1
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
UMEZAWA M, AOKI T, NIIMI S, TAKANO H, MAMADA K, FUJII Y. A pilot study investigating serum carnitine profile of cats with preclinical hypertrophic cardiomyopathy. J Vet Med Sci 2025; 87:75-79. [PMID: 39567015 PMCID: PMC11735214 DOI: 10.1292/jvms.24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
This study aimed to prospectively investigate the hypothesis that myocardial energy metabolism changes in the early stages of feline hypertrophic cardiomyopathy (HCM) by evaluating the blood carnitine profiles. Fourteen client owned cats with HCM stage B1 and 22 clinically healthy cats were included in this study. Total-carnitine, free-carnitine, acylcarnitine, and acylcarnitine/free-carnitine ratio (AF ratio) in serum were measured in both groups. No significant differences were observed in total-carnitine, free-carnitine, and acylcarnitine concentrations between the groups. However, the AF ratio in the HCM group was significantly lower than that of the control group (P=0.02). The lower serum AF ratio in cats with early-stage HCM, may suggest an alteration in their myocardial energy metabolism.
Collapse
Affiliation(s)
- Mutsuki UMEZAWA
- Laboratory of Small Animal Surgery, Azabu University, Kanagawa, Japan
| | - Takuma AOKI
- Laboratory of Small Animal Surgery, Azabu University, Kanagawa, Japan
| | - Seiya NIIMI
- Laboratory of Small Animal Surgery, Azabu University, Kanagawa, Japan
| | | | - Kazuya MAMADA
- Veterinary Specialists Emergency Center, Saitama, Japan
| | - Yoko FUJII
- Laboratory of Small Animal Surgery, Azabu University, Kanagawa, Japan
| |
Collapse
|
3
|
Torang A, Kirov AB, Lammers V, Cameron K, Wouters VM, Jackstadt RF, Lannagan TRM, de Jong JH, Koster J, Sansom O, Medema JP. Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability. Nat Commun 2025; 16:264. [PMID: 39747069 PMCID: PMC11696116 DOI: 10.1038/s41467-024-55574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed. Upon in vitro Cre-recombinase activation, transformation is established and transcriptional profiling reveals that distinct CMSs (CMS2-4) are modeled with different organoids. CMS3-like, metabolic signature-positive, organoids are induced by KRAS mutations. Interestingly, metabolic signatures are subsequently shown to result from enterocyte-like differentiation both in organoids and human cancers. Further analysis reveals carbamoyl-phosphate synthase 1 (CPS1) and sucrase-isomaltase (SI) as signature proteins. More importantly, CPS1 is crucial for de novo pyrimidine synthesis in CMS3 and its inhibition targets proliferation and stemness, facilitating enterocyte-like differentiation, while CMS2 and CMS4 models are not affected. Our data point to an enterocyte-like differentiation of CMS3 CRCs and reveal a selective vulnerability of this subtype through CPS1 inhibition.
Collapse
Affiliation(s)
- Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Aleksandar B Kirov
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Veerle Lammers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Kate Cameron
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Rene F Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Heidelberg, Germany Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Joan H de Jong
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Owen Sansom
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Tahir UA, Kolm P, Kwong RY, Desai MY, Dolman SF, Deng S, Appelbaum E, Desvigne-Nickens P, DiMarco JP, Tiwari G, Friedrich MG, Zelaya-Portillo JH, Jerosch-Herold M, Kim DY, Maron MS, Piechnik SK, Schulz-Menger J, Watkins H, Weintraub WS, Neubauer S, Kramer CM, Jarolim P, Gerszten RE, Ho CY. Protein Biomarkers of Adverse Clinical Features and Events in Sarcomeric Hypertrophic Cardiomyopathy. Circ Heart Fail 2024; 17:e011707. [PMID: 39498543 DOI: 10.1161/circheartfailure.124.011707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a heterogeneous condition that can lead to atrial fibrillation, heart failure, and sudden cardiac death in many individuals but mild clinical impact in others. The mechanisms underlying this phenotypic heterogeneity are not well defined. The aim of this study was to use plasma proteomic profiling to help illuminate biomarkers that reflect or inform the heterogeneity observed in HCM. METHODS The Olink antibody-based proteomic platform was used to measure plasma proteins in patients with genotype positive (sarcomeric) HCM participating in the HCM Registry. We assessed associations between plasma protein levels with clinical features, cardiac magnetic resonance imaging metrics, and the development of atrial fibrillation. RESULTS We measured 275 proteins in 701 patients with sarcomeric HCM. There were associations between late gadolinium enhancement with proteins reflecting neurohormonal activation (NT-proBNP [N-terminal pro-B-type natriuretic peptide] and ACE2 [angiotensin-converting enzyme 2]). Metrics of left ventricular remodeling had novel associations with proteins involved in vascular development and homeostasis (vascular endothelial growth factor-D and TM [thrombomodulin]). Assessing clinical features, the European Society of Cardiology sudden cardiac death risk score was inversely associated with SCF (stem cell factor). Incident atrial fibrillation was associated with mediators of inflammation and fibrosis (MMP2 [matrix metalloproteinase 2] and SPON1 [spondin 1]). CONCLUSIONS Proteomic profiling of sarcomeric HCM identified biomarkers associated with adverse imaging and clinical phenotypes. These circulating proteins are part of both established pathways, including neurohormonal activation and fibrosis, and less familiar pathways, including endothelial function and inflammatory proteins less well characterized in HCM. These findings highlight the value of plasma profiling to identify biomarkers of risk and to gain further insights into the pathophysiology of HCM.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Paul Kolm
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Raymond Y Kwong
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Milind Y Desai
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.Y.D)
| | - Sarahfaye F Dolman
- MedStar Heart and Vascular Institute, Washington, DC (S.F.D., J.H.Z.-P., W.S.W.)
| | - Shuliang Deng
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Evan Appelbaum
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | | | - John P DiMarco
- Cardiovascular Division, University of Virginia Health System, Charlottesville (J.P.D., C.M.K.)
| | - Gaurav Tiwari
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | | | | | - Michael Jerosch-Herold
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Dong-Yun Kim
- National Heart, Lung, and Blood Institute, Bethesda, MD (P.D.-N., D.-Y.K.)
| | - Martin S Maron
- Lahey Hospital and Medical Center, Burlington, MA (M.S.M.)
| | - Stefan K Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Jeanette Schulz-Menger
- Charité Experimental Clinical Research Center and Helios Clinics Berlin-Buch, Germany (J.S.-M.)
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - William S Weintraub
- MedStar Heart and Vascular Institute, Washington, DC (S.F.D., J.H.Z.-P., W.S.W.)
