1
|
Hsu JC, Huang KC, Lin TT, Lee JK, Su MYM, Juang JMJ, Wu CK, Lin LY. Epicardial Adipose Tissue Is Associated With Geometry Alteration and Diastolic Dysfunction in Prediabetic Cardiomyopathy. J Clin Endocrinol Metab 2025; 110:1478-1487. [PMID: 38864548 DOI: 10.1210/clinem/dgae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Diastolic dysfunction and alterations in cardiac geometry are early indicators of diabetic cardiomyopathy. However, the association between cardiac changes across the glucose continuum and the contribution of epicardial adipose tissue (EAT) to these changes has not yet been investigated. PURPOSE In this study, we aimed to investigate the EAT on cardiac diastolic function and structural alterations along the diabetic continuum using cardiac magnetic resonance imaging (CMRI). METHODS We enrolled individuals who were categorized into groups based on glucose tolerance status. Left ventricular structure and diastolic function were assessed using echocardiography and CMRI to determine the EAT, intramyocardial fat, and associated parameters. Multivariable logistic regression models were also used. RESULTS In a study of 370 patients (209 normal glucose tolerance, 82 prediabetes, 79 diabetes), those with prediabetes and diabetes showed increased heart dimensions and diastolic dysfunction, including the ratio of early mitral inflow velocity to mitral annular early diastolic velocity (7.9 ± 0.51 vs 8.5 ± 0.64 vs 10.0 ± 0.93, P = .010), left atrial volume index (28.21 ± 14.7 vs 33.2 ± 12.8 vs 37.4 ± 8.2 mL/m2, P < .001), and left ventricular peak filling rate (4.46 ± 1.75 vs 3.61 ± 1.55 vs 3.20 ± 1.30 mL/s, P < .001). EAT significantly increased in prediabetes and diabetes (26.3 ± 1.16 vs 31.3 ± 1.83 vs 33.9 ± 1.9 gm, P = .001), while intramyocardial fat did not differ significantly. Prediabetes altered heart geometry but not diastolic function (odds ratio [OR] 1.22 [1.02-1.83], P = .012; and 1.70 [0.79-3.68], P = .135). Diabetes significantly affected both heart structure and diastolic function (OR 1.42 [1.11-1.97], P = .032; and 2.56 [1.03-5.40], P = .034) after adjusting for covariates. CONCLUSION Elevated EAT was observed in patients with prediabetes and is associated with adverse alterations in cardiac structure and diastolic function, potentially serving as an underlying mechanism for the early onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jung-Chi Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Jinshan Branch, New Taipei City 20844, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
| | - Kuan-Chih Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Jen-Kuang Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Mao-Yuan M Su
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jyh-Ming Jimmy Juang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
- Heart Failure Center, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
- Master's Program in Smart Medicine and Health Informatics, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
2
|
Zhu R, Wang W, Gao Y, Wang J, Li B, Cheng Z, Ji C, Gu H, Yuan X, Yang S, Wang X. Insulin resistance aggravates myocardial fibrosis in non-diabetic hypertensive patients by altering the function of epicardial adipose tissue: a cardiac magnetic resonance study. Diabetol Metab Syndr 2025; 17:133. [PMID: 40259313 PMCID: PMC12010519 DOI: 10.1186/s13098-025-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND The effect of insulin resistance (IR) on epicardial adipose tissue (EAT) remains uncertain. This study aimed to investigate how early-stage IR influences EAT, contributing to myocardial fibrosis and left ventricular dysfunction in non-diabetic patients with hypertension. METHODS A total of 166 hypertensive patients who underwent cardiovascular magnetic resonance (CMR) treatment at two medical centers in China from June 2015 to August 2024 were included. Triglyceride-glucose index (TyG) was calculated, cardiac MRI parameters and EAT were measured. Patients were divided into two groups based on the median TyG. Binary logistic regression model, subgroup analysis and causal mediation analysis were used to evaluate the correlation between EAT, TyG and CMR parameters. Thirty healthy volunteers served as the control group. RESULTS The high TyG group exhibited greater EAT volume, higher Native T1, and increased ECV (All P < 0.001) compared to the low TyG group. Additionally, significant differences were observed in GRS (P = 0.025), GLS (P = 0.015), and GCS (P = 0.048). Binary logistic regression analysis indicated that TyG and indexed EAT volume were independently associated with high ECV value (TyG: OR 2.808, p = 0.002;indexed EAT volume: OR 1.038, p = 0.002), with results remaining stable after adjusting for confounding factors. Mediation analysis showed that even after adjusting for confounding factors, EAT continued to play a role in TyG-mediated ECV (indirect effect: 0.8844, [95% CI 0.4539-1.3666]). CONCLUSIONS IR in non-diabetic individuals at an early stage may change the physiological function of EAT and lead to the onset of myocardial fibrosis. Addressing IR early on could potentially improve the physiological function of EAT.
Collapse
Affiliation(s)
- Runze Zhu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Wenxian Wang
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Yan Gao
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Jian Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Bowen Li
- Shandong First Medical University (Shandong Academy Of Medical Sciences), Jinan, 250117, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Zhenyu Cheng
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Congshan Ji
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Hui Gu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Xianshun Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China
| | - Ximing Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Hundemer GL, Agharazii M, Madore F, Piché ME, Gagnon C, Bussières A, St-Jean M, Leung AA, Kline GA, Sood MM, Burger D, Ramsay T, Goupil R. Sex-specific Associations of Aldosterone and Renin With Body Composition: A Population-based Cohort Study. J Clin Endocrinol Metab 2025; 110:801-810. [PMID: 39148442 PMCID: PMC11834704 DOI: 10.1210/clinem/dgae566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
CONTEXT Renin-angiotensin-aldosterone system (RAAS) activation is closely linked to obesity; however, the sex-specific associations between RAAS activity and body composition among individuals without obesity are not well understood. OBJECTIVE To investigate the associations of aldosterone and renin with body composition according to sex in the general population. DESIGN Population-based cohort study. SETTING Québec (Canada). PARTICIPANTS Adults aged 40 to 69 years enrolled in CARTaGENE between 2009 and 2010 (N = 3687). EXPOSURES Plasma aldosterone and renin concentrations. MAIN OUTCOME MEASURES Body composition assessed via anthropometrics (waist circumference and waist-to-hip ratio), bioelectrical impedance (lean body mass, fat mass, and muscle mass), and cardiac magnetic resonance imaging (epicardial and pericardial adipose tissue volumes). RESULTS The mean (SD) age and body mass index were 55 (8) years and 27.3 (4.8) kg/m2, respectively. Among males, higher aldosterone and renin were associated with increased waist circumference, increased waist-to-hip ratio, increased fat mass, decreased lean body mass, and decreased muscle mass (P < .05). Aldosterone (P = .02), but not renin (P = .43), was associated with increased ectopic cardiac adiposity in males. In contrast, higher renin (P < .05), but not aldosterone (P ≥ .05), was associated with increased waist circumference, increased waist-to-hip ratio, and increased cardiac adiposity in females. Among females, higher renin and aldosterone were associated with increased fat mass (P < .05) but were not associated with lean body mass or muscle mass (P ≥ .05). All aforementioned associations were independent of body weight. CONCLUSION Independent of body weight, increased RAAS activity is associated with unfavorable differences in body composition; however, the strength and pattern of association varies by sex.
Collapse
Affiliation(s)
- Gregory L Hundemer
- Department of Medicine, Division of Nephrology, University of Ottawa, Ottawa, ON K1H 7W9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Mohsen Agharazii
- Department of Medicine, Division of Nephrology, CHU de Québec-Université Laval, Quebec City, QC G1R 3S1, Canada
| | - François Madore
- Department of Medicine, Division of Nephrology, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Eve Piché
- Department of Medicine, Division of Cardiology, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Claudia Gagnon
- Department of Medicine, Division of Endocrinology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Alexandra Bussières
- Department of Medicine, Division of Endocrinology, University of Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Matthieu St-Jean
- Department of Medicine, Division of Endocrinology, University of Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Alexander A Leung
- Department of Medicine, Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gregory A Kline
- Department of Medicine, Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Manish M Sood
- Department of Medicine, Division of Nephrology, University of Ottawa, Ottawa, ON K1H 7W9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Dylan Burger
- Department of Medicine, Division of Nephrology, University of Ottawa, Ottawa, ON K1H 7W9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Tim Ramsay
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Rémi Goupil
- Department of Medicine, Division of Nephrology, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Li N, Cao Y, Li Y, Zhang K, Zhang L, Luo Q, Sun W, Shi H. Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease. Clin Radiol 2025; 81:106760. [PMID: 39752972 DOI: 10.1016/j.crad.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/15/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025]
Abstract
AIM To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction. MATERIALS AND METHODS One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software. Epicardial adipose tissue was defined as adipose tissue between -190 HU and -30 HU in the visceral pericardium from the level of pulmonary artery bifurcation to the apical level. EAT volume and average attenuation values were measured. LV diastolic dysfunction was determined by echocardiography. RESULTS The mean age of the participants was 56.65 ± 12.64 years, and 57.65% were male. EAT volume and mean attenuation values were significantly correlated with CAD severity. EAT volume was significantly positively correlated with global longitudinal strain (GLS) (r=0.313, P<0.01), and EAT attenuation values were positively correlated with global circumferential strain and GLS (r=0.236, 0.164, respectively, both P<0.05). Age (β = 0.125, OR = 1.134, P<0.01) and EAT volume (β = 0.019, OR = 1.019, P=0.018) were independent predictors of LV diastolic dysfunction. Age combined with EAT volume improved the diagnostic efficacy of left ventricular diastolic dysfunction. CONCLUSION EAT parameters can reflect the severity of CAD. EAT volume is capable of predicting early LV diastolic dysfunction. Compared with GLS, EAT volume may be able to predict LV diastolic dysfunction earlier.
