1
|
Tian Y, Zhang J, Huang C, Ma Y, Sun Y, Zhang C, Yang Z, Wang W, Li W, Wang J, Li R, Wu J, Huang Y, Hu Y, Yang J. Ambient polycyclic aromatic hydrocarbons and cardiovascular disease in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137948. [PMID: 40117776 DOI: 10.1016/j.jhazmat.2025.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a prominent category of ambient air pollutants worldwide, but our understanding of their potential health effects at ambient concentrations is severely limited. Our goal was to investigate the relation between ambient PAHs and daily hospitalizations for cardiovascular disease and explore its potential mechanism. This research included both observational and experimental studies. For population-based study, we collected data on daily hospitalizations for cardiovascular events in 184 major Chinese cities, which cover a population of 280 million individuals, for period of 2014-2017. We utilized a time-series quasi-Poisson regression model to assess the city-specific relations between PAHs and hospitalizations, and then employed a random-effects meta-analysis to aggregate the effect estimates across the cities. We also employed meta-regression models and stratified analyses to explore possible effect modifiers. For animal study, mice were exposed to varying doses of PAHs via tracheal instillation to evaluate the cardiac damage induced by PAHs. Potential mechanisms were elucidated through transcriptomic and proteomic sequencing. On the national scale, each interquartile range (IQR) increase in PAHs concentrations at 0-7 days was related to a 5.18 % (3.27 %-7.12 %) increase in hospital admissions for cardiovascular disease, 5.72 % (3.83 %-7.65 %) for ischemic heart disease, and 6.08 % (3.37 %-8.87 %) for ischemic stroke. The cardiovascular impacts of PAHs remained even after controlling for PM2.5. The associations were more pronounced in cities with lower socioeconomic level, or higher temperatures and relative humidity, as well as in subpopulations with elder age (P < 0.05). We also found consistent associations between each of the seven individual PAHs and cardiovascular outcomes. In animal models, PAHs exposure induces cardiac injury via inflammation and oxidative stress, potentially linked to the PI3K/AKT and MAPK signaling pathways. This nationwide study indicated that ambient PAHs could represent a distinct risk factor for cardiovascular disease. They may contribute to cardiac damage through the regulation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunping Sun
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chengzhi Zhang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zishu Yang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wei Wang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wenqiang Li
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jiaojiao Wang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Ruonan Li
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jingyi Wu
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yifan Huang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, China.
| | - Jian Yang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
2
|
Seneviratne AN, Miller MR. Air pollution and atherosclerosis. Atherosclerosis 2025; 406:119240. [PMID: 40411956 DOI: 10.1016/j.atherosclerosis.2025.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Air pollution is associated with considerable cardiovascular mortality and morbidity. The vascular disease atherosclerosis underlies many cardiovascular conditions, with atherosclerotic plaque rupture being a trigger for stroke and myocardial infarction. The acute and chronic effects of air pollution have the potential to exacerbate many different facets of atherosclerosis. This review provides an overview of how air pollution promotes the development of atherosclerosis. The review summaries the epidemiological evidence between exposure to air pollution and morphological measures of atherosclerosis such as carotid intimal media thickness, coronary artery calcification and aortic artery calcification, before summarising the biological mechanisms by which air pollution promotes atherosclerosis at the different stages of disease progression. We offer our perspective of the weight of evidence between air pollution to atherosclerosis and make recommendations for future research to advance this field. Given the ubiquity of air pollution exposure, we stress the need for urgency in efforts to tackle air pollution and emphasise the potential health gains from minimising the effects of air pollutants on this common and often fatal cardiovascular pathology.
Collapse
Affiliation(s)
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Seneviratne AN, Majumdar A, Surendranath K, Miller MR. Environmental modulators of vascular physiology and inflammation. Exp Physiol 2025. [PMID: 40349311 DOI: 10.1113/ep092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Environmental factors play a crucial role in modulating vascular inflammation, contributing significantly to the development of atherosclerosis and cardiovascular disease. This review synthesizes current evidence on how various environmental exposures influence vascular function and inflammation, with a focus on pollutants such as particulate matter and chemical toxins like bisphenols and per- and polyfluoroalkyl substances. These environmental stressors can trigger oxidative stress, chronic inflammation and vascular dysfunction, potentially accelerating the progression of atherosclerosis. We also explore the protective effects of natural compounds and exposure to green spaces in dampening inflammation and reducing cardiovascular risk. By examining the complex interplay between traditional risk factors and environmental exposures, this work highlights the need for comprehensive public health strategies that address both individual lifestyle factors and broader environmental determinants of cardiovascular health. We underscore the importance of further research to elucidate the precise cellular and molecular mechanisms by which environmental factors influence vascular function, with the aim of developing targeted interventions to mitigate their harmful effects and promote cardiovascular well-being.
Collapse
Affiliation(s)
- Anusha N Seneviratne
- Department of Health Studies, Royal Holloway University of London, Egham, Surrey, UK
| | - Anne Majumdar
- Department of Health Studies, Royal Holloway University of London, Egham, Surrey, UK
| | - Kalpana Surendranath
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, London, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Grifoni D, Bustaffa E, Sabatino L, Calastrini F, Minichilli F, Gaggini M, Berti S, Vassalle C. The Dark Triad of Particulate Matter, Oxidative Stress and Coronary Artery Disease: What About the Antioxidant Therapeutic Potential. Antioxidants (Basel) 2025; 14:572. [PMID: 40427454 PMCID: PMC12108261 DOI: 10.3390/antiox14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Particulate matter (PM) is a complex mixture of particles with different adverse effects on health, especially on the cardiovascular (CV) risk and disease (e.g., increased risk of total and CV mortality, ischemic heart disease, heart failure, stroke, hypertension, dyslipidemia and type 2 diabetes). Since oxidative stress (OS) and inflammation are the main key mechanisms by which PM exerted its biological effects on health, several oxidative and inflammatory-related biomarkers have been measured and associated with PM; abnormalities in these parameters in relation to PM highlight the key role of this relationship in terms of adverse health effects, including CV conditions. Antioxidant strategies might prevent/reverse, almost partly, CV effects related to PM exposure, by addressing OS and inflammation, although the clinical gain of these interventional tools is not yet clearly demonstrated. This review aims to summarize PM source and composition, discussing OS and inflammatory events associated with environmental PM exposure as key mechanistic determinants of CV risk and acute event precipitation. Moreover, the modifying potential of antioxidants, especially in subjects more susceptible to the adverse effects of air pollution and/or more highly exposed, will be discussed as a promising research area beyond conventional strategies actually available to prevent the harmful effects of PM (e.g., reduction of pollution sources and population exposure, assessment of air quality standards) in order to better face this dark triad composed of PM, OS and CV disease.
Collapse
Affiliation(s)
- Daniele Grifoni
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (D.G.); (F.C.)
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elisa Bustaffa
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.B.); (L.S.); (F.M.); (M.G.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.B.); (L.S.); (F.M.); (M.G.)
| | - Francesca Calastrini
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (D.G.); (F.C.)
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Fabrizio Minichilli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.B.); (L.S.); (F.M.); (M.G.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.B.); (L.S.); (F.M.); (M.G.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G Monasterio, Ospedale del Cuore “Gaetano Pasquinucci”, Via Aurelia Sud, 54100 Massa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
5
|
Dong S, Braun D, Wu X, Yitshak-Sade M, Blacker D, Kioumourtzoglou MA, Schwartz J, Mork D, Dominici F, Zanobetti A. The impacts of air pollution on mortality and hospital readmission among Medicare beneficiaries with Alzheimer's disease and Alzheimer's disease-related dementias: a national retrospective cohort study in the USA. Lancet Planet Health 2025; 9:e114-e123. [PMID: 39986315 PMCID: PMC11970897 DOI: 10.1016/s2542-5196(25)00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Alzheimer's disease and Alzheimer's disease-related dementias (AD/ADRD) are prevalent neurodegenerative disorders, posing a critical worldwide public health challenge. Ambient air pollution has been identified as a potential risk factor for AD progression based on toxicological and epidemiological studies. We aimed to evaluate the impacts of air pollution-including fine particulate matter (PM2·5), nitrogen dioxide (NO2), summer ozone (O3), and oxidant-on readmission or death among Medicare enrollees previously hospitalised with an AD/ADRD diagnosis code. METHODS We constructed a population-based nationwide retrospective cohort including all Medicare fee-for-service beneficiaries (aged ≥65 years) in the contiguous USA (2000-16) hospitalised with AD/ADRD, and followed them up from the year after their first hospitalisation until (1) year of death (mortality cohort) and (2) year of second hospitalisation for any cause (readmission cohort). We calculated annual average PM2·5, NO2, summer O3, and oxidant concentrations for each individual at their residential ZIP code in each year after their first hospitalisation with AD/ADRD. We applied Cox proportional hazard models for the mortality and readmission cohorts stratifying on individual risk factors and adjusting for socioeconomic status, seasonal temperatures, and relative humidity. FINDINGS Our cohort consisted of 5 544 118 individuals, of whom 4 543 759 (82·0%) died and 3 880 894 (70·0%) were readmitted to the hospital during the study period. The average follow-up times were 3·34 years (SD 2·60) for the mortality cohort and 1·98 years (SD 1·65) for the readmission cohort. In both the mortality and readmission cohorts we found significant associations with each pollutant. For an IQR increase in NO2, we found a hazard ratio (HR) for mortality of 1·012 (95% CI 1·009-1·015) and an HR for readmission of 1·110 (1·104-1·117). In the readmission cohort, we found an HR of 1·084 (1·079-1·089) for an IQR increase (3·87 μg/m3) in PM2·5. The results slightly decreased in multi-pollutant models. The results of effect modification for mortality and readmission varied by pollutant, but higher risks were found among Black males and among those eligible for Medicaid in general. INTERPRETATION We provide new evidence that among a susceptible population with previous AD/ADRD-related hospitalisations, annual air pollution exposure since first hospitalisation is associated with risk of readmission and death. FUNDING National Institute on Aging.
