1
|
Han SW, Kolb J, Farman GP, Gohlke J, Granzier HL. Glycerol storage increases passive stiffness of muscle fibers through effects on titin extensibility. J Gen Physiol 2025; 157:e202413729. [PMID: 40341854 PMCID: PMC12063555 DOI: 10.1085/jgp.202413729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
To study the physiological and pathological mechanisms of muscle, it is crucial to store muscle samples in ways that preserve their properties. Glycerol is commonly used for storage, as it stabilizes muscle proteins, slows enzymatic activity, and minimizes degradation. However, previous studies validating glycerol storage have not examined its effects on passive properties. In this study, mouse extensor digitorum longus (EDL) muscles were stored in 50% glycerol in relaxing solution with protease inhibitors for various durations, then rehydrated in physiological solutions to assess mechanical properties. Active properties remained unchanged, but passive stress was sensitive to glycerol storage, showing a 56.5 ± 13.6% increase after 4 days, and this effect was permanent. The increase was most pronounced at sarcomere lengths, where titin's PEVK segment extension dominates. Using gelsolin, we determined whether the passive stress increase requires the thin filament, which is known to interact with titin's PEVK region. Both glycerol-stored fibers with and without thin filament extraction exhibited increased passive stress, suggesting that the underlying mechanism is intrinsic to titin. Finally, fibers treated with methylglyoxal, a reactive carbonyl and glycating agent that forms cross-links on lysine residues, showed a significant increase in passive stress in fibers stored in relaxing solution but not in glycerol. Thus, glycerol storage elevates passive stress in a titin-specific manner, likely involving lysine residues in the PEVK. Therefore, glycerol storage should be avoided when assessing passive stiffness. We further showed that, for long-term preservation, storage of rapidly frozen muscle at -80°C is a viable option.
Collapse
Affiliation(s)
- Seong-Won Han
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Henk L. Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Zhu C, Bishop T, Gregorich ZR, Guo W. Titin is a new factor regulating arterial stiffness through vascular smooth muscle cell tone in male rats. Physiol Rep 2025; 13:e70270. [PMID: 40119572 PMCID: PMC11928681 DOI: 10.14814/phy2.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Arterial stiffness is a robust predictor of cardiovascular disease and mortality. As such, there is substantial interest in uncovering its causal factors for the development of targeted treatments to regulate arterial stiffness. The elastic protein titin is a key determinant of myocardial stiffness, yet whether it plays a role in regulating arterial stiffness is unknown. In this study, we aimed to investigate the role of titin in vascular smooth muscle cell (VSMC) and overall arterial stiffness. To do this, we took advantage of rats lacking RNA binding motif 20 (RBM20), the primary splicing regulator of titin, in striated muscles. Using this model, we demonstrate that RBM20 regulates titin isoform expression in smooth muscle, with loss of the protein leading to the expression of larger titin isoforms. We show that the expression of larger titin reduces the stiffness of VSMCs. While decreased titin-based VSMC stiffness did not affect baseline arterial stiffness, we found that arterial stiffness was reduced in response to a challenge with the potent vasoconstrictor angiotensin II (Ang II). The observed reduction in arterial stiffness following Ang II treatment was not the result of changes in either the extracellular matrix or myofilaments. We further show that the expression of a larger titin isoform ameliorates cardiac remodeling caused by Ang II-associated hypertension. In summary, our study provides the first evidence that titin regulates VSMC stiffness, which is relevant for arterial stiffness in the context of elevated blood pressure. Furthermore, our data provide proof-of-concept evidence that targeting RBM20 to reduce arterial stiffness through titin isoform switching may benefit aging- or hypertension-associated arterial stiffness and vascular diseases.
Collapse
MESH Headings
- Animals
- Connectin/metabolism
- Connectin/genetics
- Vascular Stiffness/physiology
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Rats
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Rats, Sprague-Dawley
- Angiotensin II/pharmacology
- Protein Isoforms/metabolism
Collapse
Affiliation(s)
- Chaoqun Zhu
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
| | | | - Zachery R. Gregorich
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Cardiovascular Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wei Guo
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Cardiovascular Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
4
|
Perrin A, Garcia-Uzquiano R, Stojkovic T, Tard C, Metay C, Bergougnoux A, Van Goethem C, Thèze C, Larrieux M, Faure-Gautron H, Laporte J, Lefebvre G, Krahn M, Juntas-Morales R, Titin's Network Collaborators, Koenig M, Quijano-Roy S, Carlier RY, Cossée M. Congenital Titinopathies Linked to Mutations in TTN Metatranscript-Only Exons. Int J Mol Sci 2024; 25:12994. [PMID: 39684706 DOI: 10.3390/ijms252312994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Congenital titinopathies reported to date show autosomal recessive inheritance and are caused by a variety of genomic variants, most of them located in metatranscript (MTT)-only exons. The aim of this study was to describe additional patients and establish robust genotype-phenotype associations in titinopathies. This study involved analyzing molecular, clinical, pathological, and muscle imaging features in 20 patients who had at least one pathogenic or likely pathogenic TTN variant in MTT-only exons, with onset occurring antenatally or in the early postnatal stages. The 20 patients with recessive inheritance exhibited a heterogeneous range of phenotypes. These included fetal lethality, progressive weakness, cardiac or respiratory complications, hyper-CKemia, or dystrophic muscle biopsies. MRI revealed variable abnormalities in different muscles. All patients presented severe congenital myopathy at birth, characterized by arthrogryposis (either multiplex or axial-distal) or neonatal hypotonia in most cases. This study provides detailed genotype-phenotype correlations in congenital titinopathies caused by mutations in MTT-only exons. The findings highlight the variability in clinical presentation and the severity of phenotypes associated with these specific genetic alterations. RNA-seq analyses provided valuable insights into the molecular consequences of TTN variants, particularly in relation to splicing defects and nonsense-mediated RNA decay. In conclusion, this study reinforces the genotype-phenotype correlations between congenital myopathies and variants in TTN MTT-only exons, improves their molecular diagnosis, and provides a better understanding of their pathophysiology.
Collapse
Affiliation(s)
- Aurélien Perrin
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Rocio Garcia-Uzquiano
- AP-HP, GHU Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, 92380 Garches, France
| | - Tanya Stojkovic
- AP-HP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Sorbonne Université, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Céline Tard
- Département de Neurologie et des Troubles du Mouvement, U1172, Centre Hospitalo Universitaire (CHU) de Lille, CT, Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, 59000 Lille, France
| | - Corinne Metay
- AP-HP, UF Molecular Cardiogenetics and Myogenetics, Sorbonne Université and Sorbonne Université UPMC Paris 06, Inserm UMRS974, Research Center in Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Charles Van Goethem
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Marion Larrieux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Héloise Faure-Gautron
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, 67400 Illkirch, France
| | - Guillaume Lefebvre
- Service d'Imagerie Musculo-Squelettique, CCIAL, CHU de Lille, Rue Emile Laine, 59037 Lille, France
| | - Martin Krahn
- INSERM, Marseille Medical Genetics, U1251, Aix-Marseille Université, 13385 Marseille, France
- Département de Génétique Médicale, Hôpital Timone Enfants, APHM, 13385 Marseille, France
| | - Raul Juntas-Morales
- Neurology Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | | | - Michel Koenig
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Susana Quijano-Roy
- AP-HP, GHU Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, 92380 Garches, France
- U1179 INSERM-UVSQ, Université de Versailles, 78180 Montigny, France
| | - Robert-Yves Carlier
- U1179 INSERM-UVSQ, Université de Versailles, 78180 Montigny, France
- AP-HP, GHU Université Paris-Saclay, DMU Smart Imaging, Radiology Department, Raymond Poincaré Teaching Hospital, 92380 Garches, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| |
Collapse
|
5
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Chakraborty AD, Kooiker K, Kobak KA, Cheng Y, Lee CF, Razumova M, Granzier H H, Regnier M, Rabinovitch PS, Moussavi-Harami F, Chiao YA. Late-life Rapamycin Treatment Enhances Cardiomyocyte Relaxation Kinetics and Reduces Myocardial Stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544619. [PMID: 37398078 PMCID: PMC10312630 DOI: 10.1101/2023.06.12.544619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Diastolic dysfunction is a key feature of the aging heart. We have shown that late-life treatment with mTOR inhibitor, rapamycin, reverses age-related diastolic dysfunction in mice but the molecular mechanisms of the reversal remain unclear. To dissect the mechanisms by which rapamycin improves diastolic function in old mice, we examined the effects of rapamycin treatment at the levels of single cardiomyocyte, myofibril and multicellular cardiac muscle. Compared to young cardiomyocytes, isolated cardiomyocytes from old control mice exhibited prolonged time to 90% relaxation (RT 90 ) and time to 90% Ca 2+ transient decay (DT 90 ), indicating slower relaxation kinetics and calcium reuptake with age. Late-life rapamycin treatment for 10 weeks completely normalized RT 90 and partially normalized DT 90 , suggesting improved Ca 2+ handling contributes partially to the rapamycin-induced improved cardiomyocyte relaxation. In addition, rapamycin treatment in old mice enhanced the kinetics of sarcomere shortening and Ca 2+ transient increase in old control cardiomyocytes. Myofibrils from old rapamycin-treated mice displayed increased rate of the fast, exponential decay phase of relaxation compared to old controls. The improved myofibrillar kinetics were accompanied by an increase in MyBP-C phosphorylation at S282 following rapamycin treatment. We also showed that late-life rapamycin treatment normalized the age-related increase in passive stiffness of demembranated cardiac trabeculae through a mechanism independent of titin isoform shift. In summary, our results showed that rapamycin treatment normalizes the age-related impairments in cardiomyocyte relaxation, which works conjointly with reduced myocardial stiffness to reverse age-related diastolic dysfunction.
