1
|
Brooks AJ, Gallego-López MDC, De Miguel C. Endothelin-1 signaling in the kidney: recent advances and remaining gaps. Am J Physiol Renal Physiol 2025; 328:F815-F827. [PMID: 40272184 DOI: 10.1152/ajprenal.00304.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
The involvement of endothelin-1 (ET-1) in the maintenance of kidney function as well as its role in renal pathophysiology has been appreciated for decades; however, there still exist important gaps in knowledge in our understanding of the mechanistic pathways activated by this system in the kidney. The purpose of this article is to review recent advances in the field, as well as to underscore areas that need more investigation, with an emphasis on the interplay of ET-1 with inflammation, sex differences, circadian rhythms of renal function, the most recent clinical trials involving the ET-1 system, and the interaction between microRNAs and the ET-1 system.
Collapse
Affiliation(s)
- Abigail J Brooks
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - María Del Carmen Gallego-López
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Bhati V, Prasad S, Kabra A. RNA-based therapies for neurodegenerative disease: Targeting molecular mechanisms for disease modification. Mol Cell Neurosci 2025; 133:104010. [PMID: 40340000 DOI: 10.1016/j.mcn.2025.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are characterized by progressive neuronal damage, protein aggregation, and chronic inflammation, leading to cognitive and motor impairments. Despite symptomatic relief from current therapies, disease-modifying treatments targeting the core molecular mechanism are still lacking. RNA-based therapies offer a promising approach to treating neurodegenerative disease by targeting molecular mechanisms such as gene expression, protein synthesis, and neuroinflammation. Therapeutic strategies include Long non-coding RNA (lncRNA), Antisense oligonucleotides (ASOs), RNA interference (RNAi), small interfering RNA (siRNA) and short hairpin RNA (shRNA), messenger RNA (mRNA) therapies, and microRNA (miRNA)-based interventions. These therapies aim to decrease toxic protein accumulation, restore deficient proteins, and modulate inflammatory responses in conditions like AD, PD, and HD. Unlike conventional treatments that primarily manage symptoms, RNA-based therapies have the potential to modify disease progression by addressing its root causes. This review aims to provide a comprehensive overview of current RNA-based therapeutic strategies for neurodegenerative diseases, discussing their mechanism of action, preclinical and clinical advancement. It further explores innovative solutions, including nanocarrier-mediated delivery, chemical modifications to enhance RNA stability, and personalized medicine approaches guided by genetic profiling that are being developed to overcome these barriers. This review also underscores the therapeutic opportunities and current limitations of RNA-based interventions, highlighting their potential to transform the future of neurodegenerative disease management.
Collapse
Affiliation(s)
- Vishal Bhati
- University Institute of Pharma Sciences, Chandigarh University, Mohali-140413, Punjab, India
| | - Sonima Prasad
- University Institute of Pharma Sciences, Chandigarh University, Mohali-140413, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali-140413, Punjab, India.
| |
Collapse
|
3
|
Karthikeyan SK, Nallasamy P, Cleveland JM, Arulmani A, Raveendran A, Karimi M, Ansari MO, Challa AK, Ponnusamy MP, Benjamin IJ, Varambally S, Rajasekaran NS. ProteotoxomiRs: Diagnostic and pathologic miRNA signatures for reductive stress induced proteotoxic heart disease. Redox Biol 2025; 81:103525. [PMID: 39986116 PMCID: PMC11893311 DOI: 10.1016/j.redox.2025.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Proteotoxic stress progressively leads to irreversible cardiac abnormalities. Using a mouse model of reductive stress-induced proteotoxic cardiomyopathy, we identified novel microRNA signatures, termed "ProteotoxomiRs," which reflect stage-specific and transgene-specific responses to proteotoxic stress. Seven microRNAs were uniquely linked to the human mutant R120G-αB-Crystallin transgene, indicating their direct association with the pathogenic protein. Additionally, we uncovered two distinct microRNA profiles associated with the early (pre-onset) and late (cardiomyopathy/heart failure) stages of disease progression. Early-stage signatures primarily modulate signaling pathways essential for cardiac health, including mTOR and MAPK, while late-stage signatures reveal regulatory disruptions in calcium signaling and autophagy insufficiency, driving irreversible cardiac damage caused by reductive stress (RS) and proteotoxicity in transgenic mice. These findings reveal stage-specific miRNA biomarkers with potential diagnostic and prognostic value, offering new insights into the molecular underpinnings of proteotoxic cardiac disease. Moreover, our miRNA-mRNA interaction analysis uncovered potential targets unique to the transgene-specific, early, and late stages of the disease, including several promising druggable candidates, warranting further validation for translational applications.
Collapse
Affiliation(s)
- Santhosh Kumar Karthikeyan
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Palanisamy Nallasamy
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jarrell Matthew Cleveland
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahila Arulmani
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashvanthi Raveendran
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariam Karimi
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Owais Ansari
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil Kumar Challa
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ivor J Benjamin
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sooryanarayana Varambally
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Namakkal S Rajasekaran
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA; Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Gandhi G, Kodiappan R, Abdullah S, Teoh HK, Tai L, Cheong SK, Yeo WWY. Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs. J Neuropathol Exp Neurol 2024; 83:822-832. [PMID: 38894621 DOI: 10.1093/jnen/nlae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Radha Kodiappan
- Department of Research and Training, MAHSA Specialist Hospital, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Hoon Koon Teoh
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Lihui Tai
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Cytopeutics Sdn. Bhd, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Bao Z, Li J, Cai J, Yao S, Yang N, Yang J, Zhao B, Chen Y, Wu X. Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway. Int J Biol Macromol 2024; 277:134195. [PMID: 39069050 DOI: 10.1016/j.ijbiomac.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Premature ovarian failure (POF) is characterized by a significant decline in the ovarian follicle pool and oocyte reserve, alongside an increase in the number of low-quality oocytes and apoptosis of granulosa cells (GCs). Exosome-derived miRNA plays a regulatory role in crucial cellular activities and contributes to the onset and progression of POF. In this study, we successfully established a rabbit model of POF and conducted in vitro and in vivo experiments that confirmed DiI-labeled Pla-Exos (exosomes derived from plasma) could enter the follicle through blood circulation, with GCs capable of uptaking these exosomes. Our RNA-seq analysis revealed elevated expression of miR-10a-5p in Pla-Exos from POF rabbits. Moreover, our findings demonstrate that exosomal miR-10a-5p suppresses GCs proliferation and induces apoptosis via the mitochondrial pathway. Additionally, exosomal miR-10a-5p inhibits the TrkB/Akt/mTOR signaling pathway by downregulating BDNF expression, thereby modulating the expression levels of proteins and genes associated with the cell cycle, follicle development, and GCs senescence. In conclusion, our study highlights the role of Pla-Exos miR-10a-5p in promoting rabbit POF through the TrkB/Akt/mTOR signaling pathway by targeting BDNF. These findings provide new insights into potential therapeutic targets for POF, offering valuable references for addressing concerns related to female reproductive function.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 PMCID: PMC11409989 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Chen H, Masood S, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Effects of Controlled Ozone Exposure on Circulating microRNAs and Vascular and Coagulation Biomarkers: A Mediation Analysis. Noncoding RNA 2023; 9:43. [PMID: 37624035 PMCID: PMC10459325 DOI: 10.3390/ncrna9040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Exposure to ozone (O3) is associated with adverse respiratory and cardiovascular outcomes. Alterations in circulating microRNAs (miRNAs) may contribute to the adverse vascular effects of O3 exposure through inter-cellular communication resulting in post-transcriptional regulation of messenger RNAs by miRNAs. In this study, we investigated whether O3 exposure induces alterations in circulating miRNAs that can mediate effects on downstream vascular and coagulation biomarkers. Twenty-three healthy male adults were exposed on successive days to filtered air and 300 ppb O3 for 2 h. Circulating miRNA and protein biomarkers were quantified after each exposure session. The data were subjected to mixed-effects model and mediation analyses for the statistical analyses. The results showed that the expression level of multiple circulating miRNAs (e.g., miR-19a-3p, miR-34a-5p) was significantly associated with O3 exposure. Pathway analysis showed that these miRNAs were predictive of changing levels of downstream biomarkers [e.g., D-dimer, C-reactive protein, tumor necrosis factor α (TNFα)]. Mediation analysis showed that miR-19a-3p may be a significant mediator of O3-exposure-induced changes in blood TNFα levels [0.08 (0.01, 0.15), p = 0.02]. In conclusion, this preliminary study showed that O3 exposure of healthy male adults resulted in changes in circulating miRNAs, some of which may mediate vascular effects of O3 exposure.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ana G. Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - James M. Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| |
Collapse
|
9
|
Kiyanpour F, Abedi M, Gheisari Y. miR-802-5p is a key regulator in diabetic kidney disease. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:43. [PMID: 37405075 PMCID: PMC10315408 DOI: 10.4103/jrms.jrms_702_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 07/06/2023]
Abstract
Background Diabetic kidney disease has substantial burden and limited therapeutic options. An inadequate understanding of the complex gene regulatory circuits underlying this disorder contributes to the insufficiency of current treatment strategies. MicroRNAs (miRNAs) play a crucial role as regulators of functionally related gene networks. Previously, mmu-mir-802-5p was identified as the sole dysregulated miRNA in both the kidney cortex and medulla of diabetic mice. This study aims to investigate the role of miR-802-5p in diabetic kidney disease. Materials and Methods The validated and predicted targets of miR-802-5p were identified using miRTarBase and TargetScan databases, respectively. The functional role of this miRNA was inferred using gene ontology enrichment analysis. The expression of miR-802-5p and its selected targets were assessed by qPCR. The expression of the angiotensin receptor (Agtr1a) was measured by ELISA. Results miR-802-5p exhibited dysregulation in both the kidney cortex and medulla of diabetic mice, with two- and four-fold over-expressions, respectively. Functional enrichment analysis of the validated and predicted targets of miR-802-5p revealed its involvement in the renin-angiotensin pathway, inflammation, and kidney development. Differential expression was observed in the Pten transcript and Agtr1a protein among the examined gene targets. Conclusion These findings suggest that miR-802-5p is a critical regulator of diabetic nephropathy in the cortex and medulla compartments, contributing to disease pathogenesis through the renin-angiotensin axis and inflammatory pathways.