Collapse
Affiliation(s)
- N Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Y Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Y Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - K Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - L Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Q Luo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - W Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - H Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Xu Y, Guo J, Li Y, Wang S, Wan K, Li W, Wang J, Xu Z, Cheng W, Sun J, Zhang Q, Han Y, Chen Y. Increased epicardial adipose tissue is associated with left ventricular reverse remodeling in dilated cardiomyopathy. Cardiovasc Diabetol 2024; 23:447. [PMID: 39696268 PMCID: PMC11657914 DOI: 10.1186/s12933-024-02517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been suggested to play paradoxical roles in patients with heart failure. The role of EAT in dilated cardiomyopathy (DCM) patients remains unclear. We aimed to assess the associations between the dynamic changes EAT and left ventricular reverse remodeling (LVRR) in DCM patients based on baseline and follow-up CMR. METHODS In this prospective study, we consecutive enrolled DCM patients with baseline and follow-up cardiac magnetic resonance (CMR) examinations. All participating patients underwent 1-2 years of guideline-directed medical therapy (GDMT) at follow-up. The EAT was measured as pericardial and epicardial fat thickness, and paracardial fat volume, while the abdominal adiposity was measured in terms of subcutaneous and visceral fat thickness. The univariable and multivariable logistic regression analyses were performed to evaluate the associations of changes in abdominal and epicardial adiposities with the presence of LVRR. RESULTS A total of 232 patients (mean age, 45.7 ± 15.1 years, 157 male) at baseline were enrolled. After a period of GDMT with a median duration of 15.5 months (interquartile range, 12.5-19.1 months) all participants underwent follow-up CMR with the same standardized protocol. Patients who reached LVRR showed a significant increment in EAT parameters compared to those who did not. After adjusting for age, sex, and delta changes of body mass index (BMI), the increment of pericardial fat thickness (odds ratio [OR]: 1.53; 95% confidence interval [CI]: 1.27 to 1.83; p < 0.001), epicardial fat thickness (OR: 2.10; 95% CI: 1.68 to 2.63; p < 0.001), and paracardial fat volume (OR: 1.01; 95% CI: 1.01 to 1.02; p = 0.001) were significantly associated with LVRR. CONCLUSIONS In DCM patients, the CMR-derived EAT parameters increased after 1-2 years of GDMT and significantly correlated with improved ventricular structure and function, independent of changes in BMI and abdominal adiposity, which may indicate the potential protective role of EAT in DCM patients. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov ; Unique identifier: ChiCTR1800017058.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jiajun Guo
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yangjie Li
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Shiqian Wang
- West China Clinical Medical College of Sichuan University, Chengdu, China
| | - Ke Wan
- Center of Gerontology and Geriatrics, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Weihao Li
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jie Wang
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Ziqian Xu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhang
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yuchi Han
- Cardiac Imaging Cardiovascular Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Athens, OH, USA
| | - Yucheng Chen
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
6
|
Harada T, Tada A, Borlaug BA. Imaging and mechanisms of heart failure with preserved ejection fraction: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2024; 25:1475-1490. [PMID: 38912836 DOI: 10.1093/ehjci/jeae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding of the pathophysiology of heart failure with preserved ejection fraction (HFpEF) has advanced rapidly over the past two decades. Currently, HFpEF is recognized as a heterogeneous syndrome, and there is a growing movement towards developing personalized treatments based on phenotype-guided strategies. Left ventricular dysfunction is a fundamental pathophysiological abnormality in HFpEF; however, recent evidence also highlights significant roles for the atria, right ventricle, pericardium, and extracardiac contributors. Imaging plays a central role in characterizing these complex and highly integrated domains of pathophysiology. This review focuses on established evidence, recent insights, and the challenges that need to be addressed concerning the pathophysiology of HFpEF, with a focus on imaging-based evaluations and opportunities for further research.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Dronkers J, van Veldhuisen DJ, van der Meer P, Meems LMG. Heart Failure and Obesity: Unraveling Molecular Mechanisms of Excess Adipose Tissue. J Am Coll Cardiol 2024; 84:1666-1677. [PMID: 39415402 DOI: 10.1016/j.jacc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
Obesity is an ongoing pandemic and is associated with the development of heart failure (HF), and especially HF with preserved ejection fraction. The definition of obesity is currently based on anthropometric measurements but neglects the location and molecular properties of excess fat. Important depots associated with HF development are subcutaneous adipose tissue and visceral adipose tissue, both located in the abdominal region, and epicardial adipose tissue (EAT) surrounding the myocardium. However, mechanisms linking these different adipose tissue depots to HF development are incompletely understood. EAT in particular is of great interest because of its close proximity to the heart. In this review, we therefore focus on the characteristics of different adipose tissue depots and their response to obesity. In addition, we evaluate how different mechanisms associated with EAT expansion potentially contribute to HF and in particular HF with preserved ejection fraction development.
Collapse
Affiliation(s)
- Just Dronkers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
8
|
Zhao J, Cheng W, Dai Y, Li Y, Feng Y, Tan Y, Xue Q, Bao X, Sun X, Kang L, Mu D, Xu B. Excessive accumulation of epicardial adipose tissue promotes microvascular obstruction formation after myocardial ischemia/reperfusion through modulating macrophages polarization. Cardiovasc Diabetol 2024; 23:236. [PMID: 38970123 PMCID: PMC11227217 DOI: 10.1186/s12933-024-02342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Owing to its unique location and multifaceted metabolic functions, epicardial adipose tissue (EAT) is gradually emerging as a new metabolic target for coronary artery disease risk stratification. Microvascular obstruction (MVO) has been recognized as an independent risk factor for unfavorable prognosis in acute myocardial infarction patients. However, the concrete role of EAT in the pathogenesis of MVO formation in individuals with ST-segment elevation myocardial infarction (STEMI) remains unclear. The objective of the study is to evaluate the correlation between EAT accumulation and MVO formation measured by cardiac magnetic resonance (CMR) in STEMI patients and clarify the underlying mechanisms involved in this relationship. METHODS Firstly, we utilized CMR technique to explore the association of EAT distribution and quantity with MVO formation in patients with STEMI. Then we utilized a mouse model with EAT depletion to explore how EAT affected MVO formation under the circumstances of myocardial ischemia/reperfusion (I/R) injury. We further investigated the immunomodulatory effect of EAT on macrophages through co-culture experiments. Finally, we searched for new therapeutic strategies targeting EAT to prevent MVO formation. RESULTS The increase of left atrioventricular EAT mass index was independently associated with MVO formation. We also found that increased circulating levels of DPP4 and high DPP4 activity seemed to be associated with EAT increase. EAT accumulation acted as a pro-inflammatory mediator boosting the transition of macrophages towards inflammatory phenotype in myocardial I/R injury through secreting inflammatory EVs. Furthermore, our study declared the potential therapeutic effects of GLP-1 receptor agonist and GLP-1/GLP-2 receptor dual agonist for MVO prevention were at least partially ascribed to its impact on EAT modulation. CONCLUSIONS Our work for the first time demonstrated that excessive accumulation of EAT promoted MVO formation by promoting the polarization state of cardiac macrophages towards an inflammatory phenotype. Furthermore, this study identified a very promising therapeutic strategy, GLP-1/GLP-2 receptor dual agonist, targeting EAT for MVO prevention following myocardial I/R injury.
Collapse
Affiliation(s)
- Jinxuan Zhao
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wei Cheng
- Division of Colorectal Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yang Dai
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yao Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuting Feng
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Ying Tan
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiucang Xue
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xue Bao
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xuan Sun
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lina Kang
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Dan Mu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Abstract
Heart failure (HF) management guidelines recommend individualized assessments based on HF phenotypes. Adiposity is a known risk factor for HF. Recently, there has been an increased interest in organ-specific adiposity, specifically the role of the epicardial adipose tissue (EAT), in HF risk. EAT is easily assessable through various imaging modalities and is anatomically and functionally connected to the myocardium. In pathological conditions, EAT secretes inflammatory cytokines, releases excessive fatty acids, and increases mechanical load on the myocardium, resulting in myocardial remodeling. EAT plays a pathophysiological role in characterizing both HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). In HFrEF, EAT volume is reduced, reflecting an impaired metabolic reservoir, whereas in HFpEF, the amount of EAT is associated with worse biomarker and hemodynamic profiles, indicating increased EAT activity. Studies have examined the possibility of therapeutically targeting EAT, and recent studies using sodium glucose cotransporter 2 inhibitors have shown potential in reducing EAT volume. However, further research is required to determine the clinical implications of reducing EAT activity in patients with HF.
Collapse
Affiliation(s)
- Dong-Hyuk Cho
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seong-Mi Park
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Jalil JE, Gabrielli L, Ocaranza MP, MacNab P, Fernández R, Grassi B, Jofré P, Verdejo H, Acevedo M, Cordova S, Sanhueza L, Greig D. New Mechanisms to Prevent Heart Failure with Preserved Ejection Fraction Using Glucagon-like Peptide-1 Receptor Agonism (GLP-1 RA) in Metabolic Syndrome and in Type 2 Diabetes: A Review. Int J Mol Sci 2024; 25:4407. [PMID: 38673991 PMCID: PMC11049921 DOI: 10.3390/ijms25084407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of β-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.
Collapse
Affiliation(s)
- Jorge E. Jalil
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luigi Gabrielli
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - María Paz Ocaranza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Paul MacNab
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Rodrigo Fernández
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Bruno Grassi
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Paulina Jofré
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Hugo Verdejo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Monica Acevedo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Samuel Cordova
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luis Sanhueza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Douglas Greig
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| |
Collapse
|
11
|
Ashoobi MT, Hemmati H, Moayerifar M, Moayerifar M, Gholipour M, Motiei M, Yazdanipour MA, Eslami Kenarsari H. The role of diabetic foot treatment in improving left ventricular function: Insights from global longitudinal strain echocardiography. PLoS One 2024; 19:e0299887. [PMID: 38551943 PMCID: PMC10980188 DOI: 10.1371/journal.pone.0299887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
We decided to evaluate the effect of treatment of diabetic foot ulcers in improving heart function by strain echocardiography than conventional transthoracic echocardiography. This prospective cross-sectional study included patients with diabetic foot ulcer (DFU). Conventional and two-dimensional strain echocardiography performed before and after three months diabetic foot treatment. Then, we compared the echocardiographic parameters including left ventricular ejection fraction (LV-EF), left ventricular global longitudinal strain (LV-GLS). Multivariate and univariate logistic regression analysis were performed to find which variable was mainly associated with LV-GLS changes. 62 patients with DFU were conducted. After echocardiography, all patients underwent surgical or non-surgical treatments. Three months after the treatment, LV-EF was not significantly different with its' primary values (P = 0.250), but LV-GLS became significantly different (P<0.05). In the multivariate logistic regression analysis, with the increase in the grade of ulcer, LV-GLS improved by 6.3 times. Not only the treatment of DFU helps to control adverse outcomes like infection, limb loss and morbidity but also it enhances cardiac function. Of note, strain echocardiography found to be a better indicator of myocardial dysfunction than LV-EF. These findings make a strong reason for the routine assessment of cardiac function in patients with DFU.