Collapse
|
7
|
Kanashiro-Takeuchi RM, Takeuchi LM, Dulce RA, Kazmierczak K, Balkan W, Cai R, Sha W, Schally AV, Hare JM. Efficacy of a growth hormone-releasing hormone agonist in a murine model of cardiometabolic heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 324:H739-H750. [PMID: 36897749 PMCID: PMC10151038 DOI: 10.1152/ajpheart.00601.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR-409) of growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory influences in the cardiovascular (CV) system and aging and plays a role in several cardiometabolic conditions including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF remains untested and unknown. Here we tested the hypothesis that MR-356 can mitigate/reverse the cardiometabolic HFpEF phenotype. C57BL6N mice received a high-fat diet (HFD) plus the nitric oxide synthase inhibitor (l-NAME) for 9 wk. After 5 wk of HFD + l-NAME regimen, animals were randomized to receive daily injections of MR-356 or placebo during a 4-wk period. Control animals received no HFD + l-NAME or agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion. MR-356 improved cardiac performance by improving diastolic function, global longitudinal strain (GLS), and exercise capacity. Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF. Thus, agonists of GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype.NEW & NOTEWORTHY This randomized study used rigorous hemodynamic tools to test the efficacy of a synthetic GHRH agonist to improve cardiac performance in a cardiometabolic HFpEF. Daily injection of the GHRH agonist, MR-356, reduced the HFpEF-like effects as evidenced by improved diastolic dysfunction, reduced cardiac hypertrophy, fibrosis, and pulmonary congestion. Notably, end-diastolic pressure and end-diastolic pressure-volume relationship were reset to control levels. Moreover, treatment with MR-356 increased exercise capacity and reduced myocardial stress associated with metabolic inflammation in HFpEF.
Collapse
Affiliation(s)
- Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Renzhi Cai
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Andrew V Schally
- Division of Oncology, Department of Medicine and Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
8
|
Reitz C, Tavassoli M, Kim D, Shah S, Lakin R, Teng A, Zhou YQ, Li W, Hadipour-Lakmehsari S, Backx P, Emili A, Oudit G, Kuzmanov U, Gramolini A. Proteomics and phosphoproteomics of failing human left ventricle identifies dilated cardiomyopathy-associated phosphorylation of CTNNA3. Proc Natl Acad Sci U S A 2023; 120:e2212118120. [PMID: 37126683 PMCID: PMC10175742 DOI: 10.1073/pnas.2212118120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023] Open
Abstract
The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Marjan Tavassoli
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Da Hye Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
| | - Robert Lakin
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Allen C. T. Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Wenping Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Sina Hadipour-Lakmehsari
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University School of Medicine, Boston, MA02118
- The Centre for Network Systems Biology, Boston University School of Medicine, Boston, MA02118
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
- Mazankowski Alberta Heart Institute, Edmonton, ABT6G 2B7
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| |
Collapse
|
9
|
Coyle-Asbil B, Holjak EJB, Marrow JP, Alshamali R, Ogilvie LM, Edgett BA, Hopkinson LD, Brunt KR, Simpson JA. Assessing systolic and diastolic reserves in male and female mice. Am J Physiol Heart Circ Physiol 2023; 324:H129-H140. [PMID: 36459449 DOI: 10.1152/ajpheart.00444.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cardiac reserve is a widely used health indicator and prognostic tool. Although it is well established how to assess cardiac reserve clinically, in preclinical models, it is more challenging lacking standardization. Furthermore, although cardiac reserve incorporates both systolic (i.e., contractile reserve) and diastolic (i.e., relaxation reserve) components of the cardiac cycle, less focus has been placed on diastolic reserve. The aim of our study was to determine which technique (i.e., echocardiography, invasive hemodynamic, and Langendorff) and corresponding parameters can be used to assess the systolic and diastolic reserves in preclinical models. Healthy adult male and female CD-1 mice were administered dobutamine and evaluated by echocardiography and invasive hemodynamic, or Langendorff to establish systolic and diastolic reserves. Here, we show that systolic reserve can be assessed using all techniques in vivo and in vitro. Yet, the current indices available are ineffective at capturing diastolic reserve of healthy mice in vivo. When assessing systolic reserve, sex affects the dose response of several commonly used echocardiography parameters [i.e., fractional shortening (FS), ejection fraction (EF)]. Taken together, this study improves our understanding of how sex impacts the interpretation assessment of cardiac reserve and establishes for the first time that in healthy adult mice, the diastolic reserve cannot be assessed by currently established methods in vivo.NEW & NOTEWORTHY Cardiac reserve is a globally used health indicator and prognostic tool that is used by clinicians and preclinical scientists. In physiology, we have a long-standing appreciation of how to assess systolic reserve but lack insight into sex differences and have no frame of reference for measuring diastolic reserve to certainty across cardiac techniques or the influence of sex. Here, we show that the primary means for assessing diastolic reserve is incorrect. Furthermore, we provided proof and clarity on how to correctly measure systolic and diastolic reserve capacities. We also highlight the imperative of sex differences to the measures of both systolic and diastolic reserves using several techniques (i.e., echocardiography, invasive hemodynamics, and Langendorff) in mice.
Collapse
Affiliation(s)
- B Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - E J B Holjak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - J P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - R Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - L M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - B A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - L D Hopkinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - K R Brunt
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - J A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
10
|
Mulvaney EP, Renzo F, Adão R, Dupre E, Bialesova L, Salvatore V, Reid HM, Conceição G, Grynblat J, Llucià-Valldeperas A, Michel JB, Brás-Silva C, Laurent CE, Howard LS, Montani D, Humbert M, Vonk Noordegraaf A, Perros F, Mendes-Ferreira P, Kinsella BT. The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload. Front Cardiovasc Med 2022; 9:1063967. [PMID: 36588576 PMCID: PMC9794752 DOI: 10.3389/fcvm.2022.1063967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions.
Collapse
Affiliation(s)
- Eamon P. Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fabiana Renzo
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Viviana Salvatore
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Helen M. Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Glória Conceição
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Julien Grynblat
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, Netherlands
| | | | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Charles E. Laurent
- IPS Therapeutique Inc., Sherbrooke, QC, Canada,ToxiPharm Laboratories Inc., Ste-Catherine-de-Hatley, QC, Canada
| | - Luke S. Howard
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anton Vonk Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM, INRAE, CarMeN Laboratory and Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Claude Bernard University Lyon 1, University of Lyon, Lyon, France
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - B. Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,UCD School of Biomolecular and Biomedical Research, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: B. Therese Kinsella,
| |
Collapse
|
11
|
Wang L, Deng H, Wang T, Qiao Y, Zhu J, Xiong M. Investigation into the protective effects of hypaconitine and glycyrrhetinic acid against chronic heart failure of the rats. BMC Complement Med Ther 2022; 22:160. [PMID: 35710396 PMCID: PMC9202221 DOI: 10.1186/s12906-022-03632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present study aimed to determine the protective effects of hypaconitine (HA) and glycyrrhetinic acid (GA) against chronic heart failure (CHF) in the rats and to explore the underlying molecular mechanisms.