Collapse
Affiliation(s)
- Farnoush Kiyanpour
- Department of Bioinformatics, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Abedi
- Department of Genetics, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA, USA
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Tasopoulou KM, Argiriou C, Tsaroucha AK, Georgiadis GS. Circulating miRNAs as biomarkers for diagnosis, surveillance and post-operative follow-up of abdominal aortic aneurysms. Ann Vasc Surg 2023:S0890-5096(23)00144-9. [PMID: 36921794 DOI: 10.1016/j.avsg.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVE To provide a summary of the current state of research in English medical literature on circulating miRNAs, as biomarkers for AAA. Additionally, for the most commonly mentioned circulating miRNAs in the literature, to attempt a documentation of the biological mechanisms underlying their role in AAA development. METHODS A literature search was undertaken in the MEDLINE database. Only reports that involved peripheral blood samples (whole blood, plasma, serum) were included. The following terms were used in combination: microrna, mirna, abdominal aortic aneurysm, human, circulating, plasma, serum, endovascular and EVAR. RESULTS A total of 25 reports, published from 2012 to 2022 were included with a total of 1259 patients with AAA, predominantly men (N= 1040, 90%). Six of these reports recruited healthy donors who underwent ultrasound screening for AAA as control samples. The majority of studies were undertaken in plasma samples and the most preferred microRNA profiling method was Real - Time quantitative polymerase chain reaction (qRT-PCR). The following nine miRNAs (out of a total of 76) were studied in more than two references: miR-145, miR-24, miR-33, miR-125, let-7, miR-15, miR-191, miR-29 and miR-133. CONCLUSION The nine miRNAs described in this study, are implicated in known pathogenetic mechanisms of AAA such as atherosclerosis, vascular smooth muscle cell phenotype switch and apoptosis, vascular inflammation, extracellular matrix degradation and lipid metabolism. Identifying disease-specific miRNAs, in combination with other clinical parameters, as indicators of AAA, is crucial for early diagnosis as well as follow-up of AAAs. For future research on miRNAs as AAA biomarkers, strict case and control group definitions, sample acquisition protocols, and miRNA expression profiling techniques are warranted.
Collapse
Affiliation(s)
- Kalliopi-Maria Tasopoulou
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece.
| | - Christos Argiriou
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece
| |
Collapse
|
11
|
Wang T, Li T, Niu X, Hu L, Cheng J, Guo D, Ren H, Zhao R, Ji Z, Liu P, Li Y, Guo Y. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol Direct 2023; 18:6. [PMID: 36849959 PMCID: PMC9972746 DOI: 10.1186/s13062-023-00361-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. METHODS Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. RESULTS Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. CONCLUSION In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Li
- Ultrasound Diagnostic and Treatment Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaole Ji
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyun Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanjie Guo
- Heart Hospital, Xi'an International Medical Center, Xi'an, 710038, China. .,Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Agostini S, Mancuso R, Citterio LA, Mihali GA, Arosio B, Clerici M. Evaluation of serum miRNAs expression in frail and robust subjects undergoing multicomponent exercise protocol (VIVIFRAIL). J Transl Med 2023; 21:67. [PMID: 36726153 PMCID: PMC9891895 DOI: 10.1186/s12967-023-03911-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Frailty, defined as physical performance impairment, is a common condition in older adults and can anticipate the development of sarcopenia, a geriatric syndrome characterized by loss of muscle strength and mass. microRNAs (miRNAs) are short molecules of RNA endowed with the ability to modulate gene expression; miRNAs are present in serum and are considered potential biomarkers for several diseases. Serum concentration of miR-451a, miR-93-5p, miR-155-5p, miR-421-3p, miR-425-5p, miR-495-3p and miR-744-5p was recently shown to be altered in sarcopenic patients. METHODS We verified if a particular miRNAs pattern could be detected in frailty as well by analyzing these molecules in 50 frail and 136 robust subjects. Additionally, a subgroup of these subjects (15 frail and 30 robust) underwent a 12-week program based on a multicomponent exercise protocol (VIVIFRAIL) consisting of resistance training, gait retraining, and balance training. After the program, serum miRNAs concentration was measured again, to verify whether the physical activity had an effect on their concentration. Moreover, clinical characteristics and indicators of physical performance of all subjects were compared before and after intervention to verify the effect of the VIVIFRAIL program. RESULTS At the end of the multicomponent exercise program, Short Physical Performance Battery (SPPB) score as well right and left handgrip (p < 0.05) were significantly increased in frail subjects; right and left handgrip significantly were increased also in robust subjects (p < 0.05). Interestingly, the variation of SPPB was significantly higher in frail compared to robust subjects (p < 0.0001). Moreover, at the end of the program, in frail compared to robust subjects: miR-451a serum concentration was significantly increased (frail: 6.59 × 104; 1.12 × 104-2.5 × 105 c/ng; robust: 2.31 × 104; 1.94 × 103-2.01 × 105 c/ng) (p < 0.05); and 2) miR-93-5p and miR-495-3p serum concentration was reduced, whereas that of miR-155-5p was significantly increased (p < 0.05 in both cases). Serum concentration of miR-93-5p and miR-495-3p was decreased, and that of miR-155-5p was increased at the end of the program in robust subjects alone, statistical significance being reached for miR-93-5p alone (p = 0.02). CONCLUSION These results suggest that serum miR-451a should be investigated as a potential biomarker for frailty and show that the VIVIFRAIL multicomponent program modulates circulatory miRNAs expression, at least in older adults.
Collapse
Affiliation(s)
- Simone Agostini
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy
| | - Roberta Mancuso
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100, Milan, Italy.
| | - Lorenzo Agostino Citterio
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy
| | - Gabriela Alexandra Mihali
- grid.414818.00000 0004 1757 8749Geriatic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Venkatesan G, Wan Ab Rahman WS, Shahidan WNS, Iberahim S, Muhd Besari@Hashim AB. Plasma-derived exosomal miRNA as potential biomarker for diagnosis and prognosis of vector-borne diseases: A review. Front Microbiol 2023; 14:1097173. [PMID: 37125151 PMCID: PMC10133507 DOI: 10.3389/fmicb.2023.1097173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.
Collapse
Affiliation(s)
| | - Wan Suriana Wan Ab Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Wan Suriana Wan Ab Rahman,
| | | | - Salfarina Iberahim
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alwi bin Muhd Besari@Hashim
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
14
|
Hao H, Yan S, Zhao X, Han X, Fang N, Zhang Y, Dai C, Li W, Yu H, Gao Y, Wang D, Gao Q, Duan Y, Yuan Y, Li Y. Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation. Lab Invest 2022; 20:407. [PMID: 36064558 PMCID: PMC9446866 DOI: 10.1186/s12967-022-03617-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
Background Atrial fibrosis plays a critical role in the development of atrial fibrillation (AF). Exosomes are a promising cell-free therapeutic approach for the treatment of AF. The purposes of this study were to explore the mechanisms by which exosomes derived from atrial myocytes regulate atrial remodeling and to determine whether their manipulation facilitates the therapeutic modulation of potential fibrotic abnormalities during AF. Methods We isolated exosomes from atrial myocytes and patient serum, and microRNA (miRNA) sequencing was used to analyze exosomal miRNAs in exosomes derived from atrial myocytes and patient serum. mRNA sequencing and bioinformatics analyses corroborated the key genes that were direct targets of miR-210-3p. Results The miRNA sequencing analysis identified that miR-210-3p expression was significantly increased in exosomes from tachypacing atrial myocytes and serum from patients with AF. In vitro, the miR-210-3p inhibitor reversed tachypacing-induced proliferation and collagen synthesis in atrial fibroblasts. Accordingly, miR-210-3p knock out (KO) reduced the incidence of AF and ameliorated atrial fibrosis induced by Ang II. The mRNA sequencing analysis and dual-luciferase reporter assay showed that glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is a potential target gene of miR-210-3p. The functional analysis suggested that GPD1L regulated atrial fibrosis via the PI3K/AKT signaling pathway. In addition, silencing GPD1L in atrial fibroblasts induced cell proliferation, and these effects were reversed by a PI3K inhibitor (LY294002). Conclusions Atrial myocyte-derived exosomal miR-210-3p promoted cell proliferation and collagen synthesis by inhibiting GPD1L in atrial fibroblasts. Preventing pathological crosstalk between atrial myocytes and fibroblasts may be a novel target to ameliorate atrial fibrosis in patients with AF. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03617-y.