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Christopher M Kramer
- Cardiovascular Division, University of Virginia Health System, Charlottesville (J.P.D., C.M.K.)
| | - Petr Jarolim
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Robert E Gerszten
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Carolyn Y Ho
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| |
Collapse
|
5
|
Wang Y, Chatterjee E, Li G, Xu J, Xiao J. Force-sensing protein expression in response to cardiovascular mechanotransduction. EBioMedicine 2024; 110:105412. [PMID: 39481337 PMCID: PMC11554632 DOI: 10.1016/j.ebiom.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Force-sensing biophysical cues in microenvironment, including extracellular matrix performances, stretch-mediated mechanics, shear stress and flow-induced hemodynamics, have a significant influence in regulating vascular morphogenesis and cardiac remodeling by mechanotransduction. Once cells perceive these extracellular mechanical stimuli, Piezo activation promotes calcium influx by forming integrin-adhesion-coupling receptors. This induces robust contractility of cytoskeleton structures to further transmit biomechanical alternations into nuclei by regulating Hippo-Yes associated protein (YAP) signaling pathway between cytoplasmic and nuclear translocation. Although biomechanical stimuli are widely studied in cardiovascular diseases, the expression of force-sensing proteins in response to cardiovascular mechanotransduction has not been systematically concluded. Therefore, this review will summarize the force-sensing Piezo, cytoskeleton and YAP proteins to mediate extracellular mechanics, and also give the prominent emphasis on intrinsic connection of these mechanical proteins and cardiovascular mechanotransduction. Extensive insights into cardiovascular mechanics may provide some new strategies for cardiovascular clinical therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai 200135, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Lumish HS, Sherrid MV, Janssen PML, Ferrari G, Hasegawa K, Castillero E, Adlestein E, Swistel DG, Topkara VK, Maurer MS, Reilly MP, Shimada YJ. Comprehensive Proteomic Profiling of Human Myocardium Reveals Signaling Pathways Dysregulated in Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2024; 84:1999-2011. [PMID: 39365226 PMCID: PMC11817648 DOI: 10.1016/j.jacc.2024.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Signaling pathways that link genetic sequence variants to clinically overt HCM and progression to severe forms of HCM remain unknown. OBJECTIVES The purpose of this study was to identify signaling pathways that are differentially regulated in HCM, using proteomic profiling of human myocardium, confirmed with transcriptomic profiling. METHODS In this multicenter case-control study, myocardial samples were obtained from cases with HCM and control subjects with nonfailing hearts. Proteomic profiling of 7,289 proteins from myocardial samples was performed using the SomaScan assay (SomaLogic). Pathway analysis of differentially expressed proteins was performed, using a false discovery rate <0.05. Pathway analysis of proteins whose concentrations correlated with clinical indicators of severe HCM (eg, reduced left ventricular ejection fraction, atrial fibrillation, and ventricular tachyarrhythmias) was also executed. Confirmatory analysis of differentially expressed genes was performed using myocardial transcriptomic profiling. RESULTS The study included 99 HCM cases and 15 control subjects. Pathway analysis of differentially expressed proteins revealed dysregulation of the Ras-mitogen-activated protein kinase, ubiquitin-mediated proteolysis, angiogenesis-related (eg, hypoxia-inducible factor-1, vascular endothelial growth factor), and Hippo pathways. Pathways known to be dysregulated in HCM, including metabolic, inflammatory, and extracellular matrix pathways, were also dysregulated. Pathway analysis of proteins associated with clinical indicators of severe HCM and of differentially expressed genes supported these findings. CONCLUSIONS The present study represents the most comprehensive (>7,000 proteins) and largest-scale (n = 99 HCM cases) proteomic profiling of human HCM myocardium to date. Proteomic profiling and confirmatory transcriptomic profiling elucidate dysregulation of both newly recognized (eg, Ras-mitogen-activated protein kinase) and known pathways associated with pathogenesis and progression to severe forms of HCM.
Collapse
Affiliation(s)
- Heidi S Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Mark V Sherrid
- Leon Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Ferrari
- Division of Cardiothoracic and Vascular Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Estibaliz Castillero
- Division of Cardiothoracic and Vascular Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Elizabeth Adlestein
- Leon Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | - Daniel G Swistel
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, New York, USA
| | - Veli K Topkara
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA; Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
7
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
8
|
Pietsch N, Chen CY, Kupsch S, Bacmeister L, Geertz B, Herrera-Rivero M, Siebels B, Voß H, Krämer E, Braren I, Westermann D, Schlüter H, Mearini G, Schlossarek S, van der Velden J, Caporizzo MA, Lindner D, Prosser BL, Carrier L. Chronic Activation of Tubulin Tyrosination Improves Heart Function. Circ Res 2024; 135:910-932. [PMID: 39279670 PMCID: PMC11465905 DOI: 10.1161/circresaha.124.324387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (Mybpc3 knock-in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs). METHODS Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes. RESULTS We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs. CONCLUSIONS This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.
Collapse
Affiliation(s)
- Niels Pietsch
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Christina Y. Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (C.Y.C.)
| | - Svenja Kupsch
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (S.K.)
| | - Lucas Bacmeister
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (M.H.-R.)
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Germany (M.H.-R.)
| | - Bente Siebels
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, Department of Experimental Pharmacology and Toxicology (I.B.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands (J.v.d.V.)
| | - Matthew A. Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT (M.A.C.)
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| |
Collapse
|
9
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
10
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
11
|
Jacob S, Abuarja T, Shaath R, Hasan W, Balayya S, Abdelrahman D, Almana K, Afreen H, Hani A, Nomikos M, Fakhro K, Elrayess MA, Da'as SI. Deciphering metabolomics and lipidomics landscape in zebrafish hypertrophic cardiomyopathy model. Sci Rep 2024; 14:21902. [PMID: 39300306 DOI: 10.1038/s41598-024-72863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
To elucidate the lipidomic and metabolomic alterations associated with hypertrophic cardiomyopathy (HCM) pathogenesis, we utilized cmybpc3-/- zebrafish model. Fatty acid profiling revealed variability of 10 fatty acids profiles, with heterozygous (HT) and homozygous (HM) groups exhibiting distinct patterns. Hierarchical cluster analysis and multivariate analyses demonstrated a clear separation of HM from HT and control (CO) groups related to cardiac remodeling. Lipidomic profiling identified 257 annotated lipids, with two significantly dysregulated between CO and HT, and 59 between HM and CO. Acylcarnitines and phosphatidylcholines were identified as key contributors to group differentiation, suggesting a shift in energy source. Untargeted metabolomics revealed 110 and 53 significantly dysregulated metabolites. Pathway enrichment analysis highlighted perturbations in multiple metabolic pathways in the HM group, including nicotinate, nicotinamide, purine, glyoxylate, dicarboxylate, glycerophospholipid, pyrimidine, and amino acid metabolism. Our study provides comprehensive insights into the lipidomic and metabolomic unique signatures associated with cmybpc3-/- induced HCM in zebrafish. The identified biomarkers and dysregulated pathways shed light on the metabolic perturbations underlying HCM pathology, offering potential targets for further investigation and potential new therapeutic interventions.