Methods
The CHF rat model was established by transverse-aortic constriction (TAC) operation. Transthoracic echocardiography and hematoxylin eosin (HE) staining were used to evaluate the pathophysiological and histopathological changes of CHF model. The total cholesterol (TCHO) and triglyceride (TG) levels were determined by ELISA assay. The protein expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in the rat ventricular tissues was determined by immunohistochemistry. The serum metabolites were determined by LC-MS/MS assay.
Results
After applied the HA + GA, the cardiac tissue and structure were obviously improved, and the HA + GA treatment also significantly reduced the plasma levels of TCHO and TG in the CHF rats. The expression of FGF2 and VEGFA protein was up-regulated and the expression of eNOS protein was down-regulated in the ventricular tissues of CHF rats, which was significantly restored after HA + GA treatment. HA + GA treatment down-regulated serum isonicotinic acid, phosphatidylcholine, cardiolipin, estrogen glucuronide, and glycocholic acid, up-regulated serum sphingosine and deoxycholic acid in the CHF rats.
Conclusions
In conclusion, HA + GA showed protective effects on CHF in the rats, and the HA + GA may exert protective effects by reducing lipid levels, up-regulating the expression of FGF2 and VEGFA proteins, attenuating eNOS protein expression, and modulating metabolic pathways. However, the molecular mechanisms underlying HA + GA-mediated effects still require further examination.
Collapse
|
12
|
Rocca A, van Heeswijk RB, Richiardi J, Meyer P, Hullin R. The Cardiomyocyte in Heart Failure with Preserved Ejection Fraction-Victim of Its Environment? Cells 2022; 11:867. [PMID: 35269489 PMCID: PMC8909081 DOI: 10.3390/cells11050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Heart failure (HF) with preserved left ventricular ejection fraction (HFpEF) is becoming the predominant form of HF. However, medical therapy that improves cardiovascular outcome in HF patients with almost normal and normal systolic left ventricular function, but diastolic dysfunction is missing. The cause of this unmet need is incomplete understanding of HFpEF pathophysiology, the heterogeneity of the patient population, and poor matching of therapeutic mechanisms and primary pathophysiological processes. Recently, animal models improved understanding of the pathophysiological role of highly prevalent and often concomitantly presenting comorbidity in HFpEF patients. Evidence from these animal models provide first insight into cellular pathophysiology not considered so far in HFpEF disease, promising that improved understanding may provide new therapeutical targets. This review merges observation from animal models and human HFpEF disease with the intention to converge cardiomyocytes pathophysiological aspects and clinical knowledge.
Collapse
Affiliation(s)
- Angela Rocca
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Philippe Meyer
- Cardiology Service, Department of Medical Specialties, Faculty of Science, Geneva University Hospital, University of Geneva, 1205 Geneva, Switzerland;
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
13
|
Soetkamp D, Gallet R, Parker SJ, Holewinski R, Venkatraman V, Peck K, Goldhaber JI, Marbán E, Van Eyk JE. Myofilament Phosphorylation in Stem Cell Treated Diastolic Heart Failure. Circ Res 2021; 129:1125-1140. [PMID: 34641704 DOI: 10.1161/circresaha.119.316311] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE Phosphorylation of sarcomeric proteins has been implicated in heart failure with preserved ejection fraction (HFpEF); such changes may contribute to diastolic dysfunction by altering contractility, cardiac stiffness, Ca2+-sensitivity, and mechanosensing. Treatment with cardiosphere-derived cells (CDCs) restores normal diastolic function, attenuates fibrosis and inflammation, and improves survival in a rat HFpEF model. OBJECTIVE Phosphorylation changes that underlie HFpEF and those reversed by CDC therapy, with a focus on the sarcomeric subproteome were analyzed. METHODS AND RESULTS Dahl salt-sensitive rats fed a high-salt diet, with echocardiographically verified diastolic dysfunction, were randomly assigned to either intracoronary CDCs or placebo. Dahl salt-sensitive rats receiving low salt diet served as controls. Protein and phosphorylated Ser, Thr, and Tyr residues from left ventricular tissue were quantified by mass spectrometry. HFpEF hearts exhibited extensive hyperphosphorylation with 98% of the 529 significantly changed phospho-sites increased compared with control. Of those, 39% were located within the sarcomeric subproteome, with a large group of proteins located or associated with the Z-disk. CDC treatment partially reverted the hyperphosphorylation, with 85% of the significantly altered 76 residues hypophosphorylated. Bioinformatic upstream analysis of the differentially phosphorylated protein residues revealed PKC as the dominant putative regulatory kinase. PKC isoform analysis indicated increases in PKC α, β, and δ concentration, whereas CDC treatment led to a reversion of PKCβ. Use of PKC isoform specific inhibition and overexpression of various PKC isoforms strongly suggests that PKCβ is the dominant kinase involved in hyperphosphorylation in HFpEF and is altered with CDC treatment. CONCLUSIONS Increased protein phosphorylation at the Z-disk is associated with diastolic dysfunction, with PKC isoforms driving most quantified phosphorylation changes. Because CDCs reverse the key abnormalities in HFpEF and selectively reverse PKCβ upregulation, PKCβ merits being classified as a potential therapeutic target in HFpEF, a disease notoriously refractory to medical intervention.
Collapse
Affiliation(s)
- Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Romain Gallet
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | - Kiel Peck
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | |
Collapse
|
14
|
Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart. Int J Mol Sci 2021; 22:ijms222011110. [PMID: 34681770 PMCID: PMC8537917 DOI: 10.3390/ijms222011110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete’s heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardiac muscle contains two titin isoforms: the more compliant N2BA and the stiffer N2B. Titin-based passive stiffness may be controlled by altering the expression of the different isoforms or via post-translational modifications such as phosphorylation. Currently, there is very limited knowledge about titin’s role in cardiac adaptation during long-term exercise. Our aim was to determine the N2BA/N2B ratio and post-translational phosphorylation of titin in the left ventricle and to correlate the changes with the structure and transverse stiffness of cardiac sarcomeres in a rat model of an athlete’s heart. The athlete’s heart was induced by a 12-week-long swim-based training. In the exercised myocardium the N2BA/N2B ratio was significantly increased, Ser11878 of the PEVK domain was hypophosphorlyated, and the sarcomeric transverse elastic modulus was reduced. Thus, the reduced passive stiffness in the athlete’s heart is likely caused by a shift towards the expression of the longer cardiac titin isoform and a phosphorylation-induced softening of the PEVK domain which is manifested in a mechanical rearrangement locally, within the cardiac sarcomere.
Collapse
|
15
|
The importance of an integrated genotype-phenotype strategy to unravel the molecular bases of titinopathies. Neuromuscul Disord 2020; 30:877-887. [PMID: 33127292 DOI: 10.1016/j.nmd.2020.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Next generation sequencing (NGS) has allowed the titin gene (TTN) to be identified as a major contributor to neuromuscular disorders, with high clinical heterogeneity. The mechanisms underlying the phenotypic variability and the dominant or recessive pattern of inheritance are unclear. Titin is involved in the formation and stability of the sarcomeres. The effects of the different TTN variants can be harmless or pathogenic (recessive or dominant) but the interpretation is tricky because the current bioinformatics tools can not predict their functional impact effectively. Moreover, TTN variants are very frequent in the general population. The combination of deep phenotyping associated with RNA molecular analyses, western blot (WB) and functional studies is often essential for the interpretation of genetic variants in patients suspected of titinopathy. In line with the current guidelines and suggestions, we implemented for patients with skeletal myopathy and with potentially disease causing TTN variant(s) an integrated genotype-transcripts-protein-phenotype approach, associated with phenotype and variants segregation studies in relatives and confrontation with published data on titinopathies to evaluate pathogenic effects of TTN variants (even truncating ones) on titin transcripts, amount, size and functionality. We illustrate this integrated approach in four patients with recessive congenital myopathy.
