1
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Feng H, Yang S, Zhang L, Zhu J, Li J, Yang Z. A new Prdm1-Cre line is suitable for studying the second heart field development. Dev Biol 2024; 514:78-86. [PMID: 38880275 DOI: 10.1016/j.ydbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.
Collapse
Affiliation(s)
- Haiyue Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingai Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
4
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Zhang M, Lui KO, Zhou B. Application of New Lineage Tracing Techniques in Cardiovascular Development and Physiology. Circ Res 2024; 134:445-458. [PMID: 38359092 DOI: 10.1161/circresaha.123.323179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.
Collapse
Affiliation(s)
- MingJun Zhang
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (M.J., B.Z.)
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, China (K.O.L.)
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (M.J., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (B.Z.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China (B.Z.)
| |
Collapse
|
6
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Chi L, Zhong L, Lee D, Yu X, Caballero A, Nieman B, Delgado-Olguin P. G9a inactivation in progenitor cells with Isl1-Cre with reduced recombinase activity models aspects of Dandy-Walker complex. Biol Open 2023; 12:bio059894. [PMID: 37470706 PMCID: PMC10399207 DOI: 10.1242/bio.059894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
G9a, also known as EHMT2, is essential for embryogenesis and has specific functions in multiple developmental processes. G9a inactivation affects development of the nervous system, which is formed with contribution of descendants of progenitor cells expressing the transcription factor Isl1. However, the function of G9a in Isl1-expressing progenitors is unknown. Here, we show that G9a is required for proper development of multiple structures formed with contribution of Isl1-expressing progenitors. A Cre-dependent GFP reporter revealed that the recombinase activity of the Isl1-Cre used in this study to inactivate G9a was reduced to a subset of Isl1-expressing progenitor cells. G9a mutants reached endpoint by 7 weeks of age with cardiac hypertrophy, hydrocephalus, underdeveloped cerebellum and hind limb paralysis, modeling aspects of Dandy-Walker complex. Moreover, neuroepithelium of the lateral ventricle derived from Isl1-expressing progenitors was thinner and disorganized, potentially compromising cerebrospinal fluid dynamics in G9a mutants. Micro-computed tomography after iodine staining revealed increased volume of the heart, eye lens and brain structures in G9a mutant fetuses. Thus, altered development of descendants of the second heart field and the neural crest could contribute to multicomponent malformation like Dandy-Walker.
Collapse
Affiliation(s)
- Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Ling Zhong
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dorothy Lee
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Xinwen Yu
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Brian Nieman
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Mouse Imaging Centre (MICe), The Hospital for Sick Children, Toronto, ON M5T3H7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON M5S3H2, Canada
| |
Collapse
|
8
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
9
|
De Bono C, Liu Y, Ferrena A, Valentine A, Zheng D, Morrow BE. Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nat Commun 2023; 14:1551. [PMID: 36941249 PMCID: PMC10027855 DOI: 10.1038/s41467-023-37015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of cardiac neural crest cells (CNCCs) results in congenital heart disease, yet we do not understand the cell fate dynamics as these cells differentiate to vascular smooth muscle cells. Here we performed single-cell RNA-sequencing of NCCs from the pharyngeal apparatus with the heart in control mouse embryos and when Tbx1, the gene for 22q11.2 deletion syndrome, is inactivated. We uncover three dynamic transitions of pharyngeal NCCs expressing Tbx2 and Tbx3 through differentiated CNCCs expressing cardiac transcription factors with smooth muscle genes. These transitions are altered non-autonomously by loss of Tbx1. Further, inactivation of Tbx2 and Tbx3 in early CNCCs results in aortic arch branching defects due to failed smooth muscle differentiation. Loss of Tbx1 interrupts mesoderm to CNCC cell-cell communication with upregulation and premature activation of BMP signaling and reduced MAPK signaling, as well as alteration of other signaling, and failed dynamic transitions of CNCCs leading to disruption of aortic arch artery formation and cardiac outflow tract septation.