Collapse
Affiliation(s)
- Shana Jacob
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Tala Abuarja
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Rulan Shaath
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Waseem Hasan
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | | | - Khalid Almana
- Department of Biochemistry, Swansea University, SA1 8EN, Swansea, UK
| | - Hajira Afreen
- Department of Biological Sciences, Qatar University, Doha, 2713, Qatar
| | - Ahmad Hani
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Khalid Fakhro
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
- Weill Cornell Medical College, Doha, 24144, Qatar
| | - Mohamed A Elrayess
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Sahar Isa Da'as
- Research Department, Sidra Medicine, Doha, 26999, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar.
| |
Collapse
|
12
|
Dai H, Liu Y, Zhu M, Tao S, Hu C, Luo P, Jiang A, Zhang G. Machine learning and experimental validation of novel biomarkers for hypertrophic cardiomyopathy and cancers. J Cell Mol Med 2024; 28:e70034. [PMID: 39160643 PMCID: PMC11333198 DOI: 10.1111/jcmm.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a hereditary cardiac disorder marked by anomalous thickening of the myocardium, representing a significant contributor to mortality. While the involvement of immune inflammation in the development of cardiac ailments is well-documented, its specific impact on HCM pathogenesis remains uncertain. Five distinct machine learning algorithms, namely LASSO, SVM, RF, Boruta and XGBoost, were utilized to discover new biomarkers associated with HCM. A unique nomogram was developed using two newly identified biomarkers and subsequently validated. Furthermore, samples of HCM and normal heart tissues were gathered from our institution to confirm the variance in expression levels and prognostic significance of GATM and MGST1. Five novel biomarkers (DARS2, GATM, MGST1, SDSL and ARG2) associated with HCM were identified. Subsequent validation revealed that GATM and MGST1 exhibited significant diagnostic utility for HCM in both the training and test cohorts, with all AUC values exceeding 0.8. Furthermore, a novel risk assessment model for HCM patients based on the expression levels of GATM and MGST1 demonstrated favourable performance in both the training (AUC = 0.88) and test cohorts (AUC = 0.9). Furthermore, our study revealed that GATM and MGST1 exhibited elevated expression levels in HCM tissues, demonstrating strong discriminatory ability between HCM and normal cardiac tissues (AUC of GATM = 0.79; MGST1 = 0.86). Our findings suggest that two specific cell types, monocytes and multipotent progenitors (MPP), may play crucial roles in the pathogenesis of HCM. Notably, GATM and MGST1 were found to be highly expressed in various tumours and showed significant prognostic implications. Functionally, GATM and MGST1 are likely involved in xenobiotic metabolism and epithelial mesenchymal transition in a wide range of cancer types. GATM and MGST1 have been identified as novel biomarkers implicated in the progression of both HCM and cancer. Additionally, monocytes and MPP may also play a role in facilitating the progression of HCM.
Collapse
Affiliation(s)
- Hualei Dai
- Cardiovascular CenterThe Affiliated Hospital of Yunnan University, Yunnan UniversityKunmingYunnanChina
- School of MedicineYunnan UniversityKunmingYunnanChina
| | - Ying Liu
- Department of GynecologyYunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Meng Zhu
- Department of GeriatricsThe Affiliated Huaian Hospital of Xuzhou Medical University, Huaian Second People's HospitalHuaianJiangsuChina
| | - Siming Tao
- Cardiovascular CenterThe Affiliated Hospital of Yunnan University, Yunnan UniversityKunmingYunnanChina
| | - Chengcheng Hu
- Cardiovascular CenterThe Affiliated Hospital of Yunnan University, Yunnan UniversityKunmingYunnanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Aimin Jiang
- Department of UrologyChangzheng Hospital, Naval Medical UniversityShanghaiChina
| | - Guimin Zhang
- Cardiovascular CenterThe Affiliated Hospital of Yunnan University, Yunnan UniversityKunmingYunnanChina
- School of MedicineYunnan UniversityKunmingYunnanChina
| |
Collapse
|
13
|
Eaton DM, Lee BW, Caporizzo MA, Iyengar A, Chen CY, Uchida K, Marcellin G, Lannay Y, Vite A, Bedi KC, Brady CF, Smolyak JN, Meldrum D, Dominic J, Weingarten N, Patel M, Belec A, Hached K, Atluri P, Van Der Laan S, Prosser BL, Margulies KB. Vasohibin inhibition improves myocardial relaxation in a rat model of heart failure with preserved ejection fraction. Sci Transl Med 2024; 16:eadm8842. [PMID: 39018366 DOI: 10.1126/scitranslmed.adm8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo. Compared with ZSF1 lean and Wistar Kyoto rats, obese rats exhibited increased tubulin detyrosination concomitant with diastolic dysfunction, left atrial enlargement, and cardiac hypertrophy with a preserved left ventricle ejection fraction, consistent with an HFpEF phenotype. Ex vivo myocardial phenotyping assessed cardiomyocyte mechanics and contractility. Vasohibin inhibitor treatment of isolated cardiomyocytes from obese rats resulted in reduced stiffness and faster relaxation. Acute in vivo treatment with vasohibin inhibitor improved diastolic relaxation in ZSF1 obese rats compared with ZSF1 lean and Wistar Kyoto rats. Vasohibin inhibition also improved relaxation in isolated human cardiomyocytes from both failing and nonfailing hearts. Our data suggest the therapeutic potential for vasohibin inhibition to reduce myocardial stiffness and improve relaxation in HFpEF.
Collapse
Affiliation(s)
- Deborah M Eaton
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin W Lee
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew A Caporizzo
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Molecular Physiology and Biophysics, University of Vermont's Larner College of Medicine, Burlington, VT 05405, USA
| | - Amit Iyengar
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Y Chen
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keita Uchida
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Alexia Vite
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire F Brady
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia N Smolyak
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danika Meldrum
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Dominic
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Weingarten
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mrinal Patel
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Belec
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pavan Atluri
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Benjamin L Prosser
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. PLoS One 2024; 19:e0293105. [PMID: 38889130 PMCID: PMC11185490 DOI: 10.1371/journal.pone.0293105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K. Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
15
|
Nollet EE, Schuldt M, Sequeira V, Binek A, Pham TV, Schoonvelde SA, Jansen M, Schomakers BV, van Weeghel M, Vaz FM, Houtkooper RH, Van Eyk JE, Jimenez CR, Michels M, Bedi KC, Margulies KB, dos Remedios CG, Kuster DW, van der Velden J. Integrating Clinical Phenotype With Multiomics Analyses of Human Cardiac Tissue Unveils Divergent Metabolic Remodeling in Genotype-Positive and Genotype-Negative Patients With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004369. [PMID: 38853772 PMCID: PMC11188634 DOI: 10.1161/circgen.123.004369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups. METHODS We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling. RESULTS HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients. CONCLUSIONS We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.
Collapse
Affiliation(s)
- Edgar E. Nollet
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Maike Schuldt
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsches Zentrum für Herzinsuffizienz, Würzburg, Germany (V.S.)
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute (A.B., J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Thang V. Pham
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory (T.V.P., C.R.J.), Amsterdam UMC, the Netherlands
| | | | - Mark Jansen
- Division of Genetics and Department of Cardiology, UMC Utrecht, the Netherlands (M.J.)
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Fred M. Vaz
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Emma Center for Personalized Medicine (R.H.H.), Amsterdam UMC, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, the Netherlands (R.H.H.)
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute (A.B., J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Smidt Heart Institute (J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Connie R. Jimenez
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory (T.V.P., C.R.J.), Amsterdam UMC, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands (S.A.C.S., M.M.)
| | - Kenneth C. Bedi
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA (K.C.B., K.B.M.)