Collapse
|
16
|
Ai L, Perez E, Asimes A, Kampaengsri T, Heroux M, Zlobin A, Hiske MA, Chung CS, Pak TR, Kirk JA. Binge Alcohol Exposure in Adolescence Impairs Normal Heart Growth. J Am Heart Assoc 2020; 9:e015611. [PMID: 32319345 PMCID: PMC7428579 DOI: 10.1161/jaha.119.015611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Approximately 1 in 6 adolescents report regular binge alcohol consumption, and we hypothesize it affects heart growth during this period. Methods and Results Adolescent, genetically diverse, male Wistar rats were gavaged with water or ethanol once per day for 6 days. In vivo structure and function were assessed before and after exposure. Binge alcohol exposure in adolescence significantly impaired normal cardiac growth but did not affect whole‐body growth during adolescence, therefore this pathology was specific to the heart. Binge rats also exhibited signs of accelerated pathological growth (concentric cellular hypertrophy and thickening of the myocardial wall), suggesting a global reorientation from physiologic to pathologic growth. Binge rats compensated for their smaller filling volumes by increasing systolic function and sympathetic stimulation. Consequently, binge alcohol exposure increased PKA (protein kinase A) phosphorylation of troponin I, inducing myofilament calcium desensitization. Binge alcohol also impaired in vivo relaxation and increased titin‐based cellular stiffness due to titin phosphorylation by PKCα (protein kinase C α). Mechanistically, alcohol inhibited extracellular signal‐related kinase activity, a nodal signaling kinase activating physiology hypertrophy. Thus, binge alcohol exposure depressed genes involved in growth. These cardiac structural alterations from binge alcohol exposure persisted through adolescence even after cessation of ethanol exposure. Conclusions Alcohol negatively impacts function in the adult heart, but the adolescent heart is substantially more sensitive to its effects. This difference is likely because adolescent binge alcohol impedes the normal rapid physiological growth and reorients it towards pathological hypertrophy. Many adolescents regularly binge alcohol, and here we report a novel pathological consequence as well as mechanisms involved.
Collapse
Affiliation(s)
- Lizhuo Ai
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Edith Perez
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - AnnaDorothea Asimes
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Theerachat Kampaengsri
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Maxime Heroux
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Andrei Zlobin
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Mark A Hiske
- Department of Physiology Wayne State University Detroit MI
| | | | - Toni R Pak
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| |
Collapse
|
17
|
Perrin A, Metay C, Villanova M, Carlier RY, Pegoraro E, Juntas Morales R, Stojkovic T, Richard I, Richard P, Romero NB, Granzier H, Koenig M, Malfatti E, Cossée M. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol 2020; 7:846-854. [PMID: 32307885 PMCID: PMC7261750 DOI: 10.1002/acn3.51031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Congenital titinopathies are myopathies with variable phenotypes and inheritance modes. Here, we fully characterized, using an integrated approach (deep phenotyping, muscle morphology, mRNA and protein evaluation in muscle biopsies), two siblings with congenital multicore myopathy harboring three TTN variants predicted to affect titin stability and titin-myosin interactions. Muscle biopsies showed multicores, type 1 fiber uniformity and sarcomeric structure disruption with some thick filament loss. Immunohistochemistry and Western blotting revealed a marked reduction of fast myosin heavy chain isoforms. This is the first observation of a titinopathy suggesting that titin defect leads to secondary loss of fast myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Aurélien Perrin
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire de Maladies Rares, EA 7402, Université de Montpellier, Montpellier, France
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique et INSERM UMRS 974, Institut de Myologie, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, INSERM UMRS1166, UPMC Paris 6, Paris, France
| | | | - Robert-Yves Carlier
- DMU Smart Imaging, Medical Imaging Department Raymond Poincaré Teaching Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), GHU Paris-Saclay University, Garches, France.,INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Paris-Saclay, Garches, France
| | | | - Raul Juntas Morales
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire de Maladies Rares, EA 7402, Université de Montpellier, Montpellier, France
| | - Tanya Stojkovic
- Myology Institute, Neuromuscular Pathology Reference Center, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France.,Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Isabelle Richard
- Généthon, INSERM, UMR951 INTEGRARE Research Unit, 91002, Evry, France
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique et INSERM UMRS 974, Institut de Myologie, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, INSERM UMRS1166, UPMC Paris 6, Paris, France
| | - Norma B Romero
- Myology Institute, Neuromuscular Pathology Reference Center, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France.,Sorbonne Universités UPMC Univ Paris 06, Paris, France.,Unit of Neuromuscular Morphology, Institute of Myology, Pitié-SalpêtrièreUniversity Hospital, Paris, France
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, Arizona, 85724-5217
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire de Maladies Rares, EA 7402, Université de Montpellier, Montpellier, France
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, Garches, France.,U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire de Maladies Rares, EA 7402, Université de Montpellier, Montpellier, France
| |
Collapse
|
18
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
19
|
Chung CS, Hiske MA, Chadha A, Mueller PJ. Compliant Titin Isoform Content Is Reduced in Left Ventricles of Sedentary Versus Active Rats. Front Physiol 2020; 11:15. [PMID: 32116740 PMCID: PMC7025574 DOI: 10.3389/fphys.2020.00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2020] [Indexed: 11/30/2022] Open
Abstract
A sedentary lifestyle is associated with increased cardiovascular risk factors and reduced cardiac compliance when compared to a lifestyle that includes exercise training. Exercise training increases cardiac compliance in humans, but the mechanisms underlying this improvement are unknown. A major determinant of cardiac compliance is the compliance of the giant elastic protein titin. Experimentally reducing titin compliance in animal models reduces exercise tolerance, but it is not known whether sedentary versus chronic exercise conditions cause differences in titin isoform content. We hypothesized that sedentary conditions would be associated with a reduction in the content of the longer, more compliant N2BA isoform relative to the stiffer N2B isoform (yielding a reduced N2BA:N2B ratio) compared to age-matched exercising controls. We obtained left ventricles from 16-week old rats housed for 12 weeks in standard (sedentary) or voluntary running wheel (exercised) housing. The N2BA:N2B ratio was decreased in the hearts of sedentary versus active rats (p = 0.041). Gene expression of a titin mRNA splicing factor, RNA Binding Motif 20 protein (RBM20), correlated negatively with N2BA:N2B ratios (p = 0.006, r = -0.449), but was not different between groups, suggesting that RBM20 may be regulated post-transcriptionally. Total phosphorylation of cardiac titin was not different between the active and sedentary groups. This study is the first to demonstrate that sedentary rats exhibit reduced cardiac titin N2BA:N2B isoform ratios, which implies reduced cardiac compliance. These data suggest that a lack of exercise (running wheel) reduces cardiac compliance and that exercise itself increases cardiac compliance.
Collapse
|
20
|
Kapelko VI. [Why Myocardial Relaxation Always Slows at Cardiac Pathology?]. ACTA ACUST UNITED AC 2019; 59:44-51. [PMID: 31849310 DOI: 10.18087/cardio.2019.12.n801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Chronic heart failure (CHF) in most cases is due to a decrease in myocardial contractility. In particular, this results in a reduction in the maximum rate of the pressure development in the left ventricle. At the same time the maximal rate of pressure fall at relaxation is also reduced. This is not surprising, since both depend on Ca ++ myoplasmic concentration. But most of cardiac pathologies have been associated with the impairement of myocardial relaxation to a greater extent than the contraction. In the review a new view has been proposed according to which this phenomenon is attributable to restructuring of titin, the sarcomeric protein that connects the ends of myosin filaments with the sarcomeric board, lines Z. A spring-like molecule of titin shrinks at sarcomeric contraction and straightens in parallel with removing of Ca ++ from myofibrils. A reduction of its stiffness, facilitating the filling of the left ventricle, can reduce restoring force of titin and thereby slow relaxation. The survey provides information about the functions of the calcium transport system and titin in the normal heart and in CHF observed both in experimental models and in patients.
Collapse
Affiliation(s)
- V I Kapelko
- National Medical Research Center for Cardiology
| |
Collapse
|
21
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
22
|
Slater RE, Strom JG, Methawasin M, Liss M, Gotthardt M, Sweitzer N, Granzier HL. Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. J Gen Physiol 2018; 151:42-52. [PMID: 30567709 PMCID: PMC6314384 DOI: 10.1085/jgp.201812259] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome characterized by increased diastolic stiffness, for which effective therapies are lacking. Slater et al. show that metformin lowers titin-based passive stiffness in an HFpEF mouse model and may therefore be of therapeutic benefit. Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure–volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin’s PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin’s stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.