Collapse
Affiliation(s)
- Christopher De Bono
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aneesa Valentine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Obstetrics and Gynecology; and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
11
|
Roussel J, Larcher R, Sicard P, Bideaux P, Richard S, Marmigère F, Thireau J. The autism-associated Meis2 gene is necessary for cardiac baroreflex regulation in mice. Sci Rep 2022; 12:20150. [PMID: 36418415 PMCID: PMC9684552 DOI: 10.1038/s41598-022-24616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Recent understanding of Autism Spectrum Disorder (ASD) showed that peripheral primary mechanosensitive neurons involved in touch sensation and central neurons affected in ASD share transcriptional regulators. Mutant mice for ASD-associated transcription factors exhibit impaired primary tactile perception and restoring those genes specifically in primary sensory neurons rescues some of the anxiety-like behavior and social interaction defects. Interestingly, peripheral mechanosensitive sensory neurons also project to internal organs including the cardiovascular system, and an imbalance of the cardio-vascular sympathovagal regulation is evidenced in ASD and intellectual disability. ASD patients have decreased vagal tone, suggesting dysfunction of sensory neurons involved in cardio-vascular sensing. In light of our previous finding that the ASD-associated Meis2 gene is necessary for normal touch neuron development and function, we investigated here if its inactivation in mouse peripheral sensory neurons also affects cardio-vascular sympathovagal regulation and baroreflex. Combining echocardiography, pharmacological challenge, blood pressure monitoring, and heart rate variability analysis, we found that Meis2 mutant mice exhibited a blunted vagal response independently of any apparent cardiac malformation. These results suggest that defects in primary sensory neurons with mechanosensitive identity could participate in the imbalanced cardio-vascular sympathovagal tone found in ASD patients, reinforcing current hypotheses on the role of primary sensory neurons in the etiology of ASD.
Collapse
Affiliation(s)
- J Roussel
- Université de Montpellier, CNRS, Institut des Biomolécules Max Mousseron, Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - R Larcher
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - P Sicard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
- IPAM, Platform for Non-Invasive Imaging in Experimental Models, Montpellier, France
| | - P Bideaux
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - S Richard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - F Marmigère
- Institute for Neurosciences of Montpellier, Université de Montpellier, Inserm, Montpellier, France.
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, CNRS, Lyon, France.
| | - J Thireau
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France.
| |
Collapse
|
12
|
Lüönd F, Santacroce N, Beisel C, Guérard L, Bürglin TR, Christofori G, Sugiyama N. Tracking and characterization of partial and full epithelial-mesenchymal transition cells in a mouse model of metastatic breast cancer. STAR Protoc 2022; 3:101438. [PMID: 35707685 PMCID: PMC9189628 DOI: 10.1016/j.xpro.2022.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The various stages of epithelial-mesenchymal transition (EMT) generate phenotypically heterogeneous populations of cells. Here, we detail a dual recombinase lineage tracing system using a transgenic mouse model of metastatic breast cancer to trace and characterize breast cancer cells at different EMT stages. We describe analytical steps to label cancer cells at an early partial or a late full EMT state, followed by tracking their behavior in tumor slice cultures. We then characterize their transcriptome by five-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Luond et al. (2021). A dual recombinase lineage tracing system for cancer cells undergoing EMT Enables live imaging of cancer cells undergoing early or late EMT Supports flow-cytometry-mediated isolation of cancer cells in various stages of EMT Enables single-cell transcriptomic studies of cancer cells undergoing EMT
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Fabiana Lüönd
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Natascha Santacroce
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | - Thomas R. Bürglin
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Nami Sugiyama
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Corresponding author
| |
Collapse
|
13
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
14
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
15
|
Lüönd F, Sugiyama N, Bill R, Bornes L, Hager C, Tang F, Santacroce N, Beisel C, Ivanek R, Bürglin T, Tiede S, van Rheenen J, Christofori G. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell 2021; 56:3203-3221.e11. [PMID: 34847378 DOI: 10.1016/j.devcel.2021.11.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a transient, reversible process of cell de-differentiation where cancer cells transit between various stages of an EMT continuum, including epithelial, partial EMT, and mesenchymal cell states. We have employed Tamoxifen-inducible dual recombinase lineage tracing systems combined with live imaging and 5-cell RNA sequencing to track cancer cells undergoing partial or full EMT in the MMTV-PyMT mouse model of metastatic breast cancer. In primary tumors, cancer cells infrequently undergo EMT and mostly transition between epithelial and partial EMT states but rarely reach full EMT. Cells undergoing partial EMT contribute to lung metastasis and chemoresistance, whereas full EMT cells mostly retain a mesenchymal phenotype and fail to colonize the lungs. However, full EMT cancer cells are enriched in recurrent tumors upon chemotherapy. Hence, cancer cells in various stages of the EMT continuum differentially contribute to hallmarks of breast cancer malignancy, such as tumor invasion, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Fabiana Lüönd
