1
|
Kajuluri LP, Guo YY, Lee S, Christof M, Malhotra R. Epigenetic Regulation of Human Vascular Calcification. Genes (Basel) 2025; 16:506. [PMID: 40428328 PMCID: PMC12111397 DOI: 10.3390/genes16050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Vascular diseases present a significant threat to human health worldwide. Atherosclerosis is the most prevalent vascular disease, accounting for the majority of morbidity and mortality globally. Vascular calcification is a dynamic pathological process underlying the development of atherosclerotic plaques and involves the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic cells. Specifically, the phenotypic switch in VSMCs often involves modifications in gene expression due to epigenetic changes, including DNA methylation, histone modification, and non-coding RNAs. Understanding the role of these epigenetic changes in regulating the pathophysiology of vascular calcification, along with the proteins and pathways that mediate these changes, will aid in identifying new therapeutic candidates to enhance vascular health. This review discusses a comprehensive range of epigenetic modifications and their implications for vascular health and the development of vascular calcification.
Collapse
Affiliation(s)
- Lova Prasadareddy Kajuluri
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Yugene Young Guo
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Sujin Lee
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Michael Christof
- School of Arts and Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Rajeev Malhotra
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| |
Collapse
|
2
|
Zhao Y, Wu X, Yang Y, Zhang L, Cai X, Chen S, Vera A, Ji J, Boström KI, Yao Y. Inhibition of endothelial histone deacetylase 2 shifts endothelial-mesenchymal transitions in cerebral arteriovenous malformation models. J Clin Invest 2024; 134:e176758. [PMID: 38781032 PMCID: PMC11290970 DOI: 10.1172/jci176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are the most common vascular malformations worldwide and the leading cause of hemorrhagic strokes that may result in crippling neurological deficits. Here, using recently generated mouse models, we uncovered that cerebral endothelial cells (ECs) acquired mesenchymal markers and caused vascular malformations. Interestingly, we found that limiting endothelial histone deacetylase 2 (HDAC2) prevented cerebral ECs from undergoing mesenchymal differentiation and reduced cerebral AVMs. We found that endothelial expression of HDAC2 and enhancer of zeste homolog 1 (EZH1) was altered in cerebral AVMs. These alterations changed the abundance of H4K8ac and H3K27me in the genes regulating endothelial and mesenchymal differentiation, which caused the ECs to acquire mesenchymal characteristics and form AVMs. This investigation demonstrated that the induction of HDAC2 altered specific histone modifications, which resulted in mesenchymal characteristics in the ECs and cerebral AVMs. The results provide insight into the epigenetic impact on AVMs.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Zhang L, Cai X, Ma F, Qiao X, Ji J, Ma JA, Vergnes L, Zhao Y, Yao Y, Wu X, Boström KI. Two-step regulation by matrix Gla protein in brown adipose cell differentiation. Mol Metab 2024; 80:101870. [PMID: 38184275 PMCID: PMC10832489 DOI: 10.1016/j.molmet.2024.101870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Bone morphogenetic protein (BMP) signaling is intricately involved in adipose tissue development. BMP7 together with BMP4 have been implicated in brown adipocyte differentiation but their roles during development remains poorly specified. Matrix Gla protein (MGP) inhibits BMP4 and BMP7 and is expressed in endothelial and progenitor cells. The objective was to determine the role of MGP in brown adipose tissue (BAT) development. METHODS The approach included global and cell-specific Mgp gene deletion in combination with RNA analysis, immunostaining, thermogenic activity, and in vitro studies. RESULTS The results revealed that MGP directs brown adipogenesis at two essential steps. Endothelial-derived MGP limits triggering of white adipogenic differentiation in the perivascular region, whereas MGP derived from adipose cells supports the transition of CD142-expressing progenitor cells to brown adipogenic maturity. Both steps were important to optimize the thermogenic function of BAT. Furthermore, MGP derived from both sources impacted vascular growth. Reduction of MGP in either endothelial or adipose cells expanded the endothelial cell population, suggesting that MGP is a factor in overall plasticity of adipose tissue. CONCLUSION MGP displays a dual and cell-specific function in BAT, essentially creating a "cellular shuttle" that coordinates brown adipogenic differentiation with vascular growth during development.
Collapse
Affiliation(s)
- Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA.
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lu D, Jiang H, Zou T, Jia Y, Zhao Y, Wang Z. Endothelial-to-mesenchymal transition: New insights into vascular calcification. Biochem Pharmacol 2023; 213:115579. [PMID: 37589048 DOI: 10.1016/j.bcp.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 08/18/2023]
Abstract
With the continuous progress of atherosclerosis research, the significant pathological change of it--vascular calcification (VC), gains increasing attention. In recent years, numerous studies have demonstrated that it is an independent predictor of death risk of cardiovascular disease, and it has a strong correlation with poor clinical prognosis. As the world's population continues to age, the occurrence of VC is expected to reach its highest point in the near future. Therefore, it is essential to investigate ways to prevent or even reverse this process for clinical purposes. Endothelial-to-mesenchymal transition (EndMT) describes the progressive differentiation of endothelial cells into mesenchymal stem cells (MSCs) under various stimuli and acquisition of pluripotent cell characteristics. More and more studies show that EndMT plays a vital role in various cardiovascular diseases, including atherosclerosis, vascular calcification and heart valvular disease. EndMT is also involved in the formation and progression of VC. This review vividly describes the history, characteristics of EndMT and how it affects the endothelial cell process, then focuses on the relationship between vascular endothelium, EndMT, amino acid metabolism, and vascular calcification. Finally, it overviews the signal pathway of EndMT and drugs targeting EndMT, hoping to provide new ideas and a theoretical basis for studying potential therapeutic targets of VC.
Collapse
Affiliation(s)
- Dingkun Lu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ting Zou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuanwang Jia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yunyun Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
5
|
Yanagihara T, Guignabert C, Kolb MRJ. Endothelial cells in pulmonary fibrosis: more than a bystander. Eur Respir J 2023; 61:2300407. [PMID: 37290810 DOI: 10.1183/13993003.00407-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Christophe Guignabert
- Université Paris-Saclay, Inserm, UMR_S 999, Hypertension pulmonaire: physiopathologie et innovation thérapeutique, Le Kremli-Bicêtre, France
| | - Martin R J Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Wu X, Zhang D, Qiao X, Zhang L, Cai X, Ji J, Ma JA, Zhao Y, Belperio JA, Boström KI, Yao Y. Regulating the cell shift of endothelial cell-like myofibroblasts in pulmonary fibrosis. Eur Respir J 2023; 61:2201799. [PMID: 36758986 PMCID: PMC10249020 DOI: 10.1183/13993003.01799-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pulmonary fibrosis is a common and severe fibrotic lung disease with high morbidity and mortality. Recent studies have reported a large number of unwanted myofibroblasts appearing in pulmonary fibrosis, and shown that the sustained activation of myofibroblasts is essential for unremitting interstitial fibrogenesis. However, the origin of these myofibroblasts remains poorly understood. Here, we create new mouse models of pulmonary fibrosis and identify a previously unknown population of endothelial cell (EC)-like myofibroblasts in normal lung tissue. We show that these EC-like myofibroblasts significantly contribute myofibroblasts to pulmonary fibrosis, which is confirmed by single-cell RNA sequencing of human pulmonary fibrosis. Using the transcriptional profiles, we identified a small molecule that redirects the differentiation of EC-like myofibroblasts and reduces pulmonary fibrosis in our mouse models. Our study reveals the mechanistic underpinnings of the differentiation of EC-like myofibroblasts in pulmonary fibrosis and may provide new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Daoqin Zhang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- These authors contributed equally to this work
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, Clinical Immunology, and Allergy, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Dong X, Mao Y, Gao P. The Role of Bone Morphogenetic Protein 4 in Lung Diseases. Curr Mol Med 2023; 23:324-331. [PMID: 36883260 DOI: 10.2174/1566524022666220428110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) is a multifunctional secretory protein that belongs to the transforming growth factor β superfamily. BMPs transduce their signaling to the cytoplasm by binding to membrane receptors of the serine/threonine kinase family, including BMP type I and type II receptors. BMP4 participates in various biological processes, such as embryonic development, epithelial-mesenchymal transition, and maintenance of tissue homeostasis. The interaction between BMP4 and the corresponding endogenous antagonists plays a key role in the precise regulation of BMP4 signaling. In this paper, we review the pathogenesis of BMP4-related lung diseases and the foundation on which BMP4 endogenous antagonists have been developed as potential targets.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- Department of Medicine, Clinical Medical College & the First Affiliated Hospital of Henan, University of Science and Technology, Luoyang 471003, China
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
8
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
9
|
Malhotra R, Nicholson CJ, Wang D, Bhambhani V, Paniagua S, Slocum C, Sigurslid HH, Cardenas CLL, Li R, Boerboom SL, Chen YC, Hwang SJ, Yao C, Ichinose F, Bloch DB, Lindsay ME, Lewis GD, Aragam JR, Hoffmann U, Mitchell GF, Hamburg NM, Vasan RS, Benjamin EJ, Larson MG, Zapol WM, Cheng S, Roh JD, O’Donnell CJ, Nguyen C, Levy D, Ho JE. Matrix Gla Protein Levels Are Associated With Arterial Stiffness and Incident Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2022; 42:e61-e73. [PMID: 34809448 PMCID: PMC8792238 DOI: 10.1161/atvbaha.121.316664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Arterial stiffness is a risk factor for cardiovascular disease, including heart failure with preserved ejection fraction (HFpEF). MGP (matrix Gla protein) is implicated in vascular calcification in animal models, and circulating levels of the uncarboxylated, inactive form of MGP (ucMGP) are associated with cardiovascular disease-related and all-cause mortality in human studies. However, the role of MGP in arterial stiffness is uncertain. Approach and Results: We examined the association of ucMGP levels with vascular calcification, arterial stiffness including carotid-femoral pulse wave velocity (PWV), and incident heart failure in community-dwelling adults from the Framingham Heart Study. To further investigate the link between MGP and arterial stiffness, we compared aortic PWV in age- and sex-matched young (4-month-old) and aged (10-month-old) wild-type and Mgp+/- mice. Among 7066 adults, we observed significant associations between higher levels of ucMGP and measures of arterial stiffness, including higher PWV and pulse pressure. Longitudinal analyses demonstrated an association between higher ucMGP levels and future increases in systolic blood pressure and incident HFpEF. Aortic PWV was increased in older, but not young, female Mgp+/- mice compared with wild-type mice, and this augmentation in PWV was associated with increased aortic elastin fiber fragmentation and collagen accumulation. CONCLUSIONS This translational study demonstrates an association between ucMGP levels and arterial stiffness and future HFpEF in a large observational study, findings that are substantiated by experimental studies showing that mice with Mgp heterozygosity develop arterial stiffness. Taken together, these complementary study designs suggest a potential role of therapeutically targeting MGP in HFpEF.