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA (K.C.B., K.B.M.)
| | - Cristobal G. dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, NSW, Australia (C.G.d.R.)
| | - Diederik W.D. Kuster
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Jolanda van der Velden
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| |
Collapse
|
16
|
Nasilli G, de Waal TM, Marchal GA, Bertoli G, Veldkamp MW, Rothenberg E, Casini S, Remme CA. Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes. Cardiovasc Res 2024; 120:723-734. [PMID: 38395031 PMCID: PMC11135645 DOI: 10.1093/cvr/cvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Tanja M de Waal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Giorgia Bertoli
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Marieke W Veldkamp
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU Grossman School of Medicine, 450 E 29TH ST Alexandria Center for Life Science, New York, NY 10016, USA
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Federspiel JM, Reil JC, Xu A, Scholtz S, Batzner A, Maack C, Sequeira V. Retrofitting the Heart: Explaining the Enigmatic Septal Thickening in Hypertrophic Cardiomyopathy. Circ Heart Fail 2024; 17:e011435. [PMID: 38695186 DOI: 10.1161/circheartfailure.123.011435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024]
Abstract
Hypertrophic cardiomyopathy is the most common genetic cardiac disease and is characterized by left ventricular hypertrophy. Although this hypertrophy often associates with sarcomeric gene mutations, nongenetic factors also contribute to the disease, leading to diastolic dysfunction. Notably, this dysfunction manifests before hypertrophy and is linked to hypercontractility, as well as nonuniform contraction and relaxation (myofibril asynchrony) of the myocardium. Although the distribution of hypertrophy in hypertrophic cardiomyopathy can vary both between and within individuals, in most cases, it is primarily confined to the interventricular septum. The reasons for septal thickening remain largely unknown. In this article, we propose that alterations in muscle fiber geometry, present from birth, dictate the septal shape. When combined with hypercontractility and exacerbated by left ventricular outflow tract obstruction, these factors predispose the septum to an isometric type of contraction during systole, consequently constraining its mobility. This contraction, or more accurately, this focal increase in biomechanical stress, prompts the septum to adapt and undergo remodeling. Drawing a parallel, this is reminiscent of how earthquake-resistant buildings are retrofitted with vibration dampers to absorb the majority of the shock motion and load. Similarly, the heart adapts by synthesizing viscoelastic elements such as microtubules, titin, desmin, collagen, and intercalated disc components. This pronounced remodeling in the cytoskeletal structure leads to noticeable septal hypertrophy. This structural adaptation acts as a protective measure against damage by attenuating myofibril shortening while reducing cavity tension according to Laplace Law. By examining these events, we provide a coherent explanation for the septum's predisposition toward hypertrophy.
Collapse
Affiliation(s)
- Jan M Federspiel
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
- Saarland University, Faculty of Medicine, Institute for Legal Medicine, Homburg (Saar), Germany (J.M.F.)
| | - Jan-Christian Reil
- Klinik für allgemeine und interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R., S.S.)
| | - Anton Xu
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| | - Smita Scholtz
- Klinik für allgemeine und interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R., S.S.)
| | - Angelika Batzner
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
- Department of Internal Medicine I, University Hospital Würzburg, Germany (A.B.)
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| | - Vasco Sequeira
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| |
Collapse
|
18
|
Arts T, Lyon A, Delhaas T, Kuster DWD, van der Velden J, Lumens J. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model. J Mol Cell Cardiol 2024; 190:13-23. [PMID: 38462126 DOI: 10.1016/j.yjmcc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.
Collapse
Affiliation(s)
- Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands.
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| |
Collapse
|
19
|
Jones TLM, Woulfe KC. Considering impact of age and sex on cardiac cytoskeletal components. Am J Physiol Heart Circ Physiol 2024; 326:H470-H478. [PMID: 38133622 PMCID: PMC11219061 DOI: 10.1152/ajpheart.00619.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The cardiac cytoskeletal components are integral to cardiomyocyte function and are responsible for contraction, sustaining cell structure, and providing scaffolding to direct signaling. Cytoskeletal components have been implicated in cardiac pathology; however, less attention has been paid to age-related modifications of cardiac cytoskeletal components and how these contribute to dysfunction with increased age. Moreover, significant sex differences in cardiac aging have been identified, but we still lack a complete understanding to the mechanisms behind these differences. This review summarizes what is known about how key cardiomyocyte cytoskeletal components are modified because of age, as well as reported sex-specific differences. Thorough consideration of both age and sex as integral players in cytoskeletal function may reveal potential avenues for more personalized therapeutics.
Collapse
Affiliation(s)
- Timothy L M Jones
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
20
|
Payne FM, Nie S, Diffee GM, Wilkins GT, Larsen DS, Harrison JC, Baldi JC, Sammut IA. The carbon monoxide prodrug oCOm-21 increases Ca 2+ sensitivity of the cardiac myofilament. Physiol Rep 2024; 12:e15974. [PMID: 38491822 PMCID: PMC10943376 DOI: 10.14814/phy2.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.
Collapse
Affiliation(s)
- Fergus M. Payne
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Samantha Nie
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Gary M. Diffee
- Department of KinesiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Gerard T. Wilkins
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - David S. Larsen
- School of Science, Department of ChemistryUniversity of OtagoDunedinOtagoNew Zealand
| | - Joanne C. Harrison
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - James C. Baldi
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Ivan A. Sammut
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
21
|
Hancock EN, Palmer BM, Caporizzo MA. Microtubule destabilization with colchicine increases the work output of myocardial slices. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 7:100066. [PMID: 38584975 PMCID: PMC10997380 DOI: 10.1016/j.jmccpl.2024.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cardiac microtubules have recently been implicated in mechanical dysfunction during heart failure. However, systemic intolerance and non-cardiac effects of microtubule-depolymerizing compounds have made it challenging to determine the effect of microtubules on myocardial performance. Herein, we leverage recent advancements in living myocardial slices to develop a stable working preparation that recapitulates the complexity of diastole by including early and late phases of diastolic filling. To determine the effect of cardiac microtubule depolymerization on diastolic performance, myocardial slices were perfused with oxygenated media to maintain constant isometric twitch forces for more than 90 min. Force-length work loops were collected before and after 90 min of treatment with either DMSO (vehicle) or colchicine (microtubule depolymerizer). A trapezoidal stretch was added prior to the beginning of ventricular systole to mimic late-stage-diastolic filling driven by atrial systole. Force-length work loops were obtained at fixed preload and afterload, and tissue velocity was obtained during diastole as an analog to trans-mitral Doppler. In isometric twitches, microtubule destabilization accelerated force development, relaxation kinetics, and decreased end diastolic stiffness. In work loops, microtubule destabilization increased stroke length, myocardial output, accelerated isometric contraction and relaxation, and increased the amplitude of early filling. Taken together, these results indicate that the microtubule destabilizer colchicine can improve diastolic performance by accelerating isovolumic relaxation and early filling leading to increase in myocardial work output.
Collapse
Affiliation(s)
- Emmaleigh N. Hancock
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew A. Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
22
|
Pietsch N, Chen CY, Kupsch S, Bacmeister L, Geertz B, Herera-Rivero M, Voß H, Krämer E, Braren I, Westermann D, Schlüter H, Mearini G, Schlossarek S, van der Velden J, Caporizzo MA, Lindner D, Prosser BL, Carrier L. Chronic activation of tubulin tyrosination in HCM mice and human iPSC-engineered heart tissues improves heart function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542365. [PMID: 37292763 PMCID: PMC10245930 DOI: 10.1101/2023.05.25.542365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationale: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment. Objective: In this study, we tested the impact of chronic tubulin tyrosination in a HCM mouse model ( Mybpc3 -knock-in; KI), in human HCM cardiomyocytes and in SVBP-deficient human engineered heart tissues (EHTs). Methods and Results: AAV9-mediated TTL transfer was applied in neonatal wild-type (WT) rodents and 3-week-old KI mice and in HCM human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We show that i) TTL for 6 weeks dose-dependently reduced dTyr-tub and improved contractility without affecting cytosolic calcium transients in WT cardiomyocytes; ii) TTL for 12 weeks improved diastolic filling, cardiac output and stroke volume and reduced stiffness in KI mice; iii) TTL for 10 days normalized cell hypertrophy in HCM hiPSC-cardiomyocytes; iv) TTL induced a marked transcription and translation of several tubulins and modulated mRNA or protein levels of components of mitochondria, Z-disc, ribosome, intercalated disc, lysosome and cytoskeleton in KI mice; v) SVBP-deficient EHTs exhibited reduced dTyr-tub levels, higher force and faster relaxation than TTL-deficient and WT EHTs. RNA-seq and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-KO vs. TTL-KO EHTs. Conclusion: This study provides the first proof-of-concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the non-sarcomeric cytoskeleton in heart disease.
