where a high score denotes a healthy sleep pattern. Polygenic risk score based on 22 single nucleotide polymorphisms was categorized into tertiles and used to evaluate the genetic risk for AAA. Cox proportional hazards regression models were used to assess the association between sleep, genetic factors, and the incidence of AAA. Results During a median of 12.59 years of follow-up, 1,622 incident AAA cases were identified. The HR per 1-point increase in the sleep score was 0.91 (95% CI: 0.86-0.96) for AAA. Unhealthy sleep patterns, defined as a sleep score ranging from 0 to 3, were found to be associated with a higher risk of AAA for the intermediate (HR: 1.18, 95% CI: 1.06-1.31) and poor sleep patterns (HR: 1.40, 95% CI: 1.13-1.73), respectively, compared to the healthy pattern. Participants with poor sleep patterns and high genetic risks had a 2.5-fold higher risk of AAA than those with healthy sleep patterns and low genetic risk. Conclusions In this large prospective study, healthy sleep patterns were associated with a lower risk of AAA among participants with low, intermediate, or high genetic risk.
Collapse
Affiliation(s)
- Dongliang Zhu
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoguang Li
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chen Suo
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Liu D, Billington CJ, Raja N, Wong ZC, Levin MD, Resch W, Alba C, Hupalo DN, Biamino E, Bedeschi MF, Digilio MC, Squeo GM, Villa R, Parrish PCR, Knutsen RH, Osgood S, Freeman JA, Dalgard CL, Merla G, Pober BR, Mervis CB, Roberts AE, Morris CA, Osborne LR, Kozel BA. Matrisome and Immune Pathways Contribute to Extreme Vascular Outcomes in Williams-Beuren Syndrome. J Am Heart Assoc 2024; 13:e031377. [PMID: 38293922 PMCID: PMC11056152 DOI: 10.1161/jaha.123.031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.
Collapse
Affiliation(s)
- Delong Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Charles J. Billington
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of PediatricsUniversity of MinnesotaMinneapolisMN
| | - Neelam Raja
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Zoe C. Wong
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Mark D. Levin
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wulfgang Resch
- The High Performance Computing FacilityCenter for Information Technology, National Institutes of HealthBethesdaMD
| | - Camille Alba
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | - Daniel N. Hupalo
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | | | | | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
| | - Roberta Villa
- Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Medical Genetic UnitMilanItaly
| | - Pheobe C. R. Parrish
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of Genome SciencesUniversity of WashingtonSeattleWA
| | - Russell H. Knutsen
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Sharon Osgood
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Joy A. Freeman
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicinethe Uniformed Services University of the Health SciencesBethesdaMD
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Barbara R. Pober
- Section of Genetics, Department of PediatricsMassachusetts General HospitalBostonMA
| | - Carolyn B. Mervis
- Department of Psychological and Brain SciencesUniversity of LouisvilleLouisvilleKY
| | - Amy E. Roberts
- Department of Cardiology and Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMA
| | - Colleen A. Morris
- Department of PediatricsKirk Kerkorian School of Medicine at UNLVLas VegasNV
| | - Lucy R. Osborne
- Departments of Medicine and Molecular GeneticsUniversity of TorontoCanada
| | - Beth A. Kozel
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
5
|
Vanmaele A, Bouwens E, Hoeks SE, Kindt A, Lamont L, Fioole B, Moelker A, Ten Raa S, Hussain B, Oliveira-Pinto J, Ijpma AS, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, Hankemeier T, de Rijke Y, Verhagen HJ, Boersma E, Kardys I. Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic aneurysm and post-EVAR sac volume. Clin Chim Acta 2024; 554:117786. [PMID: 38246209 DOI: 10.1016/j.cca.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.
Collapse
Affiliation(s)
- Alexander Vanmaele
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Elke Bouwens
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Adriaan Moelker
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology, Beatrix hospital, Gorinchem, the Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Arne S Ijpma
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands
| | - Hence Jm Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Roychowdhury T, Klarin D, Levin MG, Spin JM, Rhee YH, Deng A, Headley CA, Tsao NL, Gellatly C, Zuber V, Shen F, Hornsby WE, Laursen IH, Verma SS, Locke AE, Einarsson G, Thorleifsson G, Graham SE, Dikilitas O, Pattee JW, Judy RL, Pauls-Verges F, Nielsen JB, Wolford BN, Brumpton BM, Dilmé J, Peypoch O, Juscafresa LC, Edwards TL, Li D, Banasik K, Brunak S, Jacobsen RL, Garcia-Barrio MT, Zhang J, Rasmussen LM, Lee R, Handa A, Wanhainen A, Mani K, Lindholt JS, Obel LM, Strauss E, Oszkinis G, Nelson CP, Saxby KL, van Herwaarden JA, van der Laan SW, van Setten J, Camacho M, Davis FM, Wasikowski R, Tsoi LC, Gudjonsson JE, Eliason JL, Coleman DM, Henke PK, Ganesh SK, Chen YE, Guan W, Pankow JS, Pankratz N, Pedersen OB, Erikstrup C, Tang W, Hveem K, Gudbjartsson D, Gretarsdottir S, Thorsteinsdottir U, Holm H, Stefansson K, Ferreira MA, Baras A, Kullo IJ, Ritchie MD, Christensen AH, Iversen KK, Eldrup N, Sillesen H, Ostrowski SR, Bundgaard H, Ullum H, Burgess S, Gill D, Gallagher K, Sabater-Lleal M, Surakka I, Jones GT, Bown MJ, Tsao PS, Willer CJ, Damrauer SM. Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target. Nat Genet 2023; 55:1831-1842. [PMID: 37845353 PMCID: PMC10632148 DOI: 10.1038/s41588-023-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.
Collapse
Affiliation(s)
- Tanmoy Roychowdhury
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| | - Derek Klarin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yae Hyun Rhee
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alicia Deng
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Colwyn A Headley
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Corry Gellatly
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Fred Shen
- University of Michigan Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ina Holst Laursen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam E Locke
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | | | | | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, MN, USA
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
- Mayo Clinician Investigator Training Program, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Renae L Judy
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ferran Pauls-Verges
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jaume Dilmé
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Olga Peypoch
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dadong Li
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke L Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Lasse M Obel
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Vascular and General Surgery, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Katie L Saxby
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Joost A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mercedes Camacho
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Henke
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Aris Baras
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alex H Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper K Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sillesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| | - Katherine Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Philip S Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Bouwens E, Vanmaele A, Hoeks SE, Verhagen HJM, Fioole B, Moelker A, ten Raa S, Hussain B, Oliveira-Pinto J, Bastos Gonçalves F, Ijpma AS, Hoefer IE, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, Boersma E, Kardys I. Circulating biomarkers of cardiovascular disease are related to aneurysm volume in abdominal aortic aneurysm. Vasc Med 2023; 28:433-442. [PMID: 37395286 PMCID: PMC10559648 DOI: 10.1177/1358863x231181159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Surveillance programs in abdominal aortic aneurysms (AAA) are mainly based on imaging and leave room for improvement to timely identify patients at risk for AAA growth. Many biomarkers are dysregulated in patients with AAA, which fuels interest in biomarkers as indicators of disease progression. We examined associations of 92 cardiovascular disease (CVD)-related circulating biomarkers with AAA and sac volume. METHODS In a cross-sectional analysis, we separately investigated (1) 110 watchful waiting (WW) patients (undergoing periodic surveillance imaging without planned intervention) and (2) 203 patients after endovascular aneurysm repair (EVAR). The Cardiovascular Panel III (Olink Proteomics AB, Sweden) was used to measure 92 CVD-related circulating biomarkers. We used cluster analyses to investigate protein-based subphenotypes, and linear regression to examine associations of biomarkers with AAA and sac volume on CT scans. RESULTS Cluster analyses revealed two biomarker-based subgroups in both WW and EVAR patients, with higher levels of 76 and 74 proteins, respectively, in one subgroup versus the other. In WW patients, uPA showed a borderline significant association with AAA volume. Adjusting for clinical characteristics, there was a difference of -0.092 (-0.148, -0.036) loge mL in AAA volume per SD uPA. In EVAR patients, after multivariable adjustment, four biomarkers remained significantly associated with sac volume. The mean effects on sac volume per SD difference were: LDLR: -0.128 (-0.212, -0.044), TFPI: 0.139 (0.049, 0.229), TIMP4: 0.110 (0.023, 0.197), IGFBP-2: 0.103 (0.012, 0.194). CONCLUSION LDLR, TFPI, TIMP4, and IGFBP-2 were independently associated with sac volume after EVAR. Subgroups of patients with high levels of the majority of CVD-related biomarkers emphasize the intertwined relationship between AAA and CVD.ClinicalTrials.gov Identifier: NCT03703947.
Collapse
Affiliation(s)
- Elke Bouwens
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander Vanmaele
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hence JM Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, The Netherlands
| | - Adriaan Moelker
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sander ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Beatrix Hospital, Gorinchem, The Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Frederico Bastos Gonçalves
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Department of Angiology and Vascular Surgery, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Arne S Ijpma
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Eric Boersma
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
9
|
Gyftopoulos A, Ziganshin BA, Elefteriades JA, Ochoa Chaar CI. Comparison of Genes Associated with Thoracic and Abdominal Aortic Aneurysms. AORTA (STAMFORD, CONN.) 2023; 11:125-134. [PMID: 37279787 PMCID: PMC10449569 DOI: 10.1055/s-0043-57266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/09/2022] [Indexed: 06/08/2023]
Abstract
Aneurysms impacting the ascending thoracic aorta and the abdominal aorta affect patient populations with distinct clinical characteristics. Through a literature review, this paper compares the genetic associations of ascending thoracic aortic aneurysm (ATAA) with abdominal aortic aneurysms (AAA). Genes related to atherosclerosis, lipid metabolism, and tumor development are associated specifically with sporadic AAA, while genes controlling extracellular matrix (ECM) structure, ECM remodeling, and tumor growth factor β function are associated with both AAA and ATAA. Contractile element genes uniquely predispose to ATAA. Aside from known syndromic connective tissue disease and poly-aneurysmal syndromes (Marfan disease, Loeys-Dietz syndrome, and Ehlers-Danlos syndrome), there is only limited genetic overlap between AAA and ATAA. The rapid advances in genotyping and bioinformatics will elucidate further the various pathways associated with the development of aneurysms affecting various parts of the aorta.