Collapse
Affiliation(s)
- Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Sen Yan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Ning Fang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yun Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Hui Yu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yunlong Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Qiang Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, China. .,NHC Key Laboratory of Cell Translation, Harbin Medical University, Harbin, 150001, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, 150001, China. .,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, China. .,Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin, 150081, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
15
|
Chen H, Zhang S, Yu B, Xu Y, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113604. [PMID: 35576800 PMCID: PMC9167781 DOI: 10.1016/j.ecoenv.2022.113604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with increased cardiovascular morbidity and mortality. Circulating microRNAs (miRNAs) may mediate cardiovascular effects of exposure to air pollution. This study aims to investigate whether circulating miRNAs mediate the associations between short-term human exposure to ambient air pollution and cardiovascular biomarkers. METHODS Twenty-four healthy adults residing in the Research Triangle area of North Carolina, USA were enrolled between December 2016 and July 2019. Circulating miRNAs, protein, and lipid biomarkers were assessed repeatedly for 3 sessions separated by at least 7 days. Linear mixed-effects models were used to assess the associations between air pollutant concentrations obtained from nearby air quality monitoring stations and miRNAs controlling for covariates including omega-3 index, relative humidity, and temperature. miRNAs that were significantly altered were then matched with protein or blood lipid biomarkers using either Ingenuity Pathway Analysis or a literature search. A mediation analysis was performed to test the statistical significance of miRNA's mediating effects between exposure to air pollution and cardiovascular biomarkers. RESULTS Short-term exposure to ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) was associated with changes in 11, 9, and 24 circulating miRNAs, respectively. Pathway analysis showed that several miRNAs including miR-125b-5p, miR-144-5p, miR-26a-5p, and miR-34a-5p may mediate the effects of air pollutant exposure on the changes of downstream protein / lipid biomarkers including serum amyloid A (SAA), C-reactive protein (CRP), soluble vascular adhesive molecules 1 (sICAM1), total cholesterol, and high-density lipoproteins (HDL). Mediation analysis showed that only miR-26a-5p significantly mediated air pollutant (PM2.5 and NO2)-induced effects on blood CRP and total cholesterol levels. For example, 34.1% of PM2.5-associated changes in CRP were significantly mediated by miR-26a-5p at lag4 [indirect effects, 0.06 (0.02, 0.10), P = 0.005]. Similarly, the proportions of indirect effects of miR-26a-5p on the association between NO2 exposure and CRP were 46.8% at lag2 [0.06 (0.02, 0.11), P = 0.003], 61.2% at lag3 [0.05 (0.00, 0.09), P = 0.04], and 30.8% at 5-day moving average [0.06 (0.02, 0.10), P = 0.01]. In addition, omega-3 index may be a significant modifying factor of the mediated effects of miRNAs. CONCLUSIONS This study demonstrates that short-term exposure to ambient PM2.5, O3, and NO2 was associated with specific circulating miRNAs, and some of which may mediate their effects on the downstream inflammation and blood lipid markers.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bin Yu
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Wang KR, McGeachie MJ. DisiMiR: Predicting Pathogenic miRNAs Using Network Influence and miRNA Conservation. Noncoding RNA 2022; 8:ncrna8040045. [PMID: 35893228 PMCID: PMC9326518 DOI: 10.3390/ncrna8040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs have been shown to play a powerful regulatory role in the progression of serious diseases, including cancer, Alzheimer's, and others, raising the possibility of new miRNA-based therapies for these conditions. Current experimental methods, such as differential expression analysis, can discover disease-associated miRNAs, yet many of these miRNAs play no functional role in disease progression. Interventional experiments used to discover disease causal miRNAs can be time consuming and costly. We present DisiMiR: a novel computational method that predicts pathogenic miRNAs by inferring biological characteristics of pathogenicity, including network influence and evolutionary conservation. DisiMiR separates disease causal miRNAs from merely disease-associated miRNAs, and was accurate in four diseases: breast cancer (0.826 AUC), Alzheimer's (0.794 AUC), gastric cancer (0.853 AUC), and hepatocellular cancer (0.957 AUC). Additionally, DisiMiR can generate hypotheses effectively: 78.4% of its false positives that are mentioned in the literature have been confirmed to be causal through recently published research. In this work, we show that DisiMiR is a powerful tool that can be used to efficiently and flexibly to predict pathogenic miRNAs in an expression dataset, for the further elucidation of disease mechanisms, and the potential identification of novel drug targets.
Collapse
Affiliation(s)
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
17
|
Giovannetti A, Bianco SD, Traversa A, Panzironi N, Bruselles A, Lazzari S, Liorni N, Tartaglia M, Carella M, Pizzuti A, Mazza T, Caputo V. MiRLog and dbmiR: prioritization and functional annotation tools to study human microRNA sequence variants. Hum Mutat 2022; 43:1201-1215. [PMID: 35583122 PMCID: PMC9546175 DOI: 10.1002/humu.24399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta‐predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra‐rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.
Collapse
Affiliation(s)
- Agnese Giovannetti
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Noemi Panzironi
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Niccolò Liorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Massimo Carella
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Coulis G, Londhe AD, Sagabala RS, Shi Y, Labbé DP, Bergeron A, Sahadevan P, Nawaito SA, Sahmi F, Josse M, Vinette V, Guertin MC, Karsenty G, Tremblay ML, Tardif JC, Allen BG, Boivin B. Protein tyrosine phosphatase 1B regulates miR-208b-argonaute 2 association and thyroid hormone responsiveness in cardiac hypertrophy. Sci Signal 2022; 15:eabn6875. [PMID: 35439023 DOI: 10.1126/scisignal.abn6875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased production of reactive oxygen species plays an essential role in the pathogenesis of several diseases, including cardiac hypertrophy. In our search to identify redox-sensitive targets that contribute to redox signaling, we found that protein tyrosine phosphatase 1B (PTP1B) was reversibly oxidized and inactivated in hearts undergoing hypertrophy. Cardiomyocyte-specific deletion of PTP1B in mice (PTP1B cKO mice) caused a hypertrophic phenotype that was exacerbated by pressure overload. Furthermore, we showed that argonaute 2 (AGO2), a key component of the RNA-induced silencing complex, was a substrate of PTP1B in cardiomyocytes and in the heart. Our results revealed that phosphorylation at Tyr393 and inactivation of AGO2 in PTP1B cKO mice prevented miR-208b-mediated repression of thyroid hormone receptor-associated protein 1 (THRAP1; also known as MED13) and contributed to thyroid hormone-mediated cardiac hypertrophy. In support of this conclusion, inhibiting the synthesis of triiodothyronine (T3) with propylthiouracil rescued pressure overload-induced hypertrophy and improved myocardial contractility and systolic function in PTP1B cKO mice. Together, our data illustrate that PTP1B activity is cardioprotective and that redox signaling is linked to thyroid hormone responsiveness and microRNA-mediated gene silencing in pathological hypertrophy.
Collapse
Affiliation(s)
- Gérald Coulis
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.,Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Avinash D Londhe
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - R Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Yanfen Shi
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - David P Labbé
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Surgery, Division of Urology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alexandre Bergeron
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Pramod Sahadevan
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sherin A Nawaito
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Pharmacology and Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fatiha Sahmi
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Marie Josse
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Valérie Vinette
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Gérard Karsenty
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Pharmacology and Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.,Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
19
|
Pala M, Meral I, Pala Acikgoz N, Gorucu Yilmaz Ş, Taslidere E, Okur SK, Acar S, Akbas F. Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurol Res 2022; 44:726-737. [DOI: 10.1080/01616412.2022.2051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mukaddes Pala
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Ismail Meral
- Faculty of Medicine, Department of Physiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nilgun Pala Acikgoz
- Faculty of Medicine, Department of Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şenay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Elif Taslidere
- Faculty of Medicine, Department of Histology and Embryology, Inonu University, Malatya, Turkey
| | - Sema Karaca Okur
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seyma Acar
- Sancaktepe No. 1 Family Health Center, Istanbul, Turkey
| | - Fahri Akbas
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
20
|
La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, Ma Y, Anelli V, Betel D, Vidigal J, Tuschl T, Meister G, Thompson CB, Lindsten T, Haigis K, Ventura A. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. eLife 2021; 10:e70948. [PMID: 34463618 PMCID: PMC8476124 DOI: 10.7554/elife.70948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kemal M Akat
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, United States
| | - Viviana Anelli
- Center of Integrative Biology, University of Trento, Trento, Italy
| | - Doron Betel
- Hem/Oncology, Medicine and Institution for Computational Biomedicine, Weill Cornell Medical College, New York, United States
| | - Joana Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Gunter Meister
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tullia Lindsten
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
21
|
Huang F, Mai J, Chen J, He Y, Chen X. Non-coding RNAs modulate autophagy in myocardial ischemia-reperfusion injury: a systematic review. J Cardiothorac Surg 2021; 16:140. [PMID: 34022925 PMCID: PMC8141194 DOI: 10.1186/s13019-021-01524-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The myocardial infarction is the main cause of morbidity and mortality in cardiovascular diseases around the world. Although the timely and complete reperfusion via Percutaneous Coronary Intervention (PCI) or thrombolysis have distinctly decreased the mortality of myocardial infarction, reperfusion itself may lead to supererogatory irreversible myocardial injury and heart function disorders, namely ischemia-reperfusion (I/R) injury. Extensive studies have indicated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play important roles in the progress of myocardial I/R injury, which is closely correlative with cardiomyocytes autophagy. Moreover, autophagy plays an important role in maintaining homeostasis and protecting cells in the myocardial ischemia reperfusion and cardiomyocyte hypoxia-reoxygenation (H/R) progress. In this review, we first introduced the biogenesis and functions of ncRNAs, and subsequently summarized the roles and relevant molecular mechanisms of ncRNAs regulating autophagy in myocardial I/R injury. We hope that this review in addition to develop a better understanding of the physiological and pathological roles of ncRNAs, can also lay a foundation for the therapies of myocardial I/R injury, and even for other related cardiovascular diseases.
