1
|
Mahmoud DSE, Kamel MA, El-Sayed IET, Binsuwaidan R, Elmongy EI, Razzaq MK, Abd Eldaim MA, Ahmed ESAM, Shaker SA. Astaxanthin ameliorated isoproterenol induced myocardial infarction via improving the mitochondrial function and antioxidant activity in rats. J Biochem Mol Toxicol 2024; 38:e23804. [PMID: 39132813 DOI: 10.1002/jbt.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.
Collapse
Affiliation(s)
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohand Kareem Razzaq
- Department of Biochemistry, College of Medicine, University of Sumer, Thi-Qar, Iraq
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| | | | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Cheng P, Rashad A, Gangrade A, Barros NRD, Khademhosseini A, Tam J, Varadarajan P, Agrawal DK, Thankam FG. Stem Cell-Derived Cardiomyocyte-Like Cells in Myocardial Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:1-14. [PMID: 37294202 DOI: 10.1089/ten.teb.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Myocardial infarction results in the significant loss of cardiomyocytes (CMs) due to the ischemic injury following coronary occlusion leading to impaired contractility, fibrosis, and ultimately heart failure. Stem cell therapy emerged as a promising regenerative strategy to replenish the otherwise terminally differentiated CM to restore cardiac function. Multiple strategies have been applied to successfully differentiate diverse stem cell populations into CM-like phenotypes characterized by the expression status of signature biomarkers and observable spontaneous contractions. This article discusses the current understanding and applications of various stem cell phenotypes to drive the differentiation machinery toward CM-like lineage. Impact Statement Ischemic heart disease (IHD) extensively affects a large proportion of the population worldwide. Unfortunately, current treatments for IHD are insufficient to restore cardiac effectiveness and functionality. A growing field in regenerative cardiology explores the potential for stem cell therapy following cardiovascular ischemic episodes. The thorough understanding regarding the potential and shortcomings of translational approaches to drive versatile stem cells to cardiomyocyte lineage paves the way for multiple opportunities for next-generation cardiac management.
Collapse
Affiliation(s)
- Pauline Cheng
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Padmini Varadarajan
- University of California Riverside School of Medicine, Riverside, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Kaur N, Sharma RK, Singh Kushwah A, Singh N, Thakur S. A Comprehensive Review of Dilated Cardiomyopathy in Pre-clinical Animal Models in Addition to Herbal Treatment Options and Multi-modality Imaging Strategies. Cardiovasc Hematol Disord Drug Targets 2023; 22:207-225. [PMID: 36734898 DOI: 10.2174/1871529x23666230123122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Dilated cardiomyopathy (DCM) is distinguished by ventricular chamber expansion, systolic dysfunction, and normal left ventricular (LV) wall thickness, and is mainly caused due to genetic or environmental factors; however, its aetiology is undetermined in the majority of patients. The focus of this work is on pathogenesis, small animal models, as well as the herbal medicinal approach, and the most recent advances in imaging modalities for patients with dilated cardiomyopathy. Several small animal models have been proposed over the last few years to mimic various pathomechanisms that contribute to dilated cardiomyopathy. Surgical procedures, gene mutations, and drug therapies are all characteristic features of these models. The pros and cons, including heart failure stimulation of extensively established small animal models for dilated cardiomyopathy, are illustrated, as these models tend to procure key insights and contribute to the development of innovative treatment techniques for patients. Traditional medicinal plants used as treatment in these models are also discussed, along with contemporary developments in herbal therapies. In the last few decades, accurate diagnosis, proper recognition of the underlying disease, specific risk stratification, and forecasting of clinical outcome, have indeed improved the health of DCM patients. Cardiac magnetic resonance (CMR) is the bullion criterion for assessing ventricular volume and ejection fraction in a reliable and consistent direction. Other technologies, like strain analysis and 3D echocardiography, have enhanced this technique's predictive and therapeutic potential. Nuclear imaging potentially helps doctors pinpoint the causative factors of left ventricular dysfunction, as with cardiac sarcoidosis and amyloidosis.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Rahul Kumar Sharma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Nisha Singh
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Shilpa Thakur
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| |
Collapse
|
4
|
Yusifov A, Woulfe KC, Bruns DR. Mechanisms and implications of sex differences in cardiac aging. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:20. [PMID: 35419571 PMCID: PMC9004711 DOI: 10.20517/jca.2022.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how these differences are established and regulated remains limited. In addition to contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female patients.
Collapse
Affiliation(s)
- Aykhan Yusifov
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Danielle R. Bruns
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
- Wyoming WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
5
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
6
|
Sobral-Reyes MF, Lemos DR. Recapitulating human tissue damage, repair, and fibrosis with human pluripotent stem cell-derived organoids. Stem Cells 2019; 38:318-329. [PMID: 31778256 DOI: 10.1002/stem.3131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
As new applications for human pluripotent stem cell-derived organoids in drug screenings and tissue replacement therapies emerge, there is a need to examine the mechanisms of tissue injury and repair recently reported for various organoid models. In most cases, organoids contain the main cell types and tissues present in human organs, spatially arranged in a manner that largely resembles the architecture of the organ. Depending on the differentiation protocol used, variations may exist in cell type ratios relative to the organ of reference, and certain tissues, including some parenchymal components and the endothelium, might be poorly represented, or lacking altogether. Despite those caveats, recent studies have shown that organoid tissue injury recapitulates major events and histopathological features of damaged human tissues. In particular, major mechanisms of parenchyma cell damage and interstitial fibrosis can be reproduced with remarkable faithfulness. Although further validation remains to be done in order to establish the relevance of using organoid for either mechanistic studies or drug assays, this technology is becoming a promising tool for the study of human tissue homeostasis, injury, and repair.
Collapse
Affiliation(s)
| | - Dario R Lemos
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
7
|
Unno K, Oikonomopoulos A, Fujikawa Y, Okuno Y, Narita S, Kato T, Hayashida R, Kondo K, Shibata R, Murohara T, Yang Y, Dangwal S, Sereti KI, Yiling Q, Johnson K, Jha A, Sosnovik DE, Fann Y, Liao R. Alteration in ventricular pressure stimulates cardiac repair and remodeling. J Mol Cell Cardiol 2019; 133:174-187. [PMID: 31220468 DOI: 10.1016/j.yjmcc.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
The mammalian heart undergoes complex structural and functional remodeling to compensate for stresses such as pressure overload. While studies suggest that, at best, the adult mammalian heart is capable of very limited regeneration arising from the proliferation of existing cardiomyocytes, how myocardial stress affects endogenous cardiac regeneration or repair is unknown. To define the relationship between left ventricular afterload and cardiac repair, we induced left ventricle pressure overload in adult mice by constriction of the ascending aorta (AAC). One week following AAC, we normalized ventricular afterload in a subset of animals through removal of the aortic constriction (de-AAC). Subsequent monitoring of cardiomyocyte cell cycle activity via thymidine analog labeling revealed that an acute increase in ventricular afterload induced cardiomyocyte proliferation. Intriguingly, a release in ventricular overload (de-AAC) further increases cardiomyocyte proliferation. Following both AAC and de-AAC, thymidine analog-positive cardiomyocytes exhibited characteristics of newly generated cardiomyocytes, including single diploid nuclei and reduced cell size as compared to age-matched, sham-operated adult mouse myocytes. Notably, those smaller cardiomyocytes frequently resided alongside one another, consistent with local stimulation of cellular proliferation. Collectively, our data demonstrate that adult cardiomyocyte proliferation can be locally stimulated by an acute increase or decrease of ventricular pressure, and this mode of stimulation can be harnessed to promote cardiac repair.