Collapse
Affiliation(s)
| | - Bulat A. Ziganshin
- Aortic Institute, Yale University School of Medicine, New Haven, Connecticut
| | | | - Cassius I. Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Bararu Bojan (Bararu) I, Pleșoianu CE, Badulescu OV, Vladeanu MC, Badescu MC, Iliescu D, Bojan A, Ciocoiu M. Molecular and Cellular Mechanisms Involved in Aortic Wall Aneurysm Development. Diagnostics (Basel) 2023; 13:diagnostics13020253. [PMID: 36673063 PMCID: PMC9858209 DOI: 10.3390/diagnostics13020253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
Aortic aneurysms represent a very common pathology that can affect any segment of the aorta. These types of aneurysms can be localized on the thoracic segment or on the abdominal portion, with the latter being more frequent. Though there are similarities between thoracic and abdominal aortic aneurysms, these pathologies are distinct entities. In this article, we undertook a review regarding the different mechanisms that can lead to the development of aortic aneurysm, and we tried to identify the different manners of treatment. For a long time, aortic wall aneurysms may evolve in an asymptomatic manner, but this progressive dilatation of the aneurysm can lead to a potentially fatal complication consisting in aortic rupture. Because there are limited therapies that may delay or prevent the development of acute aortic syndromes, surgical management remains the most common manner of treatment. Even though, surgical management has improved much in the last years, thus becoming less invasive and sophisticated, the morbi-mortality linked to these therapies remains increased. The identification of the cellular and molecular networks triggering the formation of aneurysm would permit the discovery of modern therapeutic targets. Molecular and cellular mechanisms are gaining a bigger importance in the complex pathogenesis of aortic aneurysms. Future studies must be developed to compare the findings seen in human tissue and animal models of aortic aneurysm, so that clinically relevant conclusions about the aortic aneurysm formation and the pharmacological possibility of pathogenic pathways blockage can be drawn.
Collapse
Affiliation(s)
- Iris Bararu Bojan (Bararu)
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| | - Carmen Elena Pleșoianu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Cardiology, ‘Prof. Dr. George I.M. Georgescu’ Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dan Iliescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| |
Collapse
|
12
|
Katz AE, Yang ML, Levin MG, Tcheandjieu C, Mathis M, Hunker K, Blackburn S, Eliason JL, Coleman DM, Fendrikova-Mahlay N, Gornik HL, Karmakar M, Hill H, Xu C, Zawistowski M, Brummett CM, Zoellner S, Zhou X, O'Donnell CJ, Douglas JA, Assimes TL, Tsao PS, Li JZ, Damrauer SM, Stanley JC, Ganesh SK. Fibromuscular Dysplasia and Abdominal Aortic Aneurysms Are Dimorphic Sex-Specific Diseases With Shared Complex Genetic Architecture. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003496. [PMID: 36374587 PMCID: PMC9772208 DOI: 10.1161/circgen.121.003496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The risk of arterial diseases may be elevated among family members of individuals having multifocal fibromuscular dysplasia (FMD). We sought to investigate the risk of arterial diseases in families of individuals with FMD. METHODS Family histories for 73 probands with FMD were obtained, which included an analysis of 463 total first-degree relatives focusing on FMD and related arterial disorders. A polygenic risk score for FMD (PRSFMD) was constructed from prior genome-wide association findings of 584 FMD cases and 7139 controls and evaluated for association with an abdominal aortic aneurysm (AAA) in a cohort of 9693 AAA cases and 294 049 controls. A previously published PRSAAA was also assessed among the FMD cases and controls. RESULTS Of all first degree relatives of probands, 9.3% were diagnosed with FMD, aneurysms, and dissections. Aneurysmal disease occurred in 60.5% of affected relatives and 5.6% of all relatives. Among 227 female first-degree relatives of probands, 4.8% (11) had FMD, representing a relative risk (RR)FMD of 1.5 ([95% CI, 0.75-2.8]; P=0.19) compared with the estimated population prevalence of 3.3%, though not of statistical significance. Of all fathers of FMD probands, 11% had AAAs resulting in a RRAAA of 2.3 ([95% CI, 1.12-4.6]; P=0.014) compared with population estimates. The PRSFMD was found to be associated with an AAA (odds ratio, 1.03 [95% CI, 1.01-1.05]; P=2.6×10-3), and the PRSAAA was found to be associated with FMD (odds ratio, 1.53 [95% CI, 1.2-1.9]; P=9.0×10-5) as well. CONCLUSIONS FMD and AAAs seem to be sex-dimorphic manifestations of a heritable arterial disease with a partially shared complex genetic architecture. Excess risk of having an AAA according to a family history of FMD may justify screening in family members of individuals having FMD.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Medical Genomics & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (A.E.K.)
| | - Min-Lee Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Department of Computational Medicine and Bioinformatics (M.-L.Y.), University of Michigan, Ann Arbor
| | - Michael G Levin
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Division of Cardiovascular Medicine, Department of Medicine (M.G.L.)
| | - Catherine Tcheandjieu
- Gladstone Institute of data science and Biotechnology, Gladstone Institutes; and Department of epidemiology and biostatistics, University of California at San Francisco, CA. (C.T.)
| | - Michael Mathis
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Kristina Hunker
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Susan Blackburn
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | | | - Heather L Gornik
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (H.L.G.)
| | - Monita Karmakar
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Hannah Hill
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Chang Xu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Chad M Brummett
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Sebastian Zoellner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Christopher J O'Donnell
- VA Boston Healthcare System (C.O.)
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.O.)
| | - Julie A Douglas
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Themistocles L Assimes
- VA Palo Alto Health Care System (T.L.A., P.S.T.)
- Division of Cardiovascular Medicine, Department of Medicine (T.L.A.), Stanford University School of Medicine, CA
| | | | - Jun Z Li
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Scott M Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Department of Surgery and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.M.D.)
| | - James C Stanley
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| |
Collapse
|
13
|
Portilla-Fernandez E, Klarin D, Hwang SJ, Biggs ML, Bis JC, Weiss S, Rospleszcz S, Natarajan P, Hoffmann U, Rogers IS, Truong QA, Völker U, Dörr M, Bülow R, Criqui MH, Allison M, Ganesh SK, Yao J, Waldenberger M, Bamberg F, Rice KM, Essers J, Kapteijn DMC, van der Laan SW, de Knegt RJ, Ghanbari M, Felix JF, Ikram MA, Kavousi M, Uitterlinden AG, Roks AJM, Danser AHJ, Tsao PS, Damrauer SM, Guo X, Rotter JI, Psaty BM, Kathiresan S, Völzke H, Peters A, Johnson C, Strauch K, Meitinger T, O’Donnell CJ, Dehghan A, VA Million Veteran Program. Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study. Hum Mol Genet 2022; 31:3566-3579. [PMID: 35234888 PMCID: PMC9558840 DOI: 10.1093/hmg/ddac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.
Collapse
Affiliation(s)
- Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI/NIH, Bethesda MD, USA
- National Heart Lung and Blood Institute's Intramural Research Program's Framingham Heart Study, Framingham, MA, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ian S Rogers
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Quynh A Truong
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael H Criqui
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Matthew Allison
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry & Hematology, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rob J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janine F Felix
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Philip S Tsao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Craig Johnson
- Collaborative Health Studies Coordinating Center, Department of Biostatistics in the School of Public Health, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Human Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Christopher J O’Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Chen Y, Xu X, Wang L, Li K, Sun Y, Xiao L, Dai J, Huang M, Wang Y, Wang DW. Genetic insights into therapeutic targets for aortic aneurysms: A Mendelian randomization study. EBioMedicine 2022; 83:104199. [PMID: 35952493 PMCID: PMC9385553 DOI: 10.1016/j.ebiom.2022.104199] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND As aortic aneurysms (AAs) enlarge, they can become life-threatening if left undiagnosed or neglected. At present, there is a lack of radical treatments for preventing disease progression. Therefore, we aimed to identify effective drug targets that slow the progression of AAs. METHODS A Mendelian randomization (MR) analysis was conducted to identify therapeutic targets which are associated with AAs. Summary statistics for AAs were obtained from two datasets: the UK Biobank (2228 cases and 408,565 controls) and the FinnGen study (3658 cases and 244,907 controls). Cis-expression quantitative trait loci (cis-eQTL) for druggable genes were retrieved from the eQTLGen Consortium and used as genetic instrumental variables. Colocalization analysis was performed to determine the probability that single nucleotide polymorphisms (SNPs) associated with AAs and eQTL shared causal genetic variants. FINDINGS Four drug targets (BTN3A1, FASN, PLAU, and PSMA4) showed significant MR results in two independent datasets. Proteasome 20S subunit alpha 4 (PSMA4) and plasminogen activator, urokinase (PLAU) in particular, were found to have strong evidence for colocalization with AAs, and abdominal aortic aneurysm in particular. Additionally, except for the association between PSMA4 and intracranial aneurysms, no association between genetically proxied inhibition of PLAU and PSMA4 was detected in increasing the risk of other cardiometabolic risks and diseases. INTERPRETATION This study supports that drug-targeting PLAU and PSMA4 inhibition may reduce the risk of AAs. FUNDING This work was supported by National Key R&D Program of China (NO. 2017YFC0909400), Nature Science Foundation of China (No. 91839302, 81790624), Project supported by Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01), and Tongji Hospital Clinical Research Flagship Program (no. 2019CR207).