Collapse
Affiliation(s)
- Mohammad Taghi Ashoobi
- Department of Vascular Surgery, Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hosein Hemmati
- Department of Vascular Surgery, Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Maziar Moayerifar
- Department of Vascular Surgery, Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mani Moayerifar
- Department of Vascular Surgery, Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahboobeh Gholipour
- Department of Cardiology, Healthy Heart Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahsa Motiei
- School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Yazdanipour
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| | - Habib Eslami Kenarsari
- Vice-Chancellorship of Research and Technology, Guilan University of Medical Science, Rasht, Iran
| |
Collapse
|
12
|
Zhou X, Chen Y, van der Geest RJ, Hu P, Ng MY. Editorial: Advanced quantitative indexes in cardiovascular magnetic resonance imaging. Front Cardiovasc Med 2024; 11:1302397. [PMID: 38370157 PMCID: PMC10869577 DOI: 10.3389/fcvm.2024.1302397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Affiliation(s)
- Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rob J. van der Geest
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
13
|
Liu J, Qu Y, Li J, He W, Chen X, Li X, Wang Y, Tang H, Yuan Y, Deng L, Chen G, Zheng T, Nie L, Zhou X, Song B, Tong N, Peng L. Myocardial tissue remodeling in early adult obesity and its association with regional adipose tissue distribution and ectopic fat deposits: a prospective study. Eur Radiol 2024; 34:970-980. [PMID: 37572193 DOI: 10.1007/s00330-023-10081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVES To evaluate the left ventricular (LV) myocardial tissue characteristics in early adult obesity and its association with regional adipose tissue and ectopic fat deposition. METHODS Forty-nine obese adults (mean body mass index: 29.9 ± 2.0 kg/m2) and 44 healthy controls were prospectively studied. LV native and post-contrast T1 values, extracellular volume fraction (ECV), regional adipose tissue (epicardial, visceral, and subcutaneous adipose tissue (EAT, VAT, and SAT)), and ectopic fat deposition (hepatic and pancreatic proton density fat fractions (H-PDFF and P-PDFF)) based on magnetic resonance imaging were compared. The association was assessed by multivariable linear regression. RESULTS The obese participants showed reduced global ECV compared to the healthy controls (p < 0.05), but there was no significant difference in global native or post-contrast T1 values between the two groups. Additionally, the obese individuals exhibited higher EAT, VAT, SAT, H-PDFF, and P-PDFF than the controls (p < 0.05). ECV was associated with insulin resistance, dyslipidemia, and systolic blood pressure (SBP) (p < 0.05). Multiple linear regression demonstrated that H-PDFF and SAT were independently associated with ECV in entire population (β = - 0.123 and - 0.012; p < 0.05). CONCLUSIONS Reduced myocardial ECV in patients with mild-to-moderate obesity and its relationship to SBP may indicate that cardiomyocyte hypertrophy, rather than extracellular matrix expansion, is primarily responsible for myocardial tissue remodeling in early adult obesity. Our findings further imply that H-PDFF and SAT are linked with LV myocardial tissue remodeling in this cohort beyond the growth difference and cardiovascular risk factors. CLINICAL TRIALS REGISTRATION Effect of lifestyle intervention on metabolism of obese patients based on smart phone software (ChiCTR1900026476). CLINICAL RELEVANCE STATEMENT Myocardial fibrosis in severe obesity predicts poor prognosis. We showed that cardiomyocyte hypertrophy, not myocardial fibrosis, is the main myocardial tissue characteristic of early obesity. This finding raises the possibility that medical interventions, like weight loss, may prevent cardiac fibrosis. KEY POINTS • Myocardial tissue characteristics in early adult obesity are unclear. • Myocardial extracellular volume fraction (ECV) can be quantitatively evaluated using T1 mapping based on cardiac magnetic resonance imaging (MRI). • Cardiac MRI-derived ECV may noninvasively evaluate myocardial tissue remodeling in early adult obesity.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Yali Qu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Jing Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Wenzhang He
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaoyi Chen
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Xue Li
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Yinqiu Wang
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Guoyong Chen
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Tianying Zheng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China.
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
14
|
Zhu J, Xie Z, Huang H, Li W, Zhuo K, Bai Z, Huang R. Association of Epicardial Adipose Tissue With Left Ventricular Strain and MR Myocardial Perfusion in Patients With Known Coronary Artery Disease. J Magn Reson Imaging 2023; 58:1490-1498. [PMID: 36794488 DOI: 10.1002/jmri.28619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) may have a paracrine effect on coronary microcirculation and myocardium. However, it is unclear whether EAT is linked to cardiac function and perfusion. PURPOSE To investigate the association of EAT with left ventricular (LV) strain and myocardial perfusion in patients with coronary artery disease (CAD). STUDY TYPE Retrospective. POPULATION A total of 78 patients with CAD and 20 healthy controls. The patients were further divided into high (n = 39) and low EAT volume (n = 39) groups according to median EAT volume. FIELD STRENGTH/SEQUENCE A 1.5 T, balanced steady-state free precession, inversion recovery prepared echo-planar, and segmented-turbo fast low-angle shot (FLASH) phase-sensitive inversion recovery (PSIR) sequences. ASSESSMENT EAT volume was measured by manually tracing the epicardial border and the visceral layer of pericardium on the short-axis cine stacks. LV strain parameters included global radial (GRS), circumferential (GCS), and longitudinal peak strain (GLS). Perfusion indices included upslope, perfusion index, time-to-maximum signal intensity (TTM), and maximum signal intensity (MaxSI). STATISTICAL TESTS One-way analysis of variance or Kruskal-Wallis rank tests, Chi-squared or Fisher exact tests. Multivariate linear regression analyses. A P value < 0.05 was considered statistically significant. RESULTS The parameters of GRS GCS, GLS, upslope, perfusion index, and MaxSI were significantly lower in the patients when compared to the controls. Moreover, the high EAT volume group presented significantly longer TTM values and lower GRS, GCS, GLS, upslope, perfusion index, and MaxSI than the low EAT volume group. Multivariate linear regression analyses demonstrated that EAT was independently associated with GRS, GCS, GLS, upslope, perfusion index, TTM, and MaxSI in patients. EAT and upslope were independently associated with GRS, while EAT and perfusion index were both independently associated with GCS and GLS. DATA CONCLUSION EAT was associated with parameters of LV function and perfusion, and myocardial perfusion was independently associated with LV strain in patients with CAD. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhen Xie
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hao Huang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjia Li
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kaimin Zhuo
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhicheng Bai
- Department of Radiology, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Ruijue Huang
- Department of Basic Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| |
Collapse
|
15
|
Zoico E, Giani A, Saatchi T, Rizzatti V, Mazzali G, Fantin F, Benfari G, Onorati F, Urbani S, Zamboni M. Myocardial Fibrosis and Steatosis in Patients with Aortic Stenosis: Roles of Myostatin and Ceramides. Int J Mol Sci 2023; 24:15508. [PMID: 37958492 PMCID: PMC10648018 DOI: 10.3390/ijms242115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients (19 women and 12 men) with severe AS undergoing elective aortic valve replacement. The subjects were clinically evaluated, and transthoracic echocardiography was performed pre-surgery. LV septal biopsies were obtained to assess fibrosis and apoptosis and fat deposition in myocytes (perilipin 5 (PLIN5)), or in the form of adipocytes within the heart (perilipin 1 (PLIN1)), the presence of ceramides and myostatin were assessed via immunohistochemistry. After BMI adjustment, we found a positive association between fibrosis and apoptotic cardiomyocytes, as well as fibrosis and the area covered by PLIN5. Apoptosis and PLIN5 were also significantly interrelated. LV fibrosis increased with a higher medium gradient (MG) and peak gradient (PG). Ceramides and myostatin levels were higher in patients within the higher MG and PG tertiles. In the linear regression analysis, increased fibrosis correlated with increased apoptosis and myostatin, independent from confounding factors. After adjustment for age and BMI, we found a positive relationship between PLIN5 and E/A and a negative correlation between septal S', global longitudinal strain (GLS), and fibrosis. Myostatin was inversely correlated with GLS and ejection fraction. Fibrosis and myocardial steatosis altogether contribute to ventricular dysfunction in severe AS. The association of myostatin and fibrosis with systolic dysfunction, as well as between myocardial steatosis and diastolic dysfunction, highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Anna Giani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Tanaz Saatchi
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Vanni Rizzatti
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Gloria Mazzali
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Francesco Fantin
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Giovanni Benfari
- Division of Cardiology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| |
Collapse
|
16
|
Huang S, Shi K, Li Y, Wang J, Jiang L, Gao Y, Yan WF, Shen LT, Yang ZG. Effect of Metabolic Dysfunction-Associated Fatty Liver Disease on Left Ventricular Deformation and Atrioventricular Coupling in Patients With Metabolic Syndrome Assessed by MRI. J Magn Reson Imaging 2023; 58:1098-1107. [PMID: 36591962 DOI: 10.1002/jmri.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) was recently recognized as an important risk factor for cardiovascular diseases. PURPOSE To examine the effect of MAFLD on cardiac function in metabolic syndrome by MRI. STUDY TYPE Retrospective. POPULATION One hundred seventy-nine patients with metabolic syndrome (MetS), 101 with MAFLD (MAFLD [+]) and 78 without (MAFLD [-]). Eighty-one adults without any of the components of MetS or cardiac abnormalities were included as control group. FIELD STRENGTH/SEQUENCE 3.0 T; balanced steady-state free precession sequence. ASSESSMENT Left atrial (LA) strain was assessed during three phases: reservoir strain (LA-RS), conduit strain (LA-CS), and booster strain (LA-BS). Left ventricular (LV) global longitudinal (LV-GLS) strain was also derived. The left atrioventricular coupling index (LACI) was calculated as the ratio of LA end-diastolic volume (LA-EDV) and LV-EDV. STATISTICAL TESTS Student's t test or Mann-Whitney U test; One-way analysis of variance. A P value <0.05 was considered statistically significant. RESULTS Among MetS patients, individuals with MAFLD had significantly lower magnitude LV-GLS (-11.6% ± 3.3% vs. -13.8% ± 2.7%) than those without MAFLD. For LA strains, LA-RS (36.9% ± 13.7% vs. 42.9% ± 13.5%) and LA-CS (20.0% ± 10.6% vs. 24.1% ± 9.2%) were also significantly reduced in MAFLD (+) compared to MAFLD (-). The LACIs (17.2% [12.9-21.2] % vs. 15.8% [12.2-19.7] %) were significantly higher in patients with MAFLD compared to those without MAFLD. After adjustment for other clinical factors, MAFLD was found to be independently correlated with LV-GLS (β = -0.270) and LACI (β = 0.260). DATA CONCLUSION MAFLD had an unfavorable effect on LV myocardial strain in MetS. Moreover, LA strain and atrioventricular coupling were further impaired in patients with concomitant MAFLD compared to those without MAFLD. Last, MAFLD was independently associated with subclinical LV dysfunction and atrioventricular coupling after adjustment for other clinical factors. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Antonopoulos AS, Papastamos C, Cokkinos DV, Tsioufis K, Tousoulis D. Epicardial Adipose Tissue in Myocardial Disease: From Physiology to Heart Failure Phenotypes. Curr Probl Cardiol 2023; 48:101841. [PMID: 37244513 DOI: 10.1016/j.cpcardiol.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Epicardial adipose tissue (EAT) is increasingly being recognized as a determinant of myocardial biology. The EAT-heart crosstalk suggests causal links between dysfunctional EAT and cardiomyocyte impairment. Obesity promotes EAT dysfunction and shifts in secreted adipokines which adversely affect cardiac metabolism, induce cardiomyocyte inflammation, redox imbalance and myocardial fibrosis. Thus, EAT determines cardiac phenotype via effects on cardiac energetics, contractility, diastolic function, and atrial conduction. Vice-versa the EAT is altered in heart failure (HF), and such phenotypic changes can be detected by noninvasive imaging or incorporated in Artificial Intelligence-enhanced tools to aid the diagnosis, subtyping or risk prognostication of HF. In the present article, we summarize the links between EAT and the heart, explaining how the study of epicardial adiposity can improve the understanding of cardiac disease, serve as a source of diagnostic and prognostic biomarkers, and as a potential therapeutic target in HF to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece; Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece.