Collapse
Affiliation(s)
- Rajeev Malhotra
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Christopher J. Nicholson
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Dongyu Wang
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Vijeta Bhambhani
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Samantha Paniagua
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Charles Slocum
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Haakon H. Sigurslid
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Rebecca Li
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Sophie L. Boerboom
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Yin-Ching Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chen Yao
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B. Bloch
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology; Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mark E. Lindsay
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Gregory D. Lewis
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | - Naomi M. Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Ramchandran S. Vasan
- Framingham Heart Study, Framingham, MA
- Department of Epidemiology, Boston University School of Public Health & Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Emelia J. Benjamin
- Framingham Heart Study, Framingham, MA
- Department of Epidemiology, Boston University School of Public Health & Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Martin G. Larson
- Framingham Heart Study, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Warren M. Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Susan Cheng
- Framingham Heart Study, Framingham, MA
- Barbara Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jason D. Roh
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Christopher Nguyen
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer E. Ho
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
10
|
Zhang L, Yao J, Yao Y, Boström KI. Contributions of the Endothelium to Vascular Calcification. Front Cell Dev Biol 2021; 9:620882. [PMID: 34079793 PMCID: PMC8165270 DOI: 10.3389/fcell.2021.620882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification (VC) increases morbidity and mortality and constitutes a significant obstacle during percutaneous interventions and surgeries. On a cellular and molecular level, VC is a highly regulated process that involves abnormal cell transitions and osteogenic differentiation, re-purposing of signaling pathways normally used in bone, and even formation of osteoclast-like cells. Endothelial cells have been shown to contribute to VC through a variety of means. This includes direct contributions of osteoprogenitor cells generated through endothelial-mesenchymal transitions in activated endothelium, with subsequent migration into the vessel wall. The endothelium also secretes pro-osteogenic growth factors, such as bone morphogenetic proteins, inflammatory mediators and cytokines in conditions like hyperlipidemia, diabetes, and renal failure. High phosphate levels caused by renal disease have deleterious effects on the endothelium, and induction of tissue non-specific alkaline phosphatase adds to the calcific process. Furthermore, endothelial activation promotes proteolytic destruction of the internal elastic lamina that serves, among other things, as a stabilizer of the endothelium. Appropriate bone mineralization is highly dependent on active angiogenesis, but it is unclear whether the same relationship exists in VC. Through its location facing the vascular lumen, the endothelium is the first to encounter circulating factor and bone marrow-derived cells that might contribute to osteoclast-like versus osteoblast-like cells in the vascular wall. In the same way, the endothelium may be the easiest target to reach with treatments aimed at limiting calcification. This review provides a brief summary of the contributions of the endothelium to VC as we currently know them.
Collapse
Affiliation(s)
- Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, Los Angeles, CA, United States
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
12
|
Borrás T, Cowley DO, Asokan P, Pandya K. Generation of a Matrix Gla (Mgp) floxed mouse, followed by conditional knockout, uncovers a new Mgp function in the eye. Sci Rep 2020; 10:18583. [PMID: 33122788 PMCID: PMC7596545 DOI: 10.1038/s41598-020-75031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
The ability to ablate a gene in a given tissue by generating a conditional knockout (cKO) is crucial for determining its function in the targeted tissue. Such tissue-specific ablation is even more critical when the gene's conventional knockout (KO) is lethal, which precludes studying the consequences of its deletion in other tissues. Therefore, here we describe a successful strategy that generated a Matrix Gla floxed mouse (Mgp.floxed) by the CRISPR/Cas9 system, that subsequently allowed the generation of cKOs by local viral delivery of the Cre-recombinase enzyme. MGP is a well-established inhibitor of calcification gene, highly expressed in arteries' smooth muscle cells and chondrocytes. MGP is also one of the most abundant genes in the trabecular meshwork, the eye tissue responsible for maintenance of intraocular pressure (IOP) and development of Glaucoma. Our strategy entailed one-step injection of two gRNAs, Cas9 protein and a long-single-stranded-circular DNA donor vector (lsscDNA, 6.7 kb) containing two loxP sites in cis and 900-700 bp 5'/3' homology arms. Ocular intracameral injection of Mgp.floxed mice with a Cre-adenovirus, led to an Mgp.TMcKO mouse which developed elevated IOP. Our study discovered a new role for the Mgp gene as a keeper of physiological IOP in the eye.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA.
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Priyadarsini Asokan
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA
| | - Kumar Pandya
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Guihard PJ, Guo Y, Wu X, Zhang L, Yao J, Jumabay M, Yao Y, Garfinkel A, Boström KI. Shaping Waves of Bone Morphogenetic Protein Inhibition During Vascular Growth. Circ Res 2020; 127:1288-1305. [PMID: 32854559 PMCID: PMC7987130 DOI: 10.1161/circresaha.120.317439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The BMPs (bone morphogenetic proteins) are essential morphogens in angiogenesis and vascular development. Disruption of BMP signaling can trigger cardiovascular diseases, such as arteriovenous malformations. OBJECTIVE A computational model predicted that BMP4 and BMP9 and their inhibitors MGP (matrix gamma-carboxyglutamic acid [Gla] protein) and CV2 (crossveinless-2) would form a regulatory system consisting of negative feedback loops with time delays and that BMP9 would trigger oscillatory expression of the 2 inhibitors. The goal was to investigate this regulatory system in endothelial differentiation and vascular growth. METHODS AND RESULTS Oscillations in the expression of MGP and CV2 were detected in endothelial cells in vitro, using quantitative real-time polymerase chain reaction and immunoblotting. These organized temporally downstream BMP-related activities, including expression of stalk-cell markers and cell proliferation, consistent with an integral role of BMP9 in vessel maturation. In vivo, the inhibitors were located in distinct zones in relation to the front of the expanding retinal network, as determined by immunofluorescence. Time-dependent changes of the CV2 location in the retina and the existence of an endothelial population with signs of oscillatory MGP expression in developing vasculature supported the in vitro findings. Loss of MGP or its BMP4-binding capacity disrupted the retinal vasculature, resulting in poorly formed networks, especially in the venous drainage areas, and arteriovenous malformations as determined by increased cell coverage and functional testing. CONCLUSIONS Our results suggest a previously unknown mechanism of temporal orchestration of BMP4 and BMP9 activities that utilize the tandem actions of the extracellular antagonists MGP and CV2. Disruption of this mechanism may contribute to vascular malformations and disease.