Collapse
Affiliation(s)
- Yanghui Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Xin Xu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Linlin Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Jiaqi Dai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China; Department of Internal Medicine, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China.
| |
Collapse
|
15
|
High heritability of ascending aortic diameter and trans-ancestry prediction of thoracic aortic disease. Nat Genet 2022; 54:772-782. [PMID: 35637384 DOI: 10.1038/s41588-022-01070-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Enlargement of the aorta is an important risk factor for aortic aneurysm and dissection, a leading cause of morbidity in the developed world. Here we performed automated extraction of ascending aortic diameter from cardiac magnetic resonance images of 36,021 individuals from the UK Biobank, followed by genome-wide association. We identified lead variants across 41 loci, including genes related to cardiovascular development (HAND2, TBX20) and Mendelian forms of thoracic aortic disease (ELN, FBN1). A polygenic score significantly predicted prevalent risk of thoracic aortic aneurysm and the need for surgical intervention for patients with thoracic aneurysm across multiple ancestries within the UK Biobank, FinnGen, the Penn Medicine Biobank and the Million Veterans Program (MVP). Additionally, we highlight the primary causal role of blood pressure in reducing aortic dilation using Mendelian randomization. Overall, our findings provide a roadmap for using genetic determinants of human anatomy to understand cardiovascular development while improving prediction of diseases of the thoracic aorta.
Collapse
|
16
|
Kalyanasundaram A, Elefteriades J. The Genetics of Inheritable Aortic Diseases. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ji L, Chen S, Gu G, Wang W, Ren J, Xu F, Li F, Wu J, Yang D, Zheng Y. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ Sci B 2021; 22:733-745. [PMID: 34514753 DOI: 10.1631/jzus.b2000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2'-deoxy-D-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.
Collapse
Affiliation(s)
- Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siliang Chen
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Guangchao Gu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Xu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
18
|
Ibrahim M, Thanigaimani S, Singh TP, Morris D, Golledge J. Systematic review and Meta-Analysis of Mendelian randomisation analyses of Abdominal aortic aneurysms. IJC HEART & VASCULATURE 2021; 35:100836. [PMID: 34286064 PMCID: PMC8274287 DOI: 10.1016/j.ijcha.2021.100836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Mendelian randomisation (MR) has been suggested to be able to overcome biases of observational studies, but no meta-analysis is available on MR studies on abdominal aortic aneurysm (AAA). This systematic review and Meta-analysis examined the evidence of causal risk factors for AAA identified in MR studies. METHODS Publicly available databases were systematically searched for MR studies that reported any causal risk factors for AAA diagnosis. Meta-analyses were performed using random effect models and reported as odds ratio (OR) and 95% confidence intervals (CI). Study quality was assessed using a modified version of Strengthening the Reporting of Mendelian Randomisation Studies (STROBE-MR) guidelines. RESULTS Sixteen MR studies involving 34,050 patients with AAA and 2,205,894 controls were included. Meta-analyses suggested that one standard deviation increase in high density lipoprotein (HDL) significantly reduced (OR: 0.66, 95% CI: 0.61, 0.72) and one standard deviation increase in low density lipoprotein (LDL) significantly increased the risk (OR: 1.68, 95%, CI: 1.55, 1.82) of AAA. One standard deviation increase in triglycerides did not significantly increase the risk of AAA (OR: 1.21, 95% CI: 0.86, 1.71). Quality assessment suggested that ten and five studies were of low and moderate risk of bias respectively, with one study considered as high risk of bias. CONCLUSION This meta-analysis suggests LDL and HDL are positive and negative casual risk factors for AAA.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Tejas P Singh
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Dylan Morris
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| |
Collapse
|
19
|
Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9934951. [PMID: 34306317 PMCID: PMC8263248 DOI: 10.1155/2021/9934951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.
Collapse
|
20
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
21
|
Yap ZJ, Sharif M, Bashir M. Is there an immunogenomic difference between thoracic and abdominal aortic aneurysms? J Card Surg 2021; 36:1520-1530. [PMID: 33604952 DOI: 10.1111/jocs.15440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIM Aortic aneurysms most commonly occur in the infra-renal and proximal thoracic regions. While generally asymptomatic, progressive aneurysmal dilation can become rapidly lethal when dissection or ruptures occurs, highlighting the need for more robust screening. Abdominal aortic aneurysm (AAA) is more prevalent compared to thoracic aortic aneurysm (TAA). The true incidence of TAA is underreported due to the absence of population screening and the silent nature of TAA. To achieve the optimum survival rate in aortic aneurysms, knowledge of natural course, genetic association, and surgical results are needed to be applied with adequate medical treatment and careful selection of patients for operation. The purpose of this paper is to provide a comprehensive review of the literature on natural history, immunology, and genetic differences between thoracic and AAAs. METHOD The literature was collected from OVID, SCOPUS, and PubMed. RESULTS (1) AAA expands faster than TAA. AAA expands at approximately 0.3-0.45 cm annually, depending on various factors (advancing age, diameter of aorta, smoking etc.). TAA expands up to 0.3 cm annually in a non-bicuspid aortic valve patient. (2) An increase in Matrix metallopeptidase 1, 2, 9, 12, 14 led to degrading extracellular matrix of the aortic vessel wall. This significantly contributed to the pathogenesis in AAA, whereas overactive Transforming growth factor-beta played a major role in the pathogenesis of TAA. CONCLUSION In the future, genetic testing may be the gold standard for tackling the geneticheterogeneity of aneurysms, therefore, identifying at-risk individuals developing TAA andAAA earlier.
Collapse
Affiliation(s)
- Zhi Jiun Yap
- Department of Anaesthetic, Dorset County Hospital, Dorset, England
| | - Monira Sharif
- Department of Molecular & Clinical Medicine, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Mohamad Bashir
- Department of Emergency Medicine and Surgery, Royal Blackburn Teaching Hospital, Blackburn, England
| |
Collapse
|
22
|
Klarin D, Verma SS, Judy R, Dikilitas O, Wolford BN, Paranjpe I, Levin MG, Pan C, Tcheandjieu C, Spin JM, Lynch J, Assimes TL, Åldstedt Nyrønning L, Mattsson E, Edwards TL, Denny J, Larson E, Lee MTM, Carrell D, Zhang Y, Jarvik GP, Gharavi AG, Harley J, Mentch F, Pacheco JA, Hakonarson H, Skogholt AH, Thomas L, Gabrielsen ME, Hveem K, Nielsen JB, Zhou W, Fritsche L, Huang J, Natarajan P, Sun YV, DuVall SL, Rader DJ, Cho K, Chang KM, Wilson PWF, O'Donnell CJ, Kathiresan S, Scali ST, Berceli SA, Willer C, Jones GT, Bown MJ, Nadkarni G, Kullo IJ, Ritchie M, Damrauer SM, Tsao PS. Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation 2020; 142:1633-1646. [PMID: 32981348 PMCID: PMC7580856 DOI: 10.1161/circulationaha.120.047544] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplemental Digital Content is available in the text. Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability.
Collapse
Affiliation(s)
- Derek Klarin
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.).,Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Program in Medical and Population Genetics (D.K.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Shefali Setia Verma
- Department of Genetics (S.S.V., M.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Renae Judy
- Department of Surgery (R.J., S.M.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (O.D., I.J.K.)
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics (B.N.W., C.W.), University of Michigan Medical School, Ann Arbor
| | - Ishan Paranjpe
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (I.P., G.N.)
| | - Michael G Levin
- Division of Cardiovascular Medicine (M.G.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics (C.P.), CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA.,Department of Pediatric Cardiology (C.T.), Stanford University School of Medicine, CA
| | - Joshua M Spin
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | - Julie Lynch
- Edith Nourse VA Medical Center, Bedford, MA (J.L.).,VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT (J.L., S.L.D.)
| | - Themistocles L Assimes
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | - Linn Åldstedt Nyrønning
- Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway (L.Å.N., E.M.).,Department of Circulation and Medical Imaging (L.Å.N., E.M.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Erney Mattsson
- Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway (L.Å.N., E.M.).,Department of Circulation and Medical Imaging (L.Å.N., E.M.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center (T.L.E.), Vanderbilt University Medical Center, Nashville, TN.,Vanderbilt Genetics Institute (T.L.E., J.D.), Vanderbilt University Medical Center, Nashville, TN
| | - Josh Denny
- Vanderbilt Genetics Institute (T.L.E., J.D.), Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.)
| | - Eric Larson
- Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.).,Departments of Medicine and Health Services (E.L.), University of Washington, Seattle
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA (M.T.M.L., Y.Z.)
| | - David Carrell
- Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.)
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA (M.T.M.L., Y.Z.)
| | - Gail P Jarvik
- Division of Medical Genetics, Departments of Medicine and Genome Sciences (G.P.J.), University of Washington, Seattle
| | - Ali G Gharavi
- Division of Nephrology and Center for Precision Medicine and Genomics, Columbia University, New York, NY (A.G.G.)
| | - John Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, OH (J.H.).,Department of Pediatrics, University of Cincinnati College of Medicine, OH (J.H.).,US Department of Veterans Affairs, Cincinnati, OH (J.H.)
| | - Frank Mentch
- Center for Applied Genomics, The Children's Hospital of Philadelphia, PA (F.M., H.H.)
