1
|
Gong JH, Kim CS, Park J, Kang S, Jang Y, Kim MS, Chung HT, Joe Y, Yu R. Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression. Neurochem Res 2024; 50:44. [PMID: 39636503 PMCID: PMC11621137 DOI: 10.1007/s11064-024-04290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP+, where it was observed to counteract PA and MPTP/MPP+-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.
Collapse
Affiliation(s)
- Jeong Heon Gong
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Soeun Kang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yumi Jang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
| | - Rina Yu
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
2
|
Kong D, Huang Y, Song B, Zhang X, Yuan J. Novel Endoplasmic Reticulum-Targeted Luminescent Probe for Visualization of Carbon Monoxide in Drug-Induced Liver Injury. Anal Chem 2024; 96:18246-18253. [PMID: 39491487 DOI: 10.1021/acs.analchem.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Drug-induced liver injury (DILI) is a major hepatic dysfunction commonly caused by hepatotoxic drug overdose, resulting in a considerable number of fatalities worldwide. Recent studies have highlighted the regulatory and hepatoprotective effects of carbon monoxide (CO) during the liver injury process. However, precisely tracking the dynamic changes in the composition of CO in DILI is still a great challenge. In this work, leveraging the innovative "quencher-insertion" strategy, a unique endoplasmic reticulum (ER)-targetable lanthanide complex-based luminescence probe, ER-ANBTTA-Eu3+/Tb3+, has been developed for the selective and accurate monitoring of CO fluxes in live cells and laboratory animals. The new probe is composed of three covalently linked functional moieties: the terpyridine polyacid-Eu3+/Tb3+-mixed chelates as the long-lived luminophore, a p-toluenesulfonamide moiety as the ER-anchoring motif, and an allyloxy-nitrobenzyl ether moiety as the CO-specific recognition unit. Upon reaction with CO in the presence of Pd2+ ions, the Tsuji-Trost reaction leads to the cleavage of the allyloxy-nitrobenzyl group from the Eu3+/Tb3+-mixed chelates, which results in the restoration of Tb3+ emission at 538 nm and the attenuation of Eu3+ emission at 688 nm, leading to a dramatic increase of the I538/I688 ratio. In addition to the exceptional response sensitivity and selectivity toward CO, ER-ANBTTA-Eu3+/Tb3+ also exhibits the outstanding ER-locating capability, which allows the probe to be used for imaging of CO in the ER of live cells. Using this probe, combined with the time-gated luminescence imaging mode, the exogenous and endogenous CO in ER of live cells were monitored without the interference of background autofluorescence. Moreover, the upregulation of hepatic CO in DILI mice was successfully visualized. The results suggested the potential of ER-ANBTTA-Eu3+/Tb3+ for deeply exploring the functions of CO in DILI pathogenesis.
Collapse
Affiliation(s)
- Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xinyue Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
3
|
Wu Y, Chen X, Zeng Z, Chen B, Wang Z, Song Z, Xie H. Self-assembled carbon monoxide nanogenerators managing sepsis through scavenging multiple inflammatory mediators. Bioact Mater 2024; 39:595-611. [PMID: 38883313 PMCID: PMC11179263 DOI: 10.1016/j.bioactmat.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Wu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
4
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
6
|
Wang T, Ji M, Sun J. Identification and validation of an endoplasmic-reticulum-stress-related gene signature as an effective diagnostic marker of endometriosis. PeerJ 2024; 12:e17070. [PMID: 38549776 PMCID: PMC10977089 DOI: 10.7717/peerj.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 04/02/2024] Open
Abstract
Background Endometriosis is one of the most common benign gynecological diseases and is characterized by chronic pain and infertility. Endoplasmic reticulum (ER) stress is a cellular adaptive response that plays a pivotal role in many cellular processes, including malignant transformation. However, whether ER stress is involved in endometriosis remains largely unknown. Here, we aimed to explore the potential role of ER stress in endometriosis, as well as its diagnostic value. Methods We retrieved data from the Gene Expression Omnibus (GEO) database. Data from the GSE7305 and GSE23339 datasets were integrated into a merged dataset as the training cohort. Differentially expressed ER stress-related genes (DEG-ERs) were identified by integrating ER stress-related gene profiles downloaded from the GeneCards database with differentially expressed genes (DEGs) in the training cohort. Next, an ER stress-related gene signature was identified using LASSO regression analysis. The receiver operating characteristic curve was used to evaluate the discriminatory ability of the constructed model, which was further validated in the GSE51981 and GSE105764 datasets. Online databases were used to explore the possible regulatory mechanisms of the genes in the signature. Meanwhile, the CIBERSORT algorithm and Pearson correlation test were applied to analyze the association between the gene signature and immune infiltration. Finally, expression levels of the signature genes were further detected in clinical specimens using qRT-PCR and validated in the Turku endometriosis database. Results In total, 48 DEG-ERs were identified in the training cohort. Based on LASSO regression analysis, an eight-gene-based ER stress-related gene signature was constructed. This signature exhibited excellent diagnostic value in predicting endometriosis. Further analysis indicated that this signature was associated with a compromised ER stress state. In total, 12 miRNAs and 23 lncRNAs were identified that potentially regulate the expression of ESR1, PTGIS, HMOX1, and RSAD2. In addition, the ER stress-related gene signature indicated an immunosuppressive state in endometriosis. Finally, all eight genes showed consistent expression trends in both clinical samples and the Turku database compared with the training dataset. Conclusions Our work not only provides new insights into the impact of ER stress in endometriosis but also provides a novel biomarker with high clinical value.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji Medical University, Shanghai, Pudong New Area, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji Medical University, Shanghai, Pudong New Area, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji Medical University, Shanghai, Pudong New Area, China
| |
Collapse
|
7
|
Yang X, Mao Q, Wang B. On the Question of CO's Ability to Induce HO-1 Expression in Cell Culture: A Comparative Study Using Different CO Sources. ACS Chem Biol 2024; 19:725-735. [PMID: 38340055 PMCID: PMC10949199 DOI: 10.1021/acschembio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qiyue Mao
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
8
|
Zeng Y, Fan M, Zhou Q, Chen D, Jin T, Mu Z, Li L, Chen J, Qiu D, Zhang Y, Pan Y, Shen X, Cai X. Reactive Oxygen Species‐Activated CO Versatile Nanomedicine with Innate Gut Immune and Microbiome Remodeling Effects for Treating Inflammatory Bowel Disease. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202304381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractAbnormal activation of the gut mucosal immune system and a highly dysregulated gut microbiota play essential roles in the progression of inflammatory bowel disease (IBD). The clinical treatment of IBD remains highly challenging, with first‐line drugs showing limited efficacy and significant side effects. A reactive oxygen species (ROS)‐activated CO versatile nanomedicine (CMPs) capable of remodeling the gut immune‐microbiota microenvironment via potent anti‐oxidant, anti‐inflammatory, and antimicrobial effects is developed. CORM‐401‐loaded mannose‐modified peptide dendrimer nanogel: CMPs preferentially congregate on the surface of damaged colon mucosa after rectal administration and are subsequently internalized by activated immune cells. CORM‐401 can release numerous CO molecules in response to high ROS levels in cells and at the site of IBD, resulting in multiple therapeutic effects. In vitro and in vivo studies have demonstrated that CMPs scavenge ROS, suppress inflammatory responses, eliminate pathogens, and alleviate colitis in mouse models. RNA sequencing reveals that CMPs successfully remodel gut mucosal immune homeostasis by scavenging ROS, inhibiting NF‐κB/p38MAPK, activating PI3K‐Akt, and inhibiting HIF‐1‐induced glycolysis. 16S ribosomal RNA sequencing shows that CMPs can remodel the gut flora composition by restraining detrimental bacteria and augmenting beneficial bacteria. This study develops a promising and versatile nanomedicine for the management of IBD.