Collapse
Affiliation(s)
- Pierre J. Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Lily Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center
| | - Alan Garfinkel
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA
| |
Collapse
|
14
|
Marín-Ramos NI, Thein TZ, Ghaghada KB, Chen TC, Giannotta SL, Hofman FM. miR-18a Inhibits BMP4 and HIF-1α Normalizing Brain Arteriovenous Malformations. Circ Res 2020; 127:e210-e231. [PMID: 32755283 DOI: 10.1161/circresaha.119.316317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Brain arteriovenous malformations (AVMs) are abnormal tangles of vessels where arteries and veins directly connect without intervening capillary nets, increasing the risk of intracerebral hemorrhage and stroke. Current treatments are highly invasive and often not feasible. Thus, effective noninvasive treatments are needed. We previously showed that AVM-brain endothelial cells (BECs) secreted higher VEGF (vascular endothelial growth factor) and lower TSP-1 (thrombospondin-1) levels than control BEC; and that microRNA-18a (miR-18a) normalized AVM-BEC function and phenotype, although its mechanism remained unclear. OBJECTIVE To elucidate the mechanism of action and potential clinical application of miR-18a as an effective noninvasive treatment to selectively restore the phenotype and functionality of AVM vasculature. METHODS AND RESULTS The molecular pathways affected by miR-18a in patient-derived BECs and AVM-BECs were determined by Western blot, RT-qPCR (quantitative reverse transcription polymerase chain reaction), ELISA, co-IP, immunostaining, knockdown and overexpression studies, flow cytometry, and luciferase reporter assays. miR-18a was shown to increase TSP-1 and decrease VEGF by reducing PAI-1 (plasminogen activator inhibitor-1/SERPINE1) levels. Furthermore, miR-18a decreased the expression of BMP4 (bone morphogenetic protein 4) and HIF-1α (hypoxia-inducible factor 1α), blocking the BMP4/ALK (activin-like kinase) 2/ALK1/ALK5 and Notch signaling pathways. As determined by Boyden chamber assays, miR-18a also reduced the abnormal AVM-BEC invasiveness, which correlated with a decrease in MMP2 (matrix metalloproteinase 2), MMP9, and ADAM10 (ADAM metallopeptidase domain 10) levels. In vivo pharmacokinetic studies showed that miR-18a reaches the brain following intravenous and intranasal administration. Intranasal co-delivery of miR-18a and NEO100, a good manufacturing practices-quality form of perillyl alcohol, improved the pharmacokinetic profile of miR-18a in the brain without affecting its pharmacological properties. Ultra-high-resolution computed tomography angiography and immunostaining studies in an Mgp-/- AVM mouse model showed that miR-18a decreased abnormal cerebral vasculature and restored the functionality of the bone marrow, lungs, spleen, and liver. CONCLUSIONS miR-18a may have significant clinical value in preventing, reducing, and potentially reversing AVM.
Collapse
Affiliation(s)
- Nagore I Marín-Ramos
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Thu Zan Thein
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston (K.B.G.)
| | - Thomas C Chen
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles.,Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Steven L Giannotta
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Florence M Hofman
- Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
15
|
Li X, Wei R, Wang M, Ma L, Zhang Z, Chen L, Guo Q, Guo S, Zhu S, Zhang S, Min L. MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway. Mol Ther Oncolytics 2020; 17:371-383. [PMID: 32405535 PMCID: PMC7210384 DOI: 10.1016/j.omto.2020.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Matrix Gla protein (MGP), an extracellular matrix protein, is mainly associated with the inhibition of calcification in skeleton, coronary artery, and kidney, and more recently it has also been implicated in cancer. However, the biological function of MGP inside cancer cells and its role in colon cancer (CC) remain largely unknown. MGP expression and its association with clinicopathologic characteristics in CC were analyzed by immunohistochemistry and verified by Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. The effects of MGP on CC cell proliferation were evaluated via knockdown and overexpression experiments in vitro. Mechanisms of MGP in CC were explored by western blots, quantitative real-time PCR, Fluo-3 AM staining, Rhod-2 AM staining, immunofluorescence, and other techniques. Our study confirmed that MGP was upregulated in different stages of CC and associated with a worse prognosis. MGP could enrich intracellular free Ca2+ concentration and promote nuclear factor κB (NF-κB)/p65 phosphorylation, activating the expression of c-MYC, ICAM-1, and VEGFA. Furthermore, the reduction of intracellular free Ca2+ concentration and the subsequent growth inhibition effect on CC cells induced by small interfering RNA targeting MGP (siMGP) could be rescued by a higher calcium concentration environment. Therefore, MGP promotes the growth and proliferation of CC cells by enriching intracellular calcium concentration and activating the NF-κB pathway, and it could serve as a potential prognostic biomarker in CC patients.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Mizhu Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Ma
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
16
|
Kuronuma K, Yokoi A, Fukuoka T, Miyata M, Maekawa A, Tanaka S, Matsubara L, Goto C, Matsuo M, Han HW, Tsuruta M, Murata H, Okamoto H, Hasegawa N, Asano S, Ito M. Matrix Gla protein maintains normal and malignant hematopoietic progenitor cells by interacting with bone morphogenetic protein-4. Heliyon 2020; 6:e03743. [PMID: 32322728 PMCID: PMC7160454 DOI: 10.1016/j.heliyon.2020.e03743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Matrix Gla protein (MGP), a modulator of the BMP-SMAD signals, inhibits arterial calcification in a Glu γ-carboxylation dependent manner but the role of MGP highly expressed in a subset of bone marrow (BM) mesenchymal stem/stromal cells is unknown. Here we provide evidence that MGP might be a niche factor for both normal and malignant myelopoiesis. When mouse BM hematopoietic cells were cocultured with mitomycin C-treated BM stromal cells in the presence of anti-MGP antibody, growth of hematopoietic cells was reduced by half, and maintenance of long-term culture-initiating cells (LTC-ICs) was profoundly attenuated. Antibody-mediated blockage of MGP also inhibited growth (by a fifth) and cobblestone formation (by half) of stroma-dependent MB-1 myeloblastoma cells. MGP was undetectable in normal hematopoietic cells but was expressed in various mesenchymal cells and was aberrantly high in MB-1 cells. MGP and bone morphogenetic protein (BMP)-4 were co-induced in stromal cells cocultured with both normal hematopoietic cells and MB-1 myeloblastoma cells in an oscillating several days-periodic manner. BMP-2 was also induced in stromal cells cocultured with normal hematopoietic cells but was barely expressed when cocultured with MB-1 cells. GST-pulldown and luciferase reporter assays showed that uncarboxylated MGP interacted with BMP-4 and that anti-MGP antibody abolished this interaction. LDN-193189, a selective BMP signaling inhibitor, inhibited growth and cobblestone formation of MB-1 cells. The addition of warfarin, a selective inhibitor of vitamin K-dependent Glu γ-carboxylation, did not affect MB-1 cell growth, suggesting that uncarboxylated MGP has a biological effect in niche. These results indicate that MGP may maintain normal and malignant hematopoietic progenitor cells, possibly by modulating BMP signals independently of Glu γ-carboxylation. Aberrant MGP by leukemic cells and selective induction of BMP-4 relative to BMP-2 in stromal cells might specify malignant niche.
Collapse
Affiliation(s)
- Kana Kuronuma
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Aya Yokoi
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Tomoya Fukuoka
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, CREST, Japan Science and Technology Agency, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Akio Maekawa
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Satowa Tanaka
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Leo Matsubara
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Chie Goto
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Miki Matsuo
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hao-Wei Han
- Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555, Japan
| | - Mai Tsuruta
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Haruka Murata
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hikari Okamoto
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Natsumi Hasegawa
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Shigetaka Asano
- Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555, Japan
| | - Mitsuhiro Ito
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555, Japan
- Corresponding author.
| |
Collapse
|
17
|
Wang L, Yao J, Yu T, Zhang D, Qiao X, Yao Z, Wu X, Zhang L, Boström KI, Yao Y. Homeobox D3, A Novel Link Between Bone Morphogenetic Protein 9 and Transforming Growth Factor Beta 1 Signaling. J Mol Biol 2020; 432:2030-2041. [PMID: 32061928 DOI: 10.1016/j.jmb.2020.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
AIMS Several signaling pathways contribute to endothelial-mesenchymal transitions and vascular calcification, including bone morphogenetic protein (BMP) and transforming growth factor (TGF) β signaling. The transcription factor homeobox D3 (Hoxd3) is known to regulate an invasive endothelial phenotype, and the aim of the study is to determine if HOXD3 modulates BMP and TGFβ signaling in the endothelium. METHODS AND RESEARCH We report that the endothelium with high BMP activity due to the loss of BMP inhibitor matrix Gla protein (MGP) shows induction of Hoxd3. HOXD3 is part of a BMP-triggered cascade. When activated by BMP9, activin receptor-like kinase (ALK) 1 induces HOXD3 expression. Hoxd3 promoter is a direct target of phosphorylated (p) SMAD1, a mediator of BMP signaling. High BMP activity further results in enhanced TGFβ signaling due to induction of TGFβ1 and its receptor, ALK5. This is mediated by HOXD3, which directly targets the Tgfb1 promoter. Finally, TGFβ1 and BMP9 stimulate the expression of MGP, which limits the enhanced ALK1 induction by counteracting BMP4. The cascade of BMP9-HOXD3-TGFβ also affects Notch signaling and angiogenesis through induction of Notch ligand Jagged 2 and suppression of Notch ligand delta-like 4 (Dll4). CONCLUSION The results suggest that HOXD3 is a novel link between BMP9/ALK1 and TGFβ1/ALK5 signaling. TRANSLATIONAL PERSPECTIVE BMP and TGFβ signaling are instrumental in vascular disease such as vascular calcification and atherosclerosis. This study demonstrated a novel type of cross talk between endothelial BMP and TGFβ signaling as mediated by HOXD3. The results provide a possible therapeutic approach to control dysfunctional BMP and TGFβ signaling by regulating HOXD3.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Tongtong Yu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Zehao Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; College of Life Science, Nankai University, Tianjin, China
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA.