Collapse
Affiliation(s)
- Shuxin Dong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiao Wu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, MA, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Faruqui N, Orell S, Dondi C, Leni Z, Kalbermatter DM, Gefors L, Rissler J, Vasilatou K, Mudway IS, Kåredal M, Shaw M, Larsson-Callerfelt AK. Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells. Int J Mol Sci 2025; 26:830. [PMID: 39859544 PMCID: PMC11765832 DOI: 10.3390/ijms26020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5-72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines.
Collapse
Affiliation(s)
- Nilofar Faruqui
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sofie Orell
- Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Camilla Dondi
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | - Lina Gefors
- Lund University Bioimaging Centre (LBIC), Lund University, 221 84 Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, 223 62 Lund, Sweden
| | | | - Ian S. Mudway
- MRC Centre for Environment and Health, Imperial College London, London W2 1PG, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London W2 1NY, UK
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63 Lund, Sweden
| | - Michael Shaw
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
7
|
Caffè A, Scarica V, Animati FM, Manzato M, Bonanni A, Montone RA. Air pollution and coronary atherosclerosis. Future Cardiol 2025; 21:53-66. [PMID: 39786972 PMCID: PMC11812424 DOI: 10.1080/14796678.2025.2451545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
The recently introduced concept of 'exposome' emphasizes the impact of non-traditional threats onto cardiovascular health. Among these, air pollutants - particularly fine particulate matter < 2.5 μm (PM2.5) - have emerged as significant environmental risk factors for cardiovascular disease and mortality. PM2.5 exposure has been shown to induce endothelial dysfunction, chronic low-grade inflammation, and cardiometabolic impairment, contributing to the development and destabilization of atherosclerotic plaques. Both short- and long-term exposure to air pollution considerably increase the incidence of ischemic heart disease (IHD)-related events, with clinical evidence linking pollution to higher mortality and adverse prognosis, especially in vulnerable populations. In this review, we explore the mechanistic pathways through which air pollutants exacerbate atherosclerotic cardiovascular disease (ASCVD) and discuss their clinical impact.Furthermore, special attention will be directed to the outcomes and prognosis of patients with pollution-aggravated coronary atherosclerosis, as well as the potential role of targeted public health interventions.
Collapse
Affiliation(s)
- Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Scarica
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Manzato
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Ramanathan G, Zhao Y, Gupta R, Langmo S, Bhetraratana M, Yin F, Driscoll W, Ricks J, Louie A, Stewart JA, Gould TR, Larson TV, Kaufman J, Rosenfeld ME, Yang X, Araujo JA. Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants. Part Fibre Toxicol 2024; 21:55. [PMID: 39734207 PMCID: PMC11684268 DOI: 10.1186/s12989-024-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/07/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity. METHODS Apolipoprotein E knockout (ApoE KO) mice were exposed to DE or filtered air (FA) for two weeks, or DE for two weeks followed by FA for 1 week. Expression microarrays and global metabolomics assessment were performed in the liver. An integrated transcriptomic and metabolomic analytical strategy was employed to dissect critical pathways and identify candidate genes that could dissect DE-induced pathogenesis. HepG2 cells were treated with an organic extract of DE particles (DEP) vs. vehicle control to test candidate genes. RESULTS DE exposure for 2 weeks dysregulated 658 liver genes overrepresented in whole cell metabolic pathways, especially including lipid and carbohydrate metabolism, and the respiratory electron transport pathway. DE exposure significantly dysregulated 118 metabolites, resulting in increased levels of triglycerides and fatty acids due to mitochondrial dysfunction as well as increased levels of glucose and oligosaccharides. Consistently, DEP treatment of HepG2 cells led to increased gluconeogenesis and glycogenolysis indicating the ability of the in-vitro approach to model effects induced by DE in vivo. As an example, while gene network analysis of DE livers identified phosphoenolpyruvate carboxykinase 1 (Pck1) as a key driver gene of DE response, DEP treatment of HepG2 cells resulted in increased mRNA expression of Pck1 and glucose production, the latter replicated in mouse primary hepatocytes. Importantly, Pck1 inhibitor mercaptopicolinic acid suppressed DE-induced glucose production in HepG2 cells indicating that DE-induced elevation of hepatic glucose was due in part to upregulation of Pck1 and increased gluconeogenesis. CONCLUSIONS Short-term exposure to DE induced widespread alterations in metabolic pathways in the liver of ApoE KO mice, especially involving carbohydrate and lipid metabolism, together with mitochondrial dysfunction. Pck1 was identified as a key driver gene regulating increased glucose production by activation of the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Interdepartmental Program, University of California-Los Angeles, Los Angeles, CA, USA
| | - Siri Langmo
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Interdepartmental Program, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - May Bhetraratana
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Fen Yin
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Will Driscoll
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jerry Ricks
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Interdepartmental Program, University of California-Los Angeles, Los Angeles, CA, USA
| | - James A Stewart
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Timothy R Gould
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Timothy V Larson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Joel Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Michael E Rosenfeld
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, CA, USA
- Environmental and Molecular Toxicology Interdepartmental Program, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jesus A Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.
- Environmental and Molecular Toxicology Interdepartmental Program, University of California-Los Angeles, Los Angeles, CA, USA.
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Kim HJ, Oh YH, Park SJ, Song J, Kim K, Choi D, Jeong S, Park SM. Combined Effects of Air Pollution and Changes in Physical Activity With Cardiovascular Disease in Patients With Dyslipidemia. J Am Heart Assoc 2024:e035933. [PMID: 39604032 DOI: 10.1161/jaha.124.035933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Sedentary behavior elevates cardiovascular disease (CVD) risk in patients with dyslipidemia. Increasing physical activity (PA) is recommended alongside pharmacological therapy to prevent CVD, though benefits across environmental conditions are unclear. METHODS AND RESULTS We analyzed data from 113 918 newly diagnosed patients with dyslipidemia (2009-2012) without prior CVD, sourced from the Korea National Health Insurance Service. Ambient particulate matter (PM) 2.5 and PM10 levels were collected from the National Ambient Air Monitoring System in South Korea. Changes in PA, measured in metabolic equivalents of task-min/wk before and after dyslipidemia diagnosis, were evaluated for associations with air pollution levels and CVD risk using Cox proportional hazards regression. Patients were followed from January 1, 2013, until CVD onset, death, or December 31, 2021. Among patients exposed to low to moderate PM2.5 levels (≤25 μg/m3), increasing PA from inactive to ≥1000 metabolic equivalents of tasks-min/wk was associated with a lower risk of CVD (adjusted hazard ratio, 0.82 [95% CI, 0.70-0.97]; P for trend=0.022). In high PM2.5 (>25 μg/m3) conditions, increasing PA from inactive and decreasing PA from ≥1000 metabolic equivalents of task-min/wk was associated with reduced (P for trend=0.010) and elevated (P for trend=0.028) CVD risks, respectively. For PM10, increased PA was linked to reduced CVD risk (P for trend=0.002) and decreased PA to elevated risk (P for trend=0.042) in low to moderate PM10 (≤50 μg/m3) conditions, though benefits diminished at high PM10 (>50 μg/m3) exposures. CONCLUSIONS Promoting PA, while considering the high potential cardiovascular risk associated with air pollution, may be an effective intervention against CVD in patients with dyslipidemia.
Collapse
Affiliation(s)
- Hye Jun Kim
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Yun Hwan Oh
- Department of Family Medicine Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine Gwangmyeong South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Jihun Song
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center Goyang South Korea
- Graduate School of Cancer Science and Policy, National Cancer Center Goyang South Korea
| | - Daein Choi
- Department of Medicine Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel New York City NY
- Metabolism and Lipids Unit Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai New York NY
| | - Seogsong Jeong
- Department of Biomedical Informatics Korea University College of Medicine Seoul South Korea
- Biomedical Research Center Korea University Guro Hospital, Korea University College of Medicine Seoul South Korea
| | - Sang Min Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| |
Collapse
|
10
|
Welker C, Huang J, Ramakrishna H. Air Quality and Cardiovascular Mortality: Analysis of Recent Data. J Cardiothorac Vasc Anesth 2024; 38:2801-2804. [PMID: 39214795 DOI: 10.1053/j.jvca.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Carson Welker
- Department of Anesthesia/Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey Huang
- Department of Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harish Ramakrishna
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
11
|
Gualtieri M, Melzi G, Costabile F, Stracquadanio M, La Torretta T, Di Iulio G, Petralia E, Rinaldi M, Paglione M, Decesari S, Mantecca P, Corsini E. On the dose-response association of fine and ultrafine particles in an urban atmosphere: toxicological outcomes on bronchial cells at realistic doses of exposure at the Air Liquid Interface. CHEMOSPHERE 2024; 366:143417. [PMID: 39349072 DOI: 10.1016/j.chemosphere.2024.143417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Air pollution and particulate matter (PM) are the leading environmental cause of death worldwide. Exposure limits have lowered to increase the protection of human health; accordingly, it becomes increasingly important to understand the toxicological mechanisms on cellular models at low airborne PM concentrations which are relevant for actual human exposure. The use of air liquid interface (ALI) models, which mimic the interaction between airborne pollutants and lung epithelia, is also gaining importance in inhalation toxicological studies. This study reports the effects of ALI direct exposure of bronchial epithelial cells BEAS-2B to ambient PM1 (i.e. particles with aerodynamic diameter lower than 1 μm). Gene expression (HMOX, Cxcl-8, ATM, Gadd45-a and NQO1), interleukin (IL)-8 release, and DNA damage (Comet assay) were evaluated after 24 h of exposure. We report the dose-response curves of the selected toxicological outcomes, together with the concentration-response association and we show that the two curves differ for specific responses highlighting that concentration-response association may be not relevant for understanding toxicological outcomes. Noteworthy, we show that pro-oxidant effects may be driven by the deposition of freshly emitted particles, regardless of the airborne PM1 mass concentration. Furthermore, we show that reference airborne PM1 metrics, namely airborne mass concentration, may not always reflect the toxicological process triggered by the aerosol. These findings underscore the importance of considering different aerosol metrics to assess the toxicological potency of fine and ultrafine particles. To better protect human health additional metrics should be defined, than account for the properties of the entire aerosol mixture including specific as particle size (i.e. particles with aerodynamic diameter lower than 20 nm), the relevant aerosol sources (e.g., traffic combustion, secondary organic aerosol …) as well as their atmospheric processing (freshly emitted vs aged ones).