Collapse
Affiliation(s)
- Youyun Zeng
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Mengni Fan
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Qiang Zhou
- Ruian People's Hospital The Third Affiliated Hospital of Wenzhou Medical University Wenzhou 325016 China
| | - Dongfan Chen
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Ting Jin
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Zhixiang Mu
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Lin Li
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Jiale Chen
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Dongchao Qiu
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Yanmei Zhang
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Yihuai Pan
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Xinkun Shen
- Ruian People's Hospital The Third Affiliated Hospital of Wenzhou Medical University Wenzhou 325016 China
| | - Xiaojun Cai
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| |
Collapse
|
9
|
Li XK, Yang HJ, Du SH, Zhang B, Li LY, Li SN, Liu CC, Ma Y, Yu JB. 4-Octyl itaconate alleviates renal ischemia reperfusion injury by ameliorating endoplasmic reticulum stress via Nrf2 pathway. Exp Biol Med (Maywood) 2023; 248:2408-2420. [PMID: 38158612 PMCID: PMC10903237 DOI: 10.1177/15353702231214255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/03/2023] [Indexed: 01/03/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common clinical complication of multiple severe diseases. Owing to its high mortality and the lack of effective treatment, renal IRI is still an intractable problem for clinicians. Itaconate, which is a metabolite of cis-aconitate, can exert anti-inflammatory and antioxidant roles in many diseases. As a derivative of itaconate with high cell membrane permeability, 4-octyl itaconate (4-OI) could provide a protective effect for various diseases. However, the role of 4-OI in renal IRI is still unclear. Herein, we examined whether 4-OI afforded kidney protection through attenuating endoplasmic reticulum stress (ERS) via nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. To observe the effects of 4-OI on alleviating renal pathologic injury, improving renal dysfunction, decreasing inflammatory cytokines, and reducing oxidative stress, we utilized C57BL/6J mice with bilateral renal pedicle clamped and HK-2 cells with hypoxia/reoxygenation (H/R) exposure in our study. In addition, through western blot assay, we found 4-OI ameliorated renal IRI-induced ERS, and activated Nrf2 pathway. Moreover, Nrf2-knockout (KO) mice and Nrf2 knockdown HK-2 cells were used to validate the role of Nrf2 signaling pathway in 4-OI-mediated alleviation of ERS caused by renal IRI. We demonstrated that 4-OI relieved renal injury and suppressed ERS in wild-type mice, while the therapeutic role was not shown in Nrf2-KO mice. Similarly, 4-OI could exert cytoprotective effect and inhibit ERS in HK-2 cells after H/R, but not in Nrf2 knockdown cells. Our in vivo and in vitro studies revealed that 4-OI protected renal IRI through attenuating ERS via Nrf2 pathway.
Collapse
Affiliation(s)
- Xiang-Kun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hong-Juan Yang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shi-Han Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Bing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ling-Yu Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shao-Na Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Cui-Cui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yang Ma
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| |
Collapse
|
10
|
Sami DH, Soliman AS, Khowailed AA, Alruhaimi RS, Hassanein EHM, Kamel EM, Mahmoud AM. The protective effect of 7-hydroxycoumarin against cisplatin-induced liver injury is mediated via attenuation of oxidative stress and inflammation and upregulation of Nrf2/HO-1 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80181-80191. [PMID: 37291353 DOI: 10.1007/s11356-023-27879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapy against different solid cancers. However, the adverse effects, including hepatotoxicity, limit its clinical use. 7-hydroxycoumarin (7-HC) possesses antioxidant and hepatoprotective activities, but its protective effect against CIS hepatotoxicity has not been investigated. This study evaluated the effect of 7-HC on liver injury, oxidative stress (OS), and inflammation provoked by CIS. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 2 weeks followed by intraperitoneal injection of CIS (7 mg/kg) at day 15. CIS increased serum transaminases, alkaline phosphatase (ALP), and bilirubin and provoked tissue injury accompanied by elevated reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO). Liver nuclear factor (NF)-κB p65, inducible NO synthase (iNOS), pro-inflammatory cytokines, Bax, and caspase-3 were upregulated, and antioxidant defenses and Bcl-2 were decreased in CIS-treated rats, while 7-HC prevented liver injury and ameliorated OS, inflammatory and apoptosis markers. In addition, 7-HC enhanced nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase (HO)-1 in CIS-administered rats and in silico studies revealed its binding affinity toward HO-1. In conclusion, 7-HC protected against CIS hepatotoxicity by mitigating OS and inflammatory response and modulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Demiana H Sami
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman S Soliman
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Akef A Khowailed
- Physiology Department, Faculty of Medicine, Cairo University, Giza, 12613, Egypt
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 71524, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
11
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
12
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
13
|
Kang IS, Kim RI, Kim C. Carbon Monoxide Regulates Macrophage Differentiation and Polarization toward the M2 Phenotype through Upregulation of Heme Oxygenase 1. Cells 2021; 10:3444. [PMID: 34943953 PMCID: PMC8700076 DOI: 10.3390/cells10123444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon monoxide (CO) is generated by heme oxygenase (HO), and HO-1 is highly induced in monocytes and macrophages upon stimulation. Monocytes differentiate into macrophages, including pro-inflammatory (M1) and anti-inflammatory (M2) cells, in response to environmental signals. The present study investigated whether CO modulates macrophage differentiation and polarization, by applying the CO-releasing molecule-3 (CORM-3). Results showed that murine bone marrow cells are differentiated into macrophages by CORM-3 in the presence of macrophage colony-stimulating factor. CORM-3 increases expressions of macrophage markers, including F4/80 and CD11b, and alters the cell morphology into elongated spindle-shaped cells, which is a typical morphology of M2 cells. CORM-3 upregulates the expressions of genes and molecules involved in M2 polarization and M2 phenotype markers, such as STAT6, PPARγ, Ym1, Fizz1, arginase-1, and IL-10. However, exposure to CORM-3 inhibits the iNOS expression, suggesting that CO enhances macrophage differentiation and polarization toward M2. Increased HO-1 expression is observed in differentiated macrophages, and CORM-3 further increases this expression. Hemin, an HO-1 inducer, results in increased macrophage differentiation, whereas the HO-1 inhibitor zinc protoporphyrin IX inhibits differentiation. In addition, CORM-3 increases the proportion of macrophages in peritoneal exudate cells and enhances the expression of HO-1 and arginase-1 but inhibits iNOS. Taken together, these results suggest that the abundantly produced CO in activated macrophages enhances proliferation, differentiation, and polarization toward M2. It will probably help clear apoptotic cells, resolve inflammation, and promote wound healing and tissue remodeling.