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
18
|
Yao J, Wu X, Zhang D, Wang L, Zhang L, Reynolds EX, Hernandez C, Boström KI, Yao Y. Elevated endothelial Sox2 causes lumen disruption and cerebral arteriovenous malformations. J Clin Invest 2019; 129:3121-3133. [PMID: 31232700 DOI: 10.1172/jci125965] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Lumen integrity in vascularization requires fully differentiated endothelial cells (ECs). Here, we report that endothelial-mesenchymal transitions (EndMTs) emerged in ECs of cerebral arteriovenous malformation (AVMs) and caused disruption of the lumen or lumen disorder. We show that excessive Sry-box 2 (Sox2) signaling was responsible for the EndMTs in cerebral AVMs. EC-specific suppression of Sox2 normalized endothelial differentiation and lumen formation and improved the cerebral AVMs. Epigenetic studies showed that induction of Sox2 altered the cerebral-endothelial transcriptional landscape and identified jumonji domain-containing protein 5 (JMJD5) as a direct target of Sox2. Sox2 interacted with JMJD5 to induce EndMTs in cerebral ECs. Furthermore, we utilized a high-throughput system to identify the β-adrenergic antagonist pronethalol as an inhibitor of Sox2 expression. Treatment with pronethalol stabilized endothelial differentiation and lumen formation, which limited the cerebral AVMs.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lumin Wang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eric X Reynolds
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carlos Hernandez
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
19
|
Wu X, Yao J, Wang L, Zhang D, Zhang L, Reynolds EX, Yu T, Boström KI, Yao Y. Crosstalk between BMP and Notch Induces Sox2 in Cerebral Endothelial Cells. Cells 2019; 8:E549. [PMID: 31174355 PMCID: PMC6628192 DOI: 10.3390/cells8060549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Bone morphogenetic protein (BMP) and Notch signaling are critical for endothelial cell (EC) differentiation in vascular development. Recent studies have shown that excess BMP activity induces Notch signaling in cerebral ECs resulting in arteriovenous malformation (AVMs). However, it is unclear how the crosstalk between BMP and Notch signaling affects cerebral EC differentiation at the gene regulatory level. Here, we report that BMP6 activates the activin receptor-like kinase (ALK) 3, a BMP type 1 receptor, to induce Notch1 receptor and Jagged1 and Jagged2 ligands. We show that increased expression of the Notch components alters the transcriptional regulatory complex in the SRY-Box 2 (Sox2) promoter region so as to induce its expression in cerebral ECs. Together, our results identify Sox2 as a direct target of BMP and Notch signaling and provide information on how altered BMP and Notch signaling affects the endothelial transcriptional landscape.
Collapse
Affiliation(s)
- Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Lumin Wang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Eric X Reynolds
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Tongtong Yu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA.
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| |
Collapse
|
20
|
Wei F, Thijs L, Cauwenberghs N, Yang W, Zhang Z, Yu C, Kuznetsova T, Nawrot TS, Struijker‐Boudier HAJ, Verhamme P, Vermeer C, Staessen JA. Central Hemodynamics in Relation to Circulating Desphospho-Uncarboxylated Matrix Gla Protein: A Population Study. J Am Heart Assoc 2019; 8:e011960. [PMID: 31025895 PMCID: PMC6509723 DOI: 10.1161/jaha.119.011960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
Abstract
Background Stiffening and calcification of the large arteries are forerunners of cardiovascular complications. MGP (Matrix Gla protein), which requires vitamin K-dependent activation, is a potent locally acting inhibitor of arterial calcification. We hypothesized that the central hemodynamic properties might be associated with inactive desphospho-uncarboxylated MGP (dp-uc MGP ). Methods and Results In 835 randomly recruited Flemish individuals (mean age, 49.7 years; 45.6% women), we measured plasma dp-uc MGP , using an ELISA -based assay. We derived central pulse pressure and carotid-femoral pulse wave velocity (PWV) from applanation tonometry and calculated forward and backward pulse waves using an automated, pressure-based wave separation analysis algorithm. Aortic PWV (n=657), central pulse pressure, forward pulse wave, and backward pulse wave mean± SD values were 7.34±1.64 m/s, 45.2±15.3 mm Hg, 33.2±10.2 mm Hg, and 21.8±8.6 mm Hg, respectively. The geometric mean plasma concentration of dp-uc MGP was 4.09 μg/L. All hemodynamic indexes increased across tertiles of dp-uc MGP distribution. In multivariable-adjusted analyses, a doubling of dp-uc MGP was associated with higher PWV (0.15 m/s; 95% CI, 0.01-0.28 m/s), central pulse pressure (1.70 mm Hg; 95% CI, 0.49-2.91 mm Hg), forward pulse wave (0.93 mm Hg; 95% CI, 0.01-1.84 mm Hg), and backward pulse wave (0.71 mm Hg; 95% CI, 0.11-1.30 mm Hg). Categorization of aortic PWV by tertiles of its distribution highlighted a decreasing trend of PWV at low dp-uc MGP (<3.35 μg/L) and an increasing trend at high dp-uc MGP (≥5.31 μg/L). Conclusions In people representative for the general population, higher inactive dp-uc MGP was associated with greater PWV , central pulse pressure, forward pulse wave, and backward pulse wave. These observations highlight new avenues for preserving vascular integrity and preventing cardiovascular complications (eg, by improving a person's vitamin K status).
Collapse
Affiliation(s)
- Fang‐Fei Wei
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Lutgarde Thijs
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Nicholas Cauwenberghs
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Wen‐Yi Yang
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Zhen‐Yu Zhang
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Cai‐Guo Yu
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Tatiana Kuznetsova
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
| | - Tim S. Nawrot
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | | | - Peter Verhamme
- Centre for Molecular and Vascular BiologyDepartment of Cardiovascular SciencesUniversity of LeuvenLeuvenBelgium
| | - Cees Vermeer
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtthe Netherlands
| | - Jan A. Staessen
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyDepartment of Cardiovascular SciencesUniversity of LeuvenBelgium
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
21
|
Hui W, Cao Z, Wang X, Zhu J. Association of matrix Gla protein polymorphism and knee osteoarthritis in a chinese population. Biosci Rep 2019; 39:BSR20182228. [PMID: 30617055 PMCID: PMC6350040 DOI: 10.1042/bsr20182228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
Several studies have explored the association between matrix Gla protein (MGP) gene polymorphism and knee osteoarthritis (OA) risk; however, they obtained conflicting findings. The present study aims to explore the association of MGP gene polymorphism and OA risk in a Chinese Han population. A total of 256 patients with radiographic knee OA and 327 control subjects were recruited in this case-control study. The genotypes of MGP gene rs1800802 polymorphism was determined by standard PCR and restriction fragment length polymorphism (PCR-RLFP). In this case-control study, we observed that MGP gene rs1800802 polymorphism increased the risk of knee OA. Subgroup analyses also found that rs1800802 polymorphism was related to the elevated risk for knee OA among the female, smoker, drinker, and body mass index (BMI) ≥25 kg/m2 groups. In conclusion, this study shows that MGP gene rs1800802 polymorphism is associated with increased risk for knee OA in Chinese Han population and the rs1800802 polymorphism may be a diagnostic marker of radiographic knee OA.