Collapse
|
23
|
Chiang DY, Verkerk AO, Victorio R, Shneyer BI, van der Vaart B, Jouni M, Narendran N, Kc A, Sampognaro JR, Vetrano-Olsen F, Oh JS, Buys E, de Jonge B, Shah DA, Kiviniemi T, Burridge PW, Bezzina CR, Akhmanova A, MacRae CA. The Role of MAPRE2 and Microtubules in Maintaining Normal Ventricular Conduction. Circ Res 2024; 134:46-59. [PMID: 38095085 PMCID: PMC11889334 DOI: 10.1161/circresaha.123.323231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rachelle Victorio
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris I. Shneyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nakul Narendran
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashmita Kc
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James R. Sampognaro
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franki Vetrano-Olsen
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John S. Oh
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Buys
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Berend de Jonge
- Department of Medical Biology, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Disheet A. Shah
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Calum A. MacRae
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Hilderink S, Schuldt M, Goebel M, Jansen VJ, Manders E, Moorman S, Dorsch LM, van Steenbeek FG, van der Velden J, Kuster DWD. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3 c.2373InsG in the Netherlands. J Mol Cell Cardiol 2023; 185:65-76. [PMID: 37844837 DOI: 10.1016/j.yjmcc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and β-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.
Collapse
Affiliation(s)
- Sarah Hilderink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Valentijn J Jansen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Emmy Manders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Stan Moorman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Fujiwara Y, Miki K, Deguchi K, Naka Y, Sasaki M, Sakoda A, Narita M, Imaichi S, Sugo T, Funakoshi S, Nishimoto T, Imahashi K, Yoshida Y. ERRγ agonist under mechanical stretching manifests hypertrophic cardiomyopathy phenotypes of engineered cardiac tissue through maturation. Stem Cell Reports 2023; 18:2108-2122. [PMID: 37802074 PMCID: PMC10679535 DOI: 10.1016/j.stemcr.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Engineered cardiac tissue (ECT) using human induced pluripotent stem cell-derived cardiomyocytes is a promising tool for modeling heart disease. However, tissue immaturity makes robust disease modeling difficult. Here, we established a method for modeling hypertrophic cardiomyopathy (HCM) malignant (MYH7 R719Q) and nonmalignant (MYBPC3 G115∗) pathogenic sarcomere gene mutations by accelerating ECT maturation using an ERRγ agonist, T112, and mechanical stretching. ECTs treated with T112 under 10% elongation stimulation exhibited more organized and mature characteristics. Whereas matured ECTs with the MYH7 R719Q mutation showed broad HCM phenotypes, including hypertrophy, hypercontraction, diastolic dysfunction, myofibril misalignment, fibrotic change, and glycolytic activation, matured MYBPC3 G115∗ ECTs displayed limited phenotypes, which were primarily observed only under our new maturation protocol (i.e., hypertrophy). Altogether, ERRγ activation combined with mechanical stimulation enhanced ECT maturation, leading to a more accurate manifestation of HCM phenotypes, including non-cardiomyocyte activation, consistent with clinical observations.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Kenji Miki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Center for Organ Engineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Kohei Deguchi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Naka
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Masako Sasaki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Ayaka Sakoda
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Megumi Narita
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan
| | - Sachiko Imaichi
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Shunsuke Funakoshi
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | | | - Kenichi Imahashi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan.
| |
Collapse
|
26
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23296746. [PMID: 37905026 PMCID: PMC10615000 DOI: 10.1101/2023.10.16.23296746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps on chromosome 2, at the locus 1q31, close to the Titin (TTN) gene, which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in human failing heart tissue (HF) as compared to in non-failing heart tissues (NF). Moreover, using the Sanger sequencing method, we characterized the human OLA1 gene and screened genetic mutations in patients with heart-failing and non-failing. Among failing and non-failing heart patients, we found a total of 15 mutations, including two transversions, one substitution, one indel, and eleven transition mutations in the OLA1 gene. All the mutations were intronic except for a non-synonymous mutation, 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen for the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results show that this test can be used as a genetic screening tool for human cardiomyopathy. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
27
|
García-Quintáns N, Sacristán S, Márquez-López C, Sánchez-Ramos C, Martinez-de-Benito F, Siniscalco D, González-Guerra A, Camafeita E, Roche-Molina M, Lytvyn M, Morera D, Guillen MI, Sanguino MA, Sanz-Rosa D, Martín-Pérez D, Garcia R, Bernal JA. MYH10 activation rescues contractile defects in arrhythmogenic cardiomyopathy (ACM). Nat Commun 2023; 14:6461. [PMID: 37833253 PMCID: PMC10575922 DOI: 10.1038/s41467-023-41981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Fernando Martinez-de-Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Siniscalco
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | | | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Morera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María I Guillen
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Sanguino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
28
|
Wang XQ, Yuan F, Yu BR. Whole-Exome Sequencing Reveals Mutational Signature of Hypertrophic Cardiomyopathy. Int J Gen Med 2023; 16:4617-4628. [PMID: 37850193 PMCID: PMC10577257 DOI: 10.2147/ijgm.s422598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an extremely insidious and lethal disease caused by genetic variation. It has been studied for nearly 70 years since its discovery, but its cause of the disease remains a mystery. This study is aimed to explore the genetic pathogenesis of HCM in order to provide new insight for the diagnosis and treatment of HCM. Methods Patients with HCM at 4 hospitals from January 1, 2020, to December 31, 2021, were collected. Peripheral blood of these patients was collected for whole exome sequencing. Moreover, data on the HCM transcriptome were analyzed in the GEO database. Results Totally, 14 patients were enrolled, and 6 single-nucleotide variation (SNV) mutant genes represented by MUC12 were observed. Most of the gene mutations in HCM patients were synonymous and non-synonymous, and the types of base mutations were mainly C > T and G > A. Copy number variants (CNVs) predominantly occurred on chromosome 1 in HCM patients. Furthermore, we found that the only ATP2A2 gene was differentially expressed in 3 groups of transcriptome data in GEO database, and the presence of ATP2A2 mutation in 10 samples was observed in this study. Conclusion In summary, 7 mutated genes represented by MUC12 and ATP2A2 were found in this study, which may provide novel insights into the pathogenic mechanism of HCM.