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (J.A.P.)
| | - Hakon Hakonarson
- Department of Pediatrics (H.H.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Center for Applied Genomics, The Children's Hospital of Philadelphia, PA (F.M., H.H.)
| | - Anne Heidi Skogholt
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent Thomas
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine (L.T.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Bille Nielsen
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark (J.B.N.)
| | - Wei Zhou
- Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Stanley Center for Psychiatric Research (W.Z.), Broad Institute of MIT and Harvard, Cambridge, MA.,Analytic and Translational Genetics Unit (W.Z.), Massachusetts General Hospital, Boston
| | - Lars Fritsche
- Department of Biostatistics (L.F.), University of Michigan Medical School, Ann Arbor
| | - Jie Huang
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Pradeep Natarajan
- Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Medicine (P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Cardiovascular Research Center (P.N.), Massachusetts General Hospital, Boston.,Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA (Y.V.S.).,Atlanta VA Health Care System, Decatur, GA (Y.V.S., P.W.F.W.)
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT (J.L., S.L.D.).,Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (S.L.D.)
| | - Daniel J Rader
- Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kelly Cho
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Kyong-Mi Chang
- Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA (Y.V.S., P.W.F.W.).,Emory Clinical Cardiovascular Research Institute, Atlanta, GA (P.W.F.W.)
| | - Christopher J O'Donnell
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.).,Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.J.O.)
| | | | - Salvatore T Scali
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.)
| | - Scott A Berceli
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.)
| | - Cristen Willer
- Department of Computational Medicine and Bioinformatics (B.N.W., C.W.), University of Michigan Medical School, Ann Arbor.,Department of Internal Medicine, Division of Cardiology (C.W.), University of Michigan Medical School, Ann Arbor.,Department of Human Genetics (C.W.), University of Michigan Medical School, Ann Arbor
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Matthew J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, United Kingdom (M.J.B.)
| | - Girish Nadkarni
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (I.P., G.N.)
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (O.D., I.J.K.)
| | - Marylyn Ritchie
- Department of Genetics (S.S.V., M.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Scott M Damrauer
- Department of Surgery (R.J., S.M.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Philip S Tsao
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | | |
Collapse
|
23
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Hyperlipidemia does not affect development of elastase-induced abdominal aortic aneurysm in mice. Atherosclerosis 2020; 311:73-83. [PMID: 32949946 DOI: 10.1016/j.atherosclerosis.2020.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Hyperlipidemia is a suggested risk factor for abdominal aortic aneurysm (AAA). However, whether hyperlipidemia is causally involved in AAA progression remains elusive. Here, we tested the hypothesis that hyperlipidemia aggravates AAA formation in the widely used porcine pancreatic elastase (PPE) model of AAA in mice with varying levels of plasma lipids. METHODS Prior to PPE-surgery, 8-week-old male C57BL/6J mice (n = 32) received 1·1011 viral genomes of rAAV8-D377Y-mPcsk9 or control rAAV8 via the tail vein. Mice were fed either western type diet or regular chow. At baseline and during the 28 days following PPE-surgery, mice underwent weekly ultrasonic assessment of AAA progression. Experiments were repeated using Apolipoprotein E knockout (ApoE-/-) mice (n = 7) and wildtype C57BL/6J mice (n = 5). RESULTS At sacrifice, maximal intergroup plasma cholesterol and non-HDL/HDL ratio differences were >5-fold and >20-fold, respectively. AAA diameters expanded to 150% of baseline, but no intergroup differences were detected. This was verified in an independent experiment comparing 8-week-old male ApoE-/- mice with wildtype mice. Histological evaluation of experimental AAA lesions revealed accumulated lipid in neointimal and medial layers, and analysis of human AAA lesions (n = 5) obtained from open repair showed medial lipid deposition. CONCLUSIONS In summary, we find that lipid deposition in the aortic wall is a feature of PPE-induced AAA in mice as well as human AAA lesions. Despite, our data do not support the hypothesis that hyperlipidemia contributes to AAA progression.
Collapse
|
25
|
Mangum KD, Farber MA. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet 2020; 97:815-826. [PMID: 31957007 DOI: 10.1111/cge.13705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.
Collapse
Affiliation(s)
- Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark A Farber
- Division of Vascular Surgery, UNC Department of Surgery, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Zhou M, Shi Z, Cai L, Li X, Ding Y, Xie T, Fu W. Circular RNA expression profile and its potential regulative role in human abdominal aortic aneurysm. BMC Cardiovasc Disord 2020; 20:70. [PMID: 32039711 PMCID: PMC7008530 DOI: 10.1186/s12872-020-01374-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to identify the differentially expressed circular RNAs (circRNAs) between human abdominal aortic aneurysm (AAA) and the control group. Methods High-throughput sequencing was applied to determine the circRNA expression profiles of 4 paired aortic samples. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was carried out to testify 6 randomly selected dysregulated circRNAs. Kyoto Encyclopedia of Genes and Genomes and Gene ontology (GO) analysis were conducted for functional annotation of the parental genes. Additionally, interaction networks between circRNA and 5 putative microRNA (miRNA) partners were constructed. Results Finally, 411 differentially expressed circRNAs were discovered, including 266 downregulated and 145 upregulated circRNAs. Compared with the control group, the expression level of hsa (Homo sapiens) _circ_0005360 (LDLR) and hsa_circ_0002168 (TMEM189) were proved significantly lower in the AAA group by qRT-PCR. Regarding upregulated circRNAs, the most enriched GO molecular function, biological process and cellular component terms were poly(A) RNA binding, negative regulation of transcription from RNA polymerase II promoter and nucleoplasm, respectively. Moreover, circRNA/miRNA interaction networks showed that hsa_circ_0005360/miR-181b and hsa_circ_0002168/miR-15a axis might have a regulative role in human AAA. Conclusions This study revealed new circRNAs potentially related to the pathogenesis of AAA. Further experimental studies are warranted to clarify the potential molecular mechanisms.
Collapse
Affiliation(s)
- Min Zhou
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Liang Cai
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Tianchen Xie
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
van Laarhoven CJHCM, van Setten J, van Herwaarden JA, Pasterkamp G, de Kleijn DPV, de Borst GJ, van der Laan SW. Polygenic Susceptibility of Aortic Aneurysms Associates to the Diameter of the Aneurysm Sac: the Aneurysm-Express Biobank Cohort. Sci Rep 2019; 9:19844. [PMID: 31882626 PMCID: PMC6934821 DOI: 10.1038/s41598-019-56230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/08/2019] [Indexed: 11/23/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have discovered ten genetic risk variants for abdominal aortic aneurysms (AAA). To what extent these genetic variants contribute to the pathology of aneurysms is yet unknown. The present study aims to investigate whether genetic risk variants are associated with three clinical features: diameter of aneurysm sac, type of artery and aneurysm related-symptoms in aortic and peripheral aneurysm patients. Aneurysm tissue of 415 patients included in the Aneurysm-Express biobank was used. A best-fit polygenic risk score (PRS) based on previous GWAS effect estimates was modeled for each clinical phenotype. The best-fit PRS (including 272 variants at PT = 0.01015) showed a significant correlation with aneurysm diameter (R2 = 0.019, p = 0.001). No polygenic association was found with clinical symptoms or artery type. In addition, the ten genome-wide significant risk variants for AAA were tested individually, but no associations were observed with any of the clinical phenotypes. All models were corrected for confounders and data was normalized. In conclusion, a weighted PRS of AAA susceptibility explained 1.9% of the phenotypic variation (p = 0.001) in diameter in aneurysm patients. Given our limited sample size, future biobank collaborations need to confirm a potential causal role of susceptibility variants on aneurysmal disease initiation and progression.
Collapse
Affiliation(s)
- Constance J H C M van Laarhoven
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost A van Herwaarden
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
29
|
Au DT, Arai AL, Fondrie WE, Muratoglu SC, Strickland DK. Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Curr Drug Targets 2019; 19:1276-1288. [PMID: 29749311 DOI: 10.2174/1389450119666180511162048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events.
Collapse
Affiliation(s)
- Dianaly T Au
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Allison L Arai
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Selen C Muratoglu
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| |
Collapse
|
30
|
Chen S, Yang D, Lei C, Li Y, Sun X, Chen M, Wu X, Zheng Y. Identification of crucial genes in abdominal aortic aneurysm by WGCNA. PeerJ 2019; 7:e7873. [PMID: 31608184 PMCID: PMC6788446 DOI: 10.7717/peerj.7873] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is the full thickness dilation of the abdominal aorta. However, few effective medical therapies are available. Thus, elucidating the molecular mechanism of AAA pathogenesis and exploring the potential molecular target of medical therapies for AAA is of vital importance. Methods Three expression datasets (GSE7084, GSE47472 and GSE57691) were downloaded from the Gene Expression Omnibus (GEO). These datasets were merged and then normalized using the “sva” R package. Differential expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were conducted. We compared the co-expression patterns between AAA and normal conditions, and hub genes of each functional module were identified. DEGs were mapped to co-expression network under AAA condition and a DEG co-expression network was generated. Crucial genes were identified using molecular complex detection (MCODE) (a plugin in Cytoscape). Results In our study, 6 and 10 gene modules were detected for the AAA and normal conditions, respectively, while 143 DEGs were screened. Compared to the normal condition, genes associated with immune response, inflammation and muscle contraction were clustered in three gene modules respectively under the AAA condition; the hub genes of the three modules were MAP4K1, NFIB and HPK1, respectively. A DEG co-expression network with 102 nodes and 303 edges was identified, and a hub gene cluster with 10 genes from the DEG co-expression network was detected. YIPF6, RABGAP1, ANKRD6, GPD1L, PGRMC2, HIGD1A, GMDS, MGP, SLC25A4 and FAM129A were in the cluster. The expression levels of these 10 genes showed potential diagnostic value. Conclusion Based on WGCNA, we detected 6 modules under the AAA condition and 10 modules in the normal condition. Hub genes of each module and hub gene clusters of the DEG co-expression network were identified. These genes may act as potential targets for medical therapy and diagnostic biomarkers. Further studies are needed to elucidate the detailed biological function of these genes in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
31
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
32
|
Affiliation(s)
- Daniel I Chasman
- From the Division of Preventive Medicine (D.I.C., P.R.L.), Division of Genetics (D.I.C.), and Division of Cardiovascular Medicine (P.R.L.), Brigham and Women's Hospital, Boston, MA.