Collapse
Affiliation(s)
- Wenpeng Hui
- Department of Spinal Surgery, Shandong Provincial Western Hospital, 4 Duanxing West Road, Jinan, Shandong, China
| | - Zhong Cao
- Department of Spinal Surgery, Shandong Provincial Western Hospital, 4 Duanxing West Road, Jinan, Shandong, China
| | - Xiao Wang
- Department of Spinal Surgery, Shandong Provincial Western Hospital, 4 Duanxing West Road, Jinan, Shandong, China
| | - Junfeng Zhu
- Department of Orthopedic, Suichang People's hospital, 143 Miaogao North Street, Suichang, Lishui, Zhejiang, China
| |
Collapse
|
22
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
23
|
Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, Lin J, Zhang Z, Qiu D, Liu Q, Shen H, Xiang AP, Zhang Q. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis 2018; 9:691. [PMID: 29880866 PMCID: PMC5992143 DOI: 10.1038/s41419-018-0734-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease that is difficult to treat. However, previous preclinical and clinical studies have shown that mesenchymal stromal cells (MSCs) are a promising therapeutic approach, whereas the exact underlying molecular mechanisms of MSCs in treating CD remain unclear. Furthermore, the heterogeneity of MSCs, as well as the in vivo microenvironments may influence the therapeutic efficacy. In our previous study, we found that a subpopulation of mouse MSCs with a high expression of matrix Gla protein (MGP), one of the members of vitamin K-dependent protein family, possessed better immunoregulatory properties. Therefore, in this study we investigate whether the abundant MSCs-derived MGP participate in the therapeutic mechanisms for MSCs treating CD. Obvious suppression of cell proliferation and cytokine production in T cells were observed in vitro through MSCs-derived MGP. Moreover, MGP alleviated the clinical and histopathological severity of colonic inflammation in mouse experimental colitis models to a remarkable degree. Our results indicate that MGP might be a novel important mediator of MSCs-mediated immunomodulation in treating CD.
Collapse
Affiliation(s)
- Yuan Feng
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyi Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Dongbo Qiu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Yurekli BS, Kocabas GU, Aksit M, Kutbay NO, Suner A, Yurekli I, Cakir H, Bozkaya G, Cetinkalp S. The low levels of bone morphogenic protein-4 and its antagonist noggin in type 2 diabetes. Hormones (Athens) 2018; 17:247-253. [PMID: 29943307 DOI: 10.1007/s42000-018-0041-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Bone morphogenic protein-4 (BMP-4) is a proinflammatory cytokine which is controlled by BMP-4 antagonists. Our aim was to investigate the levels of BMP-4 and its antagonists, noggin and matrix Gla protein (MGP), in prediabetes and diabetes. DESIGN One hundred and forty-two type 2 diabetic, 32 prediabetic, and 58 control subjects participated in this cross-sectional study. BMP-4, noggin, and MGP were measured with the ELISA method. RESULTS There was a significant difference between the three groups in relation to sex, hypertension, fasting plasma glucose, HbA1c, lipid profiles, and diastolic blood pressure (p < 0.05). BMP-4 levels were significantly lower in the diabetic group compared to the control group (108.5 and 127.5 ng/mL, respectively, p < 0.001 diabetes vs. control). Noggin levels were significantly lower in the diabetic group compared to the prediabetic and control groups (10.5, 11.5, and 12.0 ng/mL, as median, respectively, p < 0.001; diabetes vs. control, p = 0.002; diabetes vs. prediabetes). BMP-4 was associated significantly with noggin in the entire study population (ß coefficient = 0.796, p < 0.001). Receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curve was 0.708 (95% CI 0.551-0.864, p = 0.011) for BMP-4 levels. The optimal cutoff value of BMP-4 for detecting albuminuria was 118.5 ng/mL for which sensitivity was 71.4% and specificity was 66.4%. CONCLUSIONS BMP-4 and noggin levels were lower in the diabetic group. High BMP-4 levels were significantly associated with albuminuria. Further studies are warranted to determine the role of BMP-4 in the pathogenic processes underlying albuminuria and hyperglycemia in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Banu Sarer Yurekli
- Department of Endocrinology, Ege University Faculty of Medicine, Ankara Street, Bornova, 35100, Izmir, Turkey.
| | - Gokcen Unal Kocabas
- Department of Endocrinology, Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Murat Aksit
- Department of Biochemistry, Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Nilufer Ozdemir Kutbay
- Department of Endocrinology, Ege University Faculty of Medicine, Ankara Street, Bornova, 35100, Izmir, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ismail Yurekli
- Department of Cardiovascular Surgery, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Habib Cakir
- Department of Cardiovascular Surgery, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Giray Bozkaya
- Department of Biochemistry, Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Sevki Cetinkalp
- Department of Endocrinology, Ege University Faculty of Medicine, Ankara Street, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
25
|
Hortells L, Sur S, St Hilaire C. Cell Phenotype Transitions in Cardiovascular Calcification. Front Cardiovasc Med 2018; 5:27. [PMID: 29632866 PMCID: PMC5879740 DOI: 10.3389/fcvm.2018.00027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC); vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.
Collapse
Affiliation(s)
- Luis Hortells
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Swastika Sur
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Cardoso L, Weinbaum S. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:129-155. [PMID: 30315543 DOI: 10.1007/978-3-319-96445-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For many decades, cardiovascular calcification has been considered as a passive process, accompanying atheroma progression, correlated with plaque burden, and apparently without a major role on plaque vulnerability. Clinical and pathological analyses have previously focused on the total amount of calcification (calcified area in a whole atheroma cross section) and whether more calcification means higher risk of plaque rupture or not. However, this paradigm has been changing in the last decade or so. Recent research has focused on the presence of microcalcifications (μCalcs) in the atheroma and more importantly on whether clusters of μCalcs are located in the cap of the atheroma. While the vast majority of μCalcs are found in the lipid pool or necrotic core, they are inconsequential to vulnerable plaque. Nevertheless, it has been shown that μCalcs located within the fibrous cap could be numerous and that they behave as an intensifier of the background circumferential stress in the cap. It is now known that such intensifying effect depends on the size and shape of the μCalc as well as the proximity between two or more μCalcs. If μCalcs are located in caps with very low background stress, the increase in stress concentration may not be sufficient to reach the rupture threshold. However, the presence of μCalc(s) in the cap with a background stress of about one fifth to one half the rupture threshold (a stable plaque) will produce a significant increase in local stress, which may exceed the cap rupture threshold and thus transform a non-vulnerable plaque into a vulnerable one. Also, the classic view that treats cardiovascular calcification as a passive process has been challenged, and emerging data suggest that cardiovascular calcification may encompass both passive and active processes. The passive calcification process comprises biochemical factors, specifically circulating nucleating complexes, which would lead to calcification of the atheroma. The active mechanism of atherosclerotic calcification is a cell-mediated process via cell death of macrophages and smooth muscle cells (SMCs) and/or the release of matrix vesicles by SMCs.
Collapse
Affiliation(s)
- Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
27
|
Nigwekar SU, Jiramongkolchai P, Wunderer F, Bloch E, Ichinose R, Nazarian RM, Thadhani RI, Malhotra R, Bloch DB. Increased Bone Morphogenetic Protein Signaling in the Cutaneous Vasculature of Patients with Calciphylaxis. Am J Nephrol 2017; 46:429-438. [PMID: 29130990 DOI: 10.1159/000484418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND The objective of this study was to investigate the role of bone morphogenetic protein (BMP) signal transduction in the pathogenesis of calciphylaxis. METHODS Skin biopsy specimens were obtained from 18 patients with, and 12 patients without, calciphylaxis. Tissue sections were stained with antibodies directed against BMP effector proteins phosphorylated-SMAD (p-SMAD) 1/5/9, inhibitor of DNA 1 (Id1), inhibitor of DNA 3 (Id3), and Runx2. The intensity of staining was scored semi-quantitatively as strong versus weak or absent. RESULTS Of the 18 patients with calciphylaxis (mean age: 59 ± 8 years), 9 were women and 15 had end-stage renal disease. Of the 12 control patients (mean age: 57 ± 10 years), 8 were women and 8 had end-stage renal disease. Strong staining for p-SMAD 1/5/9 was detected in blood vessels from all calciphylaxis patients. In 1 patient with calciphylaxis, strong staining for p-SMAD 1/5/9 was detected in a blood vessel that did not have evidence of calcification. Id1 and Id3 immunoreactivity was detected in blood vessels from all 12 patients with calciphylaxis that were tested. Runx2 staining was detected in all 6 patients with calciphylaxis who were tested. p-SMAD 1/5/9 immunoreactivity was weak or absent in blood vessels of 10 of the 12 control samples. CONCLUSIONS The BMP signal transduction pathway is activated in the cutaneous vasculature of calciphylaxis patients. The ability to detect p-SMAD 1/5/9, Id1, and Id3 in cutaneous vasculature may assist in the diagnosis of calciphylaxis. As BMP signaling inhibitors become available, this pathway may serve as a future therapeutic target for calciphylaxis.