Collapse
Affiliation(s)
- Rebecca E Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joshua G Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Nancy Sweitzer
- Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ .,Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
23
|
Liu Y, Liu Y, Li G, Chen Z, Gu G. Ghrelin protects the myocardium with hypoxia/reoxygenation treatment through upregulating the expression of growth hormone, growth hormone secretagogue receptor and insulin-like growth factor-1, and promoting the phosphorylation of protein kinase B. Int J Mol Med 2018; 42:3037-3046. [PMID: 30272367 PMCID: PMC6202102 DOI: 10.3892/ijmm.2018.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is an endogenous ligand of growth hormone (GH) secretagogue receptor (GHSR) and has a number of biological effects, including heart protection. The present study aimed to reveal the positive effect of ghrelin on myocardium with hypoxia/reoxygenation (H/R) treatment and the involved molecular mechanisms. Successful construction of lentiviral expression vector (ghrelin-pLVX-Puro) was confirmed by colony polymerase chain reaction (PCR) verification. Primary rat cardiac myocytes were isolated and identified by immunofluorescence staining. Existence of red fluorescence of α-sarcomeric actinin indicated the successful isolation. Following ghrelin transfection and H/R treatment, primary cells were divided into four groups: Control, H/R, empty (empty pLVX-Puro + H/R) and ghrelin (ghrelin-pLVX-Puro + H/R). Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) and Hoechst staining, respectively. The cell viability in the ghrelin group was significantly higher than that in the empty control group (P<0.05). The apoptosis rate in the ghrelin group was significantly lower than that in the empty control group (P<0.05). An ex vivo rat cardiac perfusion model was established. Following ghrelin incubation and H/R treatment, ex vivo myocardium was divided into four groups: Control, sham, H/R and ghrelin (ghrelin + H/R). Immunohistochemical analysis demonstrated that ghrelin increased the integrity of cardiac myocytes, and decreased shrinkage and apoptosis. mRNA and protein expression levels of GH, GHSR, insulin-like growth factor-1 (IGF-1), protein kinase B (Akt), phosphorylated Akt (p-Akt) were determined by reverse transcription (RT)-PCR, western blot analysis and immunohistochemical analysis. Ghrelin upregulated the mRNA and protein expression levels of GH, GHSR and IGF-1, and increased the ratio of p-Akt to Akt protein level (p-Akt/Akt) in cardiac myocytes and myocardial tissues with H/R treatment. In conclusion, ghrelin protected the myocardium with H/R treatment through upregulating the expression of GH, GHSR and IGF-1, and promoting the phosphorylation of Akt. This would provide promising insights into the treatment of hypoxic myocardial injury by ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guolin Li
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengrong Chen
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Guixiong Gu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
24
|
Gotzmann M, Grabbe S, Schöne D, von Frieling-Salewsky M, Dos Remedios CG, Strauch J, Bechtel M, Dietrich JW, Tannapfel A, Mügge A, Linke WA. Alterations in Titin Properties and Myocardial Fibrosis Correlate With Clinical Phenotypes in Hemodynamic Subgroups of Severe Aortic Stenosis. JACC Basic Transl Sci 2018; 3:335-346. [PMID: 30062220 PMCID: PMC6059007 DOI: 10.1016/j.jacbts.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
Abstract
The extent of myocardial fibrosis and the degree of isoform-expression and phosphorylation changes in cardiomyocyte titin were unknown in different hemodynamic subgroups of AS, including “paradoxical” low-flow, low-gradient AS with preserved ejection fraction. Hemodynamic subtypes of AS were found to exhibit increased cardiac fibrosis, titin-isoform transition toward more compliant N2BA variants, and both total and site-specific titin (N2Bus) hypophosphorylation compared with donor heart controls. A significant shift toward N2BA titin appeared in “paradoxical” AS, whereas alterations in total-titin phosphorylation and cardiac fibrosis were similar in all hemodynamic subtypes of AS, suggesting increased myocardial passive stiffness. The unfavorable prognosis of “paradoxical” AS could be explained by the pronounced myocardial remodeling, which is no less severe than in other AS subtypes.
Titin-isoform expression, titin phosphorylation, and myocardial fibrosis were studied in 30 patients with severe symptomatic aortic stenosis (AS). Patients were grouped into “classical” high-gradient, normal-flow AS with preserved ejection fraction (EF); “paradoxical” low-flow, low-gradient AS with preserved EF; and AS with reduced EF. Nonfailing donor hearts served as controls. AS was associated with increased fibrosis, titin-isoform switch toward compliant N2BA, and both total and site-specific titin hypophosphorylation compared with control hearts. All AS subtypes revealed titin and matrix alterations. The extent of myocardial remodeling in “paradoxical” AS was no less severe than in other AS subtypes, thus explaining the unfavorable prognosis.
Collapse
Affiliation(s)
- Michael Gotzmann
- Department of Cardiology, Marien Hospital Witten, Ruhr University Bochum, Bochum, Germany
| | - Susanne Grabbe
- Cardiology and Angiology, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Dominik Schöne
- Cardiology and Angiology, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | | | | | - Justus Strauch
- Department of Cardiac and Thoracic Surgery, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Bechtel
- Department of Cardiac and Thoracic Surgery, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes W Dietrich
- Department of Internal Medicine, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | | | - Andreas Mügge
- Cardiology and Angiology, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
25
|
Chen Z, Song J, Chen L, Zhu C, Cai H, Sun M, Stern A, Mozdziak P, Ge Y, Means WJ, Guo W. Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing. Genes (Basel) 2018; 9:genes9020086. [PMID: 29438341 PMCID: PMC5852582 DOI: 10.3390/genes9020086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Titin (TTN) is a major disease-causing gene in cardiac muscle. Titin (TTN) contains 363 exons in human encoding various sizes of TTN protein due to alternative splicing regulated mainly by RNA binding motif 20 (RBM20). Three isoforms of TTN protein are produced by mutually exclusive exons 45 (Novex 1), 46 (Novex 2), and 48 (Novex 3). Alternatively splicing in Novex isoforms across species and whether Novex isoforms are associated with heart disease remains completely unknown. Cross-species exon comparison with the mVISTA online tool revealed that exon 45 is more highly conserved across all species than exons 46 and 48. Importantly, a conserved region between exons 47 and 48 across species was revealed for the first time. Reverse transcript polymerase chain reaction (RT-PCR) and DNA sequencing confirmed a new exon named as 48′ in Novex 3. In addition, with primer pairs for Novex 1, a new truncated form preserving introns 44 and 45 was discovered. We discovered that Novex 2 is not expressed in the pig, mouse, and rat with Novex 2 primer pairs. Unexpectedly, three truncated forms were identified. One TTN variant with intron 46 retention is mainly expressed in the human and frog heart, another variant with co-expression of exons 45 and 46 exists predominantly in chicken and frog heart, and a third with retention of introns 45 and 46 is mainly expressed in pig, mouse, rat, and chicken. Using Rbm20 knockout rat heart, we revealed that RBM20 is not a splicing regulator of Novex variants. Furthermore, the expression levels of Novex variants in human hearts with cardiomyopathies suggested that Novexes 2 and 3 could be associated with dilated cardiomyopathy (DCM) and/or arrhythmogenic right ventricular cardiomyopathy (ARVC). Taken together, our study reveals that splicing diversity of Novex exons across species and Novex variants might play a role in cardiomyopathy.
Collapse
Affiliation(s)
- Zhilong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Chaoqun Zhu
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Allysa Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin, Madison, WI 53705, USA.
| | - Warrie J Means
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Wei Guo
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
26
|
Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching. Biophys Rev 2018; 10:15-25. [PMID: 28577155 PMCID: PMC5803173 DOI: 10.1007/s12551-017-0267-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiomyopathy, also known as heart muscle disease, is an unfavorable condition leading to alterations in myocardial contraction and/or impaired ability of ventricular filling. The onset and development of cardiomyopathy have not currently been well defined. Titin is a giant multifunctional sarcomeric filament protein that provides passive stiffness to cardiomyocytes and has been implicated to play an important role in the origin and development of cardiomyopathy and heart failure. Titin-based passive stiffness can be mainly adjusted by isoform switching and post-translational modifications in the spring regions. Recently, genetic mutations of TTN have been identified that can also contribute to variable passive stiffness, though the detailed mechanisms remain unclear. In this review, we will discuss titin isoform switching as it relates to alternative splicing during development stages and differences between species and muscle types. We provide an update on the regulatory mechanisms of TTN splicing controlled by RBM20 and cover the roles of TTN splicing in adjusting the diastolic stiffness and systolic compliance of the healthy and the failing heart. Finally, this review attempts to provide future directions for RBM20 as a potential target for pharmacological intervention in cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA.