Collapse
Affiliation(s)
- Kazumasa Unno
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Angelos Oikonomopoulos
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Yusuke Fujikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Deparment of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Singo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanfei Yang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Seema Dangwal
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Konstantina-Ioanna Sereti
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Molecular Biology, Genentech, CA, United States of America
| | - Qiu Yiling
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kory Johnson
- Bioinformatics Section, DIR, ITP, NINDS, NIH, Bethesda, MD, United States of America
| | - Alokkumar Jha
- Insight Center for Data Analytics, National University of Ireland, Galway, Ireland
| | - David E Sosnovik
- Harvard Medical School, Program in Cardiovascular Imaging, MGH-Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Yang Fann
- Bioinformatics Section, DIR, ITP, NINDS, NIH, Bethesda, MD, United States of America
| | - Ronglih Liao
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America.
| |
Collapse
|
8
|
c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death Dis 2019; 10:436. [PMID: 31164633 PMCID: PMC6547756 DOI: 10.1038/s41419-019-1655-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kitpos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kitCre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kitCreKI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kitCreKI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kitCreCSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kitCreKIs severely affects CSCs myogenic potential. c-kitCreKI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kitCreKI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kitCreKI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.
Collapse
|
9
|
Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 2018; 127:154-164. [PMID: 30571978 DOI: 10.1016/j.yjmcc.2018.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.
Collapse
|
10
|
Rikhtegar R, Pezeshkian M, Dolati S, Safaie N, Afrasiabi Rad A, Mahdipour M, Nouri M, Jodati AR, Yousefi M. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother 2018; 109:304-313. [PMID: 30396088 DOI: 10.1016/j.biopha.2018.10.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
Heart Diseases are serious and global public health concern. In spite of remarkable therapeutic developments, the prediction of patients with Heart Failure (HF) is weak, and present therapeutic attitudes do not report the fundamental problem of the cardiac tissue loss. Innovative therapies are required to reduce mortality and limit or abolish the necessity for cardiac transplantation. Stem cell-based therapies applied to the treatment of heart disease is according to the understanding that natural self-renewing procedures are inherent to the myocardium, nonetheless may not be adequate to recover the infarcted heart muscle. Following the first account of cell therapy in heart diseases, examination has kept up to rapidity; besides, several animals and human clinical trials have been conducted to preserve the capacity of numerous stem cell population in advance cardiac function and decrease infarct size. The purpose of this study was to censoriously evaluate the works performed regarding the usage of four major subgroups of stem cells, including induced Pluripotent Stem Cells (iPSC), Embryonic Stem Cells (ESCs), Cardiac Stem Cells (CDC), and Skeletal Myoblasts, in heart diseases, at the preclinical and clinical studies. Moreover, it is aimed to argue the existing disagreements, unsolved problems, and prospect directions.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi Rad
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
12
|
Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, Nattel S. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. J Physiol 2018; 596:2359-2379. [PMID: 29574723 DOI: 10.1113/jp275388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Ex vivo proliferated c-Kit+ endogenous cardiac progenitor cells (eCPCs) obtained from mouse and human cardiac tissues have been reported to express a wide range of functional ion channels. In contrast to previous reports in cultured c-Kit+ eCPCs, we found that ion currents were minimal in freshly isolated cells. However, inclusion of free Ca2+ intracellularly revealed a prominent inwardly rectifying current identified as the intermediate conductance Ca2+ -activated K+ current (KCa3.1) Electrical function of both c-Kit+ eCPCs and bone marrow-derived mesenchymal stem cells is critically governed by KCa3.1 calcium-dependent potassium channels. Ca2+ -induced increases in KCa3.1 conductance are necessary to optimize membrane potential during Ca2+ entry. Membrane hyperpolarization due to KCa3.1 activation maintains the driving force for Ca2+ entry that activates stem cell proliferation. Cardiac disease downregulates KCa3.1 channels in resident cardiac progenitor cells. Alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine. ABSTRACT Endogenous c-Kit+ cardiac progenitor cells (eCPCs) and bone marrow (BM)-derived mesenchymal stem cells (MSCs) are being developed for cardiac regenerative therapy, but a better understanding of their physiology is needed. Here, we addressed the unknown functional role of ion channels in freshly isolated eCPCs and expanded BM-MSCs using patch-clamp, microfluorometry and confocal microscopy. Isolated c-Kit+ eCPCs were purified from dog hearts by immunomagnetic selection. Ion currents were barely detectable in freshly isolated c-Kit+ eCPCs with buffering of intracellular calcium (Ca2+i ). Under conditions allowing free intracellular Ca2+ , freshly isolated c-Kit+ eCPCs and ex vivo proliferated BM-MSCs showed prominent voltage-independent conductances that were sensitive to intermediate-conductance K+ -channel (KCa3.1 current, IKCa3.1 ) blockers and corresponding gene (KCNN4)-expression knockdown. Depletion of Ca2+i induced membrane-potential (Vmem ) depolarization, while store-operated Ca2+ entry (SOCE) hyperpolarized Vmem in both cell types. The hyperpolarizing SOCE effect was substantially reduced by IKCa3.1 or SOCE blockade (TRAM-34, 2-APB), and IKCa3.1 blockade (TRAM-34) or KCNN4-knockdown decreased the Ca2+ entry resulting from SOCE. IKCa3.1 suppression reduced c-Kit+ eCPC and BM-MSC proliferation, while significantly altering the profile of cyclin expression. IKCa3.1 was reduced in c-Kit+ eCPCs isolated from dogs with congestive heart failure (CHF), along with corresponding KCNN4 mRNA. Under perforated-patch conditions to maintain physiological [Ca2+ ]i , c-Kit+ eCPCs from CHF dogs had less negative resting membrane potentials (-58 ± 7 mV) versus c-Kit+ eCPCs from control dogs (-73 ± 3 mV, P < 0.05), along with slower proliferation. Our study suggests that Ca2+ -induced increases in IKCa3.1 are necessary to optimize membrane potential during the Ca2+ entry that activates progenitor cell proliferation, and that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine.