Collapse
Affiliation(s)
- Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Pawina Jiramongkolchai
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Florian Wunderer
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rika Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalynn M Nazarian
- Pathology Service, Dermatopathology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ravi I Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Yao J, Guihard PJ, Wu X, Blazquez-Medela AM, Spencer MJ, Jumabay M, Tontonoz P, Fogelman AM, Boström KI, Yao Y. Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 2017; 216:3369-3385. [PMID: 28838957 PMCID: PMC5626536 DOI: 10.1083/jcb.201612122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
J. Yao et al. demonstrate that loss of MGP, a BMP inhibitor, causes abnormal hepatic differentiation in lungs. They find that interactions between endothelium and epithelium separate pulmonary from hepatic differentiation during development. Lack of MGP triggers hepatic differentiation in the pulmonary epithelium, as regulated by the endothelium. The vascular endothelium is critical for induction of appropriate lineage differentiation in organogenesis. In this study, we report that dysfunctional pulmonary endothelium, resulting from the loss of matrix Gla protein (MGP), causes ectopic hepatic differentiation in the pulmonary epithelium. We demonstrate uncontrolled induction of the hepatic growth factor (HGF) caused by dysregulated cross talk between pulmonary endothelium and epithelium in Mgp-null lungs. Elevated HGF induced hepatocyte nuclear factor 4 α (Hnf4a), which competed with NK2 homeobox 1 (Nkx2.1) for binding to forkhead box A2 (Foxa2) to drive hepatic differentiation in Mgp-null airway progenitor cells. Limiting endothelial HGF reduced Hnf4a, abolished interference of Hnf4a with Foxa2, and reduced hepatic differentiation in Mgp-null lungs. Together, our results suggest that endothelial–epithelial interactions, maintained by MGP, are essential in pulmonary cell differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
29
|
Siltari A, Vapaatalo H. Vascular Calcification, Vitamin K and Warfarin Therapy - Possible or Plausible Connection? Basic Clin Pharmacol Toxicol 2017. [PMID: 28639365 DOI: 10.1111/bcpt.12834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a pathological process underpinning many cardiovascular diseases; it is the main cause of global mortality. Atherosclerosis is characterized by an invasion of inflammatory cells, accumulation of lipids and the formation of fatty streaks (plaques) which subsequently allow accumulation of calcium and other minerals leading to a disturbance in the vascular endothelium and its regulatory role in arterial function. Vascular calcification is a different process, stringently regulated mainly by local factors, in which osteoblast-like cells accumulate in the muscular layer of arteries ultimately taking on the physiological appearance of bone. The elevated stiffness of the arteries leads to severe vascular complications in brain, heart and kidneys. Recently, evidence from animal experiments as well as clinical and epidemiological results suggests that long-term treatment with warfarin, but not with the novel direct anticoagulants, can increase the risk or even induce vascular calcification in some individuals. Gamma-carboxylation is an enzymatic process not only needed for activation of vitamin K but also other proteins which participate in bone formation and vascular calcification. Thus, reduced expression of the vitamin K-dependent proteins which physiologically inhibit calcification of cellular matrix could be postulated to lead to vascular calcification. Published clinical data, describing at present a few thousand patients, need to be supplemented with controlled studies to confirm this interesting hypothesis.
Collapse
Affiliation(s)
- Aino Siltari
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Guihard PJ, Yao J, Blazquez-Medela AM, Iruela-Arispe L, Boström KI, Yao Y. Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS One 2016; 11:e0167936. [PMID: 27936229 PMCID: PMC5148029 DOI: 10.1371/journal.pone.0167936] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal development and disease processes. Here, we report that EndMTs occur in the diabetic endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and increased vascular calcification. We also find an induction of a complex of serine proteases in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that EndMTs contribute to vascular calcification in diabetic arteries.
Collapse
Affiliation(s)
- Pierre J. Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ana M. Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Luisa Iruela-Arispe
- The Molecular Biology Institute at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, United States of America
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- The Molecular Biology Institute at UCLA, Los Angeles, California, United States of America
- * E-mail: (YY); (KB)
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, United States of America
- * E-mail: (YY); (KB)
| |
Collapse
|
31
|
Zandueta C, Ormazábal C, Perurena N, Martínez-Canarias S, Zalacaín M, Julián MS, Grigoriadis AE, Valencia K, Campos-Laborie FJ, Rivas JDL, Vicent S, Patiño-García A, Lecanda F. Matrix-Gla protein promotes osteosarcoma lung metastasis and associates with poor prognosis. J Pathol 2016; 239:438-49. [PMID: 27172275 DOI: 10.1002/path.4740] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Abstract
Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFβ-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Zandueta
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Cristina Ormazábal
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Susana Martínez-Canarias
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marta Zalacaín
- Department of Paediatrics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
| | - Mikel San Julián
- Department of Orthopaedics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
| | - Agamemnon E Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College, London, UK
| | - Karmele Valencia
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Francisco J Campos-Laborie
- Bioinformatics and Functional Genomics Research Group, Cancer Research Centre (IBMCC-CIC), CSIC, and University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Centre (IBMCC-CIC), CSIC, and University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Silvestre Vicent
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Patiño-García
- Department of Paediatrics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
32
|
Abstract
Vascular disease, such as atherosclerosis and diabetic vasculopathy, is frequently complicated by vascular calcification. Previously believed to be an end-stage process of unregulated mineral precipitation, it is now well established to be a multi-faceted disease influenced by the characteristics of its vascular location, the origins of calcifying cells and numerous regulatory pathways. It reflects the fundamental plasticity of the vasculature that is gradually being revealed by progress in vascular and stem cell biology. This review provides a brief overview of where we stand in our understanding of vascular calcification, facing the challenge of translating this knowledge into viable preventive and therapeutic strategies.
Collapse
|
33
|
Yao J, Guihard PJ, Blazquez-Medela AM, Guo Y, Liu T, Boström KI, Yao Y. Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 2016; 19:1-7. [PMID: 26364300 PMCID: PMC4703505 DOI: 10.1007/s10456-015-9484-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
Matrix Gla protein (MGP) is an antagonist of bone morphogenetic proteins and expressed in vascular endothelial cells. Lack of MGP causes vascular abnormalities in multiple organs in mice. The objective of this study is to define the role of MGP in early endothelial differentiation. We find that expression of endothelial markers is highly induced in Mgp null organs, which, in wild type, contain high MGP expression. Furthermore, Mgp null embryonic stem cells express higher levels of endothelial markers than wild-type controls and an abnormal temporal pattern of expression. We also find that the Mgp-deficient endothelial cells adopt characteristics of mesenchymal stem cells. We conclude that loss of MGP causes dysregulation of early endothelial differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Western Yanta Road, Xi'an, 710061, China
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ting Liu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Rd, Shanghai, 200127, China
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
- Division of Cardiology, David Geffen School of Medicine at UCLA, Box 951679, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
34
|
Jumabay M, Moon JH, Yeerna H, Boström KI. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol 2015; 230:2821-8. [PMID: 25854185 PMCID: PMC4516692 DOI: 10.1002/jcp.25012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/03/2015] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Jeremiah H. Moon
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Huwate Yeerna
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA
| |
Collapse
|
35
|
Blazquez-Medela AM, Guihard PJ, Yao J, Jumabay M, Lusis AJ, Boström KI, Yao Y. ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio 2015; 5:257-63. [PMID: 25893161 PMCID: PMC4398664 DOI: 10.1016/j.fob.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/02/2022] Open
Abstract
ABCC6 deficiency stimulates BMP signaling in multiple organs. ABCC6 deficiency causes tissue-specific induction of BMP-related genes. Tissue-specific targeting of BMP signaling may be needed in ABCC deficiency.
Mutations in ABCC6 (ATP-binding cassette, subfamily C, member 6), an orphan transporter expressed in the liver, are the cause of pseudoxanthoma elasticum. Since ABCC6 was reported to affect matrix Gla protein (MGP), an inhibitor of bone morphogenetic proteins (BMPs), we studied BMP signaling and expression in various tissues of mice with and without functional ABCC. Enhanced BMP signaling was found in all examined tissues in the absence of ABCC6. Despite this, the expression of particular BMP proteins varied widely between tissues. Interestingly, the expression of most BMP proteins in the liver moved in the opposite direction to the same BMP proteins in kidneys in response to ABCC6 alterations. Thus, ABCC6 deficiency stimulates BMP signaling by acting on the expression of multiple BMPs.