Collapse
Affiliation(s)
- Fuwen Huang
- The Fifth People's Hospital of Zhuhai, Zhuhai City, Guangdong Province, China
| | - Jingting Mai
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Jingwei Chen
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Yinying He
- The Fifth People's Hospital of Zhuhai, Zhuhai City, Guangdong Province, China
| | - Xiaojun Chen
- Foshan Hospital of Traditional Chinese Medicine, No.6 Qinren Road, Foshan City, Guangdong Province, 528000, PR China.
| |
Collapse
|
22
|
MicroRNA-212-5p and its target PAFAH1B2 suppress vascular proliferation and contraction via the downregulation of RhoA. PLoS One 2021; 16:e0249146. [PMID: 33760887 PMCID: PMC7990166 DOI: 10.1371/journal.pone.0249146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular remodeling and contraction contribute to the development of hypertension. We investigated the role of miR-212-5p and its downstream target in vascular smooth muscle cell (VSMC) proliferation, migration, and contraction. MicroRNA microarray and PCR analyses showed that miR-212-5p expression was increased with angiotensin II treatment in vivo and in vitro. Moreover, miR-212-5p mimic treatment attenuated and miR-212-5p inhibitor treatment increased VSMC proliferation and migration. Additionally, miR-212-5p mimic treatment suppressed VSMC contraction and related gene expression [Ras homolog gene family member A (RhoA) and Rho-associated protein kinase 2], while miR-212-5p inhibitor treatment exerted opposite effects. Bioinformatics analysis revealed that platelet-activating factor acetylhydrolase 1B2 (PAFAH1B2) is a target of miR-212-5p. miR-212-5p mimic treatment significantly reduced and miR-212-5p inhibitor treatment increased PAFAH1B2 expression. Furthermore, PAFAH1B2 expression was decreased in angiotensin II-treated aortic tissues and VSMCs. PAFAH1B2 was ubiquitously expressed in most adult rat tissues. In the vasculature, PAFAH1B2 was only distributed in the cytoplasm. PAFAH1B2 overexpression decreased A10 cell proliferation, while PAFAH1B2 knockdown increased A10 cell proliferation and cyclin D1 mRNA levels. PAFAH1B2 knockdown stimulated VSMC contraction and RhoA expression. These results suggest that miR-212-5p and PAFAH1B2 are novel negative regulators of VSMC proliferation, migration, and contraction in hypertension.
Collapse
|
23
|
Wu J, Venkata Subbaiah KC, Jiang F, Hedaya O, Mohan A, Yang T, Welle K, Ghaemmaghami S, Tang WHW, Small E, Yan C, Yao P. MicroRNA-574 regulates FAM210A expression and influences pathological cardiac remodeling. EMBO Mol Med 2021; 13:e12710. [PMID: 33369227 PMCID: PMC7863409 DOI: 10.15252/emmm.202012710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of mitochondrial proteins impairs cardiac function and causes heart disease. The mechanism of regulation of mitochondria encoded protein expression during cardiac disease, however, remains underexplored. Here, we show that multiple pathogenic cardiac stressors induce the expression of miR-574 guide and passenger strands (miR-574-5p/3p) in both humans and mice. miR-574 knockout mice exhibit severe cardiac disorder under different pathogenic cardiac stresses while miR-574-5p/3p mimics that are delivered systematically using nanoparticles reduce cardiac pathogenesis under disease insults. Transcriptomic analysis of miR-574-null hearts uncovers family with sequence similarity 210 member A (FAM210A) as a common target mRNA of miR-574-5p and miR-574-3p. The interactome capture analysis suggests that FAM210A interacts with mitochondrial translation elongation factor EF-Tu. Manipulating miR-574-5p/3p or FAM210A expression changes the protein expression of mitochondrial-encoded electron transport chain (ETC) genes but not nuclear-encoded mitochondrial ETC genes in both human AC16 cardiomyocyte cells and miR-574-null murine hearts. Together, we discovered that miR-574 regulates FAM210A expression and modulates mitochondrial-encoded protein expression, which may influence cardiac remodeling in heart failure.
Collapse
Affiliation(s)
- Jiangbin Wu
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Kadiam C Venkata Subbaiah
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Feng Jiang
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Omar Hedaya
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Amy Mohan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Tingting Yang
- Department of OphthalmologyColumbia UniversityNew YorkNYUSA
| | - Kevin Welle
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | | | - Eric Small
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Chen Yan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Peng Yao
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for RNA BiologyUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for Biomedical InformaticsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| |
Collapse
|
24
|
Lai TC, Lee TL, Chang YC, Chen YC, Lin SR, Lin SW, Pu CM, Tsai JS, Chen YL. MicroRNA-221/222 Mediates ADSC-Exosome-Induced Cardioprotection Against Ischemia/Reperfusion by Targeting PUMA and ETS-1. Front Cell Dev Biol 2020; 8:569150. [PMID: 33344446 PMCID: PMC7744807 DOI: 10.3389/fcell.2020.569150] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a major health problem in industrialized and developing countries and is the leading cause of death and disability. Myocardial ischemia/reperfusion (I/R) causes cardiomyocyte damage such as apoptosis and hypertrophy. The purpose of this study was to investigate the effects of exosomes from adipose-derived stem cells (ADSC-Exo) on hearts from I/R mice and to explore the underlying mechanisms. ADSC-Exo significantly decreased I/R-induced cardiomyocyte apoptosis and hypertrophy, as detected by TdT-mediated dUTP nick end-labeling (TUNEL) and wheat germ agglutinin (WGA) staining, respectively. In addition, the expression of apoptosis-related proteins p-p53 and PUMA and hypertrophy-related proteins ETS-1 and ANP were significantly reduced in the cardiomyocytes of ADSC-Exo-treated I/R mice compared to those of control mice. Both PUMA and ETS-1 are reported to be target genes for miR-221/222. I/R operation significantly reduced miR-221/222 expression, while ADSC-Exo treatment increased miR-221/222 expression, as detected by RT-qPCR. We also observed that cardiac I/R operation markedly increased cell apoptosis and hypertrophy in miR-221/222 knockout (KO) mice, while ADSC-Exo reduced the effects of I/R operation. Furthermore, ADSC-Exo protected H9c2 cardiomyocytes from H2O2-induced damage by reducing apoptosis and hypertrophy in vitro. H2O2 treatment significantly reduced miR-221/222 expression, while ADSC-Exo treatment reversed this effect in H9c2 cells. ADSC-Exo treatment decreased H2O2-induced PUMA and ETS-1 expression. Compared with control treatment, I/R treatment significantly reduced p-AKT and increased p-p65, while ADSC-Exo and miR-221/222 mimics attenuated these effects. The AKT activator SC79 and p65 inhibitor Bay 11-7082 reduced H2O2-induced cell apoptosis and hypertrophy. Based on these findings, ADSC-Exo prevents cardiac I/R injury through the miR-221/miR-222/PUMA/ETS-1 pathway. Therefore, ADSC-Exo is an effective inhibitor of I/R-induced heart injury.