Collapse
Affiliation(s)
- Patrick Vigneault
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Patrice Naud
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Xiaoyan Qi
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Jiening Xiao
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Stanley Nattel
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Fu J, Jiang Z, Chang J, Han B, Liu W, Peng Y. Purification, characterization of Chondroitinase ABC from Sphingomonas paucimobilis and in vitro cardiocytoprotection of the enzymatically degraded CS-A. Int J Biol Macromol 2018; 115:737-745. [PMID: 29702169 DOI: 10.1016/j.ijbiomac.2018.04.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 11/18/2022]
Abstract
An extracellular chondroitinase ABC (ChSase ABC) produced by Sphingomonas paucimobilis was purified to homogeneity through ammonium sulfate precipitation, DEAE-Sepharose Fast Flow and Sephadex G-100 chromatography. The molecular weight was 82.3 kDa. It showed specific lyase activity toward chondroitin sulfate A (CS-A), CS-B, CS-C and hyaluronan (HA). Using CS-A as substrate, the specific activity was 98.04 U/mg, the maximal reaction rate (Vmax) and Michaelis-Menten constant (Km) were 0.49 μmol/min/ml and 0.79 mg/ml, respectively. Highest activity was obtained at pH 6.5 and 40 °C, and Hg2+ could strongly inhibit the enzyme activity. Mass spectrometry analysis indicated CS-A was degraded to unsaturated disaccharides by ChSase ABC. In vitro cytotoxic tests showed that CS-A oligosaccharide at the concentration of 50 and 100 μg/ml could promote the proliferation of normal H9c2 myocardial cells, decrease the damage induced by isoproterenol (ISO) and accelerate the recovery of cells injured by ISO. These findings suggested that ChSase ABC from Sphingomonas paucimobilis could be a promising tool for the structural analysis and bioactive oligosaccharide preparation of glucosaminoglycans.
Collapse
Affiliation(s)
- Jingyun Fu
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China
| | - Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Oingdao 266235, PR China
| | - Jing Chang
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Oingdao 266235, PR China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Oingdao 266235, PR China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Oingdao 266235, PR China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China, Oingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Oingdao 266235, PR China.
| |
Collapse
|
14
|
Chen Z, Zhu W, Bender I, Gong W, Kwak IY, Yellamilli A, Hodges TJ, Nemoto N, Zhang J, Garry DJ, van Berlo JH. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit + Cells. Circulation 2017; 136:2359-2372. [PMID: 29021323 DOI: 10.1161/circulationaha.117.030137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although cardiac c-kit+ cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit+ cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit+ cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit+ cells. METHODS We used single-cell sequencing and genetic lineage tracing of c-kit+ cells to determine whether various pathological stimuli would result in different fates of c-kit+ cells. RESULTS Single-cell sequencing of cardiac CD45-c-kit+ cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit+ cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit+ cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. CONCLUSIONS These results demonstrate that different pathological stimuli induce different cell fates of c-kit+ cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit+ cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit+ cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit+ cells.
Collapse
Affiliation(s)
- Zhongming Chen
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.)
| | - Wuqiang Zhu
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Department of Biomedical Engineering, University of Alabama at Birmingham (W.Z., J.Z.)
| | - Ingrid Bender
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.)
| | - Wuming Gong
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.).,Stem Cell Institute, University of Minnesota, Minneapolis (W.G., D.J.G., J.H.v.B.)
| | - Il-Youp Kwak
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.)
| | - Amritha Yellamilli
- Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.).,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (A.Y., J.H.v.B.)
| | - Thomas J Hodges
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.)
| | - Natsumi Nemoto
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.)
| | - Jianyi Zhang
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Department of Biomedical Engineering, University of Alabama at Birmingham (W.Z., J.Z.)
| | - Daniel J Garry
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.).,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.).,Stem Cell Institute, University of Minnesota, Minneapolis (W.G., D.J.G., J.H.v.B.)
| | - Jop H van Berlo
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis (Z.C., W.Z., I.B., W.G., I-Y.K., T.J.H., N.N., J.Z., D.J.G., J.H.v.B.) .,Lillehei Heart Institute, University of Minnesota, Minneapolis (Z.C., I.B., W.G., I-Y.K., A.Y., N.N., D.J.G., J.H.v.B.).,Stem Cell Institute, University of Minnesota, Minneapolis (W.G., D.J.G., J.H.v.B.).,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (A.Y., J.H.v.B.)
| |
Collapse
|
15
|
Sharp TE, Schena GJ, Hobby AR, Starosta T, Berretta RM, Wallner M, Borghetti G, Gross P, Yu D, Johnson J, Feldsott E, Trappanese DM, Toib A, Rabinowitz JE, George JC, Kubo H, Mohsin S, Houser SR. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circ Res 2017; 121:1263-1278. [PMID: 28912121 DOI: 10.1161/circresaha.117.311174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Thomas E Sharp
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giana J Schena
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Alexander R Hobby
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Timothy Starosta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Remus M Berretta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Markus Wallner
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giulia Borghetti
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Polina Gross
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Daohai Yu
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jaslyn Johnson
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Eric Feldsott
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Danielle M Trappanese
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Amir Toib
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Joseph E Rabinowitz
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jon C George
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Hajime Kubo
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Sadia Mohsin
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Steven R Houser
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.).
| |
Collapse
|
16
|
Chen HY, Strappe PM, Wang LX. Stem Cell Therapies for Cardiovascular Diseases: What Does the Future Hold? Heart Lung Circ 2017; 26:205-208. [DOI: 10.1016/j.hlc.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Shi B, Deng W, Long X, Zhao R, Wang Y, Chen W, Xu G, Sheng J, Wang D, Cao S. miR-21 increases c-kit + cardiac stem cell proliferation in vitro through PTEN/PI3K/Akt signaling. PeerJ 2017; 5:e2859. [PMID: 28168101 PMCID: PMC5289448 DOI: 10.7717/peerj.2859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023] Open
Abstract
The low survival rate of cardiac stem cells (CSCs) in the ischemic myocardium is one of the obstacles in ischemic cardiomyopathy cell therapy. The MicroRNA (miR)-21 and one of its target protein, the tensin homolog deleted on chromosome ten (PTEN), contributes to the proliferation of many kinds of tissues and cell types. It is reported that miR-21 promotes proliferation through PTEN/PI3K/Akt pathway, but its effects on c-kit+ CSC remain unclear. The authors hypothesized that miR-21 promotes the proliferation in c-kit + CSC, and evaluated the involvement of PTEN/PI3K/Akt pathway in vitro. miR-21 up-regulation with miR-21 efficiently mimics accelerated cell viability and proliferation in c-kit + CSC, which was evidenced by the CCK-8, EdU and cell cycle analyses. In addition, the over-expression of miR-21 in c-kit + CSCs notably down-regulated the protein expression of PTEN although the mRNA level of PTEN showed little change. Gain-of-function of miR-21 also increased the phosphor-Akt (p-Akt) level. Phen, the selective inhibitor of PTEN, reproduced the pro-proliferation effects of miR-21, while PI3K inhibitor, LY294002, totally attenuated the pro-survival effect of miR-21. These results indicate that miR-21 is efficient in promoting proliferation in c-kit+ CSCs, which is contributed by the PTEN/PI3K/Akt pathway. miR-21 holds the potential to facilitate CSC therapy in ischemic myocardium.