Collapse
Affiliation(s)
- Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States ; Molecular Biology Institute, UCLA, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States ; Molecular Biology Institute, UCLA, United States
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| |
Collapse
|
36
|
McCarty MF, DiNicolantonio JJ. The Molecular Biology and Pathophysiology of Vascular Calcification. Postgrad Med 2015; 126:54-64. [DOI: 10.3810/pgm.2014.03.2740] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Boström KI, Guihard P, Blazquez Medela AM, Yao J, Moon JH, Penton A, Yao Y. Matrix Gla protein limits pulmonary arteriovenous malformations in ALK1 deficiency. Eur Respir J 2015; 45:849-52. [PMID: 25614167 PMCID: PMC4373345 DOI: 10.1183/09031936.00114714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Pierre Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ana M Blazquez Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeremiah H Moon
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ashley Penton
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Cancela ML, Laizé V, Conceição N. Matrix Gla protein and osteocalcin: from gene duplication to neofunctionalization. Arch Biochem Biophys 2014; 561:56-63. [PMID: 25068814 DOI: 10.1016/j.abb.2014.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
Osteocalcin (OC or bone Gla protein, BGP) and matrix Gla protein (MGP) are two members of the growing family of vitamin K-dependent (VKD) proteins. They were the first VKD proteins found not to be involved in coagulation and synthesized outside the liver. Both proteins were isolated from bone although it is now known that only OC is synthesized by bone cells under normal physiological conditions, but since both proteins can bind calcium and hydroxyapatite, they can also accumulate in bone. Both OC and MGP share similar structural features, both in terms of protein domains and gene organization. OC gene is likely to have appeared from MGP through a tandem gene duplication that occurred concomitantly with the appearance of the bony vertebrates. Despite their relatively close relationship and the fact that both can bind calcium and affect mineralization, their functions are not redundant and they also have other unrelated functions. Interestingly, these two proteins appear to have followed quite different evolutionary strategies in order to acquire novel functionalities, with OC following a gene duplication strategy while MGP variability was obtained mostly by the use of multiple promoters and alternative splicing, leading to proteins with additional functional characteristics and alternative gene regulatory pathways.
Collapse
Affiliation(s)
- M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal.
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
39
|
|
40
|
Yao Y, Yao J, Radparvar M, Blazquez-Medela AM, Guihard PJ, Jumabay M, Boström KI. Reducing Jagged 1 and 2 levels prevents cerebral arteriovenous malformations in matrix Gla protein deficiency. Proc Natl Acad Sci U S A 2013; 110:19071-6. [PMID: 24191040 PMCID: PMC3839731 DOI: 10.1073/pnas.1310905110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are common vascular malformations, which may result in hemorrhagic strokes and neurological deficits. Bone morphogenetic protein (BMP) and Notch signaling are both involved in the development of cerebral AVMs, but the cross-talk between the two signaling pathways is poorly understood. Here, we show that deficiency of matrix Gla protein (MGP), a BMP inhibitor, causes induction of Notch ligands, dysregulation of endothelial differentiation, and the development of cerebral AVMs in MGP null (Mgp(-/-)) mice. Increased BMP activity due to the lack of MGP induces expression of the activin receptor-like kinase 1, a BMP type I receptor, in cerebrovascular endothelium. Subsequent activation of activin receptor-like kinase 1 enhances expression of Notch ligands Jagged 1 and 2, which increases Notch activity and alters the expression of Ephrin B2 and Ephrin receptor B4, arterial and venous endothelial markers, respectively. Reducing the expression of Jagged 1 and 2 in the Mgp(-/-) mice by crossing them with Jagged 1 or 2 deficient mice reduces Notch activity, normalizes endothelial differentiation, and prevents cerebral AVMs, but not pulmonary or renal AVMs. Our results suggest that Notch signaling mediates and can modulate changes in BMP signaling that lead to cerebral AVMs.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Melina Radparvar
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | | | | | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA and
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1679
| |
Collapse
|
41
|
Beazley KE, Reckard S, Nurminsky D, Lima F, Nurminskaya M. Two sides of MGP null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin. J Biol Chem 2013; 288:31400-8. [PMID: 24036114 PMCID: PMC3829453 DOI: 10.1074/jbc.m113.495556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/02/2013] [Indexed: 01/04/2023] Open
Abstract
Mutations in matrix Gla protein (MGP) have been correlated with vascular calcification. In the mouse model, MGP null vascular disease presents as calcifying cartilaginous lesions and mineral deposition along elastin lamellae (elastocalcinosis). Here we examined the mechanisms underlying both of these manifestations. Genetic ablation of enzyme transglutaminase 2 (TG2) in Mgp(-/-) mice dramatically reduced the size of cartilaginous lesions in the aortic media, attenuated calcium accrual more than 2-fold, and doubled longevity as compared with control Mgp(-/-) animals. Nonetheless, the Mgp(-/-);Tgm2(-/-) mice still died prematurely as compared with wild-type and retained the elastocalcinosis phenotype. This pathology in Mgp(-/-) animals was developmentally preceded by extensive fragmentation of elastic lamellae and associated with elevated serine elastase activity in aortic tissue and vascular smooth muscle cells. Systematic gene expression analysis followed by an immunoprecipitation study identified adipsin as the major elastase that is induced in the Mgp(-/-) vascular smooth muscle even in the TG2 null background. These results reveal a central role for TG2 in chondrogenic transformation of vascular smooth muscle and implicate adipsin in elastin fragmentation and ensuing elastocalcinosis. The importance of elastin calcification in MGP null vascular disease is highlighted by significant residual vascular calcification and mortality in Mgp(-/-);Tgm2(-/-) mice with reduced cartilaginous lesions. Our studies identify two potential therapeutic targets in vascular calcification associated with MGP dysfunction and emphasize the need for a comprehensive approach to this multifaceted disorder.
Collapse
Affiliation(s)
- Kelly E. Beazley
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Steven Reckard
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Dmitry Nurminsky
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Florence Lima
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Maria Nurminskaya
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
42
|
Abstract
RATIONALE Vascular calcification is a regulated process that involves osteoprogenitor cells and frequently complicates common vascular disease, such as atherosclerosis and diabetic vasculopathy. However, it is not clear whether the vascular endothelium has a role in contributing osteoprogenitor cells to the calcific lesions. OBJECTIVE To determine whether the vascular endothelium contributes osteoprogenitor cells to vascular calcification. METHODS AND RESULTS In this study, we use 2 mouse models of vascular calcification, mice with gene deletion of matrix Gla protein, a bone morphogenetic protein (BMP)-inhibitor, and Ins2Akita/+ mice, a diabetes model. We show that enhanced BMP signaling in both types of mice stimulates the vascular endothelium to contribute osteoprogenitor cells to the vascular calcification. The enhanced BMP signaling results in endothelial-mesenchymal transitions and the emergence of multipotent cells, followed by osteoinduction. Endothelial markers colocalize with multipotent and osteogenic markers in calcified arteries by immunostaining and fluorescence-activated cell sorting. Lineage tracing using Tie2-Gfp transgenic mice supports an endothelial origin of the osteogenic cells. Enhancement of matrix Gla protein expression in Ins2Akita/+ mice, as mediated by an Mgp transgene, limits the generation of multipotent cells. Moreover, matrix Gla protein-depleted human aortic endothelial cells in vitro acquire multipotency rendering the cells susceptible to osteoinduction by BMP and high glucose. CONCLUSIONS Our data suggest that the endothelium is a source of osteoprogenitor cells in vascular calcification that occurs in disorders with high BMP activation, such as deficiency of BMP-inhibitors and diabetes mellitus.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Calcinosis/physiopathology
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/physiology
- Cell Lineage
- Cell Transdifferentiation/physiology
- Cells, Cultured/drug effects
- Diabetes Mellitus, Type 2/genetics
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Disease Models, Animal
- Endothelial Cells/pathology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Glucose/pharmacology
- Heterozygote
- Humans
- Insulin/genetics
- Insulin/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/physiology
- Multipotent Stem Cells/pathology
- Muscle Proteins/physiology
- RNA, Small Interfering/pharmacology
- Receptor, TIE-2/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Vascular Diseases/physiopathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Albert Ly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Melina Radparvar
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Mark R. Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA
| |
Collapse
|
43
|
Sharma B, Albig AR. Matrix Gla protein reinforces angiogenic resolution. Microvasc Res 2013; 85:24-33. [PMID: 23110920 PMCID: PMC3629274 DOI: 10.1016/j.mvr.2012.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/01/2012] [Accepted: 10/19/2012] [Indexed: 12/18/2022]
Abstract
Matrix Gla Protein (MGP) is an ECM molecule commonly associated with dysfunctions of large blood vessels such as arteriosclerosis and atherosclerosis. However, the exact role of MGP in the microvasculature is not clear. Utilizing a mouse MGP knockout model we found that MGP suppresses angiogenic sprouting from mouse aorta restricts microvascular density in cardiac and skeletal muscle, and is an endogenous inhibitor of tumor angiogenesis. Similarly, morpholino based knockdown of MGP in zebrafish embryos caused a progressive loss of luminal structures in intersegmental vessels, a phenotype reminiscent of Dll4/Notch inhibition. Accordingly, MGP suppressed Notch-dependent Hes-1 promoter activity and expression of Jagged1 mRNA relative to Dll4 mRNA. However, inhibition of BMP but not Notch or VEGF signaling reversed the excessive angiogenic sprouting phenotype of MGP knockout aortic rings suggesting that MGP may normally suppress angiogenic sprouting by blocking BMP signaling. Collectively, these results suggest that MGP is a multi-functional inhibitor of normal and abnormal angiogenesis that may function by coordinating with both Notch and BMP signaling pathways.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Indiana State University, Terre Haute, IN 47809 USA
| | - Allan R. Albig
- Department of Biology, Boise State University, Boise ID. 83725
| |
Collapse
|
44
|
Sallam T, Cheng H, Demer LL, Tintut Y. Regulatory circuits controlling vascular cell calcification. Cell Mol Life Sci 2012; 70:3187-97. [PMID: 23269436 DOI: 10.1007/s00018-012-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Center for the Health Sciences, A2-237, 10833 Le Conte Ave., Los Angeles, CA, 90095-1679, USA
| | | | | | | |
Collapse
|
45
|
Hu ML, Huang Y, Zheng ZH, Lei Y, Liu RJ, Wang XH, Lindholm B, Yu XQ. Zoledronate inhibits phosphate and bone morphogenetic protein 2-induced extracellular calcification of vascular smooth muscle cells in vitro. Exp Ther Med 2012; 3:841-844. [PMID: 22969979 DOI: 10.3892/etm.2012.501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/27/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to explore the effects of the bisphosphonate zoledronate on calcification induced by inorganic phosphate (Pi) and/or bone morphogenetic protein 2 (BMP-2) and the underlying mechanisms. Primary vascular smooth muscle cells (VSMCs) from rats were treated with 3 mM Pi or 3 mM Pi/BMP-2, with and without addition of zoledronate; 1.4 mM Pi served as a control. Calcium deposits, expression of core binding factor α-1 (Cbfa-1), osteopontin (OPN), parathyroid pituitary-specific transcription factor (Pit)-1 and Pit-2, and Pi uptake of VSMCs was determined. The calcification of VSMCs induced by elevated Pi or Pi/BMP-2 was significantly inhibited by zoledronate. The expression of Cbfa-1, OPN and Pit-1 was increased significantly after treatment with an elevated level of Pi or Pi/BMP-2, and this expression was significantly suppressed by addition of zoledronate. Pi uptake of VSMCs increased following treatment with elevated Pi and significantly decreased by addition of zoledronate. These results indicated that zoledronate effectively inhibited calcification induced by Pi/BMP-2, and this may have been achieved by means of the downregulation of expression of calcification-related proteins and uptake of Pi.