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Nami Sugiyama
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| | - Ruben Bill
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, 1006 BE Amsterdam, the Netherlands
| | - Carolina Hager
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Fengyuan Tang
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Natascha Santacroce
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Thomas Bürglin
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Stefanie Tiede
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, 1006 BE Amsterdam, the Netherlands
| | | |
Collapse
|
16
|
Harnessing orthogonal recombinases to decipher cell fate with enhanced precision. Trends Cell Biol 2021; 32:324-337. [PMID: 34657762 DOI: 10.1016/j.tcb.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Precisely deciphering the cellular plasticity in vivo is essential in understanding many key biological processes. Site-specific recombinases are genetic tools used for in vivo lineage tracing and gene manipulation. Conventional Cre-loxP, Dre-rox, and Flp-frt technologies form the orthogonal recombination systems that can also be used in combination to increase the precision. As such, more than one marker gene can be targeted for lineage tracing, studying cellular heterogeneity, recording cellular activities, or even genome editing. Their combinatory use has recently resolved some controversies in defining cellular fate plasticity. Focusing on cell fate studies, we introduce the design principles of orthogonal recombinases-based strategies, describe some working examples in resolving cell fate-related controversies, and discuss some of their technical strengths and limits.
Collapse
|
17
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
18
|
Khasawneh RR, Kist R, Queen R, Hussain R, Coxhead J, Schneider JE, Mohun TJ, Zaffran S, Peters H, Phillips HM, Bamforth SD. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC DEVELOPMENTAL BIOLOGY 2021; 21:14. [PMID: 34615475 PMCID: PMC8493722 DOI: 10.1186/s12861-021-00245-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.
Collapse
Affiliation(s)
- Ramada R. Khasawneh
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.14440.350000 0004 0622 5497Present Address: Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ralf Kist
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.1006.70000 0001 0462 7212School of Dental Sciences, Newcastle University, Newcastle, NE2 4BW UK
| | - Rachel Queen
- grid.1006.70000 0001 0462 7212Bioinformatics Support Unit, Newcastle University, Newcastle, NE1 3BZ UK
| | - Rafiqul Hussain
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jonathan Coxhead
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jürgen E. Schneider
- grid.9909.90000 0004 1936 8403Biomedical Imaging, University of Leeds, Leeds, LS2 9JT UK
| | - Timothy J. Mohun
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, NW1 1AT UK
| | - Stéphane Zaffran
- grid.5399.60000 0001 2176 4817INSERM, Marseille Medical Genetics, U1251, Aix Marseille University, Marseille, France
| | - Heiko Peters
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Helen M. Phillips
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Simon D. Bamforth
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| |
Collapse
|
19
|
Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology, Institute of Engineering and Technology (IET), Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Diogo E S Nogueira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
20
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
21
|
Dual recombinases-based genetic lineage tracing for stem cell research with enhanced precision. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2060-2072. [PMID: 33847909 DOI: 10.1007/s11427-020-1889-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Stem cell research has become a hot topic in biology, as the understanding of stem cell biology can provide new insights for both regenerative medicine and clinical treatment of diseases. Accurately deciphering the fate of stem cells is the basis for understanding the mechanism and function of stem cells during tissue repair and regeneration. Cre-loxP-mediated recombination has been widely applied in fate mapping of stem cells for many years. However, nonspecific labeling by conventional cell lineage tracing strategies has led to discrepancies or even controversies in multiple fields. Recently, dual recombinase-mediated lineage tracing strategies have been developed to improve both the resolution and precision of stem cell fate mapping. These new genetic strategies also expand the application of lineage tracing in studying cell origin and fate. Here, we review cell lineage tracing methods, especially dual genetic approaches, and then provide examples to describe how they are used to study stem cell fate plasticity and function in vivo.