Collapse
Affiliation(s)
- In-Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (I.-S.K.); (R.-I.K.)
| | - Rang-Ie Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (I.-S.K.); (R.-I.K.)
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (I.-S.K.); (R.-I.K.)
- BK21 Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Convergent Research Center for Metabolism and Immunoregulation, Inha University, Incheon 22212, Korea
| |
Collapse
|
14
|
Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol 2021; 9:702974. [PMID: 34595164 PMCID: PMC8476872 DOI: 10.3389/fcell.2021.702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and are central to sensing chemical perturbations that can lead to oxidative stress. The degree of stress is correlated with divergent phenotypes such as quiescence, cell death, or senescence. Each possible cell fate is relevant for a different aspect of endothelial function, and hence, the regulation of cell fate decisions is critically important in maintaining vascular health. This study examined the oxidative stress response (OSR) in human ECs at the boundary of cell survival and death through longitudinal measurements, including cellular, gene expression, and perturbation measurements. 0.5 mM hydrogen peroxide (HP) produced significant oxidative stress, placed the cell at this junction, and provided a model to study the effectors of cell fate. The use of systematic perturbations and high-throughput measurements provide insights into multiple regimes of the stress response. Using a systems approach, we decipher molecular mechanisms across these regimes. Significantly, our study shows that heme oxygenase-1 (HMOX1) acts as a gatekeeper of cell fate decisions. Specifically, HP treatment of HMOX1 knockdown cells reversed the gene expression of about 51% of 2,892 differentially expressed genes when treated with HP alone, affecting a variety of cellular processes, including anti-oxidant response, inflammation, DNA injury and repair, cell cycle and growth, mitochondrial stress, metabolic stress, and autophagy. Further analysis revealed that these switched genes were highly enriched in three spatial locations viz., cell surface, mitochondria, and nucleus. In particular, it revealed the novel roles of HMOX1 on cell surface receptors EGFR and IGFR, mitochondrial ETCs (MTND3, MTATP6), and epigenetic regulation through chromatin modifiers (KDM6A, RBBP5, and PPM1D) and long non-coding RNA (lncRNAs) in orchestrating the cell fate at the boundary of cell survival and death. These novel aspects suggest that HMOX1 can influence transcriptional and epigenetic modulations to orchestrate OSR affecting cell fate decisions.
Collapse
Affiliation(s)
- Sindhushree Raghunandan
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Eugene Ke
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, United States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
16
|
|
17
|
Carbon Monoxide Therapy Using Hybrid Carbon Monoxide-Releasing/Nrf2-Inducing Molecules through a Neuroprotective Lens. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carbon monoxide (CO) has long been known for its toxicity. However, in recent decades, new applications for CO as a therapeutic compound have been proposed, and multiple forms of CO therapy have since been developed and studied. Previous research has found that CO has a role as a gasotransmitter and promotes anti-inflammatory and antioxidant effects, making it an avenue of interest for medicine. Such effects are possible because of the Nrf2/HO1 pathway, which has become a target for therapy development because its activation also leads to CO release. Currently, different forms of treatment involving CO include inhaled CO (iCO), carbon monoxide-releasing molecules (CORMs), and hybrid carbon monoxide-releasing molecules (HYCOs). In this article, we review the progression of CO studies to develop possible therapies, the possible mechanisms involved in the effects of CO, and the current forms of therapy using CO.
Collapse
|
18
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
19
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Pethő D, Hendrik Z, Nagy A, Beke L, Patsalos A, Nagy L, Póliska S, Méhes G, Tóth C, Potor L, Eaton JW, Jacob HS, Balla G, Balla J, Gáll T. Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 2021; 11:10435. [PMID: 34001932 PMCID: PMC8129109 DOI: 10.1038/s41598-021-89713-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.
Collapse
|
21
|
Shamsollahi HR, Jahanbin B, Rafieian S, Yunesian M. Particulates induced lung inflammation and its consequences in the development of restrictive and obstructive lung diseases: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25035-25050. [PMID: 33779901 DOI: 10.1007/s11356-021-13559-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Particulate matters (PMs) are significant components of air pollution in the urban environment. PMs with aerodynamic diameter less than 2.5 μm (PM2.5) can penetrate to the alveolar area and introduce numerous compounds to the pneumocystis that can initiate inflammatory response. There are several questions about this exposure as follows: does PM2.5-induced inflammation lead to a specific disease? If yes, what is the form of the progressed disease? This systematic review was designed and conducted to respond to these questions. Four databases, including Web of Science, Scopus, PubMed, and Embase, were reviewed systematically to find the related articles. According to the included articles, the only available data on the inflammatory effects of PM2.5 comes from either in vitro or animal studies. Both types of studies have shown that the induced inflammation is type I and includes secretion of proinflammatory cytokines. The exposure duration of longer than 28 weeks was not observed in any of the reviewed studies. However, as there is not a specific antigenic component in the urban particulate matters and based on the available evidence, the antigen-presenting is not a common process in the inflammatory responses to PM2.5. Therefore, neither signaling to repair cells such as fibroblasts nor over-secretion of extracellular matrix (ECM) proteins can occur following PM2.5-induced inflammation. These pieces of evidence weaken the probability of the development of fibrotic diseases. On the other hand, permanent inflammation induces the destruction of ECM and alveolar walls by over-secretion of protease enzymes and therefore results in progressive obstructive effects.