Collapse
Affiliation(s)
- M Gualtieri
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy; Deptartment of Earth and Environmental Sciences, Polaris Research Centre University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy.
| | - G Melzi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - F Costabile
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy.
| | - M Stracquadanio
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - T La Torretta
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - G Di Iulio
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy
| | - E Petralia
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - M Rinaldi
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - M Paglione
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - S Decesari
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - P Mantecca
- Deptartment of Earth and Environmental Sciences, Polaris Research Centre University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - E Corsini
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy
| |
Collapse
|
12
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Kilbo Edlund K, Andersson EM, Asker C, Barregard L, Bergström G, Eneroth K, Jernberg T, Ljunggren S, Molnár P, Sommar JN, Oudin A, Pershagen G, Persson Å, Pyko A, Spanne M, Tondel M, Ögren M, Ljungman P, Stockfelt L. Long-term ambient air pollution and coronary atherosclerosis: Results from the Swedish SCAPIS study. Atherosclerosis 2024; 397:117576. [PMID: 38797616 DOI: 10.1016/j.atherosclerosis.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND AIMS Despite firm evidence for an association between long-term ambient air pollution exposure and cardiovascular morbidity and mortality, results from epidemiological studies on the association between air pollution exposure and atherosclerosis have not been consistent. We investigated associations between long-term low-level air pollution exposure and coronary atherosclerosis. METHODS We performed a cross-sectional analysis in the large Swedish CArdioPulmonary bioImaging Study (SCAPIS, n = 30 154), a random general population sample. Concentrations of total and locally emitted particulate matter <2.5 μm (PM2.5), <10 μm (PM10), and nitrogen oxides (NOx) at the residential address were modelled using high-resolution dispersion models. We estimated associations between air pollution exposures and segment involvement score (SIS), coronary artery calcification score (CACS), number of non-calcified plaques (NCP), and number of significant stenoses, using ordinal regression models extensively adjusted for potential confounders. RESULTS Median 10-year average PM2.5 exposure was 6.2 μg/m3 (range 3.5-13.4 μg/m3). 51 % of participants were women and 51 % were never-smokers. None of the assessed pollutants were associated with a higher SIS or CACS. Exposure to PM2.5 was associated with NCP (adjusted OR 1.34, 95 % CI 1.13, 1.58, per 2.05 μg/m3). Associations with significant stenoses were inconsistent. CONCLUSIONS In this large, middle-aged general population sample with low exposure levels, air pollution was not associated with measures of total burden of coronary atherosclerosis. However, PM2.5 appeared to be associated with a higher prevalence of non-calcified plaques. The results suggest that increased risk of early-stage atherosclerosis or rupture, but not increased total atherosclerotic burden, may be a pathway for long-term air pollution effects on cardiovascular disease.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Christian Asker
- Swedish Meteorological & Hydrological Institute, Norrköping, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Physiology Sahlgrenska University Hospital, Göteborg, Sweden
| | - Kristina Eneroth
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Johan Nilsson Sommar
- Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Åsa Persson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andrei Pyko
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Mårten Spanne
- Environmental Department, City of Malmö, Malmö, Sweden
| | - Martin Tondel
- Occupational and Environmental Medicine, Department of Medical Sciences, Medical Faculty, Uppsala University, Sweden; Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael Ögren
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
14
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
16
|
Zhu G, Wen Y, Liang J, Wang T. Effect modification of diet and vitamins on the association between air pollution particles of different diameters and hypertension: A 12-year longitudinal cohort study in densely populated areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172222. [PMID: 38588735 DOI: 10.1016/j.scitotenv.2024.172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Particulate matter (PM) is identified as one of the exacerbating and triggering factors for hypertension. Diet intake and the consumption of vitamins may potentially moderate the impact of PM on hypertension. METHODS A 12-year longitudinal cohort study was conducted on a population in densely populated areas of China. Residual balancing with weighted methods was employed to control for time-varying and no time-varying confounding factors. Stratified Cox proportional hazards models were conducted to examine the moderating effects of diet and vitamins on the risk of hypertension with PM. RESULTS There was a significant positive association between long-term exposure to different diameter PM and the risk of developing hypertension. The hazard ratios (HRs) for hypertension were 1.0200 (95 % CIs: 1.0147, 1.0253) for PM1, 1.0120 (95 % CIs: 1.0085, 1.0155) for PM2.5, and 1.0074 (95 % CIs, 1.0056, 1.0092) for PM10. The diet and vitamins moderated these associations, the intake of healthy foods and vitamins exhibited a significant positive moderating effect on the relationship between PM exposure and hypertension risk. Among all participants, the high intake of fruit (PM1 (HRs: 1.0102, 95 % CIs: 1.0024, 1.0179), PM2.5 (HRs: 1.0060, 95 % CIs: 1.0011, 1.0109), and PM10 (HRs: 1.0044, 95 % CIs: 1.0018, 1.0070)) and vitamin E (PM1 (HRs: 1.0143, 95 % CIs: 1.0063, 1.0223), PM2.5 (HRs:1.0179, 95 % CIs: 1.0003, 1.0166), and PM10 (HRs: 1.0042, 95 % CIs: 1.0008, 1.0075)) with lower risk of hypertension than the overall level and low intake of related foods and vitamins, exhibited a strong positive moderating effect on the relationship between PM and hypertension. Similar trends were observed for the intake of fish, root food, whole grains, eggs, fungus food, vitamin B2, B3. However, Na, meat, sugary and alcoholic exhibited opposite trends. The moderating effect of vitamin E intake was stronger than vitamin B and C. CONCLUSIONS Diet and vitamins intake may moderate the association between PM exposure and the risk of hypertension in adults.
Collapse
Affiliation(s)
- Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jie Liang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
17
|
Qi Q, Yu F, Nair AA, Lau SSS, Luo G, Mithu I, Zhang W, Li S, Lin S. Hidden danger: The long-term effect of ultrafine particles on mortality and its sociodemographic disparities in New York State. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134317. [PMID: 38636229 DOI: 10.1016/j.jhazmat.2024.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Although previous studies have shown increased health risks of particulate matters, few have evaluated the long-term health impacts of ultrafine particles (UFPs or PM0.1, ≤ 0.1 µm in diameter). This study assessed the association between long-term exposure to UFPs and mortality in New York State (NYS), including total non-accidental and cause-specific mortalities, sociodemographic disparities and seasonal trends. Collecting data from a comprehensive chemical transport model and NYS Vital Records, we used the interquartile range (IQR) and high-level UFPs (≥75 % percentile) as indicators to link with mortalities. Our modified difference-in-difference model controlled for other pollutants, meteorological factors, spatial and temporal confounders. The findings indicate that long-term UFPs exposure significantly increases the risk of non-accidental mortality (RR=1.10, 95 % CI: 1.05, 1.17), cardiovascular mortality (RR=1.11, 95 % CI: 1.05, 1.18) particularly for cerebrovascular (RR=1.21, 95 % CI: 1.10, 1.35) and pulmonary heart diseases (RR=1.33, 95 % CI: 1.13, 1.57), and respiratory mortality (borderline significance, RR=1.09, 95 % CI: 1.00, 1.18). Hispanics (RR=1.13, 95 % CI: 1.00, 1.29) and non-Hispanic Blacks (RR=1.40, 95 % CI: 1.16, 1.68) experienced significantly higher mortality risk after exposure to UFPs, compared to non-Hispanic Whites. Children under five, older adults, non-NYC residents, and winter seasons are more susceptible to UFPs' effects.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Arshad A Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Sam S S Lau
- Research Centre for Environment and Human Health & College of International Education, School of Continuing Education, Hong Kong Baptist University, Hong Kong, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, China
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Imran Mithu
- Community, Environment and Policy Division, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sean Li
- Rausser College of Natural Resources, University of California, Berkeley, CA, USA
| | - Shao Lin
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
18
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
19
|
Dröge J, Klingelhöfer D, Braun M, Groneberg DA. Influence of a large commercial airport on the ultrafine particle number concentration in a distant residential area under different wind conditions and the impact of the COVID-19 pandemic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123390. [PMID: 38309420 DOI: 10.1016/j.envpol.2024.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Exposure to ultrafine particles has a significant influence on human health. In regions with large commercial airports, air traffic and ground operations can represent a potential particle source. The particle number concentration was measured in a low-traffic residential area about 7 km from Frankfurt Airport with a Condensation Particle Counter in a long-term study. In addition, the particle number size distribution was determined using a Fast Mobility Particle Sizer. The particle number concentrations showed high variations over the entire measuring period and even within a single day. A maximum 24 h-mean of 24,120 cm-3 was detected. Very high particle number concentrations were in particular measured when the wind came from the direction of the airport. In this case, the particle number size distribution showed a maximum in the particle size range between 5 and 15 nm. Particles produced by combustion in jet engines typically have this size range and a high potential to be deposited in the alveoli. During a period with high air traffic volume, significantly higher particle number concentrations could be measured than during a period with low air traffic volume, as in the COVID-19 pandemic. A large commercial airport thus has the potential to lead to a high particle number concentration even in a distant residential area. Due to the high particle number concentrations, the critical particle size, and strong concentration fluctuations, long-term measurements are essential for a realistic exposure analysis.