Collapse
Affiliation(s)
- Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan.,Center for Nanotechnology and Center for Biomedical Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Ming Pu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Abstract
Coronavirus disease 2019 (COVID-19) and diabetes outcomes (CORONADO) trial revealed that 10.6% of patients with diabetes mellitus hospitalized for COVID-19 (COVID-19) die within 7 days. Several studies from New York, Italy, and China confirm that patients with diabetes are at a much higher risk for mortality due to COVID-19. Besides respiratory illness, COVID-19 increases cardiac injury and diabetic ketoacidosis. In the absence of specific guidelines for the prevention and treatment of COVID-19 for patients with diabetes, they remain at higher risk and are more susceptible to COVID-19. Furthermore, there is a scarcity of basic knowledge on how diabetes affects pathogenesis of severe acute respiratory coronavirus (SARS-CoV-2) infection. In patients with diabetes, impaired glucose use alters metabolic and consequently biological processes instigating pathological remodeling, which has detrimental effects on cardiovascular systems. A majority of biological processes are regulated by noncoding microRNAs (miRNAs), which have emerged as a promising therapeutic candidate for several diseases. In consideration of the higher risk of mortality in patients with diabetes and COVID-19, novel diagnostic test and treatment strategy are urgently warranted in post-COVID-19 era. Here, we describe potential roles of miRNA as a biomarker and therapeutic candidate, especially for heart failure, in patients with diabetes and COVID-19.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
26
|
Polyakova EA, Zaraiskii MI, Mikhaylov EN, Baranova EI, Galagudza MM, Shlyakhto EV. Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. Int J Cardiol 2020; 322:9-15. [PMID: 32798621 DOI: 10.1016/j.ijcard.2020.08.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNA (miRNAs) participate in the pathogenesis of coronary artery disease (CAD). OBJECTIVE To evaluate the expressions of myocardial and serum miRNA-27а, miRNA-133а, and miRNA-203 in CAD patients. METHOD This cross-sectional observational study comprised 100 subjects (60.9 ± 1.0 years; 67% men). The right atrial and serum expressions of miRNA-27a, miRNA -133a, and miRNA-203 in 80 patients referred for elective coronary artery bypass graft surgery (CABG) and 20 control patients scheduled for heart valve surgery were analyzed using real-time polymerase chain reaction. RESULTS There was a positive correlation between the SYNTAX score I index and serum miRNA-203 expression level (r = 0.693; p < .001). Patients with ≥3 coronary artery lesions had significantly higher myocardial expressions of miRNA-27a, miRNA-133а, and miRNA-203 than patients with 1-2 vessel disease in the atrial myocardium (miRNA-27a: 234.62 ± 29.51 vs. 182.39 ± 19.62 relative expression unit (REU); miRNA-133а: 127.53 ± 13.41 vs. 111.35 ± 12.31 REU; and miRNA-203: 5.25 ± 0.96 vs. 4.71 ± 0.67 REU; р < 0.05); the same association was found for serum miRNA expressions (miRNA-27a: 11.41 ± 3.85 vs. 4.82 ± 1.82 REU; miRNA-133а: 8.42 ± 2.43 vs. 4.35 ± 1.23 REU; and miRNA-203: 145.71 ± 15.73 vs. 43.70 ± 9.67 REU; р < 0.05). The decision tree method established that the risk of multivessel lesions was increased five-fold if the miRNA-203 serum expression was >101.00 REU (OR, 5.90; 95% CI, 2.34-9.46; p < .001). CONCLUSIONS Both myocardial and serum miRNA-27а, miRNA-133а, and miRNA-203 expressions are higher in CABG patients than in non-CAD subjects. The serum miRNA-203 expression level corresponds to myocardial expression and is strongly correlated with the extent of coronary atherosclerosis.
Collapse
Affiliation(s)
- E A Polyakova
- Pavlov First Saint-Petersburg State Medical University, Lev Tolstoy str., 6-8, Saint-Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str., 2, Saint-Petersburg 197341, Russia.
| | - M I Zaraiskii
- Pavlov First Saint-Petersburg State Medical University, Lev Tolstoy str., 6-8, Saint-Petersburg 197022, Russia
| | - E N Mikhaylov
- Almazov National Medical Research Centre, Akkuratova str., 2, Saint-Petersburg 197341, Russia; Saint-Petersburg Electrotechnical University "LETI", Professor Popov str., 5, Saint Petersburg 197376, Russia
| | - E I Baranova
- Pavlov First Saint-Petersburg State Medical University, Lev Tolstoy str., 6-8, Saint-Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str., 2, Saint-Petersburg 197341, Russia
| | - M M Galagudza
- Pavlov First Saint-Petersburg State Medical University, Lev Tolstoy str., 6-8, Saint-Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str., 2, Saint-Petersburg 197341, Russia
| | - E V Shlyakhto
- Pavlov First Saint-Petersburg State Medical University, Lev Tolstoy str., 6-8, Saint-Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str., 2, Saint-Petersburg 197341, Russia
| |
Collapse
|
27
|
Li Q, Yang J, Zhang J, Liu XW, Yang CJ, Fan ZX, Wang HB, Yang Y, Zheng T, Yang J. Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol 2020; 235:3753-3767. [PMID: 31587299 DOI: 10.1002/jcp.29270] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
Apoptosis is the major cause of cardiomyocyte death in myocardial ischemia/reperfusion injury (MI/RI). Increasing evidence suggests that microRNAs (miRNAs) can contribute to the regulation of cardiomyocytes apoptosis by posttranscriptional modulation of gene expression networks. However, the effects of miR-327 in regulating MI/RI-induced cardiomyocytes apoptosis have not been extensively investigated. This study was performed to test whether miR-327 participate in cardiomyocytes apoptosis both in vitro and in vivo, and reveal the potential molecular mechanism of miR-327 regulated MI/RI through targeting apoptosis repressor with caspase recruitment domain (ARC). Sprague-Dawley (SD) rats were subjected to MI/RI by left anterior descending coronary artery occlusion for 30 min and reperfusion for 3 hr. H9c2 cells were exposed to hypoxia for 4 hr and reoxygenation for 12 hr to mimic I/R injury. miRNA-327 recombinant adenovirus vectors were transfected into H9c2 cells for 48 hr and rats for 72 hr before H/R and MI/RI treatment, respectively. The apoptosis rate, downstream molecules of apoptotic pathway, and the target reaction between miRNA-327 and ARC were evaluated. Our results showed that miR-327 was upregulated and ARC was downregulated in the myocardial tissues of MI/RI rats and in H9c2 cells with H/R treatment. Inhibition of miR-327 decreased the expression levels of proapoptotic proteins Fas, FasL, caspase-8, Bax, cleaved caspase-9, cleaved caspase-3, and the release of cytochrome-C, as well as increasing the expression levels of antiapoptotic protein Bcl-2 via negative regulation of ARC both in vivo or vitro. In contrast, overexpression miR-327 showed the reverse effect. Moreover, the results of luciferase reporter assay indicated miR-327 targets ARC directly at the posttranscriptional level. Taken together, inhibition of miR-327 could attenuate cardiomyocyte apoptosis and alleviate I/R-induced myocardial injury via targeting ARC, which offers a new therapeutic strategy for MI/RI.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Xiao-Wen Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Chao-Jun Yang
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Tao Zheng
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
28
|
Meta-Analysis of the Potential Role of miRNA-21 in Cardiovascular System Function Monitoring. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4525410. [PMID: 32337248 PMCID: PMC7150722 DOI: 10.1155/2020/4525410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short and noncoding RNA fragments that bind to the messenger RNA. They have different roles in many physiological or pathological processes. MicroRNA-21, one of the first miRNAs discovered, is encoded by the MIR21 gene and is located on the chromosomal positive strand 17q23.2. MicroRNA-21 is transcribed by polymerase II and has its own promoter sequence, although it is in an intron. It is intra- and extracellular and can be found in many body fluids, alone or combined with another molecule. It regulates many signalling pathways and therefore plays an important role in the cardiovascular system. Indeed, it is involved in the differentiation and migration of endothelial cells and angiogenesis. It contributes to the reconstruction of a myocardial infarction, and it can also act as a cellular connector or as an antagonist to cardiac cell apoptosis. By playing all these roles, it can be interesting to use it as a biomarker, especially for cardiovascular diseases.
Collapse
|
29
|
Wang X, Liu J, Yin W, Abdi F, Pang PD, Fucci QA, Abbott M, Chang SL, Steele G, Patel A, Mori Y, Zhang A, Zhu S, Lu TS, Kibel AS, Wang B, Lim K, Siedlecki AM. miR-218 Expressed in Endothelial Progenitor Cells Contributes to the Development and Repair of the Kidney Microvasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:642-659. [PMID: 31972158 PMCID: PMC7068533 DOI: 10.1016/j.ajpath.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Abstract
Ischemia due to hypoperfusion is one of the most common forms of acute kidney injury. We hypothesized that kidney hypoxia initiates the up-regulation of miR-218 expression in endothelial progenitor cells (EPCs) to guide endocapillary repair. Murine renal artery-derived EPCs (CD34+/CD105-) showed down-regulation of mmu-Mir218-5p/U6 RNA ratio after ischemic injury, while in human renal arteries, MIR218-5p expression was up-regulated after ischemic injury. MIR218 expression was clarified in cell culture experiments in which increases in both SLIT3 and MIR218-2-5p expressions were observed after 5 minutes of hypoxia. ROBO1 transcript, a downstream target of MIR218-2-5p, showed inverse expression to MIR218-2-5p. EPCs transfected with a MIR218-5p inhibitor in three-dimensional normoxic culture showed premature capillary formation. Organized progenitor cell movement was reconstituted when cells were co-transfected with Dicer siRNA and low-dose Mir218-5p mimic. A Mir218-2 knockout was generated to assess the significance of miR-218-2 in a mammalian model. Mir218-2-5p expression was decreased in Mir218-2-/- embryos at E16.5. Mir218-2-/- decreased CD34+ angioblasts in the ureteric bud at E16.5 and were nonviable. Mir218-2+/- decreased peritubular capillary density at postnatal day 14 and increased serum creatinine after ischemia in adult mice. Systemic injection of miR-218-5p decreased serum creatinine after injury. These experiments demonstrate that miR-218 expression can be triggered by hypoxia and modulates EPC migration in the kidney.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jialing Liu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Farhiya Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul D Pang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven L Chang
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Graeme Steele
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankit Patel
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yutaro Mori
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aifeng Zhang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shikai Zhu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adam S Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bin Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth Lim
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Guo R, Yu Y, Zhang Y, Li Y, Chu X, Lu H, Sun C. Overexpression of miR-297b-5p protects against stearic acid-induced pancreatic β-cell apoptosis by targeting LATS2. Am J Physiol Endocrinol Metab 2020; 318:E430-E439. [PMID: 31961705 DOI: 10.1152/ajpendo.00302.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic exposure to high concentrations of stearic acid (C18:0) can result in β-cell dysfunction, leading to development of type 2 diabetes. However, the molecular mechanisms underlying the destructive effects of stearic acid on β-cells remain largely unknown. In this study, we aimed to investigate the role of miR-297b-5p on stearic acid-induced β-cell apoptosis. Differential expression of microRNAs (miRNAs) was assessed in a β-TC6 cell line exposed to stearic acid, palmitic acid, or a normal culture medium by high-throughput sequencing. The apoptosis rate was measured by flow cytometry after miR-297b-5p mimic/inhibitor transfection, and large-tumor suppressor kinase 2 (LATS2) was identified as a target of miR-297b-5p using a luciferase activity assay. In vivo, C57BL/6 mice were fed with normal and high-stearic-acid diet, respectively. Mouse islets were used for similar identification of miR-297b-5p and Lats2 in β-TC6 cell. We selected two differentially expressed miRNAs in stearic acid compared with those in the palmitic acid and control groups. miR-297b-5p expression was significantly lower in β-TC6 cells and mouse islets in stearic acid than in control group. Upregulation of miR-297b-5p alleviated the stearic acid-induced cell apoptosis and reduction in insulin secretion by inhibiting Lats2 expression in vitro. Meanwhile, silencing Lats2 significantly reversed the stearic acid-stimulated β-cell dysfunction in both β-TC6 cells and islets. Our findings indicate a suppressive role for miR-297b-5p in stearic acid-induced β-cell apoptosis, which may reveal a potential target for the treatment of β-cell dysfunction in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yue Yu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yunjin Zhang
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yinling Li
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
32
|
Felekkis K, Papaneophytou C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020561. [PMID: 31952319 PMCID: PMC7013987 DOI: 10.3390/ijms21020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Micro-RNAs (miRNAs) play a pivotal role in the development and physiology of the cardiovascular system while they have been associated with multiple cardiovascular diseases (CVDs). Several cardiac miRNAs are detectable in circulation (circulating miRNAs; c-miRNAs) and are emerging as diagnostic and therapeutic biomarkers for CVDs. c-miRNAs exhibit numerous essential characteristics of biomarkers while they are extremely stable in circulation, their expression is tissue-/disease-specific, and they can be easily detected using sequence-specific amplification methods. These features of c-miRNAs are helpful in the development of non-invasive assays to monitor the progress of CVDs. Despite significant progress in the detection of c-miRNAs in serum and plasma, there are many contradictory publications on the alterations of cardiac c-miRNAs concentration in circulation. The aim of this review is to examine the pre-analytical and analytical factors affecting the quantification of c-miRNAs and provide general guidelines to increase the accuracy of the diagnostic tests in order to improve future research on cardiac c-miRNAs.