Collapse
Affiliation(s)
- Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Rafieian
- General Thoracic Surgery Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11:biom11040589. [PMID: 33923744 PMCID: PMC8072688 DOI: 10.3390/biom11040589] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Collapse
|
23
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
24
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
25
|
Zhang Y, Tang Y, Kong X, Lin W. An endoplasmic reticulum targetable turn-on fluorescence probe for imaging application of carbon monoxide in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119150. [PMID: 33188972 DOI: 10.1016/j.saa.2020.119150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Carbon monoxide (CO) is a significant mediator in regulating endoplasmic reticulum (ER) stress, and its level may play a potential role in the treatment of vascular diseases combined with ER stress. In-situ visualization of CO in the ER helps to elucidate its physiological and pathological mechanistic behavior. Herein, a novel CO fluorescent probe (Na-CM-ER) with ER-targeting characteristics was structured. Na-CM-ER with naphthalimide as a fluorescent group, under the trigger of CO, an ICT (Intramolecular Charge Transfer) mechanism was constructed by converting a nitro group to an amino group and showed dazzling green fluorescence. Na-CM-ER exhibited satisfactory response speed, selectivity, photo-stability and sensitivity to CO in vitro. Furthermore, biological imaging experiments demonstrated that Na-CM-ER could monitor the changes of exogenous/endogenous CO in living cells and possess an ER-targeting property. To sum up, we hope that Na-CM-ER can be as a serviceable molecular tool for imaging CO in cellular ER.
Collapse
Affiliation(s)
- Yunyan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yonghe Tang
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
26
|
Wang T, Wang Y, Chen C, Ren A, Yu H, Zhao M. Effect of the heme oxygenase gene on mycelial growth and polysaccharide synthesis in Ganoderma lucidum. J Basic Microbiol 2021; 61:253-264. [PMID: 33543807 DOI: 10.1002/jobm.202000622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
The heme oxygenase gene has antioxidant and cytoprotective effects in organisms, but no related research has been conducted in Ganoderma lucidum. For the first time, we cloned the HMX1 gene in G. lucidum. The CDS is 1092 bp in length and encodes 363 amino acids. The HMX1 protein was prokaryotically expressed and purified, and the enzyme activity of the purified protein was measured. The value of Km was 0.699 μM, and Vm was 81.9 nmol BV h-1 nmol-1 protein. By constructing the silencing vector pAN7-dual-HMX1i, the transformants HMX1i1 and HMX1i2 were obtained. Compared with the wild-type (WT), the average growth rate of HMX1i1 and HMX1i2 decreased by 31% and 23%, respectively, and the mycelium biomass decreased by 53% and 48%, respectively. Compared with the WT, the extracellular polysaccharide content of HMX1i1 and HMX1i2 increased by 59% and 51%, and the intracellular polysaccharide content increased by 24% and 22%, respectively. These results indicate that the HMX1 gene affects mycelial growth and polysaccharide synthesis in G. lucidum.
Collapse
Affiliation(s)
- Ting Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Yihong Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Chen Chen
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Hanshou Yu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Ling K, Zhou W, Guo Y, Hu G, Chu J, Xie F, Li Y, Wang W. H 2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp Biol Med (Maywood) 2021; 246:226-239. [PMID: 32996350 PMCID: PMC7871122 DOI: 10.1177/1535370220961038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Restenosis after angioplasty of peripheral arteries is a clinical problem involving oxidative stress. Hydrogen sulfide (H2S) participates in oxidative stress regulation and activates nuclear factor erythroid 2-related factor 2 (Nrf2). This study investigated the effect of H2S and Nrf2 on restenosis-induced arterial injury. Using an in vivo rat model of restenosis, we investigated whether H2S inhibits restenosis after percutaneous transluminal angioplasty (PTA) and the oxidative stress-related mechanisms implicated therein. The involvement of Nrf2 was explored using Nrf2-shRNA. Neointimal formation and the deposition of elastic fibers were assessed histologically. Inflammatory cytokine secretion and the expression of proteins associated with oxidative stress and inflammation were evaluated. The artery of rats subjected to restenosis showed increased arterial intimal thickness, with prominent elastic fiber deposition. Sodium hydrosulfide (NaHS), an H2S donor, counteracted these changes in vivo. Restenosis caused a decrease in anti-oxidative stress signaling. This phenomenon was inhibited by NaHS, but Nrf2-shRNA counteracted the effects of NaHS. In terms of inflammation, inflammatory cytokines were upregulated, whereas NaHS suppressed the induced inflammatory reaction. Similarly, Nrf2 downregulation blocked the effect of NaHS. In vitro studies using aortic endothelial and vascular smooth muscle cells isolated from experimental animals showed consistent results as those of in vivo studies, and the participation of the nuclear factor-kappa B signaling pathway was demonstrated. Collectively, H2S played a role in regulating post-PTA restenosis by alleviating oxidative stress, modulating anti-oxidant defense, and targeting Nrf2-related pathways via nuclear factor-kappa B signaling.
Collapse
Affiliation(s)
- Ken Ling
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Chu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Xie
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
28
|
Cao Y, Smith W, Yan L, Kong L. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Curr Stem Cell Res Ther 2020; 15:4-10. [PMID: 30947674 DOI: 10.2174/1574888x14666190402100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
Collapse
Affiliation(s)
- Yang Cao
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States
| | - Liang Yan
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
29
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
30
|
Boonyong C, Vardhanabhuti N, Jianmongkol S. Modulation of non-steroidal anti-inflammatory drug-induced, ER stress-mediated apoptosis in Caco-2 cells by different polyphenolic antioxidants: a mechanistic study. J Pharm Pharmacol 2020; 72:1574-1584. [PMID: 32716561 DOI: 10.1111/jphp.13343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Direct scavenging of reactive oxygen species could not prevent ER stress-associated cytotoxicity of indomethacin or diclofenac in Caco-2 cells. This study investigated the effects of three polyphenolic antioxidants epigallocatechin gallate (EGCG), phyllanthin and hypophyllathin in non-steroidal anti-inflammatory drug-induced Caco-2 apoptosis. METHODS Cells were treated with ER stressors (indomethacin, diclofenac, tunicamycin or thapsigargin) and the polyphenols for up to 72 h. Cell viability, apoptosis and mitochondrial function were monitored by MTT, Hoechst 33342 and TMRE assays, respectively. Protein expression was measured by Western blot analysis. KEY FINDINGS Epigallocatechin gallate suppressed increases in p-PERK/p-eIF-2α/ATF-4/CHOP and p-IRE-1α/p-JNK1/2 expression levels in the cells treated with any of the ER stressors, leading to inhibition of apoptosis. In contrast, phyllanthin increased apoptosis in the cells subsequently exposed to either diclofenac, tunicamycin or thapsigargin, but not in the indomethacin-treated cells. The potentiation effect of phyllanthin seen with the three ER stressors was related to suppression of survival p-Nrf-2/HO-1 expression, resulting in increased activation of the eIF-2α/ATF-4/CHOP pathway. On the other hand, hypophyllanthin had no significant effect on the ER stressor-induced apoptosis. CONCLUSION Epigallocatechin gallate, phyllanthin and hypophyllanthin displayed different effects in the ER stress-mediated apoptosis, depending upon their interaction with the specific unfolded protein response signalling.