Collapse
Affiliation(s)
- Janis Dröge
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany.
| | - Doris Klingelhöfer
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| | - Markus Braun
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| | - David A Groneberg
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Ye J, Li J, Li L, Zhang S, Chen J, Zhu D, Zhang C, Xie B, Zhang B, Hou K. Trends in global ambient fine particulate matter pollution and diabetes mortality rates attributable to it in the 1990-2019: 30 years systematic analysis of global burden of disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168358. [PMID: 37951257 DOI: 10.1016/j.scitotenv.2023.168358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
AIM To analyze the trends in ambient fine particulate matter pollution (PM2.5) and the age-standardized mortality rate (ASMR) of diabetes attributable to it from 1990 to 2019 by region, country, and socio-economic development status. METHODS The main data, including the summary exposure value (SEV) of ambient PM2.5 and the ASMR of diabetes due to ambient PM2.5, was collected from the Global Burden of Disease 2019 database. The socio-demographic index (SDI) was employed for assessing a particular region or country's degree of socio-economic development. Joinpoint regression analysis was used to assess the changes of ambient PM2.5 and ASMR of diabetes attributable to it. RESULTS Globally, the SEV of ambient PM2.5 increased from 15.65 μg/m3 in 1990 to 26.22 μg/m3 in 2019, with an annual average percent change (AAPC) of 1.788 (95 % CI 1.687-1.889) μg/m3. The ASMR of diabetes attributable to ambient PM2.5 increased from 1.57 per 100,000 population in 1990 to 2.47 per 100.000 population in 2019 (AAPC = 1.569 [95 % CI 1.42-1.718]). Most regions and countries had an increase of SEV of ambient PM2.5 and ASMR of diabetes attributable to ambient PM2.5. The largest increase of SEV of ambient PM2.5 was observed in South Asia (AAPC = 3.556 [95 % CI 3.329-3.875]), while the largest increase of ASMR of diabetes was in Central Asia (AAPC = 5.170 [95%CI 4.696-5.647]). Moreover, the increase of SEV of ambient PM2.5 and ASMR of diabetes attributable to it were positively associated with SDI in low SDI countries (SDI < 0.46), whereas the opposite result was observed when SDI ≥ 0.46. CONCLUSION From 1990 to 2019, the population's exposure to ambient PM2.5 and ASMR of diabetes attributable to it increased generally, especially in low-middle SDI regions. Ambient PM2.5 remains a threat to global health. Greater investment in ambient PM2.5 and the mortality attributable to it are needed.
Collapse
Affiliation(s)
- Junjun Ye
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Liping Li
- School of Public Health, Shantou University, Shantou 515041, China
| | - Shuo Zhang
- Shantou University Medical College, Shantou, Guangdong, China; School of Public Health, Shantou University, Shantou 515041, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, Guangdong, China; School of Public Health, Shantou University, Shantou 515041, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China
| | - Chuanyan Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China
| | - Bin Xie
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bangzhou Zhang
- School of Public Health, Shantou University, Shantou 515041, China; Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou 515041, China; Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China.
| |
Collapse
|
21
|
Sun M, Li T, Sun Q, Ren X, Sun Z, Duan J. Associations of long-term particulate matter exposure with cardiometabolic diseases: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166010. [PMID: 37541522 DOI: 10.1016/j.scitotenv.2023.166010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This review aimed to establish a holistic perspective of long-term PM exposure and cardiometabolic diseases, identify long-term PM-related cardiovascular and metabolic risk factors, and provide practical significance to preventative measures. METHOD A combination of computer and manual retrieval was used to search for keywords in PubMed (2903 records), Embase (2791 records), Web of Science (5488 records) and Cochrane Library (163 records). Finally, a total of 82 articles were considered in this meta-analysis. Stata 13.0 was accustomed to inspecting the studies' heterogeneity and calculating the combined effect value (RR) by selecting the matching models. The subgroup analysis, sensitivity analysis and publication bias tests were also performed. RESULTS Meta-analysis figured an association between PM and cardiometabolic diseases. PM2.5 (per 10 μg/m3 increase) boosted the risk of hypertension (RR = 1.14, 95 % CI: 1.09-1.19), coronary heart disease (CHD) (RR = 1.21, 95 % CI: 1.08-1.35), diabetes (RR = 1.16, 95 % CI: 1.11-1.21) and stroke (including ischemic stroke and hemorrhagic stroke). PM10 (per 10 μg/m3 increase) elevated the incidence of hypertension (RR = 1.11, 95 % CI: 1.07-1.16) and diabetes (RR = 1.26, 95 % CI: 1.08-1.47). PM1 (per 10 μg/m3 increase) exposure increased the risk of total dyslipidemia, yielding the RR of 1.10 (95 % CI: 1.01-1.18). Furthermore, the elderly, overweight and higher background pollutant level were potentially susceptible to related diseases. CONCLUSION There was a virtual connection between long-term exposure to PM and cardiometabolic diseases. PM2.5 or PM10 (per 10 μg/m3) increased the risk of hypertension, CHD, diabetes, stroke and dyslipidemia, causing cardiovascular "multimorbidity" in high-risk populations.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
22
|
Young MT, Jansen K, Cosselman KE, Gould TR, Stewart JA, Larson T, Sack C, Vedal S, Szpiro AA, Kaufman JD. Blood Pressure Effect of Traffic-Related Air Pollution : A Crossover Trial of In-Vehicle Filtration. Ann Intern Med 2023; 176:1586-1594. [PMID: 38011704 PMCID: PMC11259360 DOI: 10.7326/m23-1309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Ambient air pollution, including traffic-related air pollution (TRAP), increases cardiovascular disease risk, possibly through vascular alterations. Limited information exists about in-vehicle TRAP exposure and vascular changes. OBJECTIVE To determine via particle filtration the effect of on-roadway TRAP exposure on blood pressure and retinal vasculature. DESIGN Randomized crossover trial. (ClinicalTrials.gov: NCT05454930). SETTING In-vehicle scripted commutes driven through traffic in Seattle, Washington, during 2014 to 2016. PARTICIPANTS Normotensive persons aged 22 to 45 years (n = 16). INTERVENTION On 2 days, on-road air was entrained into the vehicle. On another day, the vehicle was equipped with high-efficiency particulate air (HEPA) filtration. Participants were blinded to the exposure and were randomly assigned to the sequence. MEASUREMENTS Fourteen 3-minute periods of blood pressure were recorded before, during, and up to 24 hours after a drive. Image-based central retinal arteriolar equivalents (CRAEs) were measured before and after. Brachial artery diameter and gene expression were also measured and will be reported separately. RESULTS Mean age was 29.7 years, predrive systolic blood pressure was 122.7 mm Hg, predrive diastolic blood pressure was 70.8 mm Hg, and drive duration was 122.3 minutes (IQR, 4 minutes). Filtration reduced particle count by 86%. Among persons with complete data (n = 13), at 1 hour, mean diastolic blood pressure, adjusted for predrive levels, order, and carryover, was 4.7 mm Hg higher (95% CI, 0.9 to 8.4 mm Hg) for unfiltered drives compared with filtered drives, and mean adjusted systolic blood pressure was 4.5 mm Hg higher (CI, -1.2 to 10.2 mm Hg). At 24 hours, adjusted mean diastolic blood pressure (unfiltered) was 3.8 mm Hg higher (CI, 0.02 to 7.5 mm Hg) and adjusted mean systolic blood pressure was 1.1 mm Hg higher (CI, -4.6 to 6.8 mm Hg). Adjusted mean CRAE (unfiltered) was 2.7 μm wider (CI, -1.5 to 6.8 μm). LIMITATIONS Imprecise estimates due to small sample size; seasonal imbalance by exposure order. CONCLUSION Filtration of TRAP may mitigate its adverse effects on blood pressure rapidly and at 24 hours. Validation is required in larger samples and different settings. PRIMARY FUNDING SOURCE U.S. Environmental Protection Agency and National Institutes of Health.
Collapse
Affiliation(s)
- Michael T Young
- Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (M.T.Y., K.J., K.E.C., S.V.)
| | - Karen Jansen
- Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (M.T.Y., K.J., K.E.C., S.V.)
| | - Kristen E Cosselman
- Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (M.T.Y., K.J., K.E.C., S.V.)
| | - Timothy R Gould
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington (T.R.G.)
| | - James A Stewart
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.A.S.)
| | - Timothy Larson
- Department of Civil and Environmental Engineering and Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (T.L.)
| | - Coralynn Sack
- Department of Medicine and Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (C.S.)
| | - Sverre Vedal
- Department of Environmental and Occupational Sciences, University of Washington, Seattle, Washington (M.T.Y., K.J., K.E.C., S.V.)