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
27
|
Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nat Commun 2018; 9:262. [PMID: 29343782 PMCID: PMC5772059 DOI: 10.1038/s41467-017-02483-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5) is ubiquitously expressed in eukaryotic cells; however, its function in cardiomyocytes is unknown. Under basal conditions, PP5 is autoinhibited, but enzymatic activity rises upon binding of specific factors, such as the chaperone Hsp90. Here we show that PP5 binds and dephosphorylates the elastic N2B-unique sequence (N2Bus) of titin in cardiomyocytes. Using various binding and phosphorylation tests, cell-culture manipulation, and transgenic mouse hearts, we demonstrate that PP5 associates with N2Bus in vitro and in sarcomeres and is antagonistic to several protein kinases, which phosphorylate N2Bus and lower titin-based passive tension. PP5 is pathologically elevated and likely contributes to hypo-phosphorylation of N2Bus in failing human hearts. Furthermore, Hsp90-activated PP5 interacts with components of a sarcomeric, N2Bus-associated, mechanosensor complex, and blocks mitogen-activated protein-kinase signaling in this complex. Our work establishes PP5 as a compartmentalized, well-controlled phosphatase in cardiomyocytes, which regulates titin properties and kinase signaling at the myofilaments. Protein phosphatase 5 (PP5) is expressed in many cell types but its role in cardiomyocytes is unknown. Here the authors show that PP5 binds and dephosphorylates elastic titin in cardiac sarcomeres, and that PP5 is increased in heart failure, reducing cardiomyocyte compliance.
Collapse
|
28
|
Prat V, Rozec B, Gauthier C, Lauzier B. Human heart failure with preserved ejection versus feline cardiomyopathy: what can we learn from both veterinary and human medicine? Heart Fail Rev 2017; 22:783-794. [DOI: 10.1007/s10741-017-9645-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Rain S, Andersen S, Najafi A, Gammelgaard Schultz J, da Silva Gonçalves Bós D, Handoko ML, Bogaard HJ, Vonk-Noordegraaf A, Andersen A, van der Velden J, Ottenheijm CAC, de Man FS. Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension: Relative Contribution of Fibrosis and Myofibril Stiffness. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.115.002636. [PMID: 27370069 PMCID: PMC4956674 DOI: 10.1161/circheartfailure.115.002636] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/12/2016] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. Methods and Results— By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. Conclusions— RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness.
Collapse
Affiliation(s)
- Silvia Rain
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Stine Andersen
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Aref Najafi
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jacob Gammelgaard Schultz
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Denielli da Silva Gonçalves Bós
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - M Louis Handoko
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Harm-Jan Bogaard
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Anton Vonk-Noordegraaf
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Asger Andersen
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jolanda van der Velden
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Coen A C Ottenheijm
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Frances S de Man
- From the Department of Pulmonology (S.R., D.d.S.G.B., H.-J.B., A.V.-N., F.S.d.M.), Department of Physiology (S.R., A.N., D.d.S.G.B., M.L.H., J.v.d.V., C.A.C.O., F.S.d.M.), and Department of Cardiology (M.L.H.), Vrije Universiteit University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands (M.L.H.); Department of Cardiology, Aarhus University Hospital, Denmark (S. Anderson, A.N., J.G.S., A. Anderson); and Interuniversity Cardiology Institute of the Netherlands, The Netherlands Heart Institute, Utrecht (J.v.d.V.).
| |
Collapse
|
30
|
Franssen C, Kole J, Musters R, Hamdani N, Paulus WJ. α-B Crystallin Reverses High Diastolic Stiffness of Failing Human Cardiomyocytes. Circ Heart Fail 2017; 10:e003626. [PMID: 28242778 DOI: 10.1161/circheartfailure.116.003626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cardiomyocytes with a less distensible titin and interstitial collagen contribute to the high diastolic stiffness of failing myocardium. Their relative contributions and mechanisms underlying loss of titin distensibility were assessed in failing human hearts. METHODS AND RESULTS Left ventricular tissue was procured in patients with aortic stenosis (AS, n=9) and dilated cardiomyopathy (DCM, n=6). Explanted donor hearts (n=8) served as controls. Stretches were performed in myocardial strips, and an extraction protocol differentiated between passive tension (Fpassive) attributable to cardiomyocytes or to collagen. Fpassive-cardiomyocytes was higher in AS and DCM at shorter muscle lengths, whereas Fpassive-collagen was higher in AS at longer muscle lengths and in DCM at shorter and longer muscle lengths. Cardiomyocytes were stretched to investigate titin distensibility. Cardiomyocytes were incubated with alkaline phosphatase, subsequently reassessed after a period of prestretch and finally treated with the heat shock protein α-B crystallin. Alkaline phosphatase shifted the Fpassive-sarcomere length relation upward only in donor. Prestretch shifted the Fpassive-sarcomere length relation further upward in donor and upward in AS and DCM. α-B crystallin shifted the Fpassive-sarcomere length relation downward to baseline in donor and to lower than baseline in AS and DCM. In failing myocardium, confocal laser microscopy revealed α-B crystallin in subsarcolemmal aggresomes. CONCLUSIONS High cardiomyocyte stiffness contributed to stiffness of failing human myocardium because of reduced titin distensibility. The latter resulted from an absent stiffness-lowering effect of baseline phosphorylation and from titin aggregation. High cardiomyocyte stiffness was corrected by α-B crystallin probably through relief of titin aggregation.
Collapse
Affiliation(s)
- Constantijn Franssen
- From the Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (C.F., J.K., R.M., N.H., W.J.P.); and Department of Cardiovascular Physiology, Ruhr University Bochum, Germany (N.H.)
| | - Jeroen Kole
- From the Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (C.F., J.K., R.M., N.H., W.J.P.); and Department of Cardiovascular Physiology, Ruhr University Bochum, Germany (N.H.)
| | - René Musters
- From the Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (C.F., J.K., R.M., N.H., W.J.P.); and Department of Cardiovascular Physiology, Ruhr University Bochum, Germany (N.H.)
| | - Nazha Hamdani
- From the Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (C.F., J.K., R.M., N.H., W.J.P.); and Department of Cardiovascular Physiology, Ruhr University Bochum, Germany (N.H.)
| | - Walter J Paulus
- From the Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (C.F., J.K., R.M., N.H., W.J.P.); and Department of Cardiovascular Physiology, Ruhr University Bochum, Germany (N.H.).
| |
Collapse
|
31
|
Slater RE, Strom JG, Granzier H. Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction. J Mol Cell Cardiol 2017; 108:24-33. [PMID: 28476659 DOI: 10.1016/j.yjmcc.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome, characterized by increased diastolic stiffness and a preserved ejection fraction, with no effective treatment options. Here we studied the therapeutic potential of exercise for improving diastolic function in a mouse model with HFpEF-like symptoms, the TtnΔIAjxn mouse model. TtnΔIAjxn mice have increased diastolic stiffness and reduced exercise tolerance, mimicking aspects of HFpEF observed in patients. We investigated the effect of free-wheel running exercise on diastolic function. Mechanical studies on cardiac muscle strips from the LV free wall revealed that both TtnΔIAjxn and wildtype (WT) exercised mice had a reduction in passive stiffness, relative to sedentary controls. In both genotypes, this reduction is due to an increase in the compliance of titin whereas ECM-based stiffness was unaffected. Phosphorylation of titin's PEVK and N2B spring elements were assayed with phospho-site specific antibodies. Exercised mice had decreased PEVK phosphorylation and increased N2B phosphorylation both of which are predicted to contribute to the increased compliance of titin. Since exercise lowers the heart rate we examined whether reduction in heart rate per se can improve passive stiffness by administering the heart-rate-lowering drug ivabradine. Ivabradine lowered heart rate in our study but it did not affect passive tension, in neither WT nor TtnΔIAjxn mice. We conclude that exercise is beneficial for decreasing passive stiffness and that it involves beneficial alterations in titin phosphorylation.
Collapse
Affiliation(s)
- Rebecca E Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Joshua G Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
32
|
Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys Rev 2017; 9:225-237. [PMID: 28510118 PMCID: PMC5498327 DOI: 10.1007/s12551-017-0263-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.