| | - Charalampos Papastamos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dennis V Cokkinos
- Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Lin T, Lee C, Huang K, Wu C, Lee J, Lan C, Su MM, Hwang J, Wang Y, Lin L. Differentiating the Prognostic Determinants of Myocardial Steatosis for Heart Failure With Preserved Ejection Fraction by Cardiac Magnetic Resonance Imaging. J Am Heart Assoc 2023; 12:e027781. [PMID: 37642018 PMCID: PMC10547328 DOI: 10.1161/jaha.122.027781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Background Myocardial steatosis and fibrosis may play a role in the pathophysiology of heart failure with preserved ejection fraction. We therefore investigated the prognostic significance of epicardial fat (epicardial adipose tissue [EAT]) and myocardial diffuse fibrosis. Methods and Results Myocardial fibrosis, estimated as extracellular volume (ECV), and EAT were measured using cardiac magnetic resonance imaging in 163 subjects with heart failure with preserved ejection fraction. We also evaluated cardiac structure and diastolic and systolic function by echocardiography and cardiac magnetic resonance imaging. After 24 months' follow-up, 39 (24%) subjects had experienced cardiovascular events, including hospitalization for heart failure, acute coronary syndrome, and cardiovascular death. Median EAT and mean ECV were significantly higher in subjects with cardiovascular events than survivors (EAT, 35 [25-45] versus 31 [21-38], P=0.006 and ECV, 28.9±3.16% versus 27.2±3.56%, P=0.04). Subjects with high EAT (≥42 g) had increased risk of cardiovascular events (hazard ratio [HR], 2.528 [95% CI, 1.704-4.981]; P=0.032). High ECV (>29%) was also significantly associated with poorer outcomes (HR, 1.647 [95% CI, 1.263-2.548]; P=0.013). With respect to secondary end points, high EAT and high ECV were associated with increased risk of the incident acute coronary syndrome (HR, 1.982 [95% CI, 1.008-4.123]; P=0.049) and hospitalization for heart failure (HR, 1.789 [95% CI, 1.102-6.987]; P=0.033), respectively. Conclusions Our study suggested that increased epicardial fat and ECV detected by cardiac magnetic resonance imaging have an impact on cardiovascular prognosis, in particular acute coronary syndrome and hospitalization for heart failure, respectively.
Collapse
Affiliation(s)
- Ting‐Tse Lin
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| | - Chih‐Kuo Lee
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Kuan‐Chih Huang
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Cho‐Kai Wu
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| | - Jen‐Kuang Lee
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| | - Chen‐Wei Lan
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Mao‐Yuan M. Su
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Juey‐Jen Hwang
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| | - Yi‐Chih Wang
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| | - Lian‐Yu Lin
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineNational Taiwan University College of Medicine and HospitalTaipeiTaiwan
| |
Collapse
|
19
|
Wang X, Butcher SC, Myagmardorj R, Liem SIE, Delgado V, Bax JJ, De Vries-Bouwstra JK, Marsan NA. Epicardial adipose tissue in patients with systemic sclerosis. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2023; 1:qyad037. [PMID: 39045073 PMCID: PMC11195713 DOI: 10.1093/ehjimp/qyad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 07/25/2024]
Abstract
Aims Epicardial adipose tissue (EAT) has emerged as a mediator between systemic inflammatory disorders and cardiovascular disease, and may therefore play a role in the pathophysiology of cardiac involvement in systemic sclerosis (SSc). The aim of this study was to assess the correlation between EAT and left ventricular (LV) function, and to determine the prognostic value of EAT in patients with SSc. Methods and results Consecutive patients with SSc who underwent non-contrast thorax computed tomography and echocardiography were included. EAT mass was quantified using dedicated software. The study endpoint was all-cause mortality. A total of 230 SSc patients (age 53 ± 15 years, 14% male) were included. The median value of EAT mass was 67 g (interquartile range: 45-101 g). Patients with increased EAT mass (≥67 g) showed more impaired LV diastolic function as compared with patients with less EAT mass (<67 g), and even after adjusting for age and comorbidities, EAT mass was independently associated with LV diastolic function parameters. During a median follow-up of 8 years, 42 deaths occurred. Kaplan-Meier analysis showed that patients with increased EAT mass had higher all-cause mortality rate as compared with patients with less EAT mass (29% vs. 7%; P < 0.001). In the multivariable analysis, EAT was independently associated with all-cause mortality after adjusting for important covariates (HR: 1.006; 95% CI: 1.001-1.010). Conclusion In patients with SSc, EAT is independently associated with LV diastolic dysfunction and higher mortality rate.
Collapse
Affiliation(s)
- Xu Wang
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, XCF3+6R6, Chaoyang, Beijing 100029, China
| | - Steele C Butcher
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Department of Cardiology, Royal Perth Hospital, Victoria Square, Perth WA 6000, Western Australia, Australia
| | - Rinchyenkhand Myagmardorj
- Department of Cardiology, Mongolia-Japan Teaching Hospital, Mongolian National University of Medical Sciences, Botanic street, Ulaanbaatar 13270, Mongolia
| | - Sophie I E Liem
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Hospital University Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Carretera de Canyet, s/n, Badalona 08916, Spain
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Heart Center, University of Turku and Turku University Hospital, U-sairaala, Kiinamyllynkatu 4-8, Turku 20521, Finland
| | - Jeska K De Vries-Bouwstra
- Department of Cardiology, Mongolia-Japan Teaching Hospital, Mongolian National University of Medical Sciences, Botanic street, Ulaanbaatar 13270, Mongolia
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
20
|
Gu Y, Avolio E, Alvino VV, Thomas AC, Herman A, Miller PJ, Sullivan N, Faulkner A, Madeddu P. The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice. Cardiovasc Diabetol 2023; 22:214. [PMID: 37592236 PMCID: PMC10436421 DOI: 10.1186/s12933-023-01955-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.
Collapse
Affiliation(s)
- Yue Gu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Elisa Avolio
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Valeria V Alvino
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Anita C Thomas
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Poppy J Miller
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | - Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
21
|
Chen Y, Tang Y, Hou S, Luo J, Chen J, Qiu H, Chen W, Li K, He J, Li J. Differential expression spectrum and targeted gene prediction of tRNA-derived small RNAs in idiopathic pulmonary arterial hypertension. Front Mol Biosci 2023; 10:1204740. [PMID: 37496778 PMCID: PMC10367008 DOI: 10.3389/fmolb.2023.1204740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (PAH) is a potentially fatal pulmonary vascular disease with an extremely poor natural course. The limitations of current treatment and the unclear etiology and pathogenesis of idiopathic PAH require new targets and avenues of exploration involved in the pathogenesis of PAH. tRNA-derived small RNAs (tsRNAs), a new type of small non-coding RNAs, have a significant part in the progress of diverse diseases. However, the potential functions behind tsRNAs in idiopathic PAH remain unknown. Methods: Small RNA microarray was implemented on three pairs of plasma of idiopathic PAH patients and healthy controls to investigate and compare tsRNAs expression profiles. Validation samples were used for real-time polymerase chain reaction (Real-time PCR) to verify several dysregulated tsRNAs. Bioinformatic analysis was adopted to determine potential target genes and mechanisms of the validated tsRNAs in PAH. Results: Microarray detected 816 statistically significantly dysregulated tsRNAs, of which 243 tsRNAs were upregulated and 573 were downregulated in PAH. Eight validated tsRNAs in the results of Real-time PCR were concordant with the small RNA microarray: four upregulated (tRF3a-AspGTC-9, 5'tiRNA-31-GluCTC-16, i-tRF-31:54-Val-CAC-1 and tRF3b-TyrGTA-4) and four downregulated (5'tiRNA-33-LysTTT-4, i-tRF-8:32-Val-AAC-2, i-tRF-2:30-His-GTG-1, and i-tRF-15:31-Lys-CTT-1). The Gene Ontology analysis has shown that the verified tsRNAs are related to cellular macromolecule metabolic process, regulation of cellular process, and regulation of cellular metabolic process. It is disclosed that potential target genes of verified tsRNAs are widely involved in PAH pathways by Kyoto Encyclopedia of Genes and Genomes. Conclusion: This study investigated tsRNA profiles in idiopathic PAH and found that the dysregulated tsRNAs may become a novel type of biomarkers and possible targets for PAH.
Collapse
Affiliation(s)
- Yusi Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Tang
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Sitong Hou
- Clinical Medicine, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jun Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjie Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kexing Li
- Department of Pharmacology, Hebei University, Baoding, Hebei, China
| | - Jin He
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Jiang Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Na L, Cui W, Li X, Chang J, Xue X. Effect of hypertriglyceridemia on left ventricular global longitudinal strain in patients with coronary heart disease in Jilin Province, China: a cross-sectional study. Front Cardiovasc Med 2023; 10:1193971. [PMID: 37441700 PMCID: PMC10333578 DOI: 10.3389/fcvm.2023.1193971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Aims Using speckle tracking technology to investigate the effect of hypertriglyceridemia on the global longitudinal strain(GLS) of the left ventricle in patients with coronary heart disease in the early stage, and to explore the value of myocardial strain in early identification of cardiac dysfunction in patients with coronary heart disease in the pre-heart failure stage. Methods A cross-sectional study of 138 participants was conducted in Jilin Province, China. Basic clinical, biochemical, and echocardiographic data were obtained for all patients. Myocardial strain parameters were compared between the hypertriglyceridemia and normal triglyceride level groups and the effect of hypertriglyceridemia on early left ventricular global longitudinal strain impairment in coronary heart disease patients was evaluated. Results The overall longitudinal strain of the left ventricle was smaller in the hypertriglyceridemia group than in the normal triglyceride group. After the multivariate Logistic regression model adjusting for the influence of confounding factors, the results remained stable. Conclusions The risk of impairment of global longitudinal strain of the left ventricle in patients with coronary heart disease is positively correlated with triglyceride levels, and hypertriglyceridemia maybe an independent risk factor affecting early cardiac dysfunction in the pre-heart failure stage of patients with coronary heart disease.
Collapse
Affiliation(s)
- Lin Na
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City, China
| | - Wenjing Cui
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City, China
| | - Xinqi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City, China
| | - Jing Chang
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun City, China
| | - Xin Xue
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City, China
| |
Collapse
|
23
|
Yang Z, Tang D, Luo Y, Xiang C, Huang L, Xia L. The relationship between epicardial adipose tissue thickness and arrhythmias in patients with hypertension: a 3.0T cardiac magnetic resonance study. Br J Radiol 2023; 96:20221030. [PMID: 36971695 PMCID: PMC10230399 DOI: 10.1259/bjr.20221030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES To investigate the relationship between epicardial adipose tissue (EAT) thickness using cardiac magnetic resonance imaging (CMR) and arrhythmias in hypertensive patients. METHODS Fifty-four hypertensive patients with arrhythmias (HTN [arrhythmias+]), 79 hypertensive patients without arrhythmias (HTN [arrhythmias-]), and 39 normal controls were retrospectively enrolled. EAT thickness was measured on cine images. Analysis of covariance with Bonferroni's post hoc correction, Pearson or Spearman analysis, receiver operating characteristic curve, and intraclass correlation coefficient analysis were performed. RESULTS All hypertensive patients had impaired left ventricular (LV) and left atrial (LA) myocardial deformation, and HTN (arrhythmias+) patients displayed higher LV myocardial native T1, LA volume index, and increased EAT thickness than HTN (arrhythmias-) patients and normotensive controls. The presence of LV late gadolinium enhancement (LGE) was higher in hypertensive patients with arrhythmias than in those without arrhythmias. EAT thickness metrics significantly correlated with age, systolic blood pressure, body mass index, triglycerides and high-density lipoprotein levels, LV mass index and native T1 (all p < 0.05). EAT thickness parameters were able to differentiate hypertensive patients with arrhythmias from those without arrhythmias and normal controls, and the right ventricular free wall had the highest diagnostic performance. CONCLUSION An accumulation of EAT thickness could further induce cardiac remodeling, promote myocardial fibrosis, and exaggerate function in hypertensive patients with arrhythmias. ADVANCES IN KNOWLEDGE CMR-derived EAT thickness metrics could be a useful imaging marker for differentiating hypertensive patients with arrhythmias, which might be a potential target for the prevention of cardiac remodeling and arrhythmias.