| | - Patrick R Lawler
- From the Division of Preventive Medicine (D.I.C., P.R.L.), Division of Genetics (D.I.C.), and Division of Cardiovascular Medicine (P.R.L.), Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
33
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
34
|
Lin CJ, Lin CY, Stitziel NO. Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biol 2018; 71-72:128-143. [PMID: 29656146 DOI: 10.1016/j.matbio.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Aortic aneurysms are morbid conditions that can lead to rupture or dissection and are categorized as thoracic (TAA) or abdominal aortic aneurysms (AAA) depending on their location. While AAA shares overlapping risk factors with atherosclerotic cardiovascular disease, TAA exhibits strong heritability. Human genetic studies in the past two decades have successfully identified numerous genes involved in both familial and sporadic forms of aortic aneurysm. In this review we will discuss the genetic basis of aortic aneurysm, focusing on the extracellular matrix and how insights from these studies have informed our understanding of human biology and disease pathogenesis.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Toghill BJ, Saratzis A, Freeman PJ, Sylvius N, Bown MJ. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells. Clin Epigenetics 2018; 10:29. [PMID: 29507647 PMCID: PMC5833080 DOI: 10.1186/s13148-018-0460-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. Results We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter (P < 0.0001, R2 = 0.3175).We then determined CpG methylation status of regulatory regions in genes located at AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R, 2 CpGs were hyper-methylated (P = 0.0145); in ERG, 13 CpGs were hyper-methylated (P = 0.0005); in SERPINB9, 6 CpGs were hypo-methylated (P = 0.0037) and 1 CpG was hyper-methylated (P = 0.0098); and in SMYD2, 4 CpGs were hypo-methylated (P = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression (P = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. Conclusions This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that methylation status of the SMYD2 promoter may be linked with decreased SMYD2 expression in disease pathobiology. In support of our work, downregulated SMYD2 has previously been associated with adverse cardiovascular physiology and inflammation, which are both hallmarks of AAA. The identification of such adverse epigenetic modifications could potentially contribute towards the development of epigenetic treatment strategies in the future.
Collapse
Affiliation(s)
- Bradley J Toghill
- 1Department of Cardiovascular Sciences and the NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE2 7LX UK
| | - Athanasios Saratzis
- 1Department of Cardiovascular Sciences and the NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE2 7LX UK
| | - Peter J Freeman
- 2Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH UK
| | - Nicolas Sylvius
- 2Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH UK
| | | | - Matthew J Bown
- 1Department of Cardiovascular Sciences and the NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE2 7LX UK
| |
Collapse
|
36
|
Harrison SC, Holmes MV, Burgess S, Asselbergs FW, Jones GT, Baas AF, van ’t Hof FN, de Bakker PIW, Blankensteijn JD, Powell JT, Saratzis A, de Borst GJ, Swerdlow DI, van der Graaf Y, van Rij AM, Carey DJ, Elmore JR, Tromp G, Kuivaniemi H, Sayers RD, Samani NJ, Bown MJ, Humphries SE. Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis. JAMA Cardiol 2018; 3:26-33. [PMID: 29188294 PMCID: PMC5833524 DOI: 10.1001/jamacardio.2017.4293] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
Abstract
Importance Risk factors for abdominal aortic aneurysm (AAA) are largely unknown, which has hampered the development of nonsurgical treatments to alter the natural history of disease. Objective To investigate the association between lipid-associated single-nucleotide polymorphisms (SNPs) and AAA risk. Design, Setting, and Participants Genetic risk scores, composed of lipid trait-associated SNPs, were constructed and tested for their association with AAA using conventional (inverse-variance weighted) mendelian randomization (MR) and data from international AAA genome-wide association studies. Sensitivity analyses to account for potential genetic pleiotropy included MR-Egger and weighted median MR, and multivariable MR method was used to test the independent association of lipids with AAA risk. The association between AAA and SNPs in loci that can act as proxies for drug targets was also assessed. Data collection took place between January 9, 2015, and January 4, 2016. Data analysis was conducted between January 4, 2015, and December 31, 2016. Exposures Genetic elevation of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Main Outcomes and Measures The association between genetic risk scores of lipid-associated SNPs and AAA risk, as well as the association between SNPs in lipid drug targets (HMGCR, CETP, and PCSK9) and AAA risk. Results Up to 4914 cases and 48 002 controls were included in our analysis. A 1-SD genetic elevation of LDL-C was associated with increased AAA risk (odds ratio [OR], 1.66; 95% CI, 1.41-1.96; P = 1.1 × 10-9). For HDL-C, a 1-SD increase was associated with reduced AAA risk (OR, 0.67; 95% CI, 0.55-0.82; P = 8.3 × 10-5), whereas a 1-SD increase in triglycerides was associated with increased AAA risk (OR, 1.69; 95% CI, 1.38-2.07; P = 5.2 × 10-7). In multivariable MR analysis and both MR-Egger and weighted median MR methods, the association of each lipid fraction with AAA risk remained largely unchanged. The LDL-C-reducing allele of rs12916 in HMGCR was associated with AAA risk (OR, 0.93; 95% CI, 0.89-0.98; P = .009). The HDL-C-raising allele of rs3764261 in CETP was associated with lower AAA risk (OR, 0.89; 95% CI, 0.85-0.94; P = 3.7 × 10-7). Finally, the LDL-C-lowering allele of rs11206510 in PCSK9 was weakly associated with a lower AAA risk (OR, 0.94; 95% CI, 0.88-1.00; P = .04), but a second independent LDL-C-lowering variant in PCSK9 (rs2479409) was not associated with AAA risk (OR, 0.97; 95% CI, 0.92-1.02; P = .28). Conclusions and Relevance The MR analyses in this study lend support to the hypothesis that lipids play an important role in the etiology of AAA. Analyses of individual genetic variants used as proxies for drug targets support LDL-C lowering as a potential effective treatment strategy for preventing and managing AAA.
Collapse
Affiliation(s)
- Seamus C. Harrison
- Cambridge Vascular Unit, Addenbrookes Hospital, Cambridge, England
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, England
| | - Michael V. Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, England
| | - Stephen Burgess
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, England
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, England
| | - Folkert W. Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Medical Genetics, Centre for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, England
| | - Gregory T. Jones
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - Annette F. Baas
- Department of Medical Genetics, Centre for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. N. van ’t Hof
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul I. W. de Bakker
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Medical Genetics, Centre for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Janet T. Powell
- Vascular Surgery Research Group, Imperial College Charing Cross Hospital, London, England
| | - Athanasios Saratzis
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit and Department of Cardiovascular Sciences, University of Leicester, Leicester, England
| | - Gert J. de Borst
- Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel I. Swerdlow
- Institute of Cardiovascular Science, University College London, London, England
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England
| | - Yolanda van der Graaf
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andre M. van Rij
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - David J. Carey
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
| | - James R. Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, Pennsylvania
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Helena Kuivaniemi
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robert D. Sayers
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit and Department of Cardiovascular Sciences, University of Leicester, Leicester, England
| | - Nilesh J. Samani
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit and Department of Cardiovascular Sciences, University of Leicester, Leicester, England
| | - Matthew J. Bown
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit and Department of Cardiovascular Sciences, University of Leicester, Leicester, England
| | - Steve E. Humphries
- Department of Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, England
| |
Collapse
|
37
|
Elevated Plasma Levels of LDL Cholesterol Promote Dissecting Thoracic Aortic Aneurysms in Angiotensin II-Induced Mice. Ann Vasc Surg 2017; 48:204-213. [PMID: 29197606 DOI: 10.1016/j.avsg.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Plasma low-density lipoprotein (LDL) cholesterol is implicated in abdominal aorta (AA) and aortic dissection (AD); however, its role in the pathogenesis of AA and AD, a disease with a high mortality rate, is unknown. The existing animal models such as apolipoprotein E-deficient (Apoe-/-) mice cannot reproduce all the conditions of AA/AD, including elevated LDL-cholesterol levels and spontaneous atheroma formation; therefore, a more reliable in vivo model is required. Here, we analyzed angiotensin II (Ang II)-induced mice with combined deficiency of the LDL receptor and the catalytic component of the apolipoprotein B-edisome complex (Ldlr-/-/Apobec1-/- [WKO]) to understand AA formation and AD occurrence in relation to plasma lipid composition. METHODS AAs and ADs were created in 18- to 22- week-old male Apoe-/- and Ldlr-/-/Apobec1-/- mice by Ang II infusion. Immunostaining allowed assessment of smooth muscle cells and mural monocytes/macrophages. RESULTS Ldlr-/-/Apobec1-/- mice had elevated LDL-cholesterol levels characteristic for human type IIa hyperlipidemia, resulting in atherogenesis, which promoted mortality, AA formation, and AD development. Interestingly, variations in the distribution of atheromas and inflammatory sites between Apoe-/- and Ldlr-/-/Apobec1-/- mice depending on lipid profiles resulted in differences in AA formation and AD occurrence in the thoracic aorta. CONCLUSIONS Our results indicate the presence of a pathogenic pathway involving serum lipid composition that plays a key role in AA formation and AD occurrence in Ang II-induced mice.