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington (A.A.S.)
| | - Joel D Kaufman
- Department of Environmental and Occupational Sciences, Department of Medicine, and Department of Epidemiology, University of Washington, Seattle, Washington (J.D.K.)
| |
Collapse
|
23
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
24
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
26
|
Li J, Tang W, Li S, He C, Dai Y, Feng S, Zeng C, Yang T, Meng Q, Meng J, Pan Y, Deji S, Zhang J, Xie L, Guo B, Lin H, Zhao X. Ambient PM2.5 and its components associated with 10-year atherosclerotic cardiovascular disease risk in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115371. [PMID: 37643506 DOI: 10.1016/j.ecoenv.2023.115371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Exposure to particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) may increase the risk of 10-year atherosclerotic cardiovascular disease (ASCVD) risk. While PM2.5 is comprised of various components, the evidence on the correlation of its components with 10-year ASCVD risk and which component contributes most remains limited. METHODS Data were derived from the baseline assessments of China Multi-Ethnic Cohort (CMEC). In total, 69,722 individuals aged 35-74 years were included into this study. The annual average concentration of PM2.5 and its components (black carbon, ammonium, nitrate, sulfate, organic matter, soil particles, and sea salt) were estimated by satellite remote sensing and chemical transport models. The ASCVD risk of individuals was calculated by the equations from the China-PAR Project (prediction for ASCVD risk in China). The relationship between single exposure to PM2.5 and its components and predicted 10-year ASCVD risk was assessed using the logistic regression model. The effect of joint exposure was estimated, and the most significant contributor was identified using the weighted quantile sum approach. RESULTS Totally 69,722 participants were included, of which 95.8 % and 4.2 % had low and high 10-year ASCVD risk, respectively. Per standard deviation increases in the 3-year average concentration of PM2.5 mass (odds ratio [OR] 1.23, 95 % confidence interval [CI]: 1.12-1.35), black carbon (1.21, 1.11-1.33), ammonium (1.21, 1.10-1.32), nitrate (1.25, 1.14-1.38), organic matter (1.29, 1.18-1.42), sulfate (1.17, 1.07-1.28), and soil particles (1.15, 1.04-1.26) were related to high 10-year ASCVD risk. The overall effect (1.19, 1.11-1.28) of the PM2.5 components was positively associated with 10-year ASCVD risk, and organic matter had the most contribution to this relationship. Female participants were more significantly impacted by PM2.5, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles compared to others. CONCLUSION Long-term exposure to PM2.5 mass, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles were positively associated with high 10-year ASCVD risk, while sea salt exhibited a protective effect. Moreover, the organic matter might take primary responsibility for the relationship between PM2.5 and 10-year ASCVD risk. Females were more susceptible to the adverse effect.
Collapse
Affiliation(s)
- Jiawei Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yucen Dai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 850000, China
| | - Jiantong Meng
- Chengdu Center for Disease Control & Prevention, Chengdu, Sichuan 610041, China
| | | | - Suolang Deji
- Tibet Center for Disease Control and Prevention CN, Lhasa 850000, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
30
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Cheng J, Zheng H, Wei J, Huang C, Ho HC, Sun S, Phung D, Kim H, Wang X, Bai Z, Hossain MZ, Tong S, Su H, Xu Z. Short-term residential exposure to air pollution and risk of acute myocardial infarction deaths at home in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76881-76890. [PMID: 37247141 PMCID: PMC10300167 DOI: 10.1007/s11356-023-27813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Air pollution remains a major threat to cardiovascular health and most acute myocardial infarction (AMI) deaths occur at home. However, currently established knowledge on the deleterious effect of air pollution on AMI has been limited to routinely monitored air pollutants and overlooked the place of death. In this study, we examined the association between short-term residential exposure to China's routinely monitored and unmonitored air pollutants and the risk of AMI deaths at home. A time-stratified case-crossover analysis was undertaken to associate short-term residential exposure to air pollution with 0.1 million AMI deaths at home in Jiangsu Province (China) during 2016-2019. Individual-level residential exposure to five unmonitored and monitored air pollutants including PM1 (particulate matter with an aerodynamic diameter ≤ 1 μm) and PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), and O3 (ozone) was estimated from satellite remote sensing and machine learning technique. We found that exposure to five air pollutants, even below the recently released stricter air quality standards of the World Health Organization (WHO), was all associated with increased odds of AMI deaths at home. The odds of AMI deaths increased by 20% (95% confidence interval: 8 to 33%), 22% (12 to 33%), 14% (2 to 27%), 13% (3 to 25%), and 7% (3 to 12%) for an interquartile range increase in PM1, PM2.5, SO2, NO2, and O3, respectively. A greater magnitude of association between NO2 or O3 and AMI deaths was observed in females and in the warm season. The greatest association between PM1 and AMI deaths was found in individuals aged ≤ 64 years. This study for the first time suggests that residential exposure to routinely monitored and unmonitored air pollutants, even below the newest WHO air quality standards, is still associated with higher odds of AMI deaths at home. Future studies are warranted to understand the biological mechanisms behind the triggering of AMI deaths by air pollution exposure, to develop intervention strategies to reduce AMI deaths triggered by air pollution exposure, and to evaluate the cost-effectiveness, accessibility, and sustainability of these intervention strategies.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong , Hong Kong, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Dung Phung
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Ho Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Xiling Wang
- School of Public Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Zhongliang Bai
- School of Health Services Management, Anhui Medical University, Hefei, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
32
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Malinski T, Mason RP. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution. Biomed Pharmacother 2023; 162:114629. [PMID: 37027984 DOI: 10.1016/j.biopha.2023.114629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
AIMS Inhalation of air pollution small particle matter (PM) is a leading cause of cardiovascular (CV) disease. Exposure to PMs causes endothelial cell (EC) dysfunction as evidenced by nitric oxide (NO) synthase uncoupling, vasoconstriction and inflammation. Eicosapentaenoic acid (EPA) has been shown to mitigate PM-induced adverse cardiac changes in patients receiving omega-3 fatty acid supplementation. We set out to determine the pro-inflammatory effects of multiple PMs (urban and fine) on pulmonary EC NO bioavailability and protein expression, and whether EPA restores EC function under these conditions. METHODS AND RESULTS We pretreated pulmonary ECs with EPA and then exposed them to urban or fine air pollution PMs. LC/MS-based proteomic analysis to assess relative expression levels. Expression of adhesion molecules was measured by immunochemistry. The ratio of NO to peroxynitrite (ONOO-) release, an indication of eNOS coupling, was measured using porphyrinic nanosensors following calcium stimulation. Urban/fine PMs also modulated 9/12 and 13/36 proteins, respectively, linked to platelet and neutrophil degranulation pathways and caused > 50% (p < 0.001) decrease in the stimulated NO/ONOO- release ratio. EPA treatment altered expression of proteins involved in these inflammatory pathways, including a decrease in peroxiredoxin-5 and an increase in superoxide dismutase-1. EPA also increased expression of heme oxygenase-1 (HMOX1), a cytoprotective protein, by 2.1-fold (p = 0.024). EPA reduced elevations in sICAM-1 levels by 22% (p < 0.01) and improved the NO/ONOO- release ratio by > 35% (p < 0.05). CONCLUSION These cellular changes may contribute to anti-inflammatory, cytoprotective and lipid changes associated with EPA treatment during air pollution exposure.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Elucida Research LLC, Beverly, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA.
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mikrochim Acta 2023; 190:241. [PMID: 37243836 DOI: 10.1007/s00604-023-05819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The potential reach of point-of-care (POC) diagnostics into daily routines for exposure to reactive oxygen species (ROS) and Cu in aerosolized particulate matter (PM) demands that microfluidic paper-based analytical devices (μPADs) take into consideration the simple detection of these toxic PM components. Here, we propose μPADs with a dual-detection system for simultaneous ROS and Cu(II) detection. For colorimetric ROS detection, the glutathione (GSH) assay with a folding design to delay the reaction yielded complete ROS and GSH oxidation, and improved homogeneity of color development relative to using the lateral flow pattern. For electrochemical Cu(II) determination, 1,10-phenanthroline/Nafion modified graphene screen-printed electrodes showed ability to detect Cu(II) down to pg level being low enough to be applied to PM analysis. No intra- and inter-interference affecting both systems were found. The proposed μPADs obtained LODs for 1,4-naphthoquinone (1,4-NQ), used as the ROS representative, and Cu(II) of 8.3 ng and 3.6 pg, respectively and linear working ranges of 20 to 500 ng for ROS and 1 × 10-2 to 2 × 102 ng for Cu(II). Recovery of the method was between 81.4 and 108.3% for ROS and 80.5-105.3% for Cu(II). Finally, the sensors were utilized for simultaneous ROS and Cu(II) determination in PM samples and the results statistically agreed with those using the conventional methods at 95% confidence.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Nalatthaporn Sawatdichai
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Duangduean Thepnuan
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
34
|
Burdon J, Budnik LT, Baur X, Hageman G, Howard CV, Roig J, Coxon L, Furlong CE, Gee D, Loraine T, Terry AV, Midavaine J, Petersen H, Bron D, Soskolne CL, Michaelis S. Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ Health 2023; 22:43. [PMID: 37194087 PMCID: PMC10186727 DOI: 10.1186/s12940-023-00987-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023]
Abstract
Thermally degraded engine oil and hydraulic fluid fumes contaminating aircraft cabin air conditioning systems have been well documented since the 1950s. Whilst organophosphates have been the main subject of interest, oil and hydraulic fumes in the air supply also contain ultrafine particles, numerous volatile organic hydrocarbons and thermally degraded products. We review the literature on the effects of fume events on aircrew health. Inhalation of these potentially toxic fumes is increasingly recognised to cause acute and long-term neurological, respiratory, cardiological and other symptoms. Cumulative exposure to regular small doses of toxic fumes is potentially damaging to health and may be exacerbated by a single higher-level exposure. Assessment is complex because of the limitations of considering the toxicity of individual substances in complex heated mixtures.There is a need for a systematic and consistent approach to diagnosis and treatment of persons who have been exposed to toxic fumes in aircraft cabins. The medical protocol presented in this paper has been written by internationally recognised experts and presents a consensus approach to the recognition, investigation and management of persons suffering from the toxic effects of inhaling thermally degraded engine oil and other fluids contaminating the air conditioning systems in aircraft, and includes actions and investigations for in-flight, immediately post-flight and late subsequent follow up.