Collapse
Affiliation(s)
- Zhaoxia Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dazong Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlin Xiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Kessler Iglesias C, Pouliopoulos J, Thomas L, Hayward CS, Jabbour A, Fatkin D. Atrial cardiomyopathy: Current and future imaging methods for assessment of atrial structure and function. Front Cardiovasc Med 2023; 10:1099625. [PMID: 37063965 PMCID: PMC10102662 DOI: 10.3389/fcvm.2023.1099625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Changes in atrial size and function have historically been considered a surrogate marker of ventricular dysfunction. However, it is now recognized that atrial cardiomyopathy (ACM) may also occur as a primary myocardial disorder. Emerging evidence that ACM is a major risk factor for atrial fibrillation, heart failure, and thromboembolic stroke, has highlighted the significance of this disorder and the need for better assessment of atrial metrics in clinical practice. Key barriers in this regard include a lack of standardized criteria or hierarchy for the diagnosis of ACM and lack of consensus for the most accurate phenotyping methods. In this article we review existing literature on ACM, with a focus on current and future non-invasive imaging methods for detecting abnormalities of atrial structure and function. We discuss the relative advantages and disadvantages of transthoracic echocardiography and cardiac magnetic resonance imaging for assessing a range of parameters, including atrial size and contractile function, strain, tissue characteristics, and epicardial adipose tissue. We will also present the potential application of novel imaging methods such as sphericity index and four- or five-dimensional flow.
Collapse
Affiliation(s)
- Cassia Kessler Iglesias
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jim Pouliopoulos
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Liza Thomas
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia
- South West Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Christopher S. Hayward
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Andrew Jabbour
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Diane Fatkin
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Correspondence: Diane Fatkin
| |
Collapse
|
25
|
Cau R, Bassareo P, Cademartiri F, Cadeddu C, Balestrieri A, Mannelli L, Suri JS, Saba L. Epicardial fat volume assessed with cardiac magnetic resonance imaging in patients with Takotsubo cardiomyopathy. Eur J Radiol 2023; 160:110706. [PMID: 36701825 DOI: 10.1016/j.ejrad.2023.110706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE The aims of our study were to investigate with cardiovascular magnetic resonance (CMR) the role of Epicardial Fat Volume (EFV) and distribution in patients with Takotsubo cardiomyopathy (TTC). Moreover, we explored EFV in patients with TTC and related this to comorbidities, cardiac biomarkers, and cardiac function. METHODS This retrospective study performed CMR scans in 30 consecutive TTC patients and 20 healthy controls. The absolute amount of EFV was quantified in consecutive short-axis cine stacks through the modified Simpson's rule. In addition, the left atrio-ventricular groove (LV) and right ventricle (RV) Epicardial Fat Thickness (EFT) were measured as well. Besides epicardial fat, LV myocardial strain parameters and T2 mapping measurements were obtained. RESULTS TTC patients and controls were of comparable age, sex, and body mass index. Compared to healthy controls, patients with TTC demonstrated a significantly increased EFV, epicardial fat mass, and EFV indexed for body 7surface area (p = 0.005; p = 0.003; p = 0.008; respectively). In a multiple regression model including age, sex, BMI, atrial fibrillation, and dyslipidemia, TTC remained an independent association with EFV (p = 0.008). Global T2 mapping and Global longitudinal strain in patients with TTC were correlated with EFV (r = 0.63, p = 0.001, and r = 0.44, p = 0.02, respectively). CONCLUSION Patients with TTC have increased EFV compared to healthy controls, despite a similar body mass index. The amount of epicardial fat was associated with CMR markers of myocardial inflammation and subclinical contractile dysfunction.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Pierpaolo Bassareo
- Mater Misericordiae University Hospital and Our Lady's Children's Hospital, University College of Dublin, Crumlin, Dublin, Ireland
| | | | - Christian Cadeddu
- Department of Cardiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy.
| |
Collapse
|
26
|
Moody AJ, Molina-Wilkins M, Clarke GD, Merovci A, Solis-Herrera C, Cersosimo E, Chilton RJ, Iozzo P, Gastaldelli A, Abdul-Ghani M, DeFronzo RA. Pioglitazone reduces epicardial fat and improves diastolic function in patients with type 2 diabetes. Diabetes Obes Metab 2023; 25:426-434. [PMID: 36204991 PMCID: PMC9812869 DOI: 10.1111/dom.14885] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 02/02/2023]
Abstract
AIMS To examine the effect of pioglitazone on epicardial (EAT) and paracardial adipose tissue (PAT) and measures of diastolic function and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). METHODS Twelve patients with T2DM without clinically manifest cardiovascular disease and 12 subjects with normal glucose tolerance (NGT) underwent cardiac magnetic resonance imaging to quantitate EAT and PAT and diastolic function before and after pioglitazone treatment for 24 weeks. Whole-body insulin sensitivity was measured with a euglycaemic insulin clamp and the Matsuda Index (oral glucose tolerance test). RESULTS Pioglitazone reduced glycated haemoglobin by 0.9% (P < 0.05), increased HDL cholesterol by 7% (P < 0.05), reduced triacylglycerol by 42% (P < 0.01) and increased whole-body insulin-stimulated glucose uptake by 71% (P < 0.01) and Matsuda Index by 100% (P < 0.01). In patients with T2DM, EAT (P < 0.01) and PAT (P < 0.01) areas were greater compared with subjects with NGT, and decreased by 9% (P = 0.03) and 9% (P = 0.09), respectively, after pioglitazone treatment. Transmitral E/A flow rate and peak left ventricular flow rate (PLVFR) were reduced in T2DM versus NGT (P < 0.01) and increased following pioglitazone treatment (P < 0.01-0.05). At baseline normalized PLVFR inversely correlated with EAT (r = -0.45, P = 0.03) but not PAT (r = -0.29, P = 0.16). E/A was significantly and inversely correlated with EAT (r = -0.55, P = 0.006) and PAT (r = -0.40, P = 0.05). EAT and PAT were inversely correlated with whole-body insulin-stimulated glucose uptake (r = -0.68, P < 0.001) and with Matsuda Index (r = 0.99, P < 0.002). CONCLUSION Pioglitazone reduced EAT and PAT areas and improved left ventricular (LV) diastolic function in T2DM. EAT and PAT are inversely correlated (PAT less strongly) with LV diastolic function and both EAT and PAT are inversely correlated with measures of insulin sensitivity.
Collapse
Affiliation(s)
- Alexander J Moody
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX
| | | | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX
| | | | | | | | - Robert J Chilton
- Division of Cardiology, UTHSCSA and South Texas Veterans Health Care System, San Antonio, TX
| | - Patricia Iozzo
- Consiglio Nazionale delle Richerche, Pisa, Italy; Diabetes Division, UTHSCSA, Texas
| | - Amalia Gastaldelli
- Consiglio Nazionale delle Richerche, Pisa, Italy; Diabetes Division, UTHSCSA, Texas
| | | | - Ralph A. DeFronzo
- Diabetes Division, UTHSCSA
- Diabetes Institute, and South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
27
|
Giorgione V, Jansen G, Kitt J, Ghossein-Doha C, Leeson P, Thilaganathan B. Peripartum and Long-Term Maternal Cardiovascular Health After Preeclampsia. Hypertension 2023; 80:231-241. [PMID: 35904012 DOI: 10.1161/hypertensionaha.122.18730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is widespread acceptance of the increased prevalence of cardiovascular diseases occurring within 1 to 2 decades in women following a preeclamptic pregnancy. More recent evidence suggests that the deranged biochemical and echocardiographic findings in women do not resolve in the majority of preeclamptic women following giving birth. Many women continue to be hypertensive in the immediate postnatal period with some exhibiting occult signs of cardiac dysfunction. There is now promising evidence that with close monitoring and effective control of blood pressure control in the immediate postnatal period, women may have persistently lower blood pressures many years after stopping their medication. This review highlights the evidence that delivering effective medical care in the fourth trimester of pregnancy can improve the long-term cardiovascular health after a preeclamptic birth.
Collapse
Affiliation(s)
- Veronica Giorgione
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom (V.G., B.T.)
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (V.G., B.T.)
| | - Gwyneth Jansen
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands (G.J., C.G.-D.)
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, the Netherlands (G.J.)
| | - Jamie Kitt
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford' United Kingdom (J.K., P.L.)
| | - Chahinda Ghossein-Doha
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands (G.J., C.G.-D.)
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht' the Netherlands (C.G.-D.)
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford' United Kingdom (J.K., P.L.)
| | - Basky Thilaganathan
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom (V.G., B.T.)
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (V.G., B.T.)
| |
Collapse
|
28
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Dong X, Strudwick M, Wang WY, Borlaug BA, van der Geest RJ, Ng AC, Delgado V, Bax JJ, Ng AC. Impact of body mass index and diabetes on myocardial fat content, interstitial fibrosis and function. Int J Cardiovasc Imaging 2023; 39:379-390. [PMID: 36306044 PMCID: PMC9870836 DOI: 10.1007/s10554-022-02723-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE We hypothesize that both increased myocardial steatosis and interstitial fibrosis contributes to subclinical myocardial dysfunction in patients with increased body mass index and diabetes mellitus. BACKGROUND Increased body weight and diabetes mellitus are both individually associated with a higher incidence of heart failure with preserved ejection fraction. However, it is unclear how increased myocardial steatosis and interstitial fibrosis interact to influence myocardial composition and function. METHODS A total of 100 subjects (27 healthy lean volunteers, 21 healthy but overweight volunteers, and 52 asymptomatic overweight patients with diabetes) were prospectively recruited to measure left ventricular (LV) myocardial steatosis (LV-myoFat) and interstitial fibrosis (by extracellular volume [ECV]) using magnetic resonance imaging, and then used to determine their combined impact on LV global longitudinal strain (GLS) analysis by 2-dimensional (2D) speckle tracking echocardiography on the same day. RESULTS On multivariable analysis, both increased body mass index and diabetes were independently associated with increased LV-myoFat. In turn, increased LV-myoFat was independently associated with increased LV ECV. Both increased LV-myoFat and LV ECV were independently associated with impaired 2D LV GLS. CONCLUSION Patients with increased body weight and patients with diabetes display excessive myocardial steatosis, which is related to a greater burden of myocardial interstitial fibrosis. LV myocardial contractile function was determined by both the extent of myocardial steatosis and interstitial fibrosis, and was independent of increasing age. Further study is warranted to determine how weight loss and improved diabetes management can improve myocardial composition and function.