Collapse
Affiliation(s)
- Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Wenming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Guanxue Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jin Sheng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Dongmei Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
18
|
Duffey OJ, Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Glob Cardiol Sci Pract 2016; 2016:e201628. [PMID: 28979901 PMCID: PMC5624183 DOI: 10.21542/gcsp.2016.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/15/2016] [Indexed: 11/05/2022] Open
Abstract
Survival rates following myocardial infarction have increased in recent years but current treatments for post-infarction recovery are inadequate and cannot induce regeneration of damaged hearts. Regenerative medicine could provide disease-reversing treatments by harnessing modern concepts in cell and developmental biology. A recently-established paradigm in regenerative medicine is that regeneration of a tissue can be achieved by reactivation of the coordinated developmental processes that originally formed the tissue. In the heart, the epicardium has emerged as an important regulator of cardiac development and reactivation of epicardial developmental processes may provide a means to enable cardiac regeneration. Indeed, in adult mouse hearts, treatment with thymosin β4 and other drug-like molecules reactivates the epicardium and improves outcomes after myocardial infarction by inducing regenerative paracrine signalling, neovascularisation and de novo cardiomyocyte production. However, there are considerable limitations to current methods of epicardial reactivation that prevent direct translation into clinical practice. Here, we describe the rationale for targeting the epicardium and the successes and limitations of this approach. We consider how several recent advances in epicardial biology could be used to overcome these limitations. These advances include insight into epicardial signalling and heterogeneity, epicardial modulation of inflammation and epicardial remodelling of extracellular matrix.
Collapse
Affiliation(s)
- Owen J. Duffey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit + Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5389181. [PMID: 27803763 PMCID: PMC5075640 DOI: 10.1155/2016/5389181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptosis in c-kit+ CSC and estimated the contribution of PTEN/PI3K/Akt signaling to this oxidative circumstance. miR-21 mimics efficiently reduced H2O2-induced apoptosis in c-kit+ CSC, as evidenced by the downregulation of the proapoptosis proteins caspase-3 and Bax and upregulation of the antiapoptotic Bcl-2. In addition, the gain of function of miR-21 in c-kit+ CSC downregulated the protein level of PTEN although its mRNA level changed slightly; in the meantime, miR-21 overexpression also increased phospho-Akt (p-Akt). The antiapoptotic effects of miR-21 were comparable with Phen (bpV), the selective inhibitor of PTEN, while miR-21 inhibitor or PI3K's inhibitor LY294002 efficiently attenuated the antiapoptotic effect of miR-21. Taken together, these results indicate that the anti-H2O2-induced apoptosis effect of miR-21 in c-kit+ CSC is contributed by PTEN/PI3K/Akt signaling. miR-21 could be a potential molecule to facilitate the c-kit+ CSC therapy in ischemic myocardium.
Collapse
|
20
|
Affiliation(s)
- Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany and DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
21
|
Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 2016; 311:H1189-H1201. [PMID: 27591224 DOI: 10.1152/ajpheart.00904.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
Abstract
Despite expansion of resident cardiac stem cells (CSCs; c-kit+Lin-) after myocardial infarction, endogenous repair processes are insufficient to prevent adverse cardiac remodeling and heart failure (HF). This suggests that the microenvironment in post-ischemic and failing hearts compromises CSC regenerative potential. Inflammatory cytokines, such as tumor necrosis factor-α (TNF), are increased after infarction and in HF; whether they modulate CSC function is unknown. As the effects of TNF are specific to its two receptors (TNFRs), we tested the hypothesis that TNF differentially modulates CSC function in a TNFR-specific manner. CSCs were isolated from wild-type (WT), TNFR1-/-, and TNFR2-/- adult mouse hearts, expanded and evaluated for cell competence and differentiation in vitro in the absence and presence of TNF. Our results indicate that TNF signaling in murine CSCs is constitutively related primarily to TNFR1, with TNFR2 inducible after stress. TNFR1 signaling modestly diminished CSC proliferation, but, along with TNFR2, augmented CSC resistance to oxidant stress. Deficiency of either TNFR1 or TNFR2 did not impact CSC telomerase activity. Importantly, TNF, primarily via TNFR1, inhibited cardiomyogenic commitment during CSC differentiation, and instead promoted smooth muscle and endothelial fates. Moreover, TNF, via both TNFR1 and TNFR2, channeled an alternate CSC neuroadrenergic-like fate (capable of catecholamine synthesis) during differentiation. Our results suggest that elevated TNF in the heart restrains cardiomyocyte differentiation of resident CSCs and may enhance adrenergic activation, both effects that would reduce the effectiveness of endogenous cardiac repair and the response to exogenous stem cell therapy, while promoting adverse cardiac remodeling.
Collapse
Affiliation(s)
- Tariq Hamid
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Yuanyuan Xu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Mohamed Ameen Ismahil
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| |
Collapse
|
22
|
Uygur A, Lee RT. Mechanisms of Cardiac Regeneration. Dev Cell 2016; 36:362-74. [PMID: 26906733 DOI: 10.1016/j.devcel.2016.01.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology.
Collapse
Affiliation(s)
- Aysu Uygur
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Wallner M, Duran JM, Mohsin S, Troupes CD, Vanhoutte D, Borghetti G, Vagnozzi RJ, Gross P, Yu D, Trappanese DM, Kubo H, Toib A, Sharp TE, Harper SC, Volkert MA, Starosta T, Feldsott EA, Berretta RM, Wang T, Barbe MF, Molkentin JD, Houser SR. Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circ Res 2016; 119:865-79. [PMID: 27461939 DOI: 10.1161/circresaha.116.308687] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.
Collapse
Affiliation(s)
- Markus Wallner
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Jason M Duran
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Sadia Mohsin
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Davy Vanhoutte
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Giulia Borghetti
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Ronald J Vagnozzi
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Polina Gross
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Daohai Yu
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Danielle M Trappanese
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Hajime Kubo
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Amir Toib
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Shavonn C Harper
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Michael A Volkert
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Timothy Starosta
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Eric A Feldsott
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Remus M Berretta
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Tao Wang
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Mary F Barbe
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Jeffrey D Molkentin
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.)
| | - Steven R Houser
- From the Cardiovascular Research Center (M.W., J.M.D., S.M., C.D.T., G.B., P.G., D.M.T., H.K., T.E.S., S.C.H., M.A.V., T.S., E.A.F., R.M.B., T.W., S.R.H.), Department of Clinical Sciences (D.Y.), and Department of Anatomy and Cell Biology (M.F.B.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (D.V., R.J.V., J.D.M.); Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA (A.T.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.); and Department of Internal Medicine, University of California San Diego Medical Center, San Diego, CA (J.M.D.).