Collapse
|
38
|
Zhao G, Fu Y, Cai Z, Yu F, Gong Z, Dai R, Hu Y, Zeng L, Xu Q, Kong W. Unspliced XBP1 Confers VSMC Homeostasis and Prevents Aortic Aneurysm Formation via FoxO4 Interaction. Circ Res 2017; 121:1331-1345. [PMID: 29089350 DOI: 10.1161/circresaha.117.311450] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Although not fully understood, the phenotypic transition of vascular smooth muscle cells exhibits at the early onset of the pathology of aortic aneurysms. Exploring the key regulators that are responsible for maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs) may confer vascular homeostasis and prevent aneurysmal disease. XBP1 (X-box binding protein 1), which exists in a transcriptionally inactive unspliced form (XBP1u) and a spliced active form (XBP1s), is a key component in response to endoplasmic reticular stress. Compared with XBP1s, little is known about the role of XBP1u in vascular homeostasis and disease. OBJECTIVE We aim to investigate the role of XBP1u in VSMC phenotypic switching and the pathogenesis of aortic aneurysms. METHODS AND RESULTS XBP1u, but not XBP1s, was markedly repressed in the aorta during the early onset of aortic aneurysm in both angiotensin II-infused apolipoprotein E knockout (ApoE-/-) and CaPO4 (calcium phosphate)-induced C57BL/6J murine models, in parallel with a decrease in smooth muscle cell contractile apparatus proteins. In vivo studies revealed that XBP1 deficiency in smooth muscle cells caused VSMC dedifferentiation, enhanced vascular inflammation and proteolytic activity, and significantly aggravated both thoracic and abdominal aortic aneurysms in mice. XBP1 deficiency, but not an inhibition of XBP1 splicing, induced VSMC switching from the contractile phenotype to a proinflammatory and proteolytic phenotype. Mechanically, in the cytoplasm, XBP1u directly associated with the N terminus of FoxO4 (Forkhead box protein O 4), a recognized repressor of VSMC differentiation via the interaction and inhibition of myocardin. Blocking the XBP1u-FoxO4 interaction facilitated nuclear translocation of FoxO4, repressed smooth muscle cell marker genes expression, promoted proinflammatory and proteolytic phenotypic transitioning in vitro, and stimulated aortic aneurysm formation in vivo. CONCLUSIONS Our study revealed the pivotal role of the XBP1u-FoxO4-myocardin axis in maintaining the VSMC contractile phenotype and providing protection from aortic aneurysm formation.
Collapse
Affiliation(s)
- Guizhen Zhao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Yi Fu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Zeyu Cai
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Fang Yu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Ze Gong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Rongbo Dai
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Yanhua Hu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Lingfang Zeng
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Qingbo Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.)
| | - Wei Kong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (G.Z., Y.F., Z.C., F.Y., Z.G., R.D., W.K.); and BHF Centre, School of Cardiovascular Medicine & Science, King's College London, United Kingdom (Y.H., L.Z., Q.X.).
| |
Collapse
|
39
|
Ye Z, Austin E, Schaid DJ, Bailey KR, Pellikka PA, Kullo IJ. ADAB2IPgenotype: sex interaction is associated with abdominal aortic aneurysm expansion. J Investig Med 2017; 65:1077-1082. [DOI: 10.1136/jim-2016-000404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 02/06/2023]
Abstract
A faster expansion rate of abdominal aortic aneurysm (AAA) increases the risk of rupture. Women are at higher risk of rupture than men, but the mechanisms underlying this increased risk are unknown. We investigated whether genetic variants that influence susceptibility for AAA (CDKN2A-2B,SORT1,DAB2IP,LRP1andLDLR) are associated with AAA expansion and whether these associations differ by sex in 650 patients with AAA (mean age 70±8 years, 17% women) enrolled in the Mayo Clinic Vascular Disease Biorepository. Women had a mean aneurysm expansion 0.41 mm/year greater than men after adjustment for baseline AAA size. In addition to baseline size, mean arterial pressure (MAP), non-diabetic status,SORT1-rs599839[G] andDAB2IP-rs7025486[A] were associated with greater aneurysm expansion (all p<0.05). The associations of MAP and rs599839[G] were similar in both sexes, while the associations of baseline size, pulse pressure (PP) and rs7025486[A] were stronger in women than men (all p-sexinteraction≤0.02). A three-way interaction of PP*sex* rs7025486[A] was noted in a full-factorial analysis (p=0.007) independent of baseline size and MAP. In the high PP group (≥median), women had a mean growth rate 0.68 mm/year greater per [A] of rs7025486 than men (p-sexinteraction=0.003), whereas there was no difference in the low PP group (p-sexinteraction=0.8). We demonstrate that variantsDAB2IP-rs7025486[A] andSORT1-rs599839[G] are associated with AAA expansion. The association of rs7025486[A] is stronger in women than men and amplified by high PP, contributing to sex differences in aneurysm expansion.
Collapse
|
40
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int J Mol Med 2017; 39:1091-1100. [PMID: 28339009 PMCID: PMC5403497 DOI: 10.3892/ijmm.2017.2927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
We performed an exome-wide association study (EWAS) to identify genetic variants - in particular, low‑frequency or rare variants with a moderate to large effect size - that confer susceptibility to aortic aneurysm with 8,782 Japanese subjects (456 patients with aortic aneurysm, 8,326 control individuals) and with the use of Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The correlation of allele frequencies for 41,432 single nucleotide polymorphisms (SNPs) that passed quality control to aortic aneurysm was examined with Fisher's exact test. Based on Bonferroni's correction, a P-value of <1.21x10-6 was considered statistically significant. The EWAS revealed 59 SNPs that were significantly associated with aortic aneurysm. None of these SNPs was significantly (P<2.12x10-4) associated with aortic aneurysm by multivariable logistic regression analysis with adjustment for age, gender and hypertension, although 8 SNPs were related (P<0.05) to this condition. Examination of the correlation of these latter 8 SNPs to true or dissecting aortic aneurysm separately showed that rs1465567 [T/C (W229R)] of the EGF-like, fibronectin type III, and laminin G domains gene (EGFLAM) (dominant model; P=0.0014; odds ratio, 1.63) was significantly (P<0.0016) associated with true aortic aneurysm. We next performed EWASs for true or dissecting aortic aneurysm separately and found that 45 and 19 SNPs were significantly associated with these conditions, respectively. Multivariable logistic regression analysis with adjustment for covariates revealed that rs113710653 [C/T (E231K)] of the spermatogenesis- and centriole associated 1-like gene (SPATC1L) (dominant model; P=0.0002; odds ratio, 5.32) and rs143881017 [C/T (R140H)] of the ribonuclease A family member 13 gene (RNASE13) (dominant model; P=0.0006; odds ratio, 5.77) were significantly (P<2.78x10-4 or P<6.58x10-4, respectively) associated with true or dissecting aortic aneurysm, respectively. EGFLAM and SPATC1L may thus be susceptibility loci for true aortic aneurysm and RNASE13 may be such a locus for dissecting aneurysm in Japanese individuals.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe 511-0428, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
41
|
Toghill BJ, Saratzis A, Bown MJ. Abdominal aortic aneurysm-an independent disease to atherosclerosis? Cardiovasc Pathol 2017; 27:71-75. [PMID: 28189002 DOI: 10.1016/j.carpath.2017.01.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis and abdominal aortic aneurysms (AAAs) are multifactorial and polygenic diseases with known environmental and genetic risk factors that contribute toward disease development. Atherosclerosis represents an important independent risk factor for AAA, as people with AAA often have atherosclerosis. Studies have shown that comorbidity is usually between ~25% and 55%, but it is still not fully known whether this association is causal or a result of common shared risk profiles. Most recent epidemiological, clinical, and biological evidence suggests that the two pathologies are more distinct than traditionally thought. For instance diabetes mellitus, hypercholesterolemia, and obesity are high risk for atherosclerosis development but are not as pronounced in AAA, whereas smoking, gender, and ethnicity are particularly high risk for AAA but less so for atherosclerosis. In addition, genetic and epigenetic studies have identified independent risk loci involved in AAA susceptibility that are not associated with other cardiovascular diseases, and research on important common cardiovascular biomarkers has illustrated discrepancies in those with AAA.
Collapse
Affiliation(s)
- Bradley J Toghill
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK..
| | - Athanasios Saratzis
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK
| | - Matthew J Bown
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Ramadan A, Al-Omran M, Verma S. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Atherosclerosis 2017; 257:288-296. [PMID: 28139205 DOI: 10.1016/j.atherosclerosis.2017.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Azza Ramadan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada.
| |
Collapse
|
43
|
Genetic and Epigenetic Regulation of Aortic Aneurysms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7268521. [PMID: 28116311 PMCID: PMC5237727 DOI: 10.1155/2017/7268521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
Aneurysms are characterized by structural deterioration of the vascular wall leading to progressive dilatation and, potentially, rupture of the aorta. While aortic aneurysms often remain clinically silent, the morbidity and mortality associated with aneurysm expansion and rupture are considerable. Over 13,000 deaths annually in the United States are attributable to aortic aneurysm rupture with less than 1 in 3 persons with aortic aneurysm rupture surviving to surgical intervention. Environmental and epidemiologic risk factors including smoking, male gender, hypertension, older age, dyslipidemia, atherosclerosis, and family history are highly associated with abdominal aortic aneurysms, while heritable genetic mutations are commonly associated with aneurysms of the thoracic aorta. Similar to other forms of cardiovascular disease, family history, genetic variation, and heritable mutations modify the risk of aortic aneurysm formation and provide mechanistic insight into the pathogenesis of human aortic aneurysms. This review will examine the relationship between heritable genetic and epigenetic influences on thoracic and abdominal aortic aneurysm formation and rupture.