Collapse
Affiliation(s)
- Jonathan Burdon
- Respiratory Physician, St Vincent's Private Hospital, East Melbourne, Australia
| | - Lygia Therese Budnik
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xaver Baur
- European Society for Environmental and Occupational Medicine, Berlin, Germany
- University of Hamburg, Hamburg, Germany
| | - Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - C Vyvyan Howard
- Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Jordi Roig
- Department of Pulmonary Medicine, Clínica Creu Blanca, Barcelona, Spain
| | - Leonie Coxon
- Clinical and Forensic Psychologist, Mount Pleasant Psychology, Perth, Australia
| | - Clement E Furlong
- Departments of Medicine (Div. Medical Genetics) and Genome Sciences, University of Washington, Seattle, USA
| | - David Gee
- Centre for Pollution Research and Policy, Visiting Fellow, Brunel University, London, UK
| | - Tristan Loraine
- Technical Consultant, Spokesperson for the Global Cabin Air Quality Executive, London, UK
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, USA
| | | | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Akureyri Hospital, Akureyri, Iceland
| | - Denis Bron
- Federal Department of Defence, Civil Protection and Sport (DDPS), Aeromedical Institute (FAI)/AeMC, Air Force, Dübendorf, Switzerland
| | - Colin L Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Susan Michaelis
- Occupational and Environmental Health Research Group, Honorary Senior Research Fellow, University of Stirling, Scotland / Michaelis Aviation Consulting, West Sussex, England.
| |
Collapse
|
35
|
Moradi M, Mard SA, Farbood Y, Dianat M, Goudarzi G, Khorsandi L, Seyedian SS. The protective effect of p-Coumaric acid on hepatic injury caused by particulate matter in the rat and determining the role of long noncoding RNAs MEG3 and HOTAIR. J Biochem Mol Toxicol 2023:e23364. [PMID: 37183931 DOI: 10.1002/jbt.23364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is associated with serious human health problems. P-coumaric acid (PC) is a herbal phenolic compound that exhibits beneficial pharmacological potentials. Here, the protective effect of PC on liver injury induced by air pollution was examined. Thirty-two adult male Wistar rats (200-250 g) were divided randomly into four groups (n = 8). The groups were; Control (rats received DMSO and then exposed to clean air), PC (rats received PC and then exposed to clean air), DMSO + Dust (rats received DMSO and then exposed to dust), and PC + Dust (the animals received PC and then exposed to dust). The clean air, DMSO, PC, and dust were administrated 3 days a week for 6 consecutive weeks. The rats were anesthetized and their blood samples and liver sections were taken to conduct molecular, biomedical, and histopathological tests. Dust exposure increased the liver enzymes, bilirubin, triglyceride, cholesterol, and the production of liver malondialdehyde, and decreased in liver total anti-oxidant capacity and serum high-density lipoprotein. It also increased the mRNA expression of inflammatory-related cytokines, decreased the mRNA expression of SIRT-1, decreased the expression levels of miR-20b5p, and MEG3 while increased the expression levels of miR-34a, and HOTAIR. Dust exposure also increased the liver content of three cytokines TNF-α, NF-κB, HMGB-1, and ATG-7 proteins. PC enhanced liver function against adverse effects of dust through recovering almost all the studied variables. Exposure to dust damaged the liver through induction of oxidative stress, inflammation, and autophagy. PC protected the liver against dust-induced cytotoxicity.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed A Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran. Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed S Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Macchi C, Sirtori CR, Corsini A, Mannuccio Mannucci P, Ruscica M. Pollution from fine particulate matter and atherosclerosis: A narrative review. ENVIRONMENT INTERNATIONAL 2023; 175:107923. [PMID: 37119653 DOI: 10.1016/j.envint.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
According to the WHO, the entire global population is exposed to air pollution levels higher than recommended for health preservation. Air pollution is a complex mixture of nano- to micro-sized particles and gaseous components that poses a major global threat to public health. Among the most important air pollutants, causal associations have been established between particulate matter (PM), mainly < 2.5 μm, and cardiovascular diseases (CVD), i.e., hypertension, coronary artery disease, ischemic stroke, congestive heart failure, arrhythmias as well as total cardiovascular mortality. Aim of this narrative review is to describe and critically discuss the proatherogenic effects of PM2.5 that have been attributed to many direct or indirect effects comprising endothelial dysfunction, a chronic low-grade inflammatory state, increased production of reactive oxygen species, mitochondrial dysfunction and activation of metalloproteases, all leading to unstable arterial plaques. Higher concentrations of air pollutants are associated with the presence of vulnerable plaques and plaque ruptures witnessing coronary artery instability. Air pollution is often disregarded as a CVD risk factor, in spite of the fact that it is one of the main modifiable factors relevant for prevention and management of CVD. Thus, not only structural actions should be taken in order to mitigate emissions, but health professionals should also take care to counsel patients on the risks of air pollution.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy.
| |
Collapse
|
37
|
Feng Q, Wei J, Wang Y, Wu J, Kong H, Guo S, Liu G, Dong J, Jiang L, Li Q, Nie J, Yang J. Focusing on testosterone levels in male: A half-longitudinal study of polycyclic aromatic hydrocarbon exposure and diastolic blood pressure in coke oven workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121614. [PMID: 37087084 DOI: 10.1016/j.envpol.2023.121614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can interfere with testosterone levels, and low levels of testosterone are associated with increased cardiovascular events. To explore the role of testosterone in PAHs exposure and cardiovascular health, we used data from the 2011-2016 National Health and Nutrition Examination Survey (NHANES) and a longitudinal database of 332 male coke oven workers from China. The urine PAHs, tobacco metabolites and plasma testosterone levels of coke oven workers were measured. There were inverse associations between serum (plasma) testosterone concentrations and the risk of dysarteriotony and dyslipidemia among the NHANES participants and coke oven workers. The results of the cross-lagged panel analysis among workers showed that the decrease in testosterone preceded the increase in diastolic blood pressure (DBP), and the absolute value of the path coefficient from baseline testosterone to follow-up DBP (β2 = -8.162, P = 0.077) was significantly larger than the absolute value of the path coefficient from baseline DBP to follow-up testosterone (β1 = -0.001, P = 0.781). Results from the half-longitudinal mediation analysis showed that baseline hydroxyfluorene predicted significant decreases in plasma testosterone from baseline to follow-up (path a: 0.71, 95% CI: 1.26, -0.16), whereas plasma testosterone at baseline also predicted significant increments in DBP from baseline to follow-up (path b: 9.22, 95% CI: 17.24, -1.19). The indirect effect of PAHs on DBP via plasma testosterone level was marginally significant (test for indirect effects a*b (P = 0.08)). In conclusion, testosterone level is a longitudinal precursor to increased DBP and plays an essential role in the association between PAHs exposure and damage to the cardiovascular system. Coke oven workers with low plasma testosterone levels are more likely to experience adverse changes in blood pressure and lipid levels after exposure to PAHs.
Collapse
Affiliation(s)
- Quan Feng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Jiajun Wei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Yong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Jinyu Wu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Hongyue Kong
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Jun Dong
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, China.
| |
Collapse
|
38
|
Fan Y, Pan D, Yang M, Wang X. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161412. [PMID: 36621508 DOI: 10.1016/j.scitotenv.2023.161412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Emerging pollutants (EPs) have become a global concern, attracting tremendous attention because of serious threats to human and animal health. EP diversity emanates from their behaviour and ability to enter the body via multiple pathways and exhibit completely different distribution, transport, and excretion. To better understand the in vivo behaviour of EPs, we reviewed radiolabelling and in vivo radionuclide imaging tracking of various EPs, including micro- and nano-plastics, perfluoroalkyl substances, metal oxides, pharmaceutical and personal care products, and so on. Because this accurate and quantitative imaging approach requires the labelling of radionuclides onto EPs, the main strategies for radiolabelling were reviewed, such as synthesis with radioactive precursors, element exchange, proton beam activation, and modification. Spatial and temporal biodistribution of various EPs was summarised in a heat map, revealing that the absorption, transport, and excretion of EPs are markedly related to their type, size, and pathway into the body. These findings implicate the potential toxicity of diverse EPs in organs and tissues. Finally, we discussed the potential and challenges of radionuclide imaging tracking of EPs, which can be considered in future EPs studies.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
39
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Virani S, Thurston GD, Lavie CJ. PM2.5 and Cardiovascular Health Risks. Curr Probl Cardiol 2023; 48:101670. [PMID: 36828043 DOI: 10.1016/j.cpcardiol.2023.101670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
PM2.5 is a frequently studied particulate matter metric, due to its wide range of identified overall adverse health effects, particularly cardiovascular health risks. However, there are no clear clinical practice guidelines for air pollution in regard to the prevention of cardiovascular health risks, since most of the current medical guidelines for CVD focus on metabolic risk factors such as hyperlipidemia or diabetes. We sought to determine the relationship between PM2.5 and cardiovascular disease, cardiovascular events, and all-cause mortality by performing a systematic review and meta-analysis. We searched Ovid MEDLINE, Ovid Embase, Ovid Cochrane Database of Systematic Reviews, Scopus, and Web of Science from the database inception to December 2022 for studies that reported an association between PM2.5 and cardiovascular disease, cardiovascular events, and all-cause mortality. We used the DerSimonian & Laird random-effects method to pool hazard ratios or risk ratios separately from the included studies. Of the total 18 prospective studies, 7,300,591 individuals were followed for a median follow-up of 9 years. Compared to low long-term exposure to PM 2.5 levels, an increase in exposure to PM 2.5 levels resulted in an increase in all-cause mortality (HR 1.08 95% CI of 1.05-1.11, P < 0.05). Similarly, when compared to a low long-term exposure to PM 2.5 levels, an increase in exposure to PM 2.5 levels resulted in an increase in cardiovascular disease (HR 1.09, 95% CI of 1.00-1.18, P < 0.05) and an increase in cardiovascular disease mortality (HR 1.12, 95% CI of 1.07-1.18, P < 0.05). Increased exposure to PM 2.5 levels is significantly associated with an increased risk of all-cause mortality, cardiovascular disease, and cardiovascular disease mortality. Although federal primary and secondary standards are in place, those standards are not low enough to prevent CVD health effects. Clinicians should emphasize PM2.5 as a modifiable CV risk factors for their patients to potentially reduce the development of CV complications. A clinical action guideline is needed specifically for air pollution effects on CVD, and how to mitigate them.