Collapse
|
33
|
Shalabi N, Cornachione A, de Souza Leite F, Vengallatore S, Rassier DE. Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils. J Physiol 2017; 595:2085-2098. [PMID: 28028799 DOI: 10.1113/jp272983] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS When a skeletal muscle is stretched while it contracts, the muscle produces a relatively higher force than the force from an isometric contraction at the same length: a phenomenon referred to as residual force enhancement. Residual force enhancement is puzzling because it cannot be directly explained by the classical force-length relationship and the sliding filament theory of contraction, the main paradigms in the muscle field. We used custom-built instruments to measure residual force enhancement in skeletal myofibrils, and, for the first time, in cardiac myofibrils. Our data report that residual force enhancement is present in skeletal muscles, but not cardiac muscles, and is regulated by the different isoforms of the titin protein filaments. ABSTRACT When a skeletal muscle contracts isometrically, the muscle produces a force that is relative to the final isometric sarcomere length (SL). However, when the same final SL is reached by stretching the muscle while it contracts, the muscle produces a relatively higher force: a phenomenon commonly referred to as residual force enhancement. In this study, we investigated residual force enhancement in rabbit skeletal psoas myofibrils and, for the first time, cardiac papillary myofibrils. A custom-built atomic force microscope was used in experiments that stretched myofibrils before and after inhibiting myosin and actin interactions to determine whether the different cardiac and skeletal titin isoforms regulate residual force enhancement. At SLs ranging from 2.24 to 3.13 μm, the skeletal myofibrils enhanced the force by an average of 9.0%, and by 29.5% after hindering myosin and actin interactions. At SLs ranging from 1.80 to 2.29 μm, the cardiac myofibrils did not enhance the force before or after hindering myosin and actin interactions. We conclude that residual force enhancement is present only in skeletal muscles and is dependent on the titin isoforms.
Collapse
Affiliation(s)
- Nabil Shalabi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Anabelle Cornachione
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| | - Felipe de Souza Leite
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| | - Srikar Vengallatore
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| |
Collapse
|
34
|
Pang J, Wang J, Zhang Y, Xu F, Chen Y. Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure-Recent insights and perspectives. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1933-1941. [PMID: 27742538 DOI: 10.1016/j.bbadis.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/24/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Heart failure is one of the major causes of the ever-rising mortality globally. ALDH2 rs671 polymorphism is proven to be closely related to the prevalence of CAD, hypertension, diabetes mellitus and alcoholism, which are etiological factors of heart failure. In addition, growing evidence supports a possible role for ALDH2 in different forms of heart failure. In this mini-review, we will review the recent insights regarding the effects of ALDH2 polymorphism on etiological factors of heart failure and underlying mechanisms involved. In addition, we will also discuss the booming epigenetic information in this field which will greatly improve our understanding of the cardiovascular effect of ALDH2. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.
Collapse
Affiliation(s)
- Jiaojiao Pang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Jiali Wang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
35
|
Kovács Á, Fülöp GÁ, Kovács A, Csípő T, Bódi B, Priksz D, Juhász B, Beke L, Hendrik Z, Méhes G, Granzier HL, Édes I, Fagyas M, Papp Z, Barta J, Tóth A. Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats. Am J Physiol Heart Circ Physiol 2016; 310:H1671-82. [PMID: 27059079 DOI: 10.1152/ajpheart.00842.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
Abstract
Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.
Collapse
Affiliation(s)
- Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Á Fülöp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Csípő
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Henk L Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona; and
| | - István Édes
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary;
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Hussain SNA, Cornachione AS, Guichon C, Al Khunaizi A, de Souza Leite F, Petrof BJ, Mofarrahi M, Moroz N, de Varennes B, Goldberg P, Rassier DE. Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm. Thorax 2016; 71:436-45. [DOI: 10.1136/thoraxjnl-2015-207559] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|
37
|
Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2015; 119:1233-42. [PMID: 26183480 DOI: 10.1152/japplphysiol.00374.2015] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load, and cytokines associated with arterial hypertension, chronic kidney disease, diabetes, and other comorbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood, but may include extracellular matrix changes, vascular dysfunction, as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca(2+) turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound comorbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training, on the other hand, in clinical trials improved exercise tolerance and diastolic function, but did not reduce LVH. Thus current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF.
Collapse
Affiliation(s)
- Frank R Heinzel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany;
| | - Felix Hohendanner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ge Jin
- Cardiology Department, The Second Affiliated Hospital & YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China; and Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Frank Edelmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
38
|
Hutchinson KR, Saripalli C, Chung CS, Granzier H. Increased myocardial stiffness due to cardiac titin isoform switching in a mouse model of volume overload limits eccentric remodeling. J Mol Cell Cardiol 2015; 79:104-14. [PMID: 25450617 PMCID: PMC4302034 DOI: 10.1016/j.yjmcc.2014.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
We investigated the cellular and molecular mechanisms of diastolic dysfunction in pure volume overload induced by aortocaval fistula (ACF) surgery in the mouse. Four weeks of volume overload resulted in significant biventricular hypertrophy; protein expression analysis in left ventricular (LV) tissue showed a marked decrease in titin's N2BA/N2B ratio with no change in phosphorylation of titin's spring region. Titin-based passive tensions were significantly increased; a result of the decreased N2BA/N2B ratio. Conscious echocardiography in ACF mice revealed eccentric remodeling and pressure volume analysis revealed systolic dysfunction: reductions in ejection fraction (EF), +dP/dt, and the slope of the end-systolic pressure volume relationships (ESPVR). ACF mice also had diastolic dysfunction: increased LV end-diastolic pressure and reduced relaxation rates. Additionally, a decrease in the slope of the end diastolic pressure volume relationship (EDPVR) was found. However, correcting for altered geometry of the LV normalized the change in EDPVR and revealed, in line with our skinned muscle data, increased myocardial stiffness in vivo. ACF mice also had increased expression of the signaling proteins FHL-1, FHL-2, and CARP that bind to titin's spring region suggesting that titin stiffening is important to the volume overload phenotype. To test this we investigated the effect of volume overload in the RBM20 heterozygous (HET) mouse model, which exhibits reduced titin stiffness. It was found that LV hypertrophy was attenuated and that LV eccentricity was exacerbated. We propose that pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling.
Collapse
Affiliation(s)
- Kirk R Hutchinson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Charles S Chung
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Müller AE, Kreiner M, Kötter S, Lassak P, Bloch W, Suhr F, Krüger M. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness. Front Physiol 2014; 5:449. [PMID: 25477822 PMCID: PMC4238368 DOI: 10.3389/fphys.2014.00449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023] Open
Abstract
Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.
Collapse
Affiliation(s)
- Anna E Müller
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Matthias Kreiner
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Philipp Lassak
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
40
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
41
|
Abstract
The giant sarcomeric protein titin is a key determinant of myocardial passive stiffness and stress-sensitive signaling. Titin stiffness is modulated by isoform variation, phosphorylation by protein kinases, and, possibly, oxidative stress through disulfide bond formation. Titin has also emerged as an important human disease gene. Early studies in patients with dilated cardiomyopathy (DCM) revealed shifts toward more compliant isoforms, an adaptation that offsets increases in passive stiffness based on the extracellular matrix. Similar shifts are observed in heart failure with preserved ejection fraction. In contrast, hypophosphorylation of PKA/G sites contributes to a net increase in cardiomyocyte resting tension in heart failure with preserved ejection fraction. More recently, titin mutations have been recognized as the most common etiology of inherited DCM. In addition, some DCM-causing mutations affect RBM20, a titin splice factor. Titin mutations are a rare cause of hypertrophic cardiomyopathy and also underlie some cases of arrhythmogenic right ventricular dysplasia. Finally, mutations of genes encoding proteins that interact with and/or bind to titin are responsible for both DCM and hypertrophic cardiomyopathy. Targeting titin as a therapeutic strategy is in its infancy, but it could potentially involve manipulation of isoforms, posttranslational modifications, and upregulation of normal protein in patients with disease-causing mutations.