Collapse
|
22
|
Warkala M, Chen D, Ramirez A, Jubran A, Schonning M, Wang X, Zhao H, Astrof S. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circ Res 2021; 128:e27-e44. [PMID: 33249995 PMCID: PMC7864893 DOI: 10.1161/circresaha.120.318200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Defects in the morphogenesis of the fourth pharyngeal arch arteries (PAAs) give rise to lethal birth defects. Understanding genes and mechanisms regulating PAA formation will provide important insights into the etiology and treatments for congenital heart disease. OBJECTIVE Cell-ECM (extracellular matrix) interactions play essential roles in the morphogenesis of PAAs and their derivatives, the aortic arch artery and its major branches; however, their specific functions are not well-understood. Previously, we demonstrated that integrin α5β1 and Fn1 (fibronectin) expressed in the Isl1 lineages regulate PAA formation. The objective of the current studies was to investigate cellular mechanisms by which integrin α5β1 and Fn1 regulate aortic arch artery morphogenesis. METHODS AND RESULTS Using temporal lineage tracing, whole-mount confocal imaging, and quantitative analysis of the second heart field (SHF) and endothelial cell (EC) dynamics, we show that the majority of PAA EC progenitors arise by E7.5 in the SHF and contribute to pharyngeal arch endothelium between E7.5 and E9.5. Consequently, SHF-derived ECs in the pharyngeal arches form a plexus of small blood vessels, which remodels into the PAAs by 35 somites. The remodeling of the vascular plexus is orchestrated by signals dependent on the pharyngeal ECM microenvironment, extrinsic to the endothelium. Conditional ablation of integrin α5β1 or Fn1 in the Isl1 lineages showed that signaling by the ECM regulates aortic arch artery morphogenesis at multiple steps: (1) accumulation of SHF-derived ECs in the pharyngeal arches, (2) remodeling of the EC plexus in the fourth arches into the PAAs, and (3) differentiation of neural crest-derived cells adjacent to the PAA endothelium into vascular smooth muscle cells. CONCLUSIONS PAA formation is a multistep process entailing dynamic contribution of SHF-derived ECs to pharyngeal arches, the remodeling of endothelial plexus into the PAAs, and the remodeling of the PAAs into the aortic arch artery and its major branches. Cell-ECM interactions regulated by integrin α5β1 and Fn1 play essential roles at each of these developmental stages.
Collapse
Affiliation(s)
- Michael Warkala
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Dongying Chen
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ali Jubran
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
23
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
24
|
Hamline MY, Corcoran CM, Wamstad JA, Miletich I, Feng J, Lohr JL, Hemberger M, Sharpe PT, Gearhart MD, Bardwell VJ. OFCD syndrome and extraembryonic defects are revealed by conditional mutation of the Polycomb-group repressive complex 1.1 (PRC1.1) gene BCOR. Dev Biol 2020; 468:110-132. [PMID: 32692983 PMCID: PMC9583620 DOI: 10.1016/j.ydbio.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
BCOR is a critical regulator of human development. Heterozygous mutations of BCOR in females cause the X-linked developmental disorder Oculofaciocardiodental syndrome (OFCD), and hemizygous mutations of BCOR in males cause gestational lethality. BCOR associates with Polycomb group proteins to form one subfamily of the diverse Polycomb repressive complex 1 (PRC1) complexes, designated PRC1.1. Currently there is limited understanding of differing developmental roles of the various PRC1 complexes. We therefore generated a conditional exon 9-10 knockout Bcor allele and a transgenic conditional Bcor expression allele and used these to define multiple roles of Bcor, and by implication PRC1.1, in mouse development. Females heterozygous for Bcor exhibiting mosaic expression due to the X-linkage of the gene showed reduced postnatal viability and had OFCD-like defects. By contrast, Bcor hemizygosity in the entire male embryo resulted in embryonic lethality by E9.5. We further dissected the roles of Bcor, focusing on some of the tissues affected in OFCD through use of cell type specific Cre alleles. Mutation of Bcor in neural crest cells caused cleft palate, shortening of the mandible and tympanic bone, ectopic salivary glands and abnormal tongue musculature. We found that defects in the mandibular region, rather than in the palate itself, led to palatal clefting. Mutation of Bcor in hindlimb progenitor cells of the lateral mesoderm resulted in 2/3 syndactyly. Mutation of Bcor in Isl1-expressing lineages that contribute to the heart caused defects including persistent truncus arteriosus, ventricular septal defect and fetal lethality. Mutation of Bcor in extraembryonic lineages resulted in placental defects and midgestation lethality. Ubiquitous over expression of transgenic Bcor isoform A during development resulted in embryonic defects and midgestation lethality. The defects we have found in Bcor mutants provide insights into the etiology of the OFCD syndrome and how BCOR-containing PRC1 complexes function in development.
Collapse
Affiliation(s)
- Michelle Y Hamline
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA; University of Minnesota Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Connie M Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph A Wamstad
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jifan Feng
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jamie L Lohr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Medical Research Council Centre for Transplantation, King's College London, London, SE1 9RT, UK
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Johnson AL, Schneider JE, Mohun TJ, Williams T, Bhattacharya S, Henderson DJ, Phillips HM, Bamforth SD. Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030027. [PMID: 32717817 PMCID: PMC7570199 DOI: 10.3390/jcdd7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital cardiovascular malformation is a common birth defect incorporating abnormalities of the outflow tract and aortic arch arteries, and mice deficient in the transcription factor AP-2α (Tcfap2a) present with complex defects affecting these structures. AP-2α is expressed in the pharyngeal surface ectoderm and neural crest at mid-embryogenesis in the mouse, but the precise tissue compartment in which AP-2α is required for cardiovascular development has not been identified. In this study we describe the fully penetrant AP-2α deficient cardiovascular phenotype on a C57Bl/6J genetic background and show that this is associated with increased apoptosis in the pharyngeal ectoderm. Neural crest cell migration into the pharyngeal arches was not affected. Cre-expressing transgenic mice were used in conjunction with an AP-2α conditional allele to examine the effect of deleting AP-2α from the pharyngeal surface ectoderm and the neural crest, either individually or in combination, as well as the second heart field. This, surprisingly, was unable to fully recapitulate the global AP-2α deficient cardiovascular phenotype. The outflow tract and arch artery phenotype was, however, recapitulated through early embryonic Cre-mediated recombination. These findings indicate that AP-2α has a complex influence on cardiovascular development either being required very early in embryogenesis and/or having a redundant function in many tissue layers.
Collapse
Affiliation(s)
- Amy-Leigh Johnson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | | | | | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anshutz Medical Campus, Aurora, CO 80045, USA;
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK;
| | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
27
|
Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, Wärdell E, Custodio J, Reimegård J, Salmén F, Österholm C, Ståhl PL, Sundström E, Åkesson E, Bergmann O, Bienko M, Månsson-Broberg A, Nilsson M, Sylvén C, Lundeberg J. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 2020; 179:1647-1660.e19. [PMID: 31835037 DOI: 10.1016/j.cell.2019.11.025] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
The process of cardiac morphogenesis in humans is incompletely understood. Its full characterization requires a deep exploration of the organ-wide orchestration of gene expression with a single-cell spatial resolution. Here, we present a molecular approach that reveals the comprehensive transcriptional landscape of cell types populating the embryonic heart at three developmental stages and that maps cell-type-specific gene expression to specific anatomical domains. Spatial transcriptomics identified unique gene profiles that correspond to distinct anatomical regions in each developmental stage. Human embryonic cardiac cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of embryonic cardiac gene expression. In situ sequencing was then used to refine these results and create a spatial subcellular map for the three developmental phases. Finally, we generated a publicly available web resource of the human developing heart to facilitate future studies on human cardiogenesis.
Collapse
Affiliation(s)
- Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chenglin Wu
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Eva Wärdell
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joaquin Custodio
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Salmén
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, the Netherlands
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU-Dresden, Dresden, Germany; Karolinska Institutet, Cell and Molecular Biology, Stockholm, Sweden
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christer Sylvén
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
28
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
29
|
Liu K, Jin H, Zhou B. Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies. J Biol Chem 2020; 295:6413-6424. [PMID: 32213599 DOI: 10.1074/jbc.rev120.011631] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase-mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate-related biological phenomena in the life sciences.
Collapse
Affiliation(s)
- Kuo Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hengwei Jin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China .,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
30
|
Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 2020; 40:2314-2331. [PMID: 32005764 DOI: 10.1523/jneurosci.1919-19.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Collapse
|
31
|
Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G, Torres M. A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Dev Cell 2020; 52:350-363.e6. [PMID: 31928974 DOI: 10.1016/j.devcel.2019.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
The mammalian heart contains multiple cell types that appear progressively during embryonic development. Advance in determining cardiac lineage diversification has often been limited by the unreliability of genetic tracers. Here we combine clonal analysis, genetic lineage tracing, tissue transplantation, and mutant characterization to investigate the lineage relationships between epicardium, arterial mesothelial cells (AMCs), and the coronary vasculature. We report a contribution of the second heart field (SHF) to a vasculogenic niche composed of AMCs and sub-mesothelial cells at the base of the pulmonary artery. Sub-mesothelial cells from this niche differentiate into lymphatic endothelial cells and, in close