Collapse
Affiliation(s)
- Cherdsak Boonyong
- Inter-Department Program of Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nontima Vardhanabhuti
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
31
|
Yang PM, Cheng KC, Yuan SH, Wung BS. Carbon monoxide‑releasing molecules protect against blue light exposure and inflammation in retinal pigment epithelial cells. Int J Mol Med 2020; 46:1096-1106. [PMID: 32582966 PMCID: PMC7387094 DOI: 10.3892/ijmm.2020.4656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
The most common cause of vision loss among the elderly is age-related macular degeneration (AMD). The aim of the present study was to investigate the potential cytoprotective and anti-inflammatory effects of carbon monoxide-releasing molecules (CORMs), and their ability to activate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-related genes in human retinal pigment epithelium (RPE) cells, as well as the inhibition of endothelial cell migration. It was first determined that CORM2 and CORM3 suppressed blue light-induced cell damage. In addition, a decrease in the level of cleaved poly(ADP-ribose) polymerase 1 protein and dissipation of mitochondrial membrane potential were considered to reflect the anti-apoptotic activity of CORMs. Furthermore, CORM2 induced Nrf-2 activation and the expression of the Nrf2-related genes heme oxygenase-1 and glutamate-cysteine ligase. Pretreatment with CORM2 abolished the blue light-induced increase in oxidative stress, suggesting that CORM2-induced antioxidant activity was involved in the cytoprotection against blue light. It was also demonstrated that CORMs markedly suppressed tumor necrosis factor (TNF)α-induced intercellular adhesion molecule-1 expression. Moreover, it was further observed that CORMs exert their inhibitory effects through blocking nuclear factor-κB/p65 nuclear translocation and IκBα degradation in TNFα-treated RPE cells. It was observed that CORM2, but not CORM3, protected against oxidative stress-induced cell damage. CORMs abolished vascular endothelial growth factor-induced migration of endothelial cells. The findings of the present study demonstrated the cytoprotective, antioxidant and anti-inflammatory effects of CORMs on RPE cells and anti-angiogenic effects on endothelial cells, suggesting the potential clinical application of CORMs as anti-AMD agents.
Collapse
Affiliation(s)
- Po-Min Yang
- Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Municipal Hsiao‑kang Hospital, Kaohsiung 81267, Taiwan, R.O.C
| | - Shao-Ho Yuan
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60002, Taiwan, R.O.C
| | - Being-Sun Wung
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|
32
|
Zheng G, Zheng F, Luo Z, Ma H, Zheng D, Xiang G, Xu C, Zhou Y, Wu Y, Tian N, Wu Y, Zhang T, Ni W, Wang S, Xu H, Zhang X. CO-Releasing Molecule (CORM)-3 Ameliorates Spinal Cord-Blood Barrier Disruption Following Injury to the Spinal Cord. Front Pharmacol 2020; 11:761. [PMID: 32581781 PMCID: PMC7287126 DOI: 10.3389/fphar.2020.00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a clinical tough neurological problem without efficient cure currently. Blood-spinal cord barrier (BSCB) interruption is not only a crucial pathological feature for SCI process but is a possible target for future SCI treatments; however, few treatments have been developed to intervene BSCB. In the present study, we intravenously injected CO-releasing molecule3 (CORM-3), a classical exogenous CO donor, to the rats experiencing SCI and assessed its protection on BSCB integrity in rats. Our results demonstrated that the exogenous increasing of CO by CORM-3 blocked the tight junction (TJ) protein degeneration and neutrophils infiltration, subsequently suppressed the BSCB damage and improved the motor recovery after SCI. And we certified that the CO-induced down-regulation of MMP-9 expression and activity in neutrophil might be associated with the NF-κB signaling. Taken together, our study indicates that CO-releasing molecule (CORM)-3 ameliorates BSCB after spinal cord injury.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Fanghong Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Dongdong Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Wenzhou, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
33
|
Sun JL, Abd El-Aty AM, Jeong JH, Jung TW. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:967-985. [PMID: 32431178 DOI: 10.1142/s0192415x20500469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and endoplasmic reticulum (ER) stress have been documented to contribute to the development of atherosclerosis. Ginsenoside Rb2 has been reported to exhibit antidiabetic effects. However, the effects of Rb2 on atherosclerotic responses such as inflammation and ER stress in endothelial cells and monocytes remain unclear. In this study, the expression of inflammation and ER stress markers was determined using a Western blotting method. Concentrations of tumor necrosis factor alpha (TNF[Formula: see text]) and monocyte chemoattractant protein-1 (MCP-1) in culture media were assessed by enzyme-linked immunosorbent assay (ELISA) and apoptosis was evaluated by a cell viability assay and a caspase-3 activity measurement kit. We found that exposure of HUVECs and THP-1 monocytes to Rb2 attenuated inflammation and ER stress, resulting in amelioration of apoptosis and THP-1 cell adhesion to HUVECs under lipopolysaccharide (LPS) condition. Increased AMPK phosphorylation and heme oxygenase (HO)-1 expression, including GPR120 expression were observed in Rb2-treated HUVECs and THP-1 monocytes. Downregulation of both, AMPK phosphorylation and HO-1expression rescued these observed changes. Furthermore, GPR120 siRNA mitigated Rb2-induced AMPK phosphorylation. These results suggest that Rb2 inhibits LPS-mediated apoptosis and THP-1 cell adhesion to HUVECs by GPR120/AMPK/HO-1-associated attenuating inflammation and ER stress. Therefore, Rb2 can be used as a potential therapeutic molecule for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Park J, Kim J, Chen Y, Song HC, Chen Y, Zheng M, Surh YJ, Kim UH, Park JW, Joe Y, Chung HT. CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway. Free Radic Res 2020; 54:848-858. [PMID: 32228197 DOI: 10.1080/10715762.2019.1710142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is recognised as a key factor that can lead to cellular senescence and aging. Carbon monoxide (CO) is produced by haemoxygenase-1 (HO-1), which exerts cytoprotective effects in aging-related diseases, whereas the effect of CO on cellular senescence and aging has not been elucidated. In the current study, we clearly demonstrated that CO delays the process of cellular senescence and aging through regulation of miR-34a and Sirt1 expression. CO reduced H2O2-induced premature senescence in human diploid fibroblast WI-38 cells measured with SA-β-Gal-staining. Furthermore, CO significantly decreased the expression of senescence-associated secretory phenotype (SASP), including TNF-α IL-6, and PAI-1 and increased the transcriptional levels of antioxidant genes, such as HO-1 and NQO1. Moreover, CO apparently enhanced the expression of Sirt1 through down-regulation of miR-34a. Next, to determine whether Sirt1 mediates the inhibitory effect of CO on cellular senescence, we pre-treated WI-38 cells with the Sirt1 inhibitor Ex527 and a miR-34a mimic followed by the administration of H2O2 and evaluated the expression of SASP and antioxidant genes as well as ROS production. According to our results, Sirt1 is crucial for the antiaging and antioxidant effects of CO. Finally, CO prolonged the lifespan of Caenorhabditis elegans and delayed high-fat diet-induced liver aging. Taken together, these findings demonstrate that CO reduces cellular senescence and liver aging through the regulation of miR-34a and Sirt1.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jin Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yingqing Chen
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Department of Pharmacology, Dalian University Medical College, Dalian, China
| | - Hyun-Chul Song
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yubing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Min Zheng