| |
Collapse
|
24
|
Sun R, Li X, Liu M, Zeng Y, Chen S, Zhang P. Advances in stem cell therapy for cardiovascular disease (Review). Int J Mol Med 2016; 38:23-9. [PMID: 27220939 PMCID: PMC4899023 DOI: 10.3892/ijmm.2016.2607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Rongrong Sun
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| | - Xianchi Li
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| | - Min Liu
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| | - Yi Zeng
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| | - Shuang Chen
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| | - Peying Zhang
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southest University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The aim of this review was to discuss recent advances in clinical aspects of stem cell therapy in heart failure with emphasis on patient selection, stem cell types and delivery methods. RECENT FINDINGS Several stem cell types have been considered for the treatment of patients with heart failure. In nonischemic heart failure, transplantation of CD34 cells improved myocardial performance, functional capacity and neurohumoral activation. In ischemic heart failure, cardiosphere-derived cells were shown to reduce myocardial scar burden with concomitant increase in viable tissue and regional systolic wall thickening. Both autologous and allogeneic mesenchymal stem cells were shown to be effective in improving heart function in patients with ischemic heart failure; this may represent an important step toward the development of a standardized stem cell product for widespread clinical use. SUMMARY Although trials of stem cell therapy in heart failure have shown promising results, the findings are not consistent. Given the wide spectrum of heart failure, it may be difficult to define a uniform stem cell therapy for all subsets of patients; instead, future stem cell therapeutic strategies should aim for a more personalized approach by establishing optimal stem cell type, dose and delivery method for an individual patient and disease state.
Collapse
|
26
|
Cai C, Guo Y, Teng L, Nong Y, Tan M, Book MJ, Zhu X, Wang XL, Du J, Wu WJ, Xie W, Hong KU, Li Q, Bolli R. Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart. Stem Cells 2015; 33:3596-607. [PMID: 26299779 PMCID: PMC4766973 DOI: 10.1002/stem.2198] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/12/2015] [Indexed: 01/05/2023]
Abstract
The regenerative potential of c‐kit+ cardiac stem cells (CSCs) is severely limited by the poor survival of cells after transplantation in the infarcted heart. We have previously demonstrated that preconditioning human CSCs (hCSCs) with the heme oxygenase‐1 inducer, cobalt protoporphyrin (CoPP), has significant cytoprotective effects in vitro. Here, we examined whether preconditioning hCSCs with CoPP enhances CSC survival and improves cardiac function after transplantation in a model of myocardial infarction induced by a 45‐minute coronary occlusion and 35‐day reperfusion in immunodeficient mice. At 30 minutes of reperfusion, CoPP‐preconditioned hCSCsGFP+, hCSCsGFP+, or medium were injected into the border zone. Quantitative analysis with real‐time qPCR for the expression of the human‐specific gene HLA revealed that the number of survived hCSCs was significantly greater in the preconditioned‐hCSC group at 24 hours and 7 and 35 days compared with the hCSC group. Coimmunostaining of tissue sections for both green fluorescent protein (GFP) and human nuclear antigen further confirmed greater hCSC numbers at 35 days in the preconditioned‐hCSC group. At 35 days, compared with the hCSC group, the preconditioned‐hCSC group exhibited increased positive and negative left ventricular (LV) dP/dt, end‐systolic elastance, and anterior wall/apical strain rate (although ejection fraction was similar), reduced LV remodeling, and increased proliferation of transplanted cells and of cells apparently committed to cardiac lineage. In conclusion, CoPP‐preconditioning of hCSCs enhances their survival and/or proliferation, promotes greater proliferation of cells expressing cardiac markers, and results in greater improvement in LV remodeling and in indices of cardiac function after infarction. Stem Cells2015;33:3596–3607
Collapse
Affiliation(s)
- Chuanxi Cai
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Center for Cardiovascular Sciences & Department of Medicine, Albany Medical College, Albany, New York, USA
| | - Yiru Guo
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Lei Teng
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Center for Cardiovascular Sciences & Department of Medicine, Albany Medical College, Albany, New York, USA
| | - Yibing Nong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Min Tan
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Michael J Book
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoping Zhu
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Xiao-Liang Wang
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Center for Cardiovascular Sciences & Department of Medicine, Albany Medical College, Albany, New York, USA
| | - Junjie Du
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Wen-Jian Wu
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Wei Xie
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Ottaviani G, Radovancevic R, Kar B, Gregoric I, Buja LM. Pathological assessment of end-stage heart failure in explanted hearts in correlation with hemodynamics in patients undergoing orthotopic heart transplantation. Cardiovasc Pathol 2015; 24:283-9. [DOI: 10.1016/j.carpath.2015.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/20/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022] Open
|
28
|
Affiliation(s)
- Sang-Ging Ong
- From the Stanford Cardiovascular Institute (S.-G.O., J.C.W.) and Division of Cardiology, Department of Medicine, Stanford University School of Medicine, CA (S.-G.O., J.C.W.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (S.-G.O., J.C.W.) and Division of Cardiology, Department of Medicine, Stanford University School of Medicine, CA (S.-G.O., J.C.W.).
| |
Collapse
|
29
|
Hatzistergos KE, Paulino EC, Dulce RA, Takeuchi LM, Bellio MA, Kulandavelu S, Cao Y, Balkan W, Kanashiro-Takeuchi RM, Hare JM. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. J Am Heart Assoc 2015; 4:JAHA.115.001974. [PMID: 26178404 PMCID: PMC4608081 DOI: 10.1161/jaha.115.001974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Ellena C Paulino
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Shathiyah Kulandavelu
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Yenong Cao
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.)
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| |
Collapse
|
30
|
Boucek RJ, Steele J, Jacobs JP, Steele P, Asante-Korang A, Quintessenza J, Steele A. Ex vivo paracrine properties of cardiac tissue: Effects of chronic heart failure. J Heart Lung Transplant 2015; 34:839-48. [DOI: 10.1016/j.healun.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/11/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
31
|
Nigro P, Perrucci GL, Gowran A, Zanobini M, Capogrossi MC, Pompilio G. c-kit(+) cells: the tell-tale heart of cardiac regeneration? Cell Mol Life Sci 2015; 72:1725-40. [PMID: 25575564 PMCID: PMC11113938 DOI: 10.1007/s00018-014-1832-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Although ongoing therapeutic strategies ameliorate symptoms and prolong life for patients with cardiovascular diseases, they do not solve the critical issue related to the loss of cardiac tissue. Accordingly, stem/progenitor cell therapy has emerged as a paramount approach for cardiac repair and regeneration. In this regard, c-kit(+) cells have animated much interest and controversy. These cells are self-renewing, clonogenic, and multipotent and display a noteworthy potential to differentiate into all cardiovascular lineages. However, their functional contribution to cardiomyocyte turnover is one of the centrally debated issues concerning their regenerative potential. Regardless, plentiful preclinical and clinical studies have been conducted which provide evidence for the capacity of c-kit(+) cells to improve cardiac function. The purpose of this review is to give a comprehensive, impartial, critical description and evaluation of the literature on c-kit(+) cells from bench to bedside in order to address their true potential, benefits and controversies.