Collapse
Affiliation(s)
- Xi-Qin Wang
- Department of Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Fang Yuan
- Department of Cardiovascular Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450000, People’s Republic of China
| | - Bao-Rui Yu
- Department of Cardiovascular Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450000, People’s Republic of China
| |
Collapse
|
29
|
Algül S, Dorsch LM, Sorop O, Vink A, Michels M, Dos Remedios CG, Dalinghaus M, Merkus D, Duncker DJ, Kuster DWD, van der Velden J. The microtubule signature in cardiac disease: etiology, disease stage, and age dependency. J Comp Physiol B 2023; 193:581-595. [PMID: 37644284 PMCID: PMC10533615 DOI: 10.1007/s00360-023-01509-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC32373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2-0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models.
Collapse
Affiliation(s)
- Sıla Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Michelle Michels
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cristobal G Dos Remedios
- Mechanobiology Laboratory at Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Nicot S, Gillard G, Impheng H, Joachimiak E, Urbach S, Mochizuki K, Wloga D, Juge F, Rogowski K. A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. SCIENCE ADVANCES 2023; 9:eadi7838. [PMID: 37703372 PMCID: PMC10499314 DOI: 10.1126/sciadv.adi7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies βI-tubulin by removing three amino acids from its C terminus, generating previously unknown βI∆3 modification. We show that βI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and β-tubulin C-terminal tails and deglutamylation.
Collapse
Affiliation(s)
- Simon Nicot
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Ghislain Gillard
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical science, Naresuan University, Phitsanulok 65000, Thailand
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Kazufumi Mochizuki
- Epigenetic Chromatin Regulation team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - François Juge
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Krzysztof Rogowski
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| |
Collapse
|
31
|
Garmany R, Bos JM, Dasari S, Johnson KL, Tester DJ, Giudicessi JR, Dos Remedios C, Maleszewski JJ, Ommen SR, Dearani JA, Ackerman MJ. Proteomic and phosphoproteomic analyses of myectomy tissue reveals difference between sarcomeric and genotype-negative hypertrophic cardiomyopathy. Sci Rep 2023; 13:14341. [PMID: 37658118 PMCID: PMC10474105 DOI: 10.1038/s41598-023-40795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically heterogenous condition with about half of cases remaining genetically elusive or non-genetic in origin. HCM patients with a positive genetic test (HCMSarc) present earlier and with more severe disease than those with a negative genetic test (HCMNeg). We hypothesized these differences may be due to and/or reflect proteomic and phosphoproteomic differences between the two groups. TMT-labeled mass spectrometry was performed on 15 HCMSarc, 8 HCMNeg, and 7 control samples. There were 243 proteins differentially expressed and 257 proteins differentially phosphorylated between HCMSarc and HCMNeg. About 90% of pathways altered between genotypes were in disease-related pathways and HCMSarc showed enhanced proteomic and phosphoproteomic alterations in these pathways. Thus, we show HCMSarc has enhanced proteomic and phosphoproteomic dysregulation observed which may contribute to the more severe disease phenotype.
Collapse
Affiliation(s)
- Ramin Garmany
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences/Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Cristobal Dos Remedios
- Mechanobiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Joseph J Maleszewski
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Steve R Ommen
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Harriot AD, Altair Morris T, Vanegas C, Kallenbach J, Pinto K, Joca HC, Moutin MJ, Shi G, Ursitti JA, Grosberg A, Ward CW. Detyrosinated microtubule arrays drive myofibrillar malformations in mdx muscle fibers. Front Cell Dev Biol 2023; 11:1209542. [PMID: 37691825 PMCID: PMC10485621 DOI: 10.3389/fcell.2023.1209542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Altered myofibrillar structure is a consequence of dystrophic pathology that impairs skeletal muscle contractile function and increases susceptibility to contraction injury. In murine Duchenne muscular dystrophy (mdx), myofibrillar alterations are abundant in advanced pathology (>4 months), an age where we formerly established densified microtubule (MT) arrays enriched in detyrosinated (deTyr) tubulin as negative disease modifiers impacting cell mechanics and mechanotransduction. Given the essential role of deTyr-enriched MT arrays in myofibrillar growth, maintenance, and repair, we examined the increased abundance of these arrays as a potential mechanism for these myofibrillar alterations. Here we find an increase in deTyr-tubulin as an early event in dystrophic pathology (4 weeks) with no evidence myofibrillar alterations. At 16 weeks, we show deTyr-enriched MT arrays significantly densified and co-localized to areas of myofibrillar malformation. Profiling the enzyme complexes responsible for deTyr-tubulin, we identify vasohibin 2 (VASH2) and small vasohibin binding protein (SVBP) significantly elevated in the mdx muscle at 4 weeks. Using the genetic increase in VASH2/SVBP expression in 4 weeks wild-type mice we find densified deTyr-enriched MT arrays that co-segregate with myofibrillar malformations similar to those in the 16 weeks mdx. Given that no changes in sarcomere organization were identified in fibers expressing sfGFP as a control, we conclude that disease-dependent densification of deTyr-enriched MT arrays underscores the altered myofibrillar structure in dystrophic skeletal muscle fibers.
Collapse
Affiliation(s)
- Anicca D. Harriot
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tessa Altair Morris
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
| | - Camilo Vanegas
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacob Kallenbach
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kaylie Pinto
- Department of Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Humberto C. Joca
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marie-Jo Moutin
- INSERM U1216 Centre National de la Recherche Scientifique, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Guoli Shi
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeanine A. Ursitti
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Grosberg
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
| | - Christopher W. Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Algül S, Schuldt M, Manders E, Jansen V, Schlossarek S, de Goeij-de Haas R, Henneman AA, Piersma SR, Jimenez CR, Michels M, Carrier L, Helmes M, van der Velden J, Kuster DWD. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:387-399. [PMID: 37477020 DOI: 10.1161/circresaha.122.322133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.
Collapse
Affiliation(s)
- Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Emmy Manders
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, the Netherlands (M.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| |
Collapse
|
34
|
Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA, Stătescu C. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:10510. [PMID: 37445689 PMCID: PMC10341819 DOI: 10.3390/ijms241310510] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiomyopathy that follows an autosomal dominant inheritance pattern. The majority of HCM cases can be attributed to mutation of the MYBPC3 gene, which encodes cMyBP-C, a crucial structural protein of the cardiac muscle. The manifestation of HCM's morphological, histological, and clinical symptoms is subject to the complex interplay of various determinants, including genetic mutation and environmental factors. Approximately half of MYBPC3 mutations give rise to truncated protein products, while the remaining mutations cause insertion/deletion, frameshift, or missense mutations of single amino acids. In addition, the onset of HCM may be attributed to disturbances in the protein and transcript quality control systems, namely, the ubiquitin-proteasome system and nonsense-mediated RNA dysfunctions. The aforementioned genetic modifications, which appear to be associated with unfavorable lifelong outcomes and are largely influenced by the type of mutation, exhibit a unique array of clinical manifestations ranging from asymptomatic to arrhythmic syncope and even sudden cardiac death. Although the current understanding of the MYBPC3 mutation does not comprehensively explain the varied phenotypic manifestations witnessed in patients with HCM, patients with pathogenic MYBPC3 mutations can exhibit an array of clinical manifestations ranging from asymptomatic to advanced heart failure and sudden cardiac death, leading to a higher rate of adverse clinical outcomes. This review focuses on MYBPC3 mutation and its characteristics as a prognostic determinant for disease onset and related clinical consequences in HCM.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Alexandra Zăvoi
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Andreea Leonte
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Laura Țăpoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Silviu Gabriel Bîrgoan
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Traian Chiuariu
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Larisa Anghel
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Rodica Radu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| |
Collapse
|
35
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
36
|
Chen J, Chapski DJ, Jong J, Awada J, Wang Y, Slamon DJ, Vondriska TM, Packard RRS. Integrative transcriptomics and cell systems analyses reveal protective pathways controlled by Igfbp-3 in anthracycline-induced cardiotoxicity. FASEB J 2023; 37:e22977. [PMID: 37219486 PMCID: PMC10286824 DOI: 10.1096/fj.202201885rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIβ expression (Top2β) which forms Top2β-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC.