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, China
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
35
|
Cai M, Hu JY, Liu BB, Li JJ, Li F, Lou S. The Molecular Mechanisms of Excessive Hippocampal Endoplasmic Reticulum Stress Depressing Cognition-related Proteins Expression and the Regulatory Effects of Nrf2. Neuroscience 2020; 431:152-165. [DOI: 10.1016/j.neuroscience.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
36
|
Chen Y, Park HJ, Park J, Song HC, Ryter SW, Surh YJ, Kim UH, Joe Y, Chung HT. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression. FASEB J 2019; 33:13905-13919. [PMID: 31645120 DOI: 10.1096/fj.201901258rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acetaminophen (APAP) is widely used as an antifebrile and analgesic drug at recommended doses, whereas an overdose of APAP can cause severe liver damage. The molecular mechanisms underlying APAP-induced liver damage remain incompletely understood. Carbon monoxide (CO), an end-product of heme oxygenase (HO)-1 activity, can confer anti-inflammatory and antiapoptotic properties in cellular models of toxicity via regulation of mitochondrial function. The objective of this study was to evaluate the effects of CO on APAP-induced hepatotoxicity and CO's relationship to regulation of endoplasmic reticulum (ER) stress and mitochondrial signaling using CO-releasing molecules or low concentrations of CO applied as pretreatment or posttreatment. Using genetic deletion or knockdown approaches in alpha mouse liver cells or primary hepatocytes, respectively, we investigated the role of HO-1 and the mitophagy regulator protein Parkin on APAP-induced expression of the ER stress-associated apoptosis regulator cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein homologous protein (CHOP). We found that CO induced Parkin expression in hepatocytes via the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2-α/activating transcription factor-4 signaling pathway. Additionally, CO gas inhalation significantly alleviated APAP-induced liver damage in vivo and correspondingly reduced serum alanine aminotransferase and aspartate aminotransferase levels as well as proinflammatory cytokines and reduced the expression of CHOP in liver tissues while dramatically increasing hepatic HO-1 and Parkin expression. We found that the protective effects of CO on APAP-induced liver damage were mediated by down-regulation of CHOP at a transcriptional and post-translational level via induction of HO-1 and Parkin, respectively, and associated with decreases in reactive oxygen species production and JNK phosphorylation. We conclude that CO may represent a promising therapeutic agent for APAP-induced liver injury.-Chen, Y., Park, H.-J., Park, J., Song, H.-C., Ryter, S. W., Surh, Y.-J., Kim, U.-H., Joe, Y., Chung, H. T. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression.
Collapse
Affiliation(s)
- Yingqing Chen
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea.,Department of Pharmacology, Dalian University Medical College, Dalian, China
| | - Hyeok-Jun Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyun-Chul Song
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
37
|
Leake A, Salem K, Madigan MC, Lee GR, Shukla A, Hong G, Zuckerbraun BS, Tzeng E. Systemic vasoprotection by inhaled carbon monoxide is mediated through prolonged alterations in monocyte/macrophage function. Nitric Oxide 2019; 94:36-47. [PMID: 31593762 DOI: 10.1016/j.niox.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) is anti-inflammatory and protective in models of disease. Its actions in vitro are short-lived but are sustained in vivo. We hypothesize that systemic CO can mediate prolonged phenotype changes in vivo, with a focus on macrophages (Mφs). Mφs isolated from CO treated rats responded to lipopolysaccharide (LPS) with increased IL6, IL10 and iNOS expression but decreased TNF. Conditioned media (CM) collected from peritoneal Mφs isolated from CO treated rats stimulated endothelial cell (EC) proliferation versus CM from Mφs from air treated rats. This effect was mediated by Mφ released VEGF and HMGB1. Inhaled CO reduced LPS induced Mφ M1 inflammatory phenotype for up to 5 days. Mitochondrial oxygen consumption in LPS treated Mφs from CO treated mice was preserved compared to LPS treated Mφs from control mice. Finally, transient reduction of inflammatory cells at the time of inhaled CO treatment eliminated the vasoprotective effect of CO in a rodent carotid injury model. Thus, inhaled CO induces a prolonged mixed phenotype change in Mφs, and potentially other inflammatory cells, that contribute to vasoprotection. These findings demonstrate the ability of inhaled CO to modify Mφs in a sustained manner to mediate its therapeutic actions, supporting the translational potential of inhaled CO.
Collapse
Affiliation(s)
- Andrew Leake
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Karim Salem
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Michael C Madigan
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ghee Rye Lee
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ankur Shukla
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Guiying Hong
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| | - Edith Tzeng
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. J Cell Physiol 2019; 234:14773-14782. [PMID: 30746697 DOI: 10.1002/jcp.28275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
When endoplasmic reticulum (ER) homeostasis is disrupted, known as ER stress (ERS), the ER generates an adaptive signaling pathway called the unfolded protein response to maintain the homeostasis of this organelle. However, if homeostasis is not restored, the ER initiates death signaling pathways, which contribute to the pathogenesis of various disorders. The activation of inflammatory mechanisms is also emerging as a crucial component of cardiovascular and metabolic disorders. Furthermore, the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has attracted more attention than others and is the best-characterized member of the NLR family of inflammasomes to date. ERS intersects with many different inflammatory pathways, particularly the NLRP3 inflammasome. In this review, we focus on the interactions between ERS and the NLRP3 inflammasome. The pharmacologic and nonpharmaceutical manipulation of these two processes may offer novel opportunities for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wei Hu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|
40
|
The Protective Role of Heme Oxygenase-1 in Atherosclerotic Diseases. Int J Mol Sci 2019; 20:ijms20153628. [PMID: 31344980 PMCID: PMC6695885 DOI: 10.3390/ijms20153628] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme to generate ferrous iron, carbon monoxide (CO), and biliverdin, which is subsequently converted to bilirubin. These products have anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-thrombotic properties. Although HO-1 is expressed at low levels in most tissues under basal conditions, it is highly inducible in response to various pathophysiological stresses/stimuli. HO-1 induction is thus thought to be an adaptive defense system that functions to protect cells and tissues against injury in many disease settings. In atherosclerosis, HO-1 may play a protective role against the progression of atherosclerosis, mainly due to the degradation of pro-oxidant heme, the generation of anti-oxidants biliverdin and bilirubin and the production of vasodilator CO. In animal models, a lack of HO-1 was shown to accelerate atherosclerosis, whereas HO-1 induction reduced atherosclerosis. It was also reported that HO-1 induction improved the cardiac function and postinfarction survival in animal models of heart failure or myocardial infarction. Recently, we and others examined blood HO-1 levels in patients with atherosclerotic diseases, e.g., coronary artery disease (CAD) and peripheral artery disease (PAD). Taken together, these findings to date support the notion that HO-1 plays a protective role against the progression of atherosclerotic diseases. This review summarizes the roles of HO-1 in atherosclerosis and focuses on the clinical studies that examined the relationships between HO-1 levels and atherosclerotic diseases.