Collapse
Affiliation(s)
| | | | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX; The Aga Khan University, Karachi, Pakistan; Baylor College of Medicine, Houston, TX
| | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| |
Collapse
|
40
|
Moradi M, Farbood Y, Mard SA, Dianat M, Goudarzi G, Khorsandi L, Seyedian SS. p-Coumaric acid has pure anti-inflammatory characteristics against hepatopathy caused by ischemia-reperfusion in the liver and dust exposure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:164-175. [PMID: 36742142 PMCID: PMC9869878 DOI: 10.22038/ijbms.2022.66192.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/30/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Studies show that chronic injuries like air pollution or acute damage such as hepatic ischemia-reperfusion (IR) cause various cellular pathologies such as oxidative stress, apoptosis, autophagy, and inflammation in hepatocytes. p-Coumaric acid (p-CA) is known as an antioxidant with many therapeutic impacts on inflammatory-related pathologies. In this experiment, we aimed to assess the hepatoprotective effects of p-CA on liver damage induced by dust and IR injury in adult male rats. MATERIALS AND METHODS Forty-eight adult male Wistar rats were divided into 6 groups; Control (CTRL); sham; DMSO+Dust+Laparotomy (LPT); DMSO+Dust+Ischemia-reperfusion (IR); p-CA+Dust+LPT; and p-CA+Dust+IR. Clean air, DMSO, p-CA, and dust were administrated 3 days a week for 6 consecutive weeks. Animals were sacrificed, the blood samples were aspirated and the liver sections were prepared for biochemical and histopathological assessments. RESULTS Significantly (P<0.05), the results represented that dust and IR can potentially increase the levels of ALT, AST, direct and total bilirubin, triglyceride, and cholesterol in serum. Also, MDA, TNF-α , NF-κB . HMGB-1 and ATG-7 levels were increased in hepatocytes. Gene expression of Nrf2, HOX-1, IL-6, HOTAIR, and miR-34a showed an incremental trend in the liver tissue. Total antioxidant capacity (TAC) in hepatocytes was decreased following dust exposure and IR induction. Also, miR-20b-5p, MEG3, and SIRT1 in the liver were decreased in dust and dust+IR groups. CONCLUSION p-CA alleviated pathological changes caused by dust exposure and IR injury. p-CA protected hepatic injury induced by dust and IR by inhibition of oxidative injury, inflammation, and autophagy.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Li JM, Yang HY, Wu SH, Dharmage SC, Jalaludin B, Knibbs LD, Bloom MS, Guo Y, Morawska L, Heinrich J, Steve Hung Lam Y, Lin LZ, Zeng XW, Yang BY, Chen GB, Liu RQ, Dong GH, Hu LW. The associations of particulate matter short-term exposure and serum lipids are modified by vitamin D status: A panel study of young healthy adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120686. [PMID: 36400145 DOI: 10.1016/j.envpol.2022.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PM) exposure is associated to the adverse change in blood lipids. Vitamin D is beneficial to lipid metabolism, but whether vitamin D levels modifies the impact of air pollutants on lipids is unclear. The purpose of the study was to investigate if vitamin D modifies the associations of PM and serum lipids in young healthy people. From December 2017 to January 2018, a panel study with five once weekly follow-ups was conducted on 88 healthy adults aged 21.09 (1.08) (mean (SD)) years on average in Guangzhou, China. We measured serum lipids, serum 25-hydroxyvitamin D (25(OH)D) concentrations (440 blood samples in total), mass concentrations of particulate matter with diameters ≤2.5 μm (PM2.5), ≤1.0 μm (PM1.0), and ≤0.5 μm (PM0.5), and number concentrations of particulate matter with diameters ≤0.2 μm (PN0.2) and ≤0.1 μm (PN0.1) at each follow-up. Linear mixed-effect models were applied to assess the interaction of vitamin D and size-fractionated PM short-term exposure on four lipid metrics. We found the interactions between 25(OH)D and size-fractionated PM exposure on blood lipids in different lags (lag 3 days and 4 days). An interquartile range increase in PM2.5, PM1.0, PM0.5 were significantly associated with increments of 12.30%, 12.99%, and 13.66% in triglycerides (TGs) at lag 4 days at vitamin D levels <15 ng/mL group, respectively. Similar results were found for PN0.2, PN0.1 and low-density lipoprotein cholesterol (LDL-C). All the associations between size-fractionated PM and blood lipids were found null statistically significant in vitamin D levels ≥15 ng/mL group.
Collapse
Affiliation(s)
- Jia-Min Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Han-Yu Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Si-Han Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Bin Jalaludin
- Centre for Research, Evidence Management and Surveillance, South Western Sydney Local Health District, Liverpool, NSW, 2037, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia; School of Public Health and Community Medicine Sydney, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW, 2006, Australia
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, 22030, USA
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Lidia Morawska
- Queensland University of Technology, International Laboratory for Air Quality & Health, Brisbane, QLD, Australia; Queensland University of Technology, Science and Engineering Faculty, Brisbane, QLD, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336, Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziemssenstraße 1, 80336, Munich, Germany
| | - Yim Steve Hung Lam
- Asian School of the Environment, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gong-Bo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
42
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
43
|
Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. Micro- and nanoplastics: A new cardiovascular risk factor? ENVIRONMENT INTERNATIONAL 2023; 171:107662. [PMID: 36473237 DOI: 10.1016/j.envint.2022.107662] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to micro- and nanoplastics (MNPs) is inevitable due to their omnipresence in the environment. A growing body of studies has advanced our understanding of the potential toxicity of MNPs but knowledge gaps still exist regarding the adverse effects of MNPs on the cardiovascular system and underlying mechanisms, particularly in humans. Here, we reviewed up-to-date data published in the past 10 years on MNP-driven cardiovascular toxicity and mechanisms. Forty-six articles concerning ADME (absorption, distribution, and aggregation behaviors) and toxicity of MNPs in the circulatory system of animals and human cells were analyzed and summarized. The results showed that MNPs affected cardiac functions and caused toxicity on (micro)vascular sites. Direct cardiac toxicity of MNPs included abnormal heart rate, cardiac function impairment, pericardial edema, and myocardial fibrosis. On (micro)vascular sites, MNPs induced hemolysis, thrombosis, blood coagulation, and vascular endothelial damage. The main mechanisms included oxidative stress, inflammation, apoptosis, pyroptosis, and interaction between MNPs and multiple cellular components. Cardiovascular toxicity was determined by the properties (type, size, surface, and structure) of MNPs, exposure dose and duration, protein presence, the life stage, sex, and species of the tested organisms, as well as the interaction with other environmental contamination. The limited quantitative information on MNPs' ADME and the lack of guidelines for MNP cardiotoxicity testing makes risk assessment on cardiac health impossible. Furthermore, the future directions of cardiovascular research on MNPs are recommended to enable more realistic health risk assessment.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chuanxuan Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
44
|
Mork D, Braun D, Zanobetti A. Time-lagged relationships between a decade of air pollution exposure and first hospitalization with Alzheimer's disease and related dementias. ENVIRONMENT INTERNATIONAL 2023; 171:107694. [PMID: 36521347 PMCID: PMC9885762 DOI: 10.1016/j.envint.2022.107694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 05/09/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) poses substantial health challenges among an aging population. One of the primary challenges in studying ADRD is that biological processes underlying these ailments begin decades prior to diagnosis. Previous studies indicate a relationship between ADRD and air pollution exposure to both fine particulate matter (PM2.5) and nitrogen dioxide (NO2) but are limited in their interpretation because they consider exposure measurements at a single time point. Our retrospective cohort study considered 27 + million Medicare enrollees in the United States followed up to 17 years and matched with highly accurate annual air pollution exposure measurements for PM2.5, NO2, and summer ozone. We applied distributed lag models and estimated the lagged associations between air pollution and odds of first hospitalization with ADRD. We found significantly increased odds due to overall PM2.5 and NO2 exposure and time-lagged exposure 10 and 8 years prior to admission, respectively. Furthermore, we found the connection between air pollution exposure and increased odds of first hospitalization with ADRD exists at air pollution levels below current National Ambient Air Quality Standards set by the US Environmental Protection Agency, with the steepest increase in odds occurring at low concentrations of PM2.5. Our findings are the first to show that air pollution exposures from as many as 10 years prior to the admission are related to increased odds of hospitalizations with ADRD. As there are no clear treatments available for ADRD, identifying modifiable risk factors such as air pollution exposure may make significant contributions towards prevention or delayed disease progression.
Collapse
Affiliation(s)
- Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
45
|
Stigant CE, Rajan T, Barraclough KA, Miller FA. The Necessity of Environmentally Sustainable Kidney Care. Can J Kidney Health Dis 2023; 10:20543581231166484. [PMID: 37091496 PMCID: PMC10116004 DOI: 10.1177/20543581231166484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Caroline E. Stigant
- Division of Nephrology, Island Health Authority, Department of Medicine, University of British Columbia, Vancouver, Canada
- Caroline E. Stigant, Division of Nephrology, Island Health Authority, Department of Medicine, University of British Columbia, #201-1990 Fort Street, Vancouver, BC V8R 6V4, Canada.
| | - Tasleem Rajan
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Katherine A. Barraclough
- Department of Nephrology, Royal Melbourne Hospital, Melbourne Health, Parkville, VIC, Australia
- School of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Fiona A. Miller
- Institute of Health Policy, Management and Evaluation, University of Toronto, ON, Canada
| |
Collapse
|
46
|
Ossoli A, Cetti F, Gomaraschi M. Air Pollution: Another Threat to HDL Function. Int J Mol Sci 2022; 24:ijms24010317. [PMID: 36613760 PMCID: PMC9820244 DOI: 10.3390/ijms24010317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have consistently demonstrated a positive association between exposure to air pollutants and the incidence of cardiovascular disease, with the strongest evidence for particles with a diameter < 2.5 μm (PM2.5). Therefore, air pollution has been included among the modifiable risk factor for cardiovascular outcomes as cardiovascular mortality, acute coronary syndrome, stroke, heart failure, and arrhythmias. Interestingly, the adverse effects of air pollution are more pronounced at higher levels of exposure but were also shown in countries with low levels of air pollution, indicating no apparent safe threshold. It is generally believed that exposure to air pollution in the long-term can accelerate atherosclerosis progression by promoting dyslipidemia, hypertension, and other metabolic disorders due to systemic inflammation and oxidative stress. Regarding high density lipoproteins (HDL), the impact of air pollution on plasma HDL-cholesterol levels is still debated, but there is accumulating evidence that HDL function can be impaired. In particular, the exposure to air pollution has been variably associated with a reduction in their cholesterol efflux capacity, antioxidant and anti-inflammatory potential, and ability to promote the release of nitric oxide. Further studies are needed to fully address the impact of various air pollutants on HDL functions and to elucidate the mechanisms responsible for HDL dysfunction.