Collapse
|
44
|
Fairoozy RH, White J, Palmen J, Kalea AZ, Humphries SE. Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD. PLoS One 2016; 11:e0167676. [PMID: 27973560 PMCID: PMC5156384 DOI: 10.1371/journal.pone.0167676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Low-Density Lipoprotein Receptor (LDLR) SNP rs6511720 (G>T), located in intron-1 of the gene, has been identified in genome-wide association studies (GWAS) as being associated with lower plasma levels of LDL-C and a lower risk of coronary heart disease (CHD). Whether or not rs6511720 is itself functional or a marker for a functional variant elsewhere in the gene is not known. Methods The association of LDLR SNP rs6511720 with incidence of CHD and levels of LDL-C was determined by reference to CARDIoGRAM, C4D and Global lipids genetics consortium (GLGC) data. SNP annotation databases were used to identify possible SNP function and prioritization. Luciferase reporter assays in the liver cell line Huh7 were used to measure the effect of variant genotype on gene expression. Electrophoretic Mobility Shift Assays (EMSAs) were used to identify the Transcription Factors (TFs) involved in gene expression regulation. Results The phenotype-genotype analysis showed that the rs6511720 minor allele is associated with lower level of LDL-C [beta = -0.2209, p = 3.85 x10-262], and lower risk of CHD [log (OR) = 0.1155, p = 1.04 x10-7]. Rs6511720 is in complete linkage. Rs6511720 is in complete linkage disequilibrium (LD) with three intron-1 SNPs (rs141787760, rs60173709, rs57217136). Luciferase reporter assays in Huh7 cells showed that the rare alleles of both rs6511720 and rs57217136 caused a significant increase in LDLR expression compared to the common alleles (+29% and +24%, respectively). Multiplex Competitor-EMSAs (MC-EMSA) identified that the transcription factor serum response element (SRE) binds to rs6511720, while retinoic acid receptor (RAR) and signal transducer and activator of transcription 1 (STAT1) bind to rs57217136. Conclusion Both LDLR rs6511720 and rs57217136 are functional variants. Both these minor alleles create enhancer-binding protein sites for TFs and may contribute to increased LDLR expression, which is consequently associated with reduced LDL-C levels and 12% lower CHD risk.
Collapse
Affiliation(s)
- Roaa Hani Fairoozy
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
- * E-mail:
| | - Jon White
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, London, United Kingdom
| | - Jutta Palmen
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Anastasia Z. Kalea
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
45
|
Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, Strauss E, Van't Hof FNG, Webb TR, Erdman R, Ritchie MD, Elmore JR, Verma A, Pendergrass S, Kullo IJ, Ye Z, Peissig PL, Gottesman O, Verma SS, Malinowski J, Rasmussen-Torvik LJ, Borthwick KM, Smelser DT, Crosslin DR, de Andrade M, Ryer EJ, McCarty CA, Böttinger EP, Pacheco JA, Crawford DC, Carrell DS, Gerhard GS, Franklin DP, Carey DJ, Phillips VL, Williams MJA, Wei W, Blair R, Hill AA, Vasudevan TM, Lewis DR, Thomson IA, Krysa J, Hill GB, Roake J, Merriman TR, Oszkinis G, Galora S, Saracini C, Abbate R, Pulli R, Pratesi C, Saratzis A, Verissimo AR, Bumpstead S, Badger SA, Clough RE, Cockerill G, Hafez H, Scott DJA, Futers TS, Romaine SPR, Bridge K, Griffin KJ, Bailey MA, Smith A, Thompson MM, van Bockxmeer FM, Matthiasson SE, Thorleifsson G, Thorsteinsdottir U, Blankensteijn JD, Teijink JAW, Wijmenga C, de Graaf J, Kiemeney LA, Lindholt JS, Hughes A, Bradley DT, Stirrups K, Golledge J, Norman PE, Powell JT, Humphries SE, Hamby SE, Goodall AH, Nelson CP, Sakalihasan N, Courtois A, Ferrell RE, Eriksson P, Folkersen L, Franco-Cereceda A, Eicher JD, Johnson AD, Betsholtz C, Ruusalepp A, Franzén O, Schadt EE, Björkegren JLM, et alJones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, Strauss E, Van't Hof FNG, Webb TR, Erdman R, Ritchie MD, Elmore JR, Verma A, Pendergrass S, Kullo IJ, Ye Z, Peissig PL, Gottesman O, Verma SS, Malinowski J, Rasmussen-Torvik LJ, Borthwick KM, Smelser DT, Crosslin DR, de Andrade M, Ryer EJ, McCarty CA, Böttinger EP, Pacheco JA, Crawford DC, Carrell DS, Gerhard GS, Franklin DP, Carey DJ, Phillips VL, Williams MJA, Wei W, Blair R, Hill AA, Vasudevan TM, Lewis DR, Thomson IA, Krysa J, Hill GB, Roake J, Merriman TR, Oszkinis G, Galora S, Saracini C, Abbate R, Pulli R, Pratesi C, Saratzis A, Verissimo AR, Bumpstead S, Badger SA, Clough RE, Cockerill G, Hafez H, Scott DJA, Futers TS, Romaine SPR, Bridge K, Griffin KJ, Bailey MA, Smith A, Thompson MM, van Bockxmeer FM, Matthiasson SE, Thorleifsson G, Thorsteinsdottir U, Blankensteijn JD, Teijink JAW, Wijmenga C, de Graaf J, Kiemeney LA, Lindholt JS, Hughes A, Bradley DT, Stirrups K, Golledge J, Norman PE, Powell JT, Humphries SE, Hamby SE, Goodall AH, Nelson CP, Sakalihasan N, Courtois A, Ferrell RE, Eriksson P, Folkersen L, Franco-Cereceda A, Eicher JD, Johnson AD, Betsholtz C, Ruusalepp A, Franzén O, Schadt EE, Björkegren JLM, Lipovich L, Drolet AM, Verhoeven EL, Zeebregts CJ, Geelkerken RH, van Sambeek MR, van Sterkenburg SM, de Vries JP, Stefansson K, Thompson JR, de Bakker PIW, Deloukas P, Sayers RD, Harrison SC, van Rij AM, Samani NJ, Bown MJ. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ Res 2016; 120:341-353. [PMID: 27899403 PMCID: PMC5253231 DOI: 10.1161/circresaha.116.308765] [Show More Authors] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/28/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies. Methods and Results: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease.
Collapse
Affiliation(s)
| | - Gerard Tromp
- For the author affiliations, please see the Appendix
| | | | | | | | - Betti Giusti
- For the author affiliations, please see the Appendix
| | - Ewa Strauss
- For the author affiliations, please see the Appendix
| | | | - Thomas R Webb
- For the author affiliations, please see the Appendix
| | - Robert Erdman
- For the author affiliations, please see the Appendix
| | | | | | - Anurag Verma
- For the author affiliations, please see the Appendix
| | | | | | - Zi Ye
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | | | - Evan J Ryer
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | - David J Carey
- For the author affiliations, please see the Appendix
| | | | | | - Wenhua Wei
- For the author affiliations, please see the Appendix
| | - Ross Blair
- For the author affiliations, please see the Appendix
| | - Andrew A Hill
- For the author affiliations, please see the Appendix
| | | | - David R Lewis
- For the author affiliations, please see the Appendix
| | - Ian A Thomson
- For the author affiliations, please see the Appendix
| | - Jo Krysa
- For the author affiliations, please see the Appendix
| | | | - Justin Roake
- For the author affiliations, please see the Appendix
| | | | | | - Silvia Galora
- For the author affiliations, please see the Appendix
| | | | | | | | - Carlo Pratesi
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | - Hany Hafez
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | - Marc A Bailey
- For the author affiliations, please see the Appendix
| | - Alberto Smith
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | | | | | | | - Anne Hughes
- For the author affiliations, please see the Appendix
| | | | | | | | - Paul E Norman
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | - Per Eriksson
- For the author affiliations, please see the Appendix
| | | | | | - John D Eicher
- For the author affiliations, please see the Appendix
| | | | | | | | - Oscar Franzén
- For the author affiliations, please see the Appendix
| | - Eric E Schadt
- For the author affiliations, please see the Appendix
| | | | | | - Anne M Drolet
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. RECENT FINDINGS An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. SUMMARY Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.
Collapse
|
47
|
van 't Hof FNG, Ruigrok YM, Lee CH, Ripke S, Anderson G, de Andrade M, Baas AF, Blankensteijn JD, Böttinger EP, Bown MJ, Broderick J, Bijlenga P, Carrell DS, Crawford DC, Crosslin DR, Ebeling C, Eriksson JG, Fornage M, Foroud T, von Und Zu Fraunberg M, Friedrich CM, Gaál EI, Gottesman O, Guo DC, Harrison SC, Hernesniemi J, Hofman A, Inoue I, Jääskeläinen JE, Jones GT, Kiemeney LALM, Kivisaari R, Ko N, Koskinen S, Kubo M, Kullo IJ, Kuivaniemi H, Kurki MI, Laakso A, Lai D, Leal SM, Lehto H, LeMaire SA, Low SK, Malinowski J, McCarty CA, Milewicz DM, Mosley TH, Nakamura Y, Nakaoka H, Niemelä M, Pacheco J, Peissig PL, Pera J, Rasmussen-Torvik L, Ritchie MD, Rivadeneira F, van Rij AM, Santos-Cortez RLP, Saratzis A, Slowik A, Takahashi A, Tromp G, Uitterlinden AG, Verma SS, Vermeulen SH, Wang GT, Han B, Rinkel GJE, de Bakker PIW. Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms. J Am Heart Assoc 2016; 5:e002603. [PMID: 27418160 PMCID: PMC5015357 DOI: 10.1161/jaha.115.002603] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. METHODS AND RESULTS We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium-score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10(-5)) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10(-3)). CONCLUSIONS Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication.