Collapse
Affiliation(s)
- Xin Dong
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Mark Strudwick
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - William Ys Wang
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
- Department of Cardiology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Austin Cc Ng
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Arnold Ct Ng
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
- Department of Cardiology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Warwick Farm, Australia
| |
Collapse
|
30
|
van Woerden G, van Veldhuisen DJ, Westenbrink BD, de Boer RA, Rienstra M, Gorter TM. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail 2022; 24:2238-2250. [PMID: 36394512 PMCID: PMC10100217 DOI: 10.1002/ejhf.2741] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity is very common in patients with heart failure with preserved ejection fraction (HFpEF) and it has been suggested that obesity plays an important role in the pathophysiology of this disease. While body mass index defines the presence of obesity, this measure provides limited information on visceral adiposity, which is probably more relevant in the pathophysiology of HFpEF. Epicardial adipose tissue is the visceral fat situated directly adjacent to the heart and recent data demonstrate that accumulation of epicardial adipose tissue is associated with the onset, symptomatology and outcome of HFpEF. However, the mechanisms by which epicardial adipose tissue may be involved in HFpEF remain unclear. It is also questioned whether epicardial adipose tissue may be a specific target for therapy for this disease. In the present review, we describe the physiology of epicardial adipose tissue and the pathophysiological transformation of epicardial adipose tissue in response to chronic inflammatory diseases, and we postulate conceptual mechanisms on how epicardial adipose tissue may be involved in HFpEF pathophysiology. Lastly, we outline potential treatment strategies, knowledge gaps and directions for further research.
Collapse
Affiliation(s)
- Gijs van Woerden
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas M Gorter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Bakkar NMZ, AlZaim I, El-Yazbi AF. Depot-specific adipose tissue modulation by SGLT2 inhibitors and GLP1 agonists mediates their cardioprotective effects in metabolic disease. Clin Sci (Lond) 2022; 136:1631-1651. [PMID: 36383188 DOI: 10.1042/cs20220404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 01/03/2025]
Abstract
Sodium-glucose transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 (GLP-1) receptor agonists are newer antidiabetic drug classes, which were recently shown to decrease cardiovascular (CV) morbidity and mortality in diabetic patients. CV benefits of these drugs could not be directly attributed to their blood glucose lowering capacity possibly implicating a pleotropic effect as a mediator of their impact on cardiovascular disease (CVD). Particularly, preclinical and clinical studies indicate that SGLT-2i(s) and GLP-1 receptor agonists are capable of differentially modulating distinct adipose pools reducing the accumulation of fat in some depots, promoting the healthy expansion of others, and/or enhancing their browning, leading to the suppression of the metabolically induced inflammatory processes. These changes are accompanied with improvements in markers of cardiac structure and injury, coronary and vascular endothelial healing and function, vascular remodeling, as well as reduction of atherogenesis. Here, through a summary of the available evidence, we bring forth our view that the observed CV benefit in response to SGLT-2i or GLP-1 agonists therapy might be driven by their ameliorative impact on adipose tissue inflammation.
Collapse
Affiliation(s)
- Nour-Mounira Z Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alamein, Egypt
| |
Collapse
|
32
|
Huang S, Shi K, Jiang L, Ren Y, Wang J, Yan WF, Qian WL, Li Y, Yang ZG. Adverse association of epicardial adipose tissue accumulation with cardiac function and atrioventricular coupling in postmenopausal women assessed by cardiac magnetic resonance imaging. Front Cardiovasc Med 2022; 9:1015983. [DOI: 10.3389/fcvm.2022.1015983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
BackgroundThis study aims to investigate the association of epicardial adipose tissue (EAT) accumulation with cardiac function and atrioventricular coupling in a cohort of postmenopausal women assessed by cardiac magnetic resonance imaging (CMR).Materials and methodsOverall, 283 postmenopausal women (mean age 61.5 ± 9.1 years) who underwent CMR examination were enrolled. Participants were classified into four groups by the quartile of EAT volume. EAT volume was quantified on short-axis cine stacks covering the entire epicardium. CMR-derived cardiac structure and function, including left atrial (LA)- volume, emptying fraction, deformation, and left ventricular (LV)- mass, volume, ejection fraction, and deformation, were compared among the four groups of graded EAT volume.ResultsLeft ventricular mass (LVM) and LV remodeling index were both increased in the group with the highest EAT volume, compared to those in the lowest quartile (p = 0.016 and p = 0.003). The LV global longitudinal strain (LV-GLS), circumferential strain (LV-GCS), and LA- reservoir strain (LA-RS), conduit strain (LA-CS), and booster strain (LA-BS), were all progressively decreased from the lowest quartile of EAT volume to the highest (all p < 0.05). Multivariable linear regression analyses showed that EAT was independently associated with LV-GLS, LA-RS, LA-CS, and LA-BS after adjusting for body mass index and other clinical factors.ConclusionEpicardial adipose tissue accumulation is independently associated with subclinical LV and LA function in postmenopausal women. These associations support the role of EAT in mediating deleterious effects on cardiac structure and function.
Collapse
|
33
|
Rye EE, Hungerford SL. Editorial for "Impact of Type 2 Diabetes Mellitus on Epicardial Adipose Tissue and Myocardial Microcirculation by Cardiovascular Magnetic Resonance in Postmenopausal Women". J Magn Reson Imaging 2022; 56:1414-1415. [PMID: 35347803 DOI: 10.1002/jmri.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eleanor E Rye
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Sara L Hungerford
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia.,Department of Cardiology, Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
34
|
Huang S, Li Y, Jiang L, Ren Y, Wang J, Shi K, Yan WF, Qian WL, Yang ZG. Impact of Type 2 Diabetes Mellitus on Epicardial Adipose Tissue and Myocardial Microcirculation by MRI in Postmenopausal Women. J Magn Reson Imaging 2022; 56:1404-1413. [PMID: 35179821 DOI: 10.1002/jmri.28121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) often occurs conjunctly with the menopausal transition in female patients. In addition, epicardial adipose tissue (EAT) has an unfavorable impact on the myocardium and coronary arteries under the influence of metabolic disorders. PURPOSE To investigate the impact of T2DM on EAT and myocardial microvascular function in postmenopausal women. STUDY TYPE Retrospective. POPULATION One-hundred sixty-one postmenopausal women divided into three groups: newly diagnosed (≤5 years) T2DM (n = 56, 58.6 ± 7.7 years), long-term (>5 years) T2DM (n = 57, 61.9 ± 7.9 years), and healthy controls (n = 48, 59.4 ± 7.4 years). FIELD STRENGTH/SEQUENCE 3.0 T; balanced steady-state free precession and inversion recovery prepared echo-planar sequences. ASSESSMENT EAT volume was quantified by delineating the epicardial border and the visceral layer of pericardium on the short-axis cine stacks. Perfusion parameters including upslope, maximum signal intensity (MaxSI) and time to maximum signal intensity (TTM) were derived from the first-pass perfusion signal intensity-time curves. STATISTICAL TESTS One-way analysis of variance, Pearson's and Spearman correlation, and multivariable linear regression. Two-sided P < 0.05 was considered statistically significant. RESULTS EAT volume was significantly increased in diabetic postmenopausal women compared to the controls (48.4 ± 13.4 mL/m2 [newly diagnosed T2DM] vs. 58.4 ± 17.3 mL/m2 [long-term T2DM] vs. 35.8 ± 12.3 mL/m2 [controls]). Regarding perfusion parameters, upslope and MaxSI were significantly reduced (2.6 ± 1.0 [newly diagnosed T2DM] vs. 2.1 ± 0.8 [long-term T2DM] vs. 3.6 ± 1.3 [controls]; and 21.4 ± 6.9 [newly diagnosed T2DM] vs. 18.7 ± 6.4 [long-term T2DM] vs. 28.4 ± 8.6 [controls]), whereas TTM was significantly increased in the T2DM groups compared to the control group (23.6 ± 8.7 [newly diagnosed T2DM] vs. 27.1 ± 9.4 [long-term T2DM] vs. 21.4 ± 6.0 [controls]). Multivariable analysis (adjusted coefficient of determination [R2 ] = 0.489) showed that EAT volume (β = -0.610) and menopausal age (β = 0.433) were independently correlated with decreased perfusion upslope. DATA CONCLUSION Diabetic postmenopausal women had significantly higher EAT volume and more impaired microcirculation compared to the controls. Increased EAT volume and earlier menopausal age were independently associated with microvascular dysfunction in these patients. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Sorimachi H, Obokata M, Omote K, Reddy YNV, Takahashi N, Koepp KE, Ng ACT, Rider OJ, Borlaug BA. Long-Term Changes in Cardiac Structure and Function Following Bariatric Surgery. J Am Coll Cardiol 2022; 80:1501-1512. [PMID: 36229085 PMCID: PMC9926898 DOI: 10.1016/j.jacc.2022.08.738] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Studies with short-term follow-up have demonstrated favorable effects of weight loss (WL) on the heart, but little information is available regarding long-term effects or effects of visceral fat reduction. OBJECTIVES The purpose of this study was to evaluate the effects of long-term WL following bariatric surgery on cardiac structure, function, ventricular interaction, and body composition, including epicardial adipose thickness and abdominal visceral adipose tissue (VAT). METHODS A total of 213 obese patients underwent echocardiography before and >180 days following bariatric surgery. Abdominal VAT area was measured by computed tomography in 52 of these patients. RESULTS After 5.3 years (IQR: 2.9-7.9 years), body mass index (BMI) decreased by 22%, with favorable reductions in blood pressure, fasting glucose, and left ventricular (LV) remodeling in the full sample. In the subgroup of patients with abdominal computed tomography, VAT area decreased by 30%. In all subjects, epicardial adipose thickness was reduced by 14% (both P < 0.0001) in tandem with reductions in ventricular interdependence. LV and right ventricular longitudinal strain improved following WL, but left atrial (LA) strain deteriorated, while LA volume and estimated LA pressures increased. In subgroup analysis, LV wall thickness and strain correlated more strongly with VAT than BMI at baseline, and reductions in LV mass following surgery were correlated with decreases in VAT, but not BMI. CONCLUSIONS In this observational study, weight loss following bariatric surgery was associated with epicardial fat reduction, reduced ventricular interaction, LV reverse remodeling, and improved longitudinal biventricular mechanics, but LA myopathy and hemodynamic congestion still progressed. Reduction in visceral fat was associated with favorable cardiac effects, suggesting this might be a key target of WL interventions.