Collapse
|
47
|
Nabavizadeh P, Liu J, Rao P, Ibrahim S, Han DD, Derakhshandeh R, Qiu H, Wang X, Glantz SA, Schick SF, Springer ML. Impairment of Endothelial Function by Cigarette Smoke Is Not Caused by a Specific Smoke Constituent, but by Vagal Input From the Airway. Arterioscler Thromb Vasc Biol 2022; 42:1324-1332. [PMID: 36288292 PMCID: PMC9616206 DOI: 10.1161/atvbaha.122.318051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to tobacco or marijuana smoke, or e-cigarette aerosols, causes vascular endothelial dysfunction in humans and rats. We aimed to determine what constituent, or class of constituents, of smoke is responsible for endothelial functional impairment. METHODS We investigated several smoke constituents that we hypothesized to mediate this effect by exposing rats and measuring arterial flow-mediated dilation (FMD) pre- and post-exposure. We measured FMD before and after inhalation of sidestream smoke from research cigarettes containing normal and reduced nicotine level with and without menthol, as well as 2 of the main aldehyde gases found in both smoke and e-cigarette aerosol (acrolein and acetaldehyde), and inert carbon nanoparticles. RESULTS FMD was reduced by all 4 kinds of research cigarettes, with extent of reduction ranging from 20% to 46% depending on the cigarette type. While nicotine was not required for the impairment, higher nicotine levels in smoke were associated with a greater percent reduction of FMD (41.1±4.5% reduction versus 19.2±9.5%; P=0.047). Lower menthol levels were also associated with a greater percent reduction of FMD (18.5±9.8% versus 40.5±4.8%; P=0.048). Inhalation of acrolein or acetaldehyde gases at smoke-relevant concentrations impaired FMD by roughly 50% (P=0.001). However, inhalation of inert carbon nanoparticles at smoke-relevant concentrations with no gas phase also impaired FMD by a comparable amount (P<0.001). Bilateral cervical vagotomy blocked the impairment of FMD by tobacco smoke. CONCLUSIONS There is no single constituent or class of constituents responsible for acute impairment of endothelial function by smoke; rather, we propose that acute endothelial dysfunction by disparate inhaled products is caused by vagus nerve signaling initiated by airway irritation.
Collapse
Affiliation(s)
- Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Jiangtao Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Poonam Rao
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| | - Sharina Ibrahim
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Daniel D. Han
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Xiaoyin Wang
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Stanton A. Glantz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| | - Suzaynn F. Schick
- Division of Occupational and Environmental Medicine, University of California, San Francisco, San Francisco, California
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| |
Collapse
|
48
|
Konduracka E, Krawczyk K, Surmiak M, Pudełek M, Malinowski KP, Mastalerz L, Zimnoch M, Samek L, Styszko K, Furman L, Gałkowski M, Nessler J, Różański K, Sanak M. Monocyte exposure to fine particulate matter results in miRNA release: A link between air pollution and potential clinical complication. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103996. [PMID: 36228992 DOI: 10.1016/j.etap.2022.103996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure to PM2.5 contributes to the pathogenesis of numerous disorders, although the underlying mechanisms remain unknown. The study investigated whether exposure of human monocytes to PM2.5 is associated with alterations in miRNAs. Monocytes were exposed in vitro to PM2.5 collected during winter and summer, followed by miRNA isolation from monocytes. Additionally, in 140 persons chronically exposed to air pollution, some miRNA patterns were isolated from serum seasonally. Between-season differences in chemical PM2.5 composition were observed. Some miRNAs were expressed both in monocytes and in human serum. MiR-34c-5p and miR-223-5p expression was more pronounced in winter. Bioinformatics analyses showed that selected miRNAs were involved in the regulation of several pathways. The expression of the same miRNA species in monocytes and serum suggests that these cells are involved in the production of miRNAs implicated in the development of disorders mediated by inflammation, oxidative stress, proliferation, and apoptosis after exposure to PM2.5.
Collapse
Affiliation(s)
- Ewa Konduracka
- Jagiellonian University Medical College, Coronary Disease Department and Heart Failure, John Paul II Hospital, Kraków, Poland.
| | - Krzysztof Krawczyk
- Jagiellonian University Medical College, Faculty of Health Sciences, Department of Emergency Medicine, Kraków, Poland
| | - Marcin Surmiak
- Jagiellonian University Medical College, 2nd Department of Internal Medicine, Kraków, Poland
| | - Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Piotr Malinowski
- Jagiellonian University Medical College, Faculty of Medicine, Department of Bioinformatics and Telemedicine, Kraków, Poland
| | - Lucyna Mastalerz
- Jagiellonian University Medical College, 2nd Department of Internal Medicine, Kraków, Poland
| | - Mirosław Zimnoch
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; Max Planck Institute for Biogeochemistry in Jena, Hans-Knöll Jena, Germany
| | - Lucyna Samek
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; Max Planck Institute for Biogeochemistry in Jena, Hans-Knöll Jena, Germany
| | - Katarzyna Styszko
- AGH University of Science and Technology, Faculty of Energy and Fuels, Kraków, Poland
| | - Leszek Furman
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; Max Planck Institute for Biogeochemistry in Jena, Hans-Knöll Jena, Germany
| | - Michał Gałkowski
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; Max Planck Institute for Biogeochemistry in Jena, Hans-Knöll Jena, Germany; Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745 Jena, Germany
| | - Jadwiga Nessler
- Jagiellonian University Medical College, Coronary Disease Department and Heart Failure, John Paul II Hospital, Kraków, Poland
| | - Kazimierz Różański
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; Max Planck Institute for Biogeochemistry in Jena, Hans-Knöll Jena, Germany
| | - Marek Sanak
- Jagiellonian University Medical College, 2nd Department of Internal Medicine, Kraków, Poland
| |
Collapse
|
49
|
Li M, Ren C. Exploring the protective mechanism of baicalin in treatment of atherosclerosis using endothelial cells deregulation model and network pharmacology. BMC Complement Med Ther 2022; 22:257. [PMID: 36192741 PMCID: PMC9527735 DOI: 10.1186/s12906-022-03738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Baicalin is a generally available flavonoid with potent biological activity. The present study aimed to assess the underlying mechanism of baicalin in treatment of atherosclerosis (AS) with the help of network pharmacology, molecular docking and experimental validation. Methods The target genes of baicalin and AS were identified from public databases, and the overlapping results were considered to be baicalin-AS targets. Core target genes of baicalin were obtained through the PPI network and validated by a clinical microarray dataset (GSE132651). Human aortic endothelial cells (HAECs) were treated with Lipopolysaccharide (LPS) to construct an endothelial injury model. The expression of NOX4 was examined by real-time qPCR and western blot. Flow cytometry was used to detect intracellular levels of reactive oxygen species (ROS). Furthermore, HAECs were transfected with NOX4-specific siRNA and then co-stimulated with baicalin and LPS to investigate whether NOX4 was involved in the anti-oxidative stress effects of baicalin. Results In this study, baicalin had 45 biological targets against AS. Functional enrichment analysis demonstrated that most targets were involved in oxidative stress. Using the CytoHubba plug-in, we obtained the top 10 genes in the PPI network ranked by the EPC algorithm. Molecular docking and microarray dataset validation indicated that NOX4 may be an essential target of baicalin, and its expression was significantly suppressed in AS samples compared to controls. In endothelial injury model, intervention of HAECs with baicalin increased the expression levels of NOX4 and NOS3 (eNOS), and decreased LPS-induced ROS generation. After inhibition of NOX4, the anti-ROS-generating effect of baicalin was abolished. Conclusion Collectively, we combined network pharmacology and endothelial injury models to investigate the anti-AS mechanism of baicalin. The results demonstrate that baicalin may exert anti-oxidative stress effects by targeting NOX4, providing new mechanisms and insights to baicalin for the treatment of AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03738-3.
Collapse
Affiliation(s)
- Mingshuang Li
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| | - Conglin Ren
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| |
Collapse
|
50
|
Filardo S, Di Pietro M, Protano C, Antonucci A, Vitali M, Sessa R. Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. TOXICS 2022; 10:toxics10100579. [PMID: 36287859 PMCID: PMC9607944 DOI: 10.3390/toxics10100579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/04/2023]
Abstract
Recently, growing attention has focused on the impact of air pollution on gut microbiota as a possible mechanism by which air pollutant exposure increased the risk for chronic diseases, as evidenced by in vivo studies demonstrating important exposure-induced alterations in the diversity and relative abundance of gut bacterial taxa. This systematic review provides updated state-of-art findings of studies examining the impact of air pollution on the human gut microbiota. Databases PubMed, Scopus, and Web of Science were searched with the following strategy: "air poll*" AND "gut micro*" OR "intestinal micro*"; moreover, a total of 10 studies were included. Overall, there is the evidence that short-term and long-term exposure to air pollutants have the potential to alter the composition and diversity of gut microbiota; some studies also correlated air pollution exposure to adverse health effects (impaired fasting glucose, adverse pregnancy outcomes, and asthma attacks) via alterations in the composition and/or function of the gut microbiota. However, the evidence on this topic is still scarce, and large cohort studies are needed globally.
Collapse
|