Collapse
Affiliation(s)
- Femke N G van 't Hof
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ynte M Ruigrok
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cue Hyunkyu Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences Asan Medical Center, Seoul, Korea Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Graig Anderson
- The George Institute for International Health, University of Sydney, Australia
| | | | - Annette F Baas
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan D Blankensteijn
- Department of Vascular Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Erwin P Böttinger
- Icahn School of Medicine Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY
| | - Matthew J Bown
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, United Kingdom
| | - Joseph Broderick
- Department of Neurology, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Philippe Bijlenga
- Hôpitaux Universitaire de Genève et Faculté de médecine de Genève, Geneva, Switzerland
| | | | - Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | - David R Crosslin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Christian Ebeling
- Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen, Sankt Augustin, Germany
| | - Johan G Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland Folkhälsan Research Center, Helsinki, Finland Department of General Practice and Primary Health Care, and Helsinki University Hospital, University of Helsinki, Finland
| | - Myriam Fornage
- Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Christoph M Friedrich
- Department of Computer Science, University of Applied Science and Arts, Dortmund, Germany
| | - Emília I Gaál
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Omri Gottesman
- Icahn School of Medicine Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY
| | - Dong-Chuan Guo
- Department of Internal Medicine, The University of Texas Medical School at Houston, TX
| | - Seamus C Harrison
- Department of Cardiovascular Science, University of Leicester, United Kingdom
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | | | - Gregory T Jones
- Surgery Department, University of Otago, Dunedin, New Zealand
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Nerissa Ko
- Department of Neurology, University of California, San Francisco, CA
| | - Seppo Koskinen
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, Helsinki, Finland
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | | | - Helena Kuivaniemi
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA Department of Surgery, Temple University School of Medicine, Philadelphia, PA Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mitja I Kurki
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA Medical and Population Genetics Program, Broad Institute, Boston, MA
| | - Aki Laakso
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Suzanne M Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Hanna Lehto
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Scott A LeMaire
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine and the Texas Heart Institute, Houston, TX
| | - Siew-Kee Low
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Jennifer Malinowski
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN Department of Surgery, Yale School of Medicine, New Haven, CT
| | | | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Medical School at Houston, TX
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Yusuke Nakamura
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, IL
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Jennifer Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peggy L Peissig
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI
| | - Joanna Pera
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - Laura Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marylyn D Ritchie
- Center for Systems Genomics, The Pennsylvania State University, Pennsylvania, PA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre M van Rij
- Surgery Department, University of Otago, Dunedin, New Zealand
| | | | - Athanasios Saratzis
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, United Kingdom
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | | | - Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shefali S Verma
- Center for Systems Genomics, The Pennsylvania State University, Pennsylvania, PA
| | - Sita H Vermeulen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Gao T Wang
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Buhm Han
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences Asan Medical Center, Seoul, Korea
| | - Gabriël J E Rinkel
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Vapnik JS, Kim JB, Isselbacher EM, Ghoshhajra BB, Cheng Y, Sundt TM, MacGillivray TE, Cambria RP, Lindsay ME. Characteristics and Outcomes of Ascending Versus Descending Thoracic Aortic Aneurysms. Am J Cardiol 2016; 117:1683-1690. [PMID: 27015890 DOI: 10.1016/j.amjcard.2016.02.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022]
Abstract
Thoracic aortic aneurysms (TAs) occur in reproducible patterns, but etiologic factors determining the anatomic distribution of these aneurysms are not well understood. This study sought to gain insight into etiologic differences and clinical outcomes associated with repetitive anatomic distributions of TAs. From 3,247 patients registered in an institutional Thoracic Aortic Center database from July 1992 to August 2013, we identified 844 patients with full aortic dimensional imaging by computerized axial tomography or magnetic resonance imaging scan (mean age 62.8 ± 14 years, 37% women, median follow-up 40 months) with TA diameter >4.0 cm and without evidence of previous aortic dissection. Patient demographic and imaging data were analyzed in 3 groups: isolated ascending thoracic aortic aneurysms (AAs; n = 628), isolated descending TAs (DTAs; n = 130), and combined AA and DTA (mixed thoracic aortic aneurysm, MTA; n = 86). Patients with DTA had more hypertension (82% vs 59%, p <0.001) and a higher burden of atherosclerosis (88% vs 9%, p <0.001) than AA. Conversely, patients with isolated AA were younger (59.5 ± 13.5 vs 71.0 ± 11.8 years, p <0.001) and contained almost every case of overt, genetically triggered TA. Patients with isolated DTA were demographically indistinguishable from patients with MTA. In follow-up, patients with DTA/MTA experienced more aortic events (aortic dissection/rupture) and had higher mortality than patients with isolated AA. In multivariate analysis, aneurysm size (odds ratio 1.1, 95% CI 1.07 to 1.16, p <0.001) and the presence of atherosclerosis (odds ratio 5.7, 95% CI 2.02 to 16.15, p <0.001) independently predicted adverse aortic events. We find that DTA with or without associated AA appears to be a disease more highly associated with atherosclerosis, hypertension, and advanced age. In contrast, isolated AA appears to be a clinically distinct entity with a greater burden of genetically triggered disease.
Collapse
Affiliation(s)
- Joshua S Vapnik
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiology, Harvard Medical School, Boston, Massachusetts
| | - Joon Bum Kim
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts; Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eric M Isselbacher
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiology, Harvard Medical School, Boston, Massachusetts
| | | | - Yisha Cheng
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiology, Harvard Medical School, Boston, Massachusetts
| | - Thoralf M Sundt
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts
| | - Thomas E MacGillivray
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts
| | - Richard P Cambria
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, Massachusetts
| | - Mark E Lindsay
- Massachusetts General Hospital Thoracic Aortic Center, Harvard Medical School, Boston, Massachusetts; Division of Cardiology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2016; 13:975-87. [PMID: 26308600 DOI: 10.1586/14779072.2015.1074861] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An aortic aneurysm is a dilatation in which the aortic diameter is ≥3.0 cm. If left untreated, the aortic wall continues to weaken and becomes unable to withstand the forces of the luminal blood pressure resulting in progressive dilatation and rupture, a catastrophic event associated with a mortality of 50-80%. Smoking and positive family history are important risk factors for the development of abdominal aortic aneurysms (AAA). Several genetic risk factors have also been identified. On the histological level, visible hallmarks of AAA pathogenesis include inflammation, smooth muscle cell apoptosis, extracellular matrix degradation and oxidative stress. We expect that large genetic, genomic, epigenetic, proteomic and metabolomic studies will be undertaken by international consortia to identify additional risk factors and biomarkers, and to enhance our understanding of the pathobiology of AAA. Collaboration between different research groups will be important in overcoming the challenges to develop pharmacological treatments for AAA.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- a 1 Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
50
|
Ye Z, Austin E, Schaid DJ, Kullo IJ. A multi-locus genetic risk score for abdominal aortic aneurysm. Atherosclerosis 2016; 246:274-9. [PMID: 26820802 DOI: 10.1016/j.atherosclerosis.2015.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND We investigated whether a multi-locus genetic risk scores (GRS) was associated with presence and progression of abdominal aortic aneurysm (AAA) in a case - control study. METHODS AND RESULTS The study comprised of 1124 patients with AAA (74 ± 8 years, 83% men, 52% of them with a maximal AAA size ≤ 5 cm) and 6524 non-cases (67 ± 11 years, 58% men) from the Mayo Vascular Disease Biorepository. AAA was defined as infrarenal abdominal aorta diameter ≥ 3.0 cm or history of AAA repair. Non-cases were participants without known AAA. A GRS was calculated using 4 SNPs associated with AAA at genome-wide significance (P ≤ 10(-8)). The GRS was associated with the presence of AAA after adjustment for age, sex, cardiovascular risk factors, atherosclerotic cardiovascular diseases and family history of aortic aneurysm: odds ratio (OR, 95% confidence interval, CI) 1.06 (1.04-1.09, p < 0.001). Adding GRS to conventional risk factors improved the association of presence of AAA (net reclassification index 14%, p < 0.001). In a subset of patients with AAA who had ≥ 2 imaging studies (n = 651, mean (SE) growth rate 2.47 (0.11) mm/year during a mean time interval of 5.41 years), GRS, baseline size, diabetes and family history were each associated with aneurysm growth rate in univariate association (all p < 0.05). The estimated mean aneurysm growth rate was 0.50 mm/year higher in those with GRS > median (5.78) than those with GRS ≤ median (p = 0.01), after adjustment for baseline size (p < 0.001), diabetes (p = 0.046) and family history of aortic aneurysm (p = 0.02). CONCLUSIONS A multi-locus GRS was associated with presence of AAA and greater aneurysm expansion.
Collapse
Affiliation(s)
- Zi Ye
- Division of Cardiovascular Diseases and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Erin Austin
- Division of Cardiovascular Diseases and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA; Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Schaid
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Division of Cardiovascular Diseases and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|