Collapse
Affiliation(s)
- Patrizia Nigro
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
32
|
García AN, Sanz-Ruiz R, Santos MEF, Fernández-Avilés F. “Second-generation” stem cells for cardiac repair. World J Stem Cells 2015; 7:352-367. [PMID: 25815120 PMCID: PMC4369492 DOI: 10.4252/wjsc.v7.i2.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Over the last years, stem cell therapy has emerged as an inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a “second generation” of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.
Collapse
|
33
|
Taghavi S, Sharp TE, Duran JM, Makarewich CA, Berretta RM, Starosta T, Kubo H, Barbe M, Houser SR. Autologous c-Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to c-Kit+ Cardiac-Derived Stem Cells in a Feline Model of Isoproterenol-Induced Cardiomyopathy. Clin Transl Sci 2015; 8:425-31. [PMID: 25684108 DOI: 10.1111/cts.12251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cardiac- (CSC) and mesenchymal-derived (MSC) CD117+ isolated stem cells improve cardiac function after injury. However, no study has compared the therapeutic benefit of these cells when used autologously. METHODS MSCs and CSCs were isolated on day 0. Cardiomyopathy was induced (day 28) by infusion of L-isoproterenol (1,100 ug/kg/hour) from Alzet minipumps for 10 days. Bromodeoxyuridine (BrdU) was infused via minipumps (50 mg/mL) to identify proliferative cells during the injury phase. Following injury (day 38), autologous CSC (n = 7) and MSC (n = 4) were delivered by intracoronary injection. These animals were compared to those receiving sham injections by echocardiography, invasive hemodynamics, and immunohistochemistry. RESULTS Fractional shortening improved with CSC (26.9 ± 1.1% vs. 16.1 ± 0.2%, p = 0.01) and MSC (25.1 ± 0.2% vs. 12.1 ± 0.5%, p = 0.01) as compared to shams. MSC were superior to CSC in improving left ventricle end-diastolic (LVED) volume (37.7 ± 3.1% vs. 19.9 ± 9.4%, p = 0.03) and ejection fraction (27.7 ± 0.1% vs. 19.9 ± 0.4%, p = 0.02). LVED pressure was less in MSC (6.3 ± 1.3 mmHg) as compared to CSC (9.3 ± 0.7 mmHg) and sham (13.3 ± 0.7); p = 0.01. LV BrdU+ myocytes were higher in MSC (0.17 ± 0.03%) than CSC (0.09 ± 0.01%) and sham (0.06 ± 01%); p < 0.001. CONCLUSIONS Both CD117+ isolated CSC and MSC therapy improve cardiac function and attenuate pathological remodeling. However, MSC appear to confer additional benefit.
Collapse
Affiliation(s)
- Sharven Taghavi
- Temple University Hospital, Department of Surgery, Philadelphia, Pennsylvania, USA.,Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Thomas E Sharp
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Jason M Duran
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Catherine A Makarewich
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Remus M Berretta
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Tim Starosta
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Hajime Kubo
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Mary Barbe
- Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven R Houser
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
An emerging consensus on cardiac regeneration. Nat Med 2015; 20:1386-93. [PMID: 25473919 DOI: 10.1038/nm.3764] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Abstract
Cardiac regeneration is a rapidly evolving and controversial field of research. The identification some 12 years ago of progenitor cells that reside within the heart spurred enthusiasm for cell-based regenerative therapies. However, recent evidence has called into question both the presence of a biologically important stem cell population in the heart and the ability of exogenously derived cells to promote regeneration through direct formation of new cardiomyocytes. Here, we discuss recent developments that suggest an emerging consensus on the ability of different cell types to regenerate the adult mammalian heart.
Collapse
|
35
|
Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS One 2014; 9:e115871. [PMID: 25545368 PMCID: PMC4278834 DOI: 10.1371/journal.pone.0115871] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives Neuregulin 1 signaling plays an important role in cardiac trabecular development, and in sustaining functional integrity in adult hearts. Treatment with neuregulin 1 enhances adult cardiomyocyte differentiation, survival and/or function in vitro and in vivo. It has also been suggested that recombinant neuregulin 1β1 (NRG1β1) induces cardiomyocyte proliferation in normal and injured adult hearts. Here we further explore the impact of neuregulin 1 signaling on adult cardiomyocyte cell cycle activity. Methods and Results Adult mice were subjected to 9 consecutive daily injections of recombinant NRG1β1 or vehicle, and cardiomyocyte DNA synthesis was quantitated via bromodeoxyuridine (BrdU) incorporation, which was delivered using mini-osmotic pumps over the entire duration of NRG1β1 treatment. NRG1β1 treatment inhibited baseline rates of cardiomyocyte DNA synthesis in normal mice (cardiomyocyte labelling index: 0.019±0.005% vs. 0.003±0.001%, saline vs. NRG1β1, P<0.05). Acute NRG1β1 treatment did result in activation of Erk1/2 and cardiac myosin regulatory light chain (down-stream mediators of neuregulin signalling), as well as activation of DNA synthesis in non-cardiomyocytes, validating the biological activity of the recombinant protein. In other studies, mice were subjected to permanent coronary artery occlusion, and cardiomyocyte DNA synthesis was monitored via tritiated thymidine incorporation which was delivered as a single injection 7 days post-infarction. Daily NRG1β1 treatment had no impact on cardiomyocyte DNA synthesis in the infarcted myocardium (cardiomyocyte labelling index: 0.039±0.011% vs. 0.027±0.021%, saline vs. NRG1β1, P>0.05). Summary These data indicate that NRG1β1 treatment does not increase cardiomyocyte DNA synthesis (and consequently does not increase the rate of cardiomyocyte renewal) in normal or infarcted adult mouse hearts. Thus, any improvement in cardiac structure and function observed following neuregulin treatment of injured hearts likely occurs independently of overt myocardial regeneration.
Collapse
|
36
|
Kayyali US, Larsen CG, Bashiruddin S, Lewandowski SL, Trivedi CM, Warburton RR, Parkhitko AA, Morrison TA, Henske EP, Chekaluk Y, Kwiatkowski DJ, Finlay GA. Targeted deletion of Tsc1 causes fatal cardiomyocyte hyperplasia independently of afterload. Cardiovasc Pathol 2014; 24:80-93. [PMID: 25434723 DOI: 10.1016/j.carpath.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022] Open
Abstract
Despite high expression levels, the role of Tsc1 in cardiovascular tissue is ill defined. We launched this study to examine the role of Tsc1 in cardiac physiology and pathology. Mice in which Tsc1 was deleted in cardiac tissue and vascular smooth muscle (Tsc1c/cSM22cre(+/-)), developed progressive cardiomegaly and hypertension and died early. Hearts of Tsc1c/cSM22cre(+/-) mice displayed a progressive increase in cardiomyocyte number, and to a lesser extent, size between the ages of 1 and 6 weeks. In addition, compared to control hearts, proliferation markers (phospho-histone 3 and PCNA) were elevated in Tsc1c/cSM22cre(+/-) cardiomyocytes at 0-4 weeks, suggesting that cardiomyocyte proliferation was the predominant mechanism underlying cardiomegaly in Tsc1c/cSM22cre(+/-) mice. To examine the contribution of Tsc1 deletion in peripheral vascular smooth muscle to the cardiac phenotype, Tsc1c/cSM22cre(+/-) mice were treated with the antihypertensive, hydralazine. Prevention of hypertension had no effect on survival, cardiac size, or cardiomyocyte number in these mice. We furthermore generated mice in which Tsc1 was deleted only in vascular smooth muscle but not in cardiac tissue (Tsc1c/cSMAcre-ER(T2+/-)). The Tsc1c/cSMAcre-ER(T2+/-) mice also developed hypertension. However, their survival was normal and no cardiac abnormalities were observed. Our results suggest that loss of Tsc1 in the heart causes cardiomegaly, which is driven by increased cardiomyocyte proliferation that also appears to confer relative resistance to afterload reduction. These findings support a critical role for the Tsc1 gene as gatekeeper in the protection against uncontrolled cardiac growth.