Collapse
Affiliation(s)
- Junjie Chen
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jeremy Jong
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jerome Awada
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Dennis J. Slamon
- Division of Hematology & Oncology, Department of
Medicine, David Geffen School of Medicine, University of California, Los Angeles,
CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
| | - Thomas M. Vondriska
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
| | - René R. Sevag Packard
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA
- Veterans Affairs West Los Angeles Medical Center, Los
Angeles, CA
- California NanoSystems Institute, University of
California, Los Angeles, CA
| |
Collapse
|
37
|
Chen Y, Yao L, Zhao S, Xu M, Ren S, Xie L, Liu L, Wang Y. The oxidative aging model integrated various risk factors in type 2 diabetes mellitus at system level. Front Endocrinol (Lausanne) 2023; 14:1196293. [PMID: 37293508 PMCID: PMC10244788 DOI: 10.3389/fendo.2023.1196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Nollet EE, Duursma I, Rozenbaum A, Eggelbusch M, Wüst RCI, Schoonvelde SAC, Michels M, Jansen M, van der Wel NN, Bedi KC, Margulies KB, Nirschl J, Kuster DWD, van der Velden J. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration. Eur Heart J 2023; 44:1170-1185. [PMID: 36734059 PMCID: PMC10067466 DOI: 10.1093/eurheartj/ehad028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
AIMS Genetic hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein-encoding genes (i.e. genotype-positive HCM). In an increasing number of patients, HCM occurs in the absence of a mutation (i.e. genotype-negative HCM). Mitochondrial dysfunction is thought to be a key driver of pathological remodelling in HCM. Reports of mitochondrial respiratory function and specific disease-modifying treatment options in patients with HCM are scarce. METHODS AND RESULTS Respirometry was performed on septal myectomy tissue from patients with HCM (n = 59) to evaluate oxidative phosphorylation and fatty acid oxidation. Mitochondrial dysfunction was most notably reflected by impaired NADH-linked respiration. In genotype-negative patients, but not genotype-positive patients, NADH-linked respiration was markedly depressed in patients with an indexed septal thickness ≥10 compared with <10. Mitochondrial dysfunction was not explained by reduced abundance or fragmentation of mitochondria, as evaluated by transmission electron microscopy. Rather, improper organization of mitochondria relative to myofibrils (expressed as a percentage of disorganized mitochondria) was strongly associated with mitochondrial dysfunction. Pre-incubation with the cardiolipin-stabilizing drug elamipretide and raising mitochondrial NAD+ levels both boosted NADH-linked respiration. CONCLUSION Mitochondrial dysfunction is explained by cardiomyocyte architecture disruption and is linked to septal hypertrophy in genotype-negative HCM. Despite severe myocardial remodelling mitochondria were responsive to treatments aimed at restoring respiratory function, eliciting the mitochondria as a drug target to prevent and ameliorate cardiac disease in HCM. Mitochondria-targeting therapy may particularly benefit genotype-negative patients with HCM, given the tight link between mitochondrial impairment and septal thickening in this subpopulation.
Collapse
Affiliation(s)
- Edgar E Nollet
- Department of Physiology, Amsterdam UMC, Location VUmc, O2 Science building—11W53, De Boelelaan 1108, 1081HZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam UMC, Location VUmc, O2 Science building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Inez Duursma
- Department of Physiology, Amsterdam UMC, Location VUmc, O2 Science building—11W53, De Boelelaan 1108, 1081HZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam UMC, Location VUmc, O2 Science building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Anastasiya Rozenbaum
- Department of Physiology, Amsterdam UMC, Location VUmc, O2 Science building—11W53, De Boelelaan 1108, 1081HZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam UMC, Location VUmc, O2 Science building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Moritz Eggelbusch
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Nutrition and Dietetics, Amsterdam UMC, Amsterdam, The Netherlands
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Jansen
- Division of Genetics, UMC Utrecht, Utrecht, The Netherlands
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeff Nirschl
- Department of Pathology, Stanford University, Stanford, USA
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Location VUmc, O2 Science building—11W53, De Boelelaan 1108, 1081HZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam UMC, Location VUmc, O2 Science building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Gaar-Humphreys KR, van den Brink A, Wekking M, Asselbergs FW, van Steenbeek FG, Harakalova M, Pei J. Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies. Front Cardiovasc Med 2023; 10:1114459. [PMID: 36760574 PMCID: PMC9907444 DOI: 10.3389/fcvm.2023.1114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Karen R. Gaar-Humphreys
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alyssa van den Brink
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Wekking
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Frank G. van Steenbeek
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
40
|
A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology. Commun Biol 2023; 6:4. [PMID: 36596888 PMCID: PMC9810744 DOI: 10.1038/s42003-022-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/04/2023] Open
Abstract
Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young's Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key 'linker' sites in this schema that may represent potential therapeutic targets.
Collapse
|
41
|
Ramirez-Rios S, Choi SR, Sanyal C, Blum TB, Bosc C, Krichen F, Denarier E, Soleilhac JM, Blot B, Janke C, Stoppin-Mellet V, Magiera MM, Arnal I, Steinmetz MO, Moutin MJ. VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules. J Cell Biol 2022; 222:213744. [PMID: 36512346 PMCID: PMC9750192 DOI: 10.1083/jcb.202205096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Sung Ryul Choi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Thorsten B. Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Fatma Krichen
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Jean-Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Carsten Janke
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Virginie Stoppin-Mellet
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Maria M. Magiera
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland,Biozentrum, University of Basel, Basel, Switzerland
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France,Correspondence to Marie-Jo Moutin:
| |
Collapse
|
42
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
43
|
Schulz L, Werner S, Böttner J, Adams V, Lurz P, Besler C, Thiele H, Büttner P. Tubulin expression and modification in heart failure with preserved ejection fraction (HFpEF). Sci Rep 2022; 12:15734. [PMID: 36131110 PMCID: PMC9492725 DOI: 10.1038/s41598-022-19766-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF) is characterised by increased left ventricular stiffness and impaired active relaxation. Underpinning pathomechanisms are incompletely understood. Cardiac hypertrophy and end stage heart disease are associated with alterations in the cardiac microtubule (MT) network. Increased amounts and modifications of α-tubulin associate with myocardial stiffness. MT alterations in HFpEF have not been analysed yet. Using ZSF1 obese rats (O-ZSF1), a validated HFpEF model, we characterised MT-modifying enzymes, quantity and tyrosination/detyrosination pattern of α-tubulin at 20 and 32 weeks of age. In the left ventricle of O-ZSF1, α-tubulin concentration (20 weeks: 1.5-fold, p = 0.019; 32 weeks: 1.7-fold, p = 0.042) and detyrosination levels (20 weeks: 1.4-fold, p = 0.013; 32 weeks: 1.3-fold, p = 0.074) were increased compared to lean ZSF1 rats. Tyrosination/α-tubulin ratio was lower in O-ZSF1 (20 weeks: 0.8-fold, p = 0.020; 32 weeks: 0.7-fold, p = 0.052). Expression of α-tubulin modifying enzymes was comparable. These results reveal new alterations in the left ventricle in HFpEF that are detectable during early (20 weeks) and late (32 weeks) progression. We suppose that these alterations contribute to diastolic dysfunction in HFpEF and that reestablishment of MT homeostasis might represent a new target for pharmacological interventions.