Collapse
Affiliation(s)
- Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoki Takahashi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arnold C T Ng
- Department of Cardiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver J Rider
- OCMR, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
36
|
Huang S, Li Y, Shi K, Wang J, Jiang L, Gao Y, Yan WF, Yang ZG. Impact of Metabolic Syndrome on Left Ventricular Deformation and Myocardial Energetic Efficiency Compared Between Women and Men: An MRI Study. J Magn Reson Imaging 2022; 57:1743-1751. [PMID: 36196628 DOI: 10.1002/jmri.28455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic and hemodynamic alterations in metabolic syndrome (MetS) can cause a reduced myocardial energetic efficiency (MEE). Indexed MEE (MEEi), as a simple estimate of MEE, is emerging as a novel and useful imaging parameter. PURPOSE To investigate the impact of MetS on MEE and systolic myocardial strain and to assess any sex difference. STUDY TYPE Retrospective. POPULATION A total of 161 patients with MetS (female: n = 82, 52.2 ± 11.7 years; male: n = 79, 51.8 ± 10.6 years) and 77 healthy subjects (female: n = 46, 52.7 ± 8.2 years; male: n = 31, 54.1 ± 11.2 years). Patients with left ventricular (LV) ejection fraction <50% were excluded. FIELD STRENGTH/SEQUENCE A 3.0 T; balanced steady-state free precession sequence. ASSESSMENT LV volumes and mass (LVM) and global longitudinal strain (GLS) were obtained by MRI. Stroke volume (SV) divided by HR was used as a surrogate measure of MEE and normalized to LVM (MEEi). STATISTICAL TESTS Student's t-test or Mann-Whitney U-test; Multivariable linear regression (coefficient of determination, R2 ). P < 0.05 was considered statistically significant. RESULTS For both males and females, MEEi and GLS were lower in MetS patients than in the normal controls. Among MetS patients, men had significantly higher LVM (59.7 ± 13.4 g/m2 vs. 48.8 ± 11.3 g/m2 ) and significantly lower MEEi (0.68 ± 0.23 mL/g/s vs. 0.84 ± 0.23 mL/g/s) and GLS (-11.7% ± 2.8% vs. -13.9% ± 2.7%) than women. After adjustment for clinical variables, male gender (β = -0.291) was found to be inversely correlated with MEEi. Multivariable analysis showed that MEEi (β = 0.454) were independently associated with GLS (adjusted R2 = 0.454) after adjustment for clinical and other MRI parameters. DATA CONCLUSION MEEi was significantly impaired in MetS without overt systolic dysfunction. There was a sex difference regarding the cardiac alterations in MetS, with men having significantly lower MEEi and GLS and significantly higher LVM than women. Further, MEEi was independently associated with GLS. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
38
|
Relationship Between Epicardial Adipose Tissue and Biventricular Longitudinal Strain and Strain Rate in Patients with Type 2 Diabetes Mellitus. Acad Radiol 2022; 30:833-840. [PMID: 36115736 DOI: 10.1016/j.acra.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been reported to be increased in patients with type 2 diabetes mellitus (T2DM). EAT thickness may impact left ventricular (LV) diastolic function. However, the association between EAT and right ventricular (RV) function in T2DM is unclear. We hypothesized an association between EAT volume and biventricular longitudinal strain and strain rate in patients with T2DM. MATERIALS AND METHODS A total of 20 controls and 69 T2DM patients with preserved LV ejection fraction (EF) who underwent cardiac magnetic resonance (CMR) were included. Biventricular function was evaluated by CMR Tissue-Tracking derived strain analysis, including LV global peak systolic longitudinal strain (LVGLS), peak diastolic longitudinal strain rate (LVLSR), RVGLS and RVLSR. RESULTS Compared to controls, patients with T2DM had significantly higher EAT volumes with lower LVGLS, LVLSR, RVGLS and RVLSR (all p<0.05). EAT volume was significantly correlated with LVGLS, LVLSR, RVGLS and RVLSR in T2DM patients (r=-0.45, -0.39, -0.59, -0.50, all p<0.001). Multivariate linear regression analysis revealed that EAT volume was significantly associated with LVGLS (β=0.38, p=0.001), LVLSR (β=-0.35, p=0.003), RVGLS (β=0.64, p<0.001) and RVLSR (β=-0.43, p<0.001) independently of traditional risk factors in patients with T2DM. CONCLUSION Patients with T2DM had higher EAT levels and lower biventricular function than controls. EAT volume was independently associated with biventricular longitudinal strain and strain rate in T2DM patients.
Collapse
|
39
|
Preda A, Liberale L, Montecucco F. Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome. Heart Fail Rev 2022; 27:1883-1897. [PMID: 34796433 DOI: 10.1007/s10741-021-10195-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) includes different metabolic conditions (i.e. abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension) that concour in the development of cardiovascular disease and diabetes. MetS individuals often show adverse cardiac remodeling and myocardial dysfunction even in the absence of overt coronary artery disease or valvular affliction. Diastolic impairment and hypertrophy are hallmarks of MetS-related cardiac remodeling and represent the leading cause of heart failure with preserved ejection fraction (HFpEF). Altered cardiomyocyte function, increased neurohormonal tone, interstitial fibrosis, coronary microvascular dysfunction, and a myriad of metabolic abnormalities have all been implicated in the development and progression of adverse cardiac remodeling related to MetS. However, despite the enormous amount of literature produced on this argument, HF remains a leading cause of morbidity and mortality in such population. The early detection of initial adverse cardiac remodeling would enable the optimal implementation of effective therapies aiming at preventing the progression of the disease to the symptomatic phase. Beyond conventional imaging techniques, such as echocardiography, cardiac tomography, and magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this review, we summarize the pathophysiology of MetS-related cardiac remodeling and illustrate the relevance of state-of-the-art multimodality cardiac imaging to identify and quantify the degree of myocardial involvement, prognosticate long-term clinical outcome, and potentially guide therapeutic strategies.
Collapse
Affiliation(s)
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
40
|
Krishnan A, Sharma H, Yuan D, Trollope AF, Chilton L. The Role of Epicardial Adipose Tissue in the Development of Atrial Fibrillation, Coronary Artery Disease and Chronic Heart Failure in the Context of Obesity and Type 2 Diabetes Mellitus: A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9070217. [PMID: 35877579 PMCID: PMC9318726 DOI: 10.3390/jcdd9070217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an “outside-to-inside” mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Harman Sharma
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Daniel Yuan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| |
Collapse
|
41
|
Relation of Body Mass Index to Transthyretin Cardiac Amyloidosis Particularly in Black and Hispanic Patients (from the SCAN-MP Study). Am J Cardiol 2022; 177:116-120. [PMID: 35705430 DOI: 10.1016/j.amjcard.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Heart failure with preserved ejection fraction is a heterogeneous clinical syndrome that includes distinct subtypes with different pathophysiologies, genetics, and treatment. Distinguishing heart failure with preserved ejection fraction caused by transthyretin cardiac amyloidosis (ATTR-CA) is critical given its specific treatment. We analyzed a single-center retrospective cohort to determine the association of body mass index (BMI) with a composite of either ATTR-CA or the valine-to-isoleucine substitution (Val122Ile) variant genotype (ATTR-CA+Val122Ile). These BMI differences were prospectively evaluated in the multicenter Screening for Cardiac Amyloidosis using nuclear imaging for Minority Populations (SCAN-MP) study of Black and Hispanic patients with heart failure. The association of BMI with ATTR-CA+Val122Ile was compared by Wilcoxon rank sum analysis and combined with age, gender, and maximum left ventricle wall thickness in multivariable logistic regression. In the retrospective analysis (n = 469), ATTR-CA+Val122Ile was identified in n = 198 (40%), who had a lower median BMI (25.8 kg/m2, interquartile range [IQR] 23.4 to 28.9) than other patients (27.1 kg/m2, IQR 23.9 to 32.0) (p <0.001). In multivariable logistic regression, BMI <30 kg/m2 (odds ratio 2.6, 95% confidence interval 1.5 to 4.5) remained independently associated with ATTR-CA+Val122Ile with a greater association in Black and Hispanic patients (odds ratio 5.8, 95% confidence interval 1.7 to 19.6). In SCAN-MP (n = 201), 17 (8%) had either ATTR-CA (n = 10) or were Val122Ile carriers (n = 7) with negative pyrophosphate scans. BMI was lower (25.4 kg/m2 [IQR 24.3 to 28.2]) in ATTR-CA+Val122Ile patients than in non-amyloid patients (32.7 kg/m2 [28.3 to 38.6]) (p <0.001), a finding that persisted in multivariable analysis (p = 0.002). In conclusion, lower BMI is associated with ATTR-CA+Val122Ile in heart failure with increased left ventricle wall thickness, particularly in Black and Hispanic patients, and may aid in the identification of those benefiting from ATTR-CA evaluation.
Collapse
|
42
|
Ahmad FA, Metwalley KA, Mohamad IL. Association of Epicardial Fat with Diastolic and Vascular Functions in Children with Type 1 Diabetes. Pediatr Cardiol 2022; 43:999-1010. [PMID: 35088126 DOI: 10.1007/s00246-021-02811-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
We aimed to examine the relationship between epicardial fat thickness (EFT) measured by echocardiography and cardiovascular functional parameters in children with type 1 diabetes mellitus (T1DM). The study included 50 type 1 diabetic children and 50 healthy subjects matched by sex, age, and body mass index. In addition to laboratory tests, all participants underwent transthoracic echocardiography for EFT, cardiac dimensions and left ventricular functions, and ultrasonographic examination for brachial artery flow-mediated dilation (FMD) response and carotid intima-media thickness (CIMT). Multivariate linear regression was used to analyze the relationship between EFT and CIMT, FMD, lateral mitral E' velocity, and mitral E/E' ratio. EFT was significantly increased in diabetic children compared with controls (P < 0.001). In comparison with controls diabetic children had significantly increased mitral A, decreased lateral mitral E', decreased mitral E/A ratio, decreased lateral mitral E'/A' ratio, and increased mitral E/E' ratio (P < 0.001). FMD response was significantly lower in diabetic group versus controls (P < 0.001) and CIMT was significantly increased in diabetics versus controls (P = 0.03). EFT was negatively correlated with lateral mitral E' velocity (r = - 0.613, P < 0.001), positively correlated with mitral E/E' ratio (r = 0.60, P < 0.001), positively correlated with CIMT (r = 0.881, P < 0.001), and negatively correlated with FMD (r = - 0.533, P < 0.001). By multivariate regression analysis, the EFT was independently and positively associated with CIMT mean and E/E' mean and negatively associated with FMD mean and E' mean. The cut-off point for EFT as predictor of endothelial dysfunction was 6.95 mm. Our findings suggest that children with T1DM have subclinical LV diastolic and vascular endothelial dysfunctions associated with increased EFT.