Collapse
|
33
|
Zhu L, Li Q, Li Q, Qi D, Gao C, Yang H. MicroRNA‐2861 and microRNA‐5115 regulates myocardial ischemia–reperfusion injury through the GPR30/mTOR signaling pathway by binding to GPR30. J Cell Physiol 2020; 235:7791-7802. [PMID: 31930508 DOI: 10.1002/jcp.29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Lijie Zhu
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingman Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingmin Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Datun Qi
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Chuanyu Gao
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Honghui Yang
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| |
Collapse
|
34
|
Tang Q, Ouyang H, He D, Yu C, Tang G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2800-2809. [PMID: 31284781 DOI: 10.1080/21691401.2019.1638791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer characterized by high recurrence rates and poor prognosis compared to other breast cancers. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of various post-transcriptional gene and silence a broad set of target genes. Many recent studies have demonstrated that miRNAs play an important role in the initiation, promotion, malignant conversion, progression, and metastasis of TNBC. Therefore, the aim of this review is to focus on recent advancements of microRNAs-based potential applications in diagnosis, treatment and prognosis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Qian Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Hu Ouyang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Dongxiu He
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Cuiyun Yu
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Guotao Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| |
Collapse
|
35
|
Li H, Dai B, Fan J, Chen C, Nie X, Yin Z, Zhao Y, Zhang X, Wang DW. The Different Roles of miRNA-92a-2-5p and let-7b-5p in Mitochondrial Translation in db/db Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:424-435. [PMID: 31319246 PMCID: PMC6637210 DOI: 10.1016/j.omtn.2019.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Excessive reactive oxygen species (ROS) generated in mitochondria is known to be a causal event in diabetic cardiomyopathy. Recent studies suggest that microRNAs (miRNAs) are able to translocate to mitochondria to modulate mitochondrial activities, but the roles of such miRNAs in diabetic cardiomyopathy remain unclear. We observed a marked reduction of mitochondrial gene cytochrome-b (mt-Cytb) in the heart of db/db mice compared with controls. Downregulation of mt-Cytb by small interfering RNA (siRNA) recaptured some key features of diabetes, including elevated ROS production. Microarray revealed that none of the miRNAs were upregulated, but 14 miRNAs were downregulated in mitochondria of db/db heart. miR-92a-2-5p and let-7b-5p targeted mt-Cytb and positively modulated mt-Cytb expression. Re-expression of miR-92a-2-5p and let-7b-5p into cardiomyocytes led to reduced ROS production. Furthermore, recombinant adeno-associated virus (rAAV)-mediated delivery of miR-92a-2-5p, but not let-7b-5p, was sufficient to rescue cardiac diastolic dysfunction in db/db heart. Let-7b-5p not only upregulated mt-Cytb in mitochondria, but also downregulated insulin receptor substrate 1 in cytosol and finally lead to no efficiency for improvement of diastolic dysfunction in db/db mice. Our findings demonstrate that reduced mitochondrial miRNAs contribute to impaired mitochondrial gene expression and elevated ROS production. Re-expression of miR-92a-2-5p enhances mitochondrial translation and reduces ROS production and lipid deposition, which finally rescues diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
36
|
Valkov N, King ME, Moeller J, Liu H, Li X, Zhang P. MicroRNA-1-Mediated Inhibition of Cardiac Fibroblast Proliferation Through Targeting Cyclin D2 and CDK6. Front Cardiovasc Med 2019; 6:65. [PMID: 31157242 PMCID: PMC6533459 DOI: 10.3389/fcvm.2019.00065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-1 (miRNA-1) has been long viewed as a muscle-specific miRNA and plays a critical role in myocardium and cardiomyocytes by controlling myocyte growth and rhythm. We identified that miRNA-1 is expressed in cardiac fibroblasts, which are one of the major non-muscle cell types in myocardium and are responsible for cardiac fibrosis in pathological conditions. In this study, we aimed to investigate the effect and mechanism of action of miRNA-1 on cardiac fibroblast proliferation. Subcutaneous angiotensin II (Ang II) infusion via osmotic minipumps for 4 weeks was used to induce myocardial interstitial fibrosis in male Sprague-Dawley rats. MiRNA-1 expression was significantly down-regulated by 68% in freshly isolated ventricular fibroblasts from Ang II-infused rats than that from control rats. Similar results were obtained in adult rat ventricular fibroblasts that were stimulated in culture by Ang II or TGFβ for 48 h. Functionally, overexpression of miRNA-1 inhibited fibroblast proliferation, whereas knockdown of endogenous miRNA-1 increased fibroblast proliferation. We then identified and validated cyclin D2 and cyclin-dependent kinase 6 (CDK6) as direct targets of miRNA-1 in cardiac fibroblasts using biochemical assays. Moreover, we showed that the inhibitory effects of miRNA-1 on cardiac fibroblast proliferation can be blunted by overexpression of its target, cyclin D2. In conclusion, our findings demonstrate miRNA-1 expression and regulation in adult ventricular fibroblasts, where it acts as a novel negative regulator of adult cardiac fibroblast proliferation that is at least partially mediated by direct targeting of two cell cycle regulators. Our results expand the understanding of the regulatory roles of miRNA-1 in cardiac cells (i.e., from myocytes to a major non-muscle cells in the heart).