Collapse
|
41
|
Salsalate ameliorates the atherosclerotic response through HO-1- and SIRT1-mediated suppression of ER stress and inflammation. Inflamm Res 2019; 68:655-663. [DOI: 10.1007/s00011-019-01248-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
|
42
|
Park J, Joe Y, Ryter SW, Surh YJ, Chung HT. Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism. Mol Cells 2019; 42:292-300. [PMID: 31091555 PMCID: PMC6530647 DOI: 10.14348/molcells.2019.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022] Open
Abstract
Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Stefan W. Ryter
- Joan and Sanford I. Weill Department of Medicine, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, NY 10065,
USA
| | - Young-Joon Surh
- Tumor microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08733,
Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
43
|
Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury. Neuroreport 2019; 29:661-677. [PMID: 29570500 PMCID: PMC5959262 DOI: 10.1097/wnr.0000000000001015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diffuse axonal injury (DAI) accounts for more than 50% of all traumatic brain injury. In response to the mechanical damage associated with DAI, the abnormal proteins produced in the neurons and axons, namely, β-APP and p-tau, induce endoplasmic reticulum (ER) stress. Curcumin, a major component extracted from the rhizome of Curcuma longa, has shown potent anti-inflammatory, antioxidant, anti-infection, and antitumor activity in previous studies. Moreover, curcumin is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2) and promotes its nuclear translocation. In this study, we evaluated the therapeutic potential of curcumin for the treatment of DAI and investigated the mechanisms underlying the protective effects of curcumin against neural cell death and axonal injury after DAI. Rats subjected to a model of DAI by head rotational acceleration were treated with vehicle or curcumin to evaluate the effect of curcumin on neuronal and axonal injury. We observed that curcumin (20 mg/kg intraperitoneal) administered 1 h after DAI induction alleviated the aggregation of p-tau and β-APP in neurons, reduced ER-stress-related cell apoptosis, and ameliorated neurological deficits. Further investigation showed that the protective effect of curcumin in DAI was mediated by the PERK/Nrf2 pathway. Curcumin promoted PERK phosphorylation, and then Nrf2 dissociated from Keap1 and was translocated to the nucleus, which activated ATF4, an important bZIP transcription factor that maintains intracellular homeostasis, but inhibited the CHOP, a hallmark of ER stress and ER-associated programmed cell death. In summary, we demonstrate for the first time that curcumin confers protection against abnormal proteins and neuronal apoptosis after DAI, that the process is mediated by strengthening of the unfolded protein response to overcome ER stress, and that the protective effect of curcumin against DAI is dependent on the activation of Nrf2.
Collapse
|
44
|
Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S, Wu Y, Xiang G, Xu C, Xu H, Tian N, Zhang X. Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 2019; 40:643-654. [PMID: 30612943 PMCID: PMC6412161 DOI: 10.1016/j.ebiom.2018.12.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Genetic overexpression or pharmacological activation of heme oxygenase (HO) are identified as potential therapeutic target for spinal cord injury (SCI); however, the role of carbon monoxide (CO), which is a major product of haem degenerated by HO, in SCI remains unknown. Applying hemin or chemicals which may regulate HO expression or activity to increase CO production are inadequate to elaborate the direct role of CO. Here, we assessed the effect of CO releasing molecule-3 (CORM-3), the classical donor of CO, in SCI and explained its possible protective mechanism. Methods Rat SCI model was performed with a vascular clip (30 g) compressing at T9 vertebral level for 1 min and CO was delivered immediately after SCI by CORM-3. The neurological deficits and neuron survival were assessed. Inflammasome and inositol-requiring enzyme 1 (IRE1) pathway were measured by western blot and immunofluorescence. For in vitro study, oxygen glucose deprivation (OGD) simulated the SCI-inflammasome change in cultured the primary neurons. Findings CORM-3 suppressed inflammasome signaling and pyroptosis occurrence, which consequently alleviated neuron death and improved motor functional recovery following SCI. As a pivotal sensor involving in endoplasmic reticulum stress-medicated inflammasome signaling, IRE1 and its downstream X-box binding protein 1 (XBP1) were activated in SCI tissues as well as in OGD neurons; while inhibition of IRE1 by STF-083010 in SCI rats or by si-RNA in OGD neurons suppressed inflammasome signaling and pyroptosis. Interestingly, the SCI/OGD-stimulated IRE1 activation was attenuated by CORM-3 treatment. Interpretations CO may alleviate neuron death and improve motor functional recovery in SCI through IRE1 regulation, and administration of CO could be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Yu Zhan
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Fanghong Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Zhejiang Province, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
45
|
Abdulle AE, van Goor H, Mulder DJ. Hydrogen Sulfide: A Therapeutic Option in Systemic Sclerosis. Int J Mol Sci 2018; 19:E4121. [PMID: 30572591 PMCID: PMC6320961 DOI: 10.3390/ijms19124121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a lethal disease that is characterized by auto-immunity, vascular injury, and progressive fibrosis of multiple organ systems. Despite the fact that the exact etiology of SSc remains unknown, oxidative stress has been associated with a large range of SSc-related complications. In addition to the well-known detrimental properties of reactive oxygen species (ROS), gasotransmitters (e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S)) are also thought to play an important role in SSc. Accordingly, the diverse physiologic actions of NO and CO and their role in SSc have been previously studied. Recently, multiple studies have also shown the importance of the third gasotransmitter H₂S in both vascular physiology and pathophysiology. Interestingly, homocysteine (which is converted into H₂S through the transsulfuration pathway) is often found to be elevated in SSc patients; suggesting defects in the transsulfuration pathway. Hydrogen sulfide, which is known to have several effects, including a strong antioxidant and vasodilator effect, could potentially play a prominent role in the initiation and progression of vasculopathy. A better understanding of the actions of gasotransmitters, like H₂S, in the development of SSc-related vasculopathy, could help to create early interventions to attenuate the disease course. This paper will review the role of H₂S in vascular (patho-)physiology and potential disturbances in SSc. Moreover, current data from experimental animal studies will be reviewed. Lastly, we will evaluate potential interventional strategies.