Collapse
|
43
|
Lohr D, Thiele A, Stahnke M, Braun V, Smeir E, Spranger J, Brachs S, Klopfleisch R, Foryst-Ludwig A, Schreiber LM, Kintscher U, Beyhoff N. Assessment of Myocardial Microstructure in a Murine Model of Obesity-Related Cardiac Dysfunction by Diffusion Tensor Magnetic Resonance Imaging at 7T. Front Cardiovasc Med 2022; 9:839714. [PMID: 35449873 PMCID: PMC9016133 DOI: 10.3389/fcvm.2022.839714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
BackgroundObesity exerts multiple deleterious effects on the heart that may ultimately lead to cardiac failure. This study sought to characterize myocardial microstructure and function in an experimental model of obesity-related cardiac dysfunction.MethodsMale C57BL/6N mice were fed either a high-fat diet (HFD; 60 kcal% fat, n = 12) or standard control diet (9 kcal% fat, n = 10) for 15 weeks. At the end of the study period, cardiac function was assessed by ultra-high frequency echocardiography, and hearts were processed for further analyses. The three-dimensional myocardial microstructure was examined ex vivo at a spatial resolution of 100 × 100 × 100 μm3 by diffusion tensor magnetic resonance imaging (DT-MRI) at 7T. Myocardial deformation, diffusion metrics and fiber tract geometry were analyzed with respect to the different myocardial layers (subendocardium/subepicardium) and segments (base/mid-cavity/apex). Results were correlated with blood sample analyses, histopathology, and gene expression data.ResultsHFD feeding induced significantly increased body weight combined with a pronounced accumulation of visceral fat (body weight 42.3 ± 5.7 vs. 31.5 ± 2.2 g, body weight change 73.7 ± 14.8 vs. 31.1 ± 6.6%, both P < 0.001). Obese mice showed signs of diastolic dysfunction, whereas left-ventricular ejection fraction and fractional shortening remained unchanged (E/e’ 41.6 ± 16.6 vs. 24.8 ± 6.0, P < 0.01; isovolumic relaxation time 19 ± 4 vs. 14 ± 4 ms, P < 0.05). Additionally, global longitudinal strain was reduced in the HFD group (−15.1 ± 3.0 vs. −20.0 ± 4.6%, P = 0.01), which was mainly driven by an impairment in basal segments. However, histopathology and gene expression analyses revealed no myocardial fibrosis or differences in cardiomyocyte morphology. Mean diffusivity and eigenvalues of the diffusion tensor were lower in the basal subepicardium of obese mice as assessed by DT-MRI (P < 0.05). The three-dimensional fiber tract arrangement of the left ventricle (LV) remained preserved.ConclusionFifteen weeks of high-fat diet induced alterations in myocardial diffusion properties in mice, whereas no remodeling of the three-dimensional myofiber arrangement of the LV was observed. Obese mice showed reduced longitudinal strain and lower mean diffusivity predominantly in the left-ventricular base, and further investigation into the significance of this regional pattern is required.
Collapse
Affiliation(s)
- David Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Arne Thiele
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Max Stahnke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Vera Braun
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Elia Smeir
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Joachim Spranger
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
| | - Sebastian Brachs
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Laura M. Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Kintscher
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Niklas Beyhoff
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Campus Benjamin Franklin, Berlin, Germany
- *Correspondence: Niklas Beyhoff,
| |
Collapse
|
44
|
Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH. Diabetes Mellitus and Heart Failure With Preserved Ejection Fraction: Role of Obesity. Front Physiol 2022; 12:785879. [PMID: 35242044 PMCID: PMC8886215 DOI: 10.3389/fphys.2021.785879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure with preserved ejection fraction is a growing epidemic and accounts for half of all patients with heart failure. Increasing prevalence, morbidity, and clinical inertia have spurred a rethinking of the pathophysiology of heart failure with preserved ejection fraction. Unlike heart failure with reduced ejection fraction, heart failure with preserved ejection fraction has distinct clinical phenotypes. The obese-diabetic phenotype is the most often encountered phenotype in clinical practice and shares the greatest burden of morbidity and mortality. Left ventricular remodeling plays a major role in its pathophysiology. Understanding the interplay of obesity, diabetes mellitus, and inflammation in the pathophysiology of left ventricular remodeling may help in the discovery of new therapeutic targets to improve clinical outcomes in heart failure with preserved ejection fraction. Anti-diabetic agents like glucagon-like-peptide 1 analogs and sodium-glucose co-transporter 2 are promising therapeutic modalities for the obese-diabetic phenotype of heart failure with preserved ejection fraction and aggressive weight loss via lifestyle or bariatric surgery is still key to reverse adverse left ventricular remodeling. This review focuses on the obese-diabetic phenotype of heart failure with preserved ejection fraction highlighting the interaction between obesity, diabetes, and coronary microvascular dysfunction in the development and progression of left ventricular remodeling. Recent therapeutic advances are reviewed.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Tariq Thannoun
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| |
Collapse
|
45
|
Liu J, Li J, Pu H, He W, Zhou X, Tong N, Peng L. Cardiac remodeling and subclinical left ventricular dysfunction in adults with uncomplicated obesity: a cardiovascular magnetic resonance study. Quant Imaging Med Surg 2022; 12:2035-2050. [PMID: 35284291 PMCID: PMC8899959 DOI: 10.21037/qims-21-724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/26/2021] [Indexed: 07/30/2023]
Abstract
BACKGROUND Obesity often exists alongside comorbidities and increases the risk of heart failure and cardiovascular mortality. However, the specific effects of obesity on cardiac structure and function have not been clarified. This study set out to evaluate left ventricular (LV) geometric and functional changes using cardiovascular magnetic resonance imaging (CMR) in adults with uncomplicated obesity. METHODS Forty-eight patients with uncomplicated obesity [body mass index (BMI) mean ± SD: 29.8±2.1 kg/m2] and 25 healthy controls were included in this study. CMR was used to assess LV geometry, global systolic function, and strains, and to quantify epicardial adipose tissue (EAT). Body composition was measured by dual X-ray absorptiometry. RESULTS Compared with healthy controls, patients with obesity had increased LV size, mass, and myocardial thickness, and impaired myocardial contractility, with lower global radial, circumferential, and longitudinal peak strains (PS), and circumferential and longitudinal peak diastolic strain rates (PDSR; all P<0.05). Multivariable linear regression showed that BMI was independently associated with LV maximum myocardial thickness (LVMMT) (β=0.197, P=0.016). Visceral adipose tissue (VAT) was independently associated with LV global longitudinal PS (β=-2.684, P=0.001), and both longitudinal (β=-0.192, P=0.002) and circumferential (β=-0.165, P=0.014) PDSR. Homeostasis model assessment of insulin resistance (HOMA-IR) was mildly correlated with BMI (r=0.327) and body fat percentage (BF%) (r=0.295) in patients with obesity (all P<0.05). HOMA-IR was independently associated with LV global circumferential PS (β=-0.276, P=0.04) and PDSR (β=-0.036, P=0.026). CONCLUSIONS Extensive LV geometric remodeling and marked changes in cardiac strains were observed in adults with obesity. Tissue tracking with CMR can reveal subclinical impaired ventricular function with preserved LV ejection fraction in such patients. BMI was independently related to LV remodeling in obesity. HOMA-IR and VAT are potentially superior to BMI as predictors of subclinical dysfunction, assessed by strain, in obesity. TRIAL REGISTRY This study has been registered with the Chinese Clinical Trial Registry (ID: ChiCTR1900026476; Effect of lifestyle intervention on metabolism of obese patients based on smart phone software).
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Huaxia Pu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzhang He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Triposkiadis F, Xanthopoulos A, Starling RC, Iliodromitis E. Obesity, inflammation, and heart failure: links and misconceptions. Heart Fail Rev 2022; 27:407-418. [PMID: 33829388 DOI: 10.1007/s10741-021-10103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Obesity has been linked with heart failure (HF) with preserved left ventricular (LV) ejection fraction (HFpEF). This link has been attributed to obesity-induced metabolic and inflammatory disturbances leading to HFpEF. However, HF is a syndrome in which disease evolvement is associated with a dynamic unraveling of functional and structural changes leading to unique disease trajectories, creating a spectrum of phenotypes with overlapping distinct characteristics extending beyond the LV ejection fraction (LVEF). In this regard, despite quantitative differences between the two extremes (HFpEF and HF with reduced LVEF, HFrEF), there is important overlap between the phenotypes along the entire spectrum. In this paper, we describe the systemic pro-inflammatory state that is present throughout the HF spectrum and emphasize that obesity intertwines with HF beyond the LVEF construct.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Randall C Starling
- Heart, Vascular, and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, OH, Cleveland, USA
| | - Efstathios Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| |
Collapse
|
47
|
Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart 2022; 108:339-344. [PMID: 33985985 DOI: 10.1136/heartjnl-2020-318242] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 11/04/2022] Open
Abstract
Obesity is associated with the development of heart failure and is a major risk factor for heart failure with preserved ejection fraction (HFpEF). Epicardial adipose tissue (EAT) is a unique visceral fat in close proximity to the heart and is of particular interest to the study of cardiac disease. Small poorly differentiated adipocytes with altered lipid:water content are associated with a proinflammatory secretome and may contribute to the pathophysiology observed in HFpEF. Multimodality imaging approaches can be used to quantify EAT volume and characterise EAT composition. Current research studies remain unclear as to the magnitude of effect that EAT plays on myocardial dysfunction and further work using multimodality imaging techniques is ongoing. Pharmacological interventions, including glucagon-like peptide 1 receptor agonists and sodium-dependent glucose linked transporter 2 inhibitors have shown promise in attenuating the deleterious metabolic and inflammatory changes seen in EAT. Clinical studies are ongoing to explore whether these therapies exert their beneficial effects by modifying this unique adipose deposit.
Collapse
Affiliation(s)
- Sarah L Ayton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Alastair J Moss
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
48
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
49
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
50
|
Sarıkaya R, Şengül C, Kümet Ö, İmre G, Akbulut T, Oğuz M. Fragmented QRS in inferior leads is associated with non-alcholic fatty liver disease, body-mass index, and interventricular septum thickness in young men. Anatol J Cardiol 2022; 26:100-104. [PMID: 35190357 PMCID: PMC8878927 DOI: 10.5152/anatoljcardiol.2021.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVE Fragmented QRS (fQRS) has been shown to be related to coronary heart disease, heart failure, hypertension, cardiac arrhythmia, and metabolic syndrome. Although fQRS in lateral leads is shown to be associated with a poor outcome in patients with a known cardiac disease, the knowledge about the significance and prevalence of fQRS in inferior leads is scarce. This study aimed to investigate the prevalence and predictors of fQRS in inferior leads in healthy young men. METHODS A total of 1,155 men underwent electrocardiography (ECG), hepatic ultrasonography, and routine biochemical tests. A total of 210 eligible men with fQRS in inferior leads (group 1) and 770 eligible men without fQRS in inferior leads (group 2) were compared with each other in terms of clinical, demographic, and laboratory parameters. RESULTS The prevalence of fQRS in inferior leads was found to 21.4%. Body mass index (BMI), systolic blood pressure (BP), creatinine, and alanine aminotransferase levels; non-alcoholic fatty liver disease (NAFLD) percentage; and interventricular septum thickness (IVST) were significantly greater in group 1 than those in group 2. BMI, IVST, NAFLD, creatinine, ALT, and systolic BP were entered in a model of multiple regression analyses to predict fQRS, a dependent variable. NAFLD was the best independent predictor of fQRS (β=6.115, p=0.001). BMI (β=1.448, p=0.014) and IVST (β=1.058, p=0.029) were the other independent predictors of fQRS in inferior leads. CONCLUSION This study demonstrated the association of fQRS in inferior leads with NAFLD, BMI, and IVST in young men.
Collapse
Affiliation(s)
- Remzi Sarıkaya
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| | - Cihan Şengül
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| | - Ömer Kümet
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| | - Gürkan İmre
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| | - Tayyar Akbulut
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| | - Mustafa Oğuz
- Department of Cardiology, University of Health Sciences, Van Training and Research Hospital; Van-Turkey
| |
Collapse
|