Collapse
Affiliation(s)
- Usamah S Kayyali
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Christopher G Larsen
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sarah Bashiruddin
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sara L Lewandowski
- Divison of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chinmay M Trivedi
- Divison of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rod R Warburton
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrey A Parkhitko
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Tasha A Morrison
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Elizabeth P Henske
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Yvonne Chekaluk
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - David J Kwiatkowski
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Geraldine A Finlay
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
37
|
Sharp TE, George JC. Stem cell therapy and breast cancer treatment: review of stem cell research and potential therapeutic impact against cardiotoxicities due to breast cancer treatment. Front Oncol 2014; 4:299. [PMID: 25405100 PMCID: PMC4217360 DOI: 10.3389/fonc.2014.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022] Open
Abstract
A new problem has emerged with the ever-increasing number of breast cancer survivors. While early screening and advances in treatment have allowed these patients to overcome their cancer, these treatments often have adverse cardiovascular side effects that can produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle and deterioration of vascular structure that can eventually lead to heart failure (HF). This cardiomyocyte toxicity can leave the breast cancer survivor with a probable diagnosis of dilated or restrictive cardiomyopathy (DCM or RCM). While current HF standard of care can alleviate symptoms, other than heart transplantation, there is no therapy that replaces cardiac myocytes that are killed during cancer therapies. There is a need to develop novel therapeutics that can either prevent or reverse the cardiac injury caused by cancer therapeutics. These new therapeutics should promote the regeneration of lost or deteriorating myocardium. Over the last several decades, the therapeutic potential of cell-based therapy has been investigated for HF patients. In this review, we discuss the progress of pre-clinical and clinical stem cell research for the diseased heart and discuss the possibility of utilizing these novel therapies to combat cardiotoxicity observed in breast cancer survivors.
Collapse
Affiliation(s)
- Thomas E Sharp
- Cardiovascular Research Center, Temple University School of Medicine , Philadelphia, PA , USA
| | - Jon C George
- Cardiovascular Research Center, Temple University School of Medicine , Philadelphia, PA , USA ; Division of Cardiovascular Medicine, Temple University Hospital , Philadelphia, PA , USA
| |
Collapse
|
38
|
Abstract
The discovery of adult cardiac stem cells (CSCs) and their potential to restore functional cardiac tissue has fueled unprecedented interest in recent years. Indeed, stem-cell–based therapies have the potential to transform the treatment and prognosis of heart failure, for they have the potential to eliminate the underlying cause of the disease by reconstituting the damaged heart with functional cardiac cells. Over the last decade, several independent laboratories have demonstrated the utility of c-kit+/Lin- resident CSCs in alleviating left ventricular dysfunction and remodeling in animal models of acute and chronic myocardial infarction. Recently, the first clinical trial of autologous CSCs for treatment of heart failure resulting from ischemic heart disease (Stem Cell Infusion in Patients with Ischemic cardiOmyopathy [SCIPIO]) has been conducted, and the interim results are quite promising. In this phase I trial, no adverse effects attributable to the CSC treatment have been noted, and CSC-treated patients showed a significant improvement in ejection fraction at 1 year (+13.7 absolute units versus baseline), accompanied by a 30.2 % reduction in infarct size. Moreover, the CSC-induced enhancement in cardiac structure and function was associated with a significant improvement in the New York Heart Association (NYHA) functional class and in the quality of life, as measured by the Minnesota Living with Heart failure Questionnaire. These results are exciting and warrant larger, phase II studies. However, CSC therapy for cardiac repair is still in its infancy, and many hurdles need to be overcome to further enhance the therapeutic efficacy of CSCs.
Collapse
Affiliation(s)
- Kyung U Hong
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA,
| | | |
Collapse
|
39
|
van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SCJ, Middleton RC, Marbán E, Molkentin JD. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 2014; 509:337-41. [PMID: 24805242 PMCID: PMC4127035 DOI: 10.1038/nature13309] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine if endogenous c-kit+ cells contribute differentiated cardiomyocytes to the heart during development, with aging or after injury in adulthood. A cDNA encoding either Cre recombinase or a tamoxifen inducible MerCreMer chimeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit+ cells did produce new cardiomyocytes within the heart, although at a percentage of ≈0.03% or less, and if a preponderance towards cellular fusion is considered, the percentage falls below ≈0.008%. In contrast, c-kit+ cells amply generated cardiac endothelial cells. Thus, endogenous c-kit+ cells can generate cardiomyocytes within the heart, although likely at a functionally insignificant level.
Collapse
Affiliation(s)
- Jop H van Berlo
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA [2] Department of Medicine, division of Cardiology, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA [3]
| | - Onur Kanisicak
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA [2]
| | - Marjorie Maillet
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jason Karch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Ryan C Middleton
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Jeffery D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA [2] Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
40
|
Variability in fibrosis in tissue samples obtained during diaphragmatic and apical LVAD implantation. Cardiovasc Pathol 2014; 23:121-5. [DOI: 10.1016/j.carpath.2013.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 12/20/2013] [Indexed: 01/17/2023] Open
|
41
|
Houser S, Patterson K. Steven Houser: the beat goes on. Circ Res 2014; 114:1374-6. [PMID: 24763462 DOI: 10.1161/circresaha.114.303992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Duran JM, Makarewich CA, Trappanese D, Gross P, Husain S, Dunn J, Lal H, Sharp TE, Starosta T, Vagnozzi RJ, Berretta RM, Barbe M, Yu D, Gao E, Kubo H, Force T, Houser SR. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res 2014; 114:1700-1712. [PMID: 24718482 DOI: 10.1161/circresaha.114.303200] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. OBJECTIVE Determining the mechanism of sorafenib-mediated cardiotoxicity. METHODS AND RESULTS Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2'-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. CONCLUSIONS Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.