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, United States
| | - Michelle E King
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Jacob Moeller
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Hong Liu
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Xiaofei Li
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Peng Zhang
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
37
|
Guo X, Yang Q, Zhang W, Chen Y, Ren J, Gao A. Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:66-73. [PMID: 30771749 DOI: 10.1016/j.envpol.2019.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Metabolic syndrome (MetS) is a global health problem with an increasing prevalence. However, effects of trace elements and heavy metals on MetS and the mechanism underlying this effect are poorly understood. A preliminary cross-sectional study was conducted in 2015. Significantly higher blood concentrations of lead (Pb), cadmium (Cd), copper (Cu), and selenium (Se) were observed in the MetS group. With a priori adjustment for age, the concentration of Cu and Se in the blood was associated with a 2.56 - fold [95% confidence interval (CI), 1.11, 5.92] and 3.31 - fold (95% CI, 1.4, 7.82) increased risk of MetS, respectively. Moreover, increased blood Se concentrations were associated with body mass index (BMI) [odds ratio (OR): 2.56; 95% CI, 1.11, 5.93], high blood pressure [for both systolic and diastolic blood pressures (SBP and DBP); OR: 3.82; 95% CI, 1.47, 7.31 for SBP and OR: 2.56; 95% CI, 1.18, 5.59 for DBP], and hypertriglyceridemia (OR: 3.3; 95% CI, 1.51, 7.2). In addition, the expression of miR-21-5p, miR-122-5p, and miR-146a-5p was significantly higher in subjects with MetS than those without MetS. Increased expression of miR-21-5p was significantly associated with increased SBP (β = 5.28; 95% CI, 0.63, 9.94) and DBP (β = 4.17; 95% CI, 0.68, 7.66). Moreover, Cu was positively associated with miR-21-5p (β = 3.02; 95% CI, 0.07, 5.95), whereas Se was positively associated with miR-122-5p (β = 2.7; 95% CI, 0.64, 4.76). The bootstrapping mediation models indicated that miR-21-5p partially mediated the relationships between Cu level and SBP/DBP. This study suggested that Cu and Se were both associated with MetS, and miR-21-5p participated in the development of MetS associated with Cu.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qiaoyun Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, PR China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, PR China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin, 300070, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
38
|
Zhang Y, Zhao Z, Li S, Dong L, Li Y, Mao Y, Liang Y, Tao Y, Ma J. Inhibition of miR‑214 attenuates the migration and invasion of triple‑negative breast cancer cells. Mol Med Rep 2019; 19:4035-4042. [PMID: 30942417 PMCID: PMC6471216 DOI: 10.3892/mmr.2019.10112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is a subtype of breast cancer. MicroRNA (miR)‑214 is closely associated with controlling the development of tumor cells; therefore, in the present study, the target gene and effects of miR‑214 on TNBC cells were explored. Luciferase activity was examined by luciferase reporter assay. The viability, invasion and migration of MDA‑MB‑231 TNBC cells were measured using Cell Counting kit‑8, Transwell and wound‑healing assays, respectively. The expression levels of various factors were determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results demonstrated that the expression levels of miR‑214 were higher and the levels of α1‑antitrypsin (α1‑AT) were lower in TNBC tissues compared with in normal tissues. Subsequently, α1‑AT was revealed to be a target of miR‑214. Furthermore, inhibition of miR‑214 decreased cell viability, invasion and migration, enhanced the expression of E‑cadherin and tissue inhibitor of metalloproteinases‑2, and reduced the expression of metastatic tumour antigen 1 and matrix metalloproteinase‑2. Inhibition of miR‑214 also significantly downregulated the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), and markedly downregulated that of phosphoinositide 3‑kinase (PI3K); however, the expression levels of total PI3K, Akt and mTOR remained stable in all groups. Taken together, these findings indicated that α1‑AT may be a target of miR‑214. Downregulation of miR‑214 markedly suppressed the viability, migration and invasion of MDA‑MB‑231 cells, and inhibited the PI3K/Akt/mTOR pathway. These findings suggested that miR‑214 targeting α1‑AT may be a potential mechanism underlying TNBC development.
Collapse
Affiliation(s)
- Yi Zhang
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhijing Zhao
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Siqi Li
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Liying Dong
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yan Li
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ying Mao
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ying Liang
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yun Tao
- Clinical Skill Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Junfeng Ma
- Thyroid-Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
39
|
Systematical Identification of Breast Cancer-Related Circular RNA Modules for Deciphering circRNA Functions Based on the Non-Negative Matrix Factorization Algorithm. Int J Mol Sci 2019; 20:ijms20040919. [PMID: 30791568 PMCID: PMC6412941 DOI: 10.3390/ijms20040919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023] Open
Abstract
Circular RNA (circRNA), a kind of special endogenous RNA, has been shown to be implicated in crucial biological processes of multiple cancers as a gene regulator. However, the functional roles of circRNAs in breast cancer (BC) remain to be poorly explored, and relatively incomplete knowledge of circRNAs handles the identification and prediction of BC-related circRNAs. Towards this end, we developed a systematic approach to identify circRNA modules in the BC context through integrating circRNA, mRNA, miRNA, and pathway data based on a non-negative matrix factorization (NMF) algorithm. Thirteen circRNA modules were uncovered by our approach, containing 4164 nodes (80 circRNAs, 2703 genes, 63 miRNAs and 1318 pathways) and 67,959 edges in total. GO (Gene Ontology) function screening identified nine circRNA functional modules with 44 circRNAs. Within them, 31 circRNAs in eight modules having direct relationships with known BC-related genes, miRNAs or disease-related pathways were selected as BC candidate circRNAs. Functional enrichment results showed that they were closely related with BC-associated pathways, such as ‘KEGG (Kyoto Encyclopedia of Genes and Genomes) PATHWAYS IN CANCER’, ‘REACTOME IMMUNE SYSTEM’ and ‘KEGG MAPK SIGNALING PATHWAY’, ‘KEGG P53 SIGNALING PATHWAY’ or ‘KEGG WNT SIGNALING PATHWAY’, and could sever as potential circRNA biomarkers in BC. Comparison results showed that our approach could identify more BC-related functional circRNA modules in performance. In summary, we proposed a novel systematic approach dependent on the known disease information of mRNA, miRNA and pathway to identify BC-related circRNA modules, which could help identify BC-related circRNAs and benefits treatment and prognosis for BC patients.
Collapse
|
40
|
Dong Y, Xu W, Liu C, Liu P, Li P, Wang K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. Int J Biol Sci 2019; 15:680-687. [PMID: 30745854 PMCID: PMC6367576 DOI: 10.7150/ijbs.30464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are a class of reactive molecules that have been implicated in a variety of cardiovascular diseases, accompanied by disorder of multiple signaling events. As cardiomyocytes maintain abundant of mitochondria, which supply the major source of endogenous ROS, oxidative damage to mitochondria often drives apoptotic cell death and initiates cardiac pathology. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in regulating gene expression during those pathological events in the heart, such as myocardial infarction, cardiac hypertrophy, and heart failure. Emerging evidences have highlighted that different ROS levels in response to diverse cardiac stresses result in differential expression of ncRNAs, subsequently altering the expression of pathogenetic genes. However, the knowledge about the ncRNA-linked ROS regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the connections that exist among ROS, ncRNAs, and cardiac diseases to understand the interactions among the molecular entities underlying cardiac pathological events in the hopes of guiding novel therapies for heart diseases in the future.
Collapse
Affiliation(s)
- Yanhan Dong
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Wenhua Xu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Cuiyun Liu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peijun Liu
- Biochemistry Department No.2 Middle School Qingdao Shandong P.R. China 266000
| | - Peifeng Li
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
41
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
42
|
Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 2018; 33:1554-1560. [PMID: 28108447 DOI: 10.1093/bioinformatics/btx019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Motivation MicroRNAs (miRNAs) are small non-coding RNAs that are involved in post-transcriptional regulation of gene expression. In this high-throughput sequencing era, a tremendous amount of RNA-seq data is accumulating, and full utilization of publicly available miRNA data is an important challenge. These data are useful to determine expression values for each miRNA, but quantification pipelines are in a primitive stage and still evolving; there are many factors that affect expression values significantly. Results We used 304 high-quality microRNA sequencing (miRNA-seq) datasets from NCBI-SRA and calculated expression profiles for different tissues and cell-lines. In each miRNA-seq dataset, we found an average of more than 500 miRNAs with higher than 5x coverage, and we explored the top five highly expressed miRNAs in each tissue and cell-line. This user-friendly miRmine database has options to retrieve expression profiles of single or multiple miRNAs for a specific tissue or cell-line, either normal or with disease information. Results can be displayed in multiple interactive, graphical and downloadable formats. Availability and Implementation http://guanlab.ccmb.med.umich.edu/mirmine. Contact bharatpa@umich.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Schneider SIDR, Silvello D, Martinelli NC, Garbin A, Biolo A, Clausell N, Andrades M, Dos Santos KG, Rohde LE. Plasma levels of microRNA-21, -126 and -423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol Med Rep 2018; 17:4736-4746. [PMID: 29344661 DOI: 10.3892/mmr.2018.8428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are associated with myocardial damage and heart failure (HF). The present study investigated whether the plasma levels of microRNA (miR)‑21, ‑126 and ‑423‑5p alter according to the (de)compensated state of patients with HF and are associated with all‑cause mortality. In 48 patients with HF admitted to the emergency room for an episode of acute decompensation, blood samples were collected to measure miR and B‑type natriuretic peptide levels within 24 h of hospital admission, at the time of hospital discharge, and a number of weeks post‑discharge (chronic stable compensated state). Levels of miR‑21, miR‑126 and miR‑423‑5p increased between admission and discharge, and decreased following clinical compensation. During follow‑up (up to 48 months), 38 patients (79%) were rehospitalized at least once and 21 patients (44%) succumbed. Patients who had increased levels of miR‑21 and miR‑126 at the time of clinical compensation exhibited better 24‑month survival and remained rehospitalization‑free for a longer period compared with those with low levels. Additionally, patients whose levels of miR‑423‑5p increased between admission and clinical compensation experienced fewer hospital readmissions in the 24 months following the time of clinical compensation compared with those who had decreased levels. It was concluded that the plasma levels of miR‑21, miR‑126 and miR‑423‑5p altered during clinical improvement and were associated with the prognosis of acute decompensated HF.