Collapse
Affiliation(s)
- Lisa Schulz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Volker Adams
- Department of Cardiology, University Medicine TU Dresden, Dresden, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Christian Besler
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
44
|
McLendon JM, Zhang X, Matasic DS, Kumar M, Koval OM, Grumbach IM, Sadayappan S, London B, Boudreau RL. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc 2022; 11:e025687. [PMID: 35730644 PMCID: PMC9333371 DOI: 10.1161/jaha.122.025687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult‐onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte‐specific knockout mice (Sorbs2‐cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult‐onset cardiomyopathies and in heart failure models. We generated Sorbs2‐cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2‐cKO mice begin to show atrial enlargement and P‐wave anomalies, without dysregulation of action potential–associated ion channel and gap junction protein expressions. After 6 months, Sorbs2‐cKO mice exhibit impaired contractility in dobutamine‐treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2‐cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2‐cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross‐link sites.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Xiaoming Zhang
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Daniel S Matasic
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Department of Molecular Physiology and Biophysics University of Iowa Carver College of Medicine Iowa City IA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Olha M Koval
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Isabella M Grumbach
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Sakthivel Sadayappan
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Barry London
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Ryan L Boudreau
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| |
Collapse
|
45
|
Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol 2022; 19:364-378. [PMID: 35440741 PMCID: PMC9270871 DOI: 10.1038/s41569-022-00692-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Previs MJ, O’Leary TS, Morley MP, Palmer B, LeWinter M, Yob J, Pagani FD, Petucci C, Kim MS, Margulies KB, Arany Z, Kelly DP, Day SM. Defects in the Proteome and Metabolome in Human Hypertrophic Cardiomyopathy. Circ Heart Fail 2022; 15:e009521. [PMID: 35543134 PMCID: PMC9708114 DOI: 10.1161/circheartfailure.121.009521] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Defects in energetics are thought to be central to the pathophysiology of hypertrophic cardiomyopathy (HCM); yet, the determinants of ATP availability are not known. The purpose of this study is to ascertain the nature and extent of metabolic reprogramming in human HCM, and its potential impact on contractile function. METHODS We conducted proteomic and targeted, quantitative metabolomic analyses on heart tissue from patients with HCM and from nonfailing control human hearts. RESULTS In the proteomic analysis, the greatest differences observed in HCM samples compared with controls were increased abundances of extracellular matrix and intermediate filament proteins and decreased abundances of muscle creatine kinase and mitochondrial proteins involved in fatty acid oxidation. These differences in protein abundance were coupled with marked reductions in acyl carnitines, byproducts of fatty acid oxidation, in HCM samples. Conversely, the ketone body 3-hydroxybutyrate, branched chain amino acids, and their breakdown products, were all significantly increased in HCM hearts. ATP content, phosphocreatine, nicotinamide adenine dinucleotide and its phosphate derivatives, NADP and NADPH, and acetyl CoA were also severely reduced in HCM compared with control hearts. Functional assays performed on human skinned myocardial fibers demonstrated that the magnitude of observed reduction in ATP content in the HCM samples would be expected to decrease the rate of cross-bridge detachment. Moreover, left atrial size, an indicator of diastolic compliance, was inversely correlated with ATP content in hearts from patients with HCM. CONCLUSIONS HCM hearts display profound deficits in nucleotide availability with markedly reduced capacity for fatty acid oxidation and increases in ketone bodies and branched chain amino acids. These results have important therapeutic implications for the future design of metabolic modulators to treat HCM.
Collapse
Affiliation(s)
- Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine
| | - Michael P. Morley
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Brad Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine
| | - Martin LeWinter
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine
| | - Jaime Yob
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Francis D. Pagani
- Department of Cardiothoracic Surgery, University of Michigan School of Medicine
| | - Christopher Petucci
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Min-Soo Kim
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Kenneth B. Margulies
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Zoltan Arany
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Daniel P. Kelly
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| | - Sharlene M. Day
- Division of Cardiovascular Medicine and the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
47
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
48
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
49
|
Argirò A, Ho C, Day SM, van der Velden J, Cerbai E, Saberi S, Tardiff JC, Lakdawala NK, Olivotto I. Sex-Related Differences in Genetic Cardiomyopathies. J Am Heart Assoc 2022; 11:e024947. [PMID: 35470690 PMCID: PMC9238595 DOI: 10.1161/jaha.121.024947] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiomyopathies are a heterogeneous collection of diseases that have in common primary functional and structural abnormalities of the heart muscle, often genetically determined. The most effective categorization of cardiomyopathies is based on the presenting phenotype, with hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathy as the prototypes. Sex modulates the prevalence, morpho-functional manifestations and clinical course of cardiomyopathies. Aspects as diverse as ion channel expression and left ventricular remodeling differ in male and female patients with myocardial disease, although the reasons for this are poorly understood. Moreover, clinical differences may also result from complex societal/environmental discrepancies between sexes that may disadvantage women. This review provides a state-of-the-art appraisal of the influence of sex on cardiomyopathies, highlighting the many gaps in knowledge and open research questions.
Collapse
Affiliation(s)
- Alessia Argirò
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
- Division of General CardiologyCareggi University HospitalFlorenceItaly
| | - Carolyn Ho
- Cardiovascular DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA
| | - Sharlene M. Day
- Division of Cardiovascular MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Jolanda van der Velden
- Department of PhysiologyAmsterdam Cardiovascular SciencesAmsterdam University Medical CenterVrije UniversiteitAmsterdamNetherlands
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child HealthUniversity of FlorenceItaly
| | - Sara Saberi
- Division of Cardiovascular MedicineDepartment of Internal MedicineUniversity of MichiganMichigan MedicineAnn ArborMI
| | - Jil C. Tardiff
- Department of Biomedical EngineeringThe University of ArizonaTucsonAZ
| | - Neal K. Lakdawala
- Cardiovascular DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA
| | - Iacopo Olivotto
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
- Division of General CardiologyCareggi University HospitalFlorenceItaly
| |
Collapse
|
50
|
Liu C, Chen Y, Xie Y, Xiang M. Tubulin Post-translational Modifications: Potential Therapeutic Approaches to Heart Failure. Front Cell Dev Biol 2022; 10:872058. [PMID: 35493101 PMCID: PMC9039000 DOI: 10.3389/fcell.2022.872058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, advancing insights into the mechanisms of cardiac dysfunction have focused on the involvement of microtubule network. A variety of tubulin post-translational modifications have been discovered to fine-tune the microtubules’ properties and functions. Given the limits of therapies based on conserved structures of the skeleton, targeting tubulin modifications appears to be a potentially promising therapeutic strategy. Here we review the current understanding of tubulin post-translational modifications in regulating microtubule functions in the cardiac system. We also discussed how altered modifications may lead to a range of cardiac dysfunctions, many of which are linked to heart failure.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwen Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|