Collapse
Affiliation(s)
- M L Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yao Y, Jumabay M, Ly A, Radparvar M, Wang AH, Abdmaulen R, Boström KI. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium. Blood 2012; 119:5037-47. [PMID: 22474252 PMCID: PMC3367902 DOI: 10.1182/blood-2011-10-385906] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/18/2012] [Indexed: 12/12/2022] Open
Abstract
The importance of morphogenetic proteins (BMPs) and their antagonists in vascular development is increasingly being recognized. BMP-4 is essential for angiogenesis and is antagonized by matrix Gla protein (MGP) and crossveinless 2 (CV2), both induced by the activin receptor like-kinase 1 (ALK1) when stimulated by BMP-9. In this study, however, we show that CV2 preferentially binds and inhibits BMP-9 thereby providing strong feedback inhibition for BMP-9/ALK1 signaling rather than for BMP-4/ALK2 signaling. CV2 disrupts complex formation involving ALK2, ALK1, BMP-4, and BMP-9 required for the induction of both BMP antagonists. It also limits VEGF expression, proliferation, and tube formation in ALK1-expressing endothelial cells. In vivo, CV2 deficiency translates into a dysregulation of vascular BMP signaling, resulting in an abnormal endothelium with increased endothelial cellularity and expression of lineage markers for mature endothelial cells. Thus, mutual regulation by BMP-9 and CV2 is essential in regulating the development of the vascular endothelium.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/metabolism
- Animals
- Bone Morphogenetic Protein 4/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cattle
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Gene Expression Regulation/drug effects
- Growth Differentiation Factor 2/antagonists & inhibitors
- Growth Differentiation Factor 2/metabolism
- Growth Differentiation Factor 2/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Binding/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
BMP signaling in vascular diseases. FEBS Lett 2012; 586:1993-2002. [DOI: 10.1016/j.febslet.2012.04.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
|
48
|
Boström KI, Rajamannan NM, Towler DA. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res 2011; 109:564-77. [PMID: 21852555 DOI: 10.1161/circresaha.110.234278] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular calcification increasingly afflicts our aging, dysmetabolic population. Once considered only a passive process of dead and dying cells, vascular calcification has now emerged as a highly regulated form of biomineralization organized by collagenous and elastin extracellular matrices. During skeletal bone formation, paracrine epithelial-mesenchymal and endothelial-mesenchymal interactions control osteochondrocytic differentiation of multipotent mesenchymal progenitor cells. These paracrine osteogenic signals, mediated by potent morphogens of the bone morphogenetic protein and wingless-type MMTV integration site family member (Wnt) superfamilies, are also active in the programming of arterial osteoprogenitor cells during vascular and valve calcification. Inflammatory cytokines, reactive oxygen species, and oxylipids-increased in the clinical settings of atherosclerosis, diabetes, and uremia that promote arteriosclerotic calcification-elicit the ectopic vascular activation of osteogenic morphogens. Specific extracellular and intracellular inhibitors of bone morphogenetic protein-Wnt signaling have been identified as contributing to the regulation of osteogenic mineralization during development and disease. These inhibitory pathways and their regulators afford the development of novel therapeutic strategies to prevent and treat valve and vascular sclerosis.
Collapse
Affiliation(s)
- Kristina I Boström
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, 10833 LeConte Ave, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
49
|
Yao Y, Jumabay M, Wang A, Boström KI. Matrix Gla protein deficiency causes arteriovenous malformations in mice. J Clin Invest 2011; 121:2993-3004. [PMID: 21765215 PMCID: PMC3148746 DOI: 10.1172/jci57567] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/25/2011] [Indexed: 12/15/2022] Open
Abstract
Arteriovenous malformations (AVMs) in organs, such as the lungs, intestine, and brain, are characteristic of hereditary hemorrhagic telangiectasia (HHT), a disease caused by mutations in activin-like kinase receptor 1 (ALK1), which is an essential receptor in angiogenesis, or endoglin. Matrix Gla protein (MGP) is an antagonist of BMPs that is highly expressed in lungs and kidneys and is regulated by ALK1. The objective of this study was to determine the role of MGP in the vasculature of the lungs and kidneys. We found that Mgp gene deletion in mice caused striking AVMs in lungs and kidneys, where overall small organ size contrasted with greatly increased vascularization. Mechanistically, MGP deficiency increased BMP activity in lungs. In cultured lung epithelial cells, BMP-4 induced VEGF expression through induction of ALK1, ALK2, and ALK5. The VEGF secretion induced by BMP-4 in Mgp-/- epithelial cells stimulated proliferation of ECs. However, BMP-4 inhibited proliferation of lung epithelial cells, consistent with the increase in pulmonary vasculature at the expense of lung tissue in the Mgp-null mice. Similarly, BMP signaling and VEGF expression were increased in Mgp-/- mouse kidneys. We therefore conclude that Mgp gene deletion is what we believe to be a previously unidentified cause of AVMs. Because lack of MGP also causes arterial calcification, our findings demonstrate that the same gene defect has drastically different effects on distinct vascular beds.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Anthony Wang
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
50
|
Ahnström J, Andersson HM, Canis K, Norstrøm E, Yu Y, Dahlbäck B, Panico M, Morris HR, Crawley JTB, Lane DA. Activated protein C cofactor function of protein S: a novel role for a γ-carboxyglutamic acid residue. Blood 2011; 117:6685-93. [PMID: 21508412 DOI: 10.1182/blood-2010-11-317099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein S has an important anticoagulant function by acting as a cofactor for activated protein C (APC). We recently reported that the EGF1 domain residue Asp95 is critical for APC cofactor function. In the present study, we examined whether additional interaction sites within the Gla domain of protein S might contribute to its APC cofactor function. We examined 4 residues, composing the previously reported "Face1" (N33S/P35T/E36A/Y39V) variant, as single point substitutions. Of these protein S variants, protein S E36A was found to be almost completely inactive using calibrated automated thrombography. In factor Va inactivation assays, protein S E36A had 89% reduced cofactor activity compared with wild-type protein S and was almost completely inactive in factor VIIIa inactivation; phospholipid binding was, however, normal. Glu36 lies outside the ω-loop that mediates Ca(2+)-dependent phospholipid binding. Using mass spectrometry, it was nevertheless confirmed that Glu36 is γ-carboxylated. Our finding that Gla36 is important for APC cofactor function, but not for phospholipid binding, defines a novel function (other than Ca(2+) coordination/phospholipid binding) for a Gla residue in vitamin K-dependent proteins. It also suggests that residues within the Gla and EGF1 domains of protein S act cooperatively for its APC cofactor function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|