Collapse
Affiliation(s)
- Stéfanie Ingrid Dos Reis Schneider
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Daiane Silvello
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Nidiane Carla Martinelli
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Arthur Garbin
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Andréia Biolo
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Nadine Clausell
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Michael Andrades
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Kátia Gonçalves Dos Santos
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Luís Eduardo Rohde
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| |
Collapse
|
44
|
Pérez-Vázquez MS, Ochoa-Martínez ÁC, RuÍz-Vera T, Araiza-Gamboa Y, Pérez-Maldonado IN. Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28036-28045. [PMID: 28994022 DOI: 10.1007/s11356-017-0367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Recently, a great number of epidemiological studies have shown evidence that exposure to inorganic arsenic could have harmful effects on the cardiovascular system of humans. However, the underlying mechanisms through which arsenic induces cardiovascular toxic effects remain unclear. In this regard, epigenetic mechanisms have emerged as a probable connection between environment and disease phenotypes, including cardiovascular diseases. Therefore, this study aimed to evaluate epigenetic changes related to cardiotoxicity (miR-126 and miR-155 expression levels) in children from San Luis Potosi, Mexico exposed to inorganic arsenic. From 2014 to 2015, in a cross-sectional study, children (aged 6-12 years; n = 73) attending public schools at the studied sites were enrolled to take part in this study. Urinary arsenic was used as an exposure biomarker and analyzed by an atomic absorption spectrophotometry technique. On the other hand, miR-126 and miR-155 expression levels were evaluated by qRT-PCR. A mean urinary arsenic level of 30.5 ± 25.5 μg/g of creatinine was found. Moreover, the data showed a significant negative association (p < 0.05) between urinary arsenic concentrations and plasma miR-126 levels. However, an association between urinary arsenic concentrations and plasma miR-155 levels was not found (p > 0.05). In this regard, some investigations have shown an association between diminished plasma miR-126 levels and cardiovascular illnesses. The results found in this study are of concern. However, more similar studies including a larger sample size are necessary in order to clarify the real significance of the data.
Collapse
Affiliation(s)
- Mónica S Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Tania RuÍz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Yesenia Araiza-Gamboa
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rio-verde, San Luis Potosi, Mexico.
| |
Collapse
|
45
|
Li F, Zhu Y, Wan Y, Xie X, Ke R, Zhai C, Pan Y, Yan X, Wang J, Shi W, Li M. Activation of PPARγ inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. Eur J Pharmacol 2017; 814:324-334. [DOI: 10.1016/j.ejphar.2017.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
46
|
Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol 2017; 313:H641-H649. [PMID: 28667053 DOI: 10.1152/ajpheart.00660.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/07/2023]
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression.NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1.
Collapse
Affiliation(s)
- Yangfeng Tang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Shangyi Yu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Yang Liu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Jiajun Zhang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Lin Han
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Zhiyun Xu
- Changhai Hospital of the Second Military College, Shanghai, China
| |
Collapse
|
47
|
Chang YM, Ling L, Chang YT, Chang YW, Li WH, Shih ACC, Chen CC. Three TF Co-expression Modules Regulate Pressure-Overload Cardiac Hypertrophy in Male Mice. Sci Rep 2017; 7:7560. [PMID: 28790436 PMCID: PMC5548763 DOI: 10.1038/s41598-017-07981-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological cardiac hypertrophy, a dynamic remodeling process, is a major risk factor for heart failure. Although a number of key regulators and related genes have been identified, how the transcription factors (TFs) dynamically regulate the associated genes and control the morphological and electrophysiological changes during the hypertrophic process are still largely unknown. In this study, we obtained the time-course transcriptomes at five time points in four weeks from male murine hearts subjected to transverse aorta banding surgery. From a series of computational analyses, we identified three major co-expression modules of TF genes that may regulate the gene expression changes during the development of cardiac hypertrophy in mice. After pressure overload, the TF genes in Module 1 were up-regulated before the occurrence of significant morphological changes and one week later were down-regulated gradually, while those in Modules 2 and 3 took over the regulation as the heart size increased. Our analyses revealed that the TF genes up-regulated at the early stages likely initiated the cascading regulation and most of the well-known cardiac miRNAs were up-regulated at later stages for suppression. In addition, the constructed time-dependent regulatory network reveals some TFs including Egr2 as new candidate key regulators of cardiovascular-associated (CV) genes.
Collapse
Affiliation(s)
- Yao-Ming Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Li Ling
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Ting Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | | | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Sun KT, Huang YN, Palanisamy K, Chang SS, Wang IK, Wu KH, Chen P, Peng CT, Li CY. Reciprocal regulation of γ-globin expression by exo-miRNAs: Relevance to γ-globin silencing in β-thalassemia major. Sci Rep 2017; 7:202. [PMID: 28303002 PMCID: PMC5427890 DOI: 10.1038/s41598-017-00150-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) is a promising strategy in the treatment of β-thalassemia major (β-TM). The present study shows that plasma exosomal miRNAs (exo-miRs) are involved in γ-globin regulation. Exosomes shuttle miRNAs and mediate cell-cell communication. MiRNAs are regulators of biological processes through post-transcriptional targeting. Compared to HD (Healthy Donor), β-TM patients showed increased levels of plasma exosomes and the majority of exosomes had cellular origin from CD34+ cells. Further, HD and β-TM exosomes showed differential miRNA expressions. Among them, deregulated miR-223-3p and miR-138-5p in β-TM exosomes and HD had specific targets for γ-globin regulator and repressor respectively. Functional studies in K562 cells showed that HD exosomes and miR-138-5p regulated γ-globin expression by targeting BCL11A. β-TM exosomes and miR-223-3p down regulated γ-globin expression through LMO2 targeting. Importantly, miR-223-3p targeting through sponge repression resulted in γ-globin activation. Further, hnRNPA1 bound to stem-loop structure of pre-miR-223 and we found that hnRNPA1 knockdown or mutagenesis at miR-223-3p stem-loop sequence resulted in less mature exo-miR-223-3p levels. Altogether, the study shows for the first time on the important clinical evidence that differentially expressed exo-miRNAs reciprocally control γ-globin expressions. Further, the hnRNPA1-exo-miR-223-LMO2 axis may be critical to γ-globin silencing in β-TM.
Collapse
Affiliation(s)
- Kuo-Ting Sun
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, 40402, Taiwan
- School of Dentistry, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Nan Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40402, Taiwan
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan
| | - Kalaiselvi Palanisamy
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Shih-Sheng Chang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Division of Nephrology, Department of Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Kang-Hsi Wu
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan
| | - Ping Chen
- Thalassemia Research Institute, The First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ching-Tien Peng
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan.
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan.
- Department of Anesthesiology, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
50
|
Huang Y, Tang S, Huang C, Chen J, Li J, Cai A, Feng Y. Circulating miRNA29 family expression levels in patients with essential hypertension as potential markers for left ventricular hypertrophy. Clin Exp Hypertens 2017; 39:119-125. [PMID: 28287884 DOI: 10.1080/10641963.2016.1226889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The role of microRNAs (miRs,miRNAs) in the pathogenesis of cardiovascular diseases such as hypertension, as well as their diagnostic potential, has recently attracted much attention. However, target-organ damage (TOD) of hypertension remains a substantial challenge due to the lack of specific biomarkers. The present study was undertaken to identify and validate the potential of circulating miRs as novel biomarkers for TOD. METHODS We assessed the expression levels of miR-29a, miR-29b, and miR-29c in 54 patients with untreated essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography, office, and ambulatory blood pressure monitoring. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate the expression of selected miRs. The expression level of miR-29a, miR-29b, and miR-29c correlations between blood pressure and echocardiography parameters were assessed using the Spearman correlation coefficient. RESULTS We observed higher expression levels of miR-29a (31.50 ± 3.90 vs 26.55 ± 1.74; p < 0.001), miR-29b (32.31 ± 2.85vs 27.21 ± 1.59; p < 0.001), and miR-29c (31.13 ± 3.42 vs 25.96 ± 1.88; p < 0.001) in hypertensive patients compared with healthy control individuals. In hypertension patients, 25 patients were left ventricular hypertrophy (LVH), miR-29a (32.82 ± 4.06 vs 30.07 ± 3.68; p = 0.012), miR-29b (33.27 ± 2.84 vs 30.71 ± 3.04; p = 0.02), and miR-29c (32.33 ± 3.52 vs 29.55 ± 3.46; p = 0.005) in LVH patients compared with nLVH patients. We found miR-29a, miR-29b, and miR-29c expression levels showed significant positive correlations with office SBP (p = 0.579, p < 0.001; r = 0.576, p < 0.001; r = 0.598, p < 0.001), office DBP (p = 0.243, p = 0.026; r = 0.304, p = 0.005; r = 0.287, p = 0.008), office PP(r = 0.49, p < 0.001; r = 0.442, p < 0.001; r = 0.479, p < 0.001), 24 h mean SBP(p = 0.511, p < 0.001; r = 0.6, p < 0.001; r = 0.533, p < 0.001), 24 h mean DBP (p = 0. 304, p = 0.005; r = 0.283, p = 0.009; r = 0.340, p = 0.002), and 24 h mean PP (p = 0.385, p < 0.001; r = 0. 506, p < 0.001; r = 0.386, p < 0.001), respectively. The expression levels of miR-29a, miR-29b, and miR-29c were positively related to LVMI (r = 0.65, p < 0.001; r = 0.715, p < 0.001; r = 0.654, p < 0.001), respectively. CONCLUSION Circulating the miR-29 family may possibly represent potential non-invasive markers of hypertension and TOD in essential hypertensive patients.
Collapse
Affiliation(s)
- Yuqing Huang
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| | - Songtao Tang
- b Community Health Center of Liaobu County , Donguang , Guangdong , China
| | - Cheng Huang
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| | - Jiyan Chen
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| | - Jie Li
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| | - Anping Cai
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| | - Yingqing Feng
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology , Guangzhou , China
| |
Collapse
|