Collapse
Affiliation(s)
- Jason M Duran
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | | | - Danielle Trappanese
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Sharmeen Husain
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Jonathan Dunn
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Hind Lal
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Thomas E Sharp
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Timothy Starosta
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Ronald J Vagnozzi
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Remus M Berretta
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Mary Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA
| | - Daohai Yu
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Hajime Kubo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Thomas Force
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Molkentin JD, Houser SR. Are resident c-Kit+ cardiac stem cells really all that are needed to mend a broken heart? Circ Res 2013; 113:1037-9. [PMID: 24115067 DOI: 10.1161/circresaha.113.302564] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeffery D Molkentin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | | |
Collapse
|
44
|
Rota M, Leri A, Anversa P. Human heart failure: is cell therapy a valid option? Biochem Pharmacol 2013; 88:129-38. [PMID: 24239645 DOI: 10.1016/j.bcp.2013.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/19/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022]
Abstract
The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the past 50 years. The progressive decline in myocyte number with aging and the formation of scarred tissue following myocardial infarction have been interpreted as irrefutable proofs of the post-mitotic characteristics of the adult heart. However, emerging evidence supports a more dynamic view of the myocardium in which cell death and cell restoration are vital components of the remodeling process that governs organ homeostasis, aging and disease. The identification of dividing myocytes throughout the life span of the organisms and the recognition that undifferentiated primitive cells regulate myocyte turnover and tissue regeneration indicate that the heart is a self-renewing organ controlled by a compartment of resident stem cells. Moreover, exogenous progenitors of bone marrow origin transdifferentiate and acquire the cardiomyocyte and vascular lineages. This new reality constitutes the foundation of the numerous cell-based clinical trials that have been conducted in the last decade for the treatment of ischemic and non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Marcello Rota
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Gziri MM, Pokreisz P, De Vos R, Verbeken E, Debiève F, Mertens L, Janssens SP, Amant F. Fetal rat hearts do not display acute cardiotoxicity in response to maternal Doxorubicin treatment. J Pharmacol Exp Ther 2013; 346:362-9. [PMID: 23792410 DOI: 10.1124/jpet.113.205419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Anthracyclines are used to treat cancers during the second and third trimester of pregnancy. The chemotherapeutic effect of anthracyclines is associated with a dose- and time-dependent cardiotoxicity that is well described for infants and adults. However, data regarding fetal anthracycline-related cardiotoxicity after administration of chemotherapeutics during pregnancy are limited. In this study, we analyzed the acute effect of doxorubicin, an anthracycline derivative, on fetal and maternal rat myocardium. We injected 10 or 20 mg/kg i.v. doxorubicin to pregnant Wistar rats at day 18 of pregnancy; age-matched pregnant rats injected with physiologic saline served as controls. Maternal echocardiography and fetal Doppler scanning were performed before the injection and before sacrifice. Cesarean operation was performed at day 19 or 20, and maternal and fetal blood samples and heart biopsies were collected to measure apoptosis, the impact on cell proliferation, and structural cardiac damage. Acute maternal cardiotoxicity is associated with loss of body weight, moderately deteriorated left ventricular function, induction of apoptosis, and a decrease in cell turnover. Despite a 30% lower fetal body weight and elevated plasma B-type natriuretic peptide concentrations after doxorubicin administration, the fetal hearts had intact microstructure, an unaltered number of apoptotic cells, and preserved cell proliferation compared with controls. Our study suggests that acute treatment using anthracyclines during pregnancy impairs maternal cardiac function, whereas fetal hearts are protected.
Collapse
Affiliation(s)
- Mina Mhallem Gziri
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
47
|
Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clin Sci (Lond) 2013; 125:319-27. [PMID: 23746375 DOI: 10.1042/cs20130019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.
Collapse
|
48
|
Circulation Research Thematic Synopsis: stem cells & cardiac progenitor cells. Circ Res 2013; 113:e10-29. [PMID: 23833297 DOI: 10.1161/circresaha.113.301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Wang F, Gao H, Kubo H, Fan X, Zhang H, Berretta R, Chen X, Sharp T, Starosta T, Makarewich C, Li Y, Molkentin JD, Houser SR. T-type Ca²⁺ channels regulate the exit of cardiac myocytes from the cell cycle after birth. J Mol Cell Cardiol 2013; 62:122-30. [PMID: 23743021 PMCID: PMC3888788 DOI: 10.1016/j.yjmcc.2013.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED T-type Ca(2+) channels (TTCCs) are expressed in the fetal heart and then disappear from ventricular myocytes after birth. The hypothesis examined in this study was the α1G TTCCs' influence in myocyte maturation and their rapid withdrawal from the cell cycle after birth. METHODS Cardiac myocytes were isolated from neonatal and adult wild type (WT), α1G-/- and α1G over expressing (α1GDT) mice. Bromodeoxyuridine (BrdU) uptake, myocyte nucleation, cell cycle analysis, and T-type Ca(2+) currents were measured. RESULTS All myocytes were mono-nucleated at birth and 35% of WT myocytes expressed functional TTCCs. Very few neonatal myocytes had functional TTCCs in α1G-/- hearts. By the end of the first week after birth no WT or α1G-/- had functional TTCCs. During the first week after birth about 25% of WT myocytes were BrdU+ and became bi-nucleated. Significantly fewer α1G-/- myocytes became bi-nucleated and fewer of these myocytes were BrdU+. Neonatal α1G-/- myocytes were also smaller than WT. Adult WT and α1G-/- hearts were similar in size, but α1G-/- myocytes were smaller and a greater % were mono-nucleated. α1G over expressing hearts were smaller than WT but their myocytes were larger. CONCLUSIONS The studies performed show that loss of functional TTCCs is associated with bi-nucleation and myocyte withdrawal from the cell cycle. Loss of α1G TTCCs slowed the transition from mono- to bi-nucleation and resulted in an adult heart with a greater number of small cardiac myocytes. These results suggest that TTCCs are involved in the regulation of myocyte size and the exit of myocytes from the cell cycle during the first week after birth.
Collapse
Affiliation(s)
- Fang Wang
- Cardiovascular Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Taghavi S, George JC. Homing of stem cells to ischemic myocardium. Am J Transl Res 2013; 5:404-411. [PMID: 23724164 PMCID: PMC3665914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 05/18/2013] [Indexed: 06/02/2023]
Abstract
Progenitor cells have the capability to home myocardium in response to ischemia. Cell adhesion markers, in particular integrins, play an important role in the trafficking of stem cells to myocardium. In addition, damaged myocardium secretes several chemokines and growth factors that recruit these precursor cells to the heart. Nitric oxide synthase and hormones can also contribute to the trafficking of progenitor cells to myocardium. The recruitment of stem cells to ischemic myocardium is a complex interchange between cell adhesion markers, chemokines, and growth factors and a better understanding of these processes may lead to more efficient use of stem cells for therapeutic benefit.
Collapse
Affiliation(s)
- Sharven Taghavi
- Cardiovascular Research Center, Temple UniversityPhiladelphia, PA, USA
- Hospital Department of Surgery, Temple UniversityPhiladelphia, PA, USA
| | - Jon C George
- Cardiovascular Research Center, Temple UniversityPhiladelphia, PA, USA
- School of Medicine, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|