Collapse
|
42
|
Endurance Training Minimizes Age-Related Changes of Left Ventricular Twist-Untwist Mechanics. J Am Soc Echocardiogr 2014; 27:1208-15. [DOI: 10.1016/j.echo.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 11/19/2022]
|
43
|
Loffredo FS, Nikolova AP, Pancoast JR, Lee RT. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 2014; 115:97-107. [PMID: 24951760 DOI: 10.1161/circresaha.115.302929] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Age-related diastolic dysfunction is a major factor in the epidemic of heart failure. In patients hospitalized with heart failure, HFpEF is now as common as heart failure with reduced ejection fraction. We now have many successful treatments for heart failure with reduced ejection fraction, while specific treatment options for HFpEF patients remain elusive. The lack of treatments for HFpEF reflects our very incomplete understanding of this constellation of diseases. There are many pathophysiological factors in HFpEF, but aging appears to play an important role. Here, we propose that aging of the myocardium is itself a specific pathophysiological process. New insights into the aging heart, including hormonal controls and specific molecular pathways, such as microRNAs, are pointing to myocardial aging as a potentially reversible process. While the overall process of aging remains mysterious, understanding the molecular pathways of myocardial aging has never been more important. Unraveling these pathways could lead to new therapies for the enormous and growing problem of HFpEF.
Collapse
Affiliation(s)
- Francesco S Loffredo
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Andriana P Nikolova
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - James R Pancoast
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Richard T Lee
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
44
|
Rain S, Bos DDSG, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, Goebel M, Dorfmüller P, Guignabert C, Humbert M, Bogaard HJ, Remedios CD, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc 2014; 3:e000716. [PMID: 24895160 PMCID: PMC4309054 DOI: 10.1161/jaha.113.000716] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH.
Collapse
Affiliation(s)
- Silvia Rain
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Denielli da Silva Goncalves Bos
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - M Louis Handoko
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) Department of Cardiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (L.H.)
| | - Nico Westerhof
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Ger Stienen
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) Department of Physics and Astronomy, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (G.S.)
| | - Coen Ottenheijm
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Max Goebel
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Peter Dorfmüller
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.)
| | - Christophe Guignabert
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.)
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.) Service d'Anatomie Pathologique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H.) Assistance Publique-Hôspitaux de Paris, Service de Pneumologie, Département Hôspital Universitaire, Thorax innovation, (DHU-TORINO), Hôpital Bicêtre, France (M.H.)
| | - Harm-Jan Bogaard
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia (C.R.)
| | - Chandra Saripalli
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Carlos G Hidalgo
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Henk L Granzier
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) ICIN - The Netherlands Heart Institute, Amsterdam, The Netherlands (J.V.)
| | - Frances S de Man
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| |
Collapse
|
45
|
Abstract
The giant protein titin forms a unique filament network in cardiomyocytes, which engages in both mechanical and signaling functions of the heart. TTN, which encodes titin, is also a major human disease gene. In this review, we cover the roles of cardiac titin in normal and failing hearts, with a special emphasis on the contribution of titin to diastolic stiffness. We provide an update on disease-associated titin mutations in cardiac and skeletal muscles and summarize what is known about the impact of protein-protein interactions on titin properties and functions. We discuss the importance of titin-isoform shifts and titin phosphorylation, as well as titin modifications related to oxidative stress, in adjusting the diastolic stiffness of the healthy and the failing heart. Along the way we distinguish among titin alterations in systolic and in diastolic heart failure and ponder the evidence for titin stiffness as a potential target for pharmacological intervention in heart disease.
Collapse
Affiliation(s)
- Wolfgang A Linke
- From the Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
46
|
Hidalgo C, Saripalli C, Granzier HL. Effect of exercise training on post-translational and post-transcriptional regulation of titin stiffness in striated muscle of wild type and IG KO mice. Arch Biochem Biophys 2014; 552-553:100-7. [PMID: 24603287 DOI: 10.1016/j.abb.2014.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/03/2014] [Accepted: 02/23/2014] [Indexed: 01/09/2023]
Abstract
Exercise has beneficial effects on diastolic dysfunction but the underlying mechanisms are not well understood. Here we studied the effects of exercise on the elastic protein titin, an important determinant of diastolic stiffness, in both the left ventricle and the diaphragm. We used wild type mice and genetically engineered mice with HFpEF symptoms (IG KO mice), including diastolic dysfunction. In the diaphragm muscle, exercise increased the expression level of titin (increased titin:MHC ratio) which is expected to increase titin-based stiffness. This effect was absent in the LV. We also studied the constitutively expressed titin residues S11878 and S12022 that are known targets of CaMKIIδ and PKCα with increased phosphorylation resulting in an increase in titin-based passive stiffness. The phosphorylation level of S11878 was unchanged whereas S12022 responded to exercise with a reduction in the phosphorylation level in the LV and, interestingly, an increase in the diaphragm. These changes are expected to lower titin's stiffness in the LV and increase stiffness in the diaphragm. We propose that these disparate effects reflect the unique physiological needs of the two tissue types and that both effects are beneficial.
Collapse
Affiliation(s)
- Carlos Hidalgo
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, United States
| | - Chandra Saripalli
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, United States
| | - Henk L Granzier
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
47
|
Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC, Soemedi R, Vasli N, Iannaccone ST, Shieh PB, Shur N, Dennison JM, Lawlor MW, Laporte J, Markianos K, Fairbrother WG, Granzier H, Beggs AH. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 2013; 81:1205-14. [PMID: 23975875 DOI: 10.1212/wnl.0b013e3182a6ca62] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. METHODS Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. RESULTS Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. CONCLUSIONS Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- From the Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research (O.C.-B., P.B.A., K.S.-A., E.T.D., L.C.S., K.M., A.H.B.), and Division of Newborn Medicine (P.B.A.), Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Physiology and Sarver Molecular Cardiovascular Research Program (C.H., H.G.), University of Arizona, Tucson; Center for Computational Molecular Biology and Department of Molecular and Cellular Biology and Biochemistry (R.S., W.G.F.), Brown University, Providence, RI; Department of Translational Medicine (N.V., J.L.), IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France; Departments of Pediatrics and Neurology and Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (P.B.S.), University of California, Los Angeles; Division of Human Genetics (N.S.), Department of Pediatrics, Rhode Island Hospital, Providence; Department of Pediatrics, Division of Pediatric Pathology (J.M.D.), and Department of Pathology and Laboratory Medicine (M.W.L), Medical College of Wisconsin, Milwaukee; Hasbro Children's Hospital (J.M.D.), and Center for Biomedical Engineering (W.G.F.), Brown University, Providence, RI
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kötter S, Gout L, Von Frieling-Salewsky M, Müller AE, Helling S, Marcus K, Dos Remedios C, Linke WA, Krüger M. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res 2013; 99:648-56. [PMID: 23764881 DOI: 10.1093/cvr/cvt144] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Titin-based myofilament stiffness is defined by the expression levels of the cardiac titin-isoforms, N2B and N2BA, and by phosphorylation of the elastic titin domains N2-B unique sequence (N2-Bus) and PEVK. Phosphorylation of the N2-Bus by cGMP-dependent protein kinase (PKG) or cAMP-dependent protein kinase (PKA) decreases titin stiffness, whereas phosphorylation of the PEVK-domain by PKC increases it. We aimed to identify specific sites within the N2-Bus phosphorylated by PKA and PKG and to determine whether differential changes in titin domain phosphorylation could affect passive stiffness in human failing hearts. METHODS AND RESULTS Using mass spectrometry, we identified seven partly conserved PKA/PKG-targeted phosphorylation motifs in human and rat N2-Bus. Polyclonal antibodies to pSer4185, pSer4010, and pSer4099 in the N2-Bus, and to pSer11878 in the PEVK-region were used to quantify titin-domain phosphorylation by western blot analyses of a set of human donor and failing hearts with similar titin-isoform composition. Passive tension determined in skinned human myocardial fibre preparations was significantly increased in failing compared with donor hearts, notably at shorter sarcomere lengths where titin contributes most to total passive tension. Phosphorylation of Ser4185, Ser4010, and Ser4099 in the N2-Bus was significantly reduced in failing hearts, whereas phosphorylation of Ser11878 in the PEVK-region was increased compared with donor hearts. CONCLUSION We conclude that hypo-phosphorylation of the N2-Bus and hyper-phosphorylation of the PEVK domain can act complementary to elevate passive tension in failing human hearts. Differential changes in titin-domain phosphorylation may be important to fine-tune passive myocardial stiffness and diastolic function of the heart.
Collapse
Affiliation(s)
- Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|