Collapse
Affiliation(s)
- Amaal Eman Abdulle
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Douwe J Mulder
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
46
|
Kim HJ, Joe Y, Rah SY, Kim SK, Park SU, Park J, Kim J, Ryu J, Cho GJ, Surh YJ, Ryter SW, Kim UH, Chung HT. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury. Cell Death Dis 2018; 9:1060. [PMID: 30333475 PMCID: PMC6193007 DOI: 10.1038/s41419-018-1112-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) can confer protection against cellular stress, whereas the potential involvement of autophagy and lysosomal biogenesis remains incompletely understood. We demonstrate here that the activation of protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) with CO increased the nuclear translocation of transcription factor EB (TFEB). PERK activation by CO increased intracellular Ca2+ concentration and the phosphatase activity of calcineurin against TFEB. Moreover, we found that in the deficiency of TFEB, CO not only failed to recruit Parkin to the mitochondria but also failed to increase expression of lysosomal genes such as Lamp1, CathB, and TPP1. Therefore, we suggest that CO increases mitophagy through TFEB nuclear translocation by PERK-calcinuerin activation. In addition, the inhibition of TFEB with siRNA against TFEB abrogated the increase of mtDNA with CO, markers of mitochondrial biogenesis such as PGC1α, NRF1, and TFAM, and the mitochondrial proteins COX II, COX IV, and cytochrome c. To investigate the effects of CO on mitochondrial homeostasis in vivo, mice were treated with lipopolysaccharide (LPS)/d-galactosamine (D-GalN). CO inhalation reduced liver injury after challenge with LPS/GalN. Furthermore, CO inhalation increased TFEB activation, mitophagy and mitochondrial biogenesis in mice treated with LPS/GalN. Our findings describe novel mechanisms underlying CO-dependent cytoprotection in hepatocytes and liver tissue via activation of TFEB-dependent mitophagy and associated induction of both lysosomal and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - So-Young Rah
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seul-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - Se-Ung Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | | | | | - Jinhyun Ryu
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, JinJu, 660-701, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, JinJu, 660-701, Republic of Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea.
| |
Collapse
|
47
|
Oral carbon monoxide therapy in murine sickle cell disease: Beneficial effects on vaso-occlusion, inflammation and anemia. PLoS One 2018; 13:e0205194. [PMID: 30308028 PMCID: PMC6181332 DOI: 10.1371/journal.pone.0205194] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023] Open
Abstract
Carbon monoxide (CO) at low, non-toxic concentrations has been previously demonstrated to exert anti-inflammatory protection in murine models of sickle cell disease (SCD). However CO delivery by inhalation, CO-hemoglobin infusion or CO-releasing molecules presents problems for daily CO administration. Oral administration of a CO-saturated liquid avoids many of these issues and potentially provides a platform for self-administration to SCD patients. To test if orally-delivered CO could modulate SCD vaso-occlusion and inflammation, a liquid CO formulation (HBI-002) was administered by gavage (10 ml/kg) once-daily to NY1DD and Townes-SS transgenic mouse models of SCD. Baseline CO-hemoglobin (CO-Hb) levels were 1.6% and 1.8% in NY1DD and Townes-SS sickle mice and 0.6% in Townes-AS control mice. CO-Hb levels reached 5.4%, 4.7% and 3.0% within 5 minutes in NY1DD, SS and AS mice respectively after gavage with HBI-002. After ten treatments, each once-daily, hemoglobin levels rose from 5.3g/dL in vehicle-treated Townes-SS mice to 6.3g/dL in HBI-002-treated. Similarly, red blood cell (RBC) counts rose from 2.36 x 106/μL in vehicle-treated SS mice to 2.89 x 106/μL in HBI-002-treated mice. In concordance with these findings, hematocrits rose from 26.3% in vehicle-treated mice to 30.0% in HBI-002-treated mice. Reticulocyte counts were not significantly different between vehicle and HBI-002-treated SS mice implying less hemolysis and not an increase in RBC production. White blood cell counts decreased from 29.1 x 103/μL in vehicle-treated versus 20.3 x 103/μL in HBI-002-treated SS mice. Townes-SS mice treated with HBI-002 had markedly increased Nrf2 and HO-1 expression and decreased NF-κB activation compared to vehicle-treated mice. These anti-inflammatory effects were examined for the ability of HBI-002 (administered orally once-daily for up to 5 days) to inhibit vaso-occlusion induced by hypoxia-reoxygenation. In NY1DD and Townes-SS sickle mice, HBI-002 decreased microvascular stasis in a duration-dependent manner. Collectively, these findings support HBI-002 as a useful anti-inflammatory agent to treat SCD and warrants further development as a therapeutic.
Collapse
|
48
|
Uddin MJ, Pak ES, Ha H. Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:567-575. [PMID: 30181703 PMCID: PMC6115348 DOI: 10.4196/kjpp.2018.22.5.567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
49
|
Ben Hamda C, Sangeda R, Mwita L, Meintjes A, Nkya S, Panji S, Mulder N, Guizani-Tabbane L, Benkahla A, Makani J, Ghedira K, H3ABioNet Consortium. A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study. PLoS One 2018; 13:e0199461. [PMID: 29979707 PMCID: PMC6034806 DOI: 10.1371/journal.pone.0199461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
A chronic inflammatory state to a large extent explains sickle cell disease (SCD) pathophysiology. Nonetheless, the principal dysregulated factors affecting this major pathway and their mechanisms of action still have to be fully identified and elucidated. Integrating gene expression and genome-wide association study (GWAS) data analysis represents a novel approach to refining the identification of key mediators and functions in complex diseases. Here, we performed gene expression meta-analysis of five independent publicly available microarray datasets related to homozygous SS patients with SCD to identify a consensus SCD transcriptomic profile. The meta-analysis conducted using the MetaDE R package based on combining p values (maxP approach) identified 335 differentially expressed genes (DEGs; 224 upregulated and 111 downregulated). Functional gene set enrichment revealed the importance of several metabolic pathways, of innate immune responses, erythrocyte development, and hemostasis pathways. Advanced analyses of GWAS data generated within the framework of this study by means of the atSNP R package and SIFT tool identified 60 regulatory single-nucleotide polymorphisms (rSNPs) occurring in the promoter of 20 DEGs and a deleterious SNP, affecting CAMKK2 protein function. This novel database of candidate genes, transcription factors, and rSNPs associated with SCD provides new markers that may help to identify new therapeutic targets.
Collapse
Affiliation(s)
- Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, Jarzouna, University of Carthage, Tunisia
- * E-mail: (KG); (CBH)
| | - Raphael Sangeda
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Liberata Mwita
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Siana Nkya
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sumir Panji
- University of Cape Town, Cape Town, South Africa
| | | | - Lamia Guizani-Tabbane
- University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Julie Makani
- Faculty of Science of Bizerte, Jarzouna, University of Carthage, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- * E-mail: (KG); (CBH)
| | | |
Collapse
|
50
|
Metabolic signaling functions of the heme oxygenase/CO system in metabolic diseases. Cell Mol Immunol 2018; 15:1085-1087. [PMID: 29807990 DOI: 10.1038/s41423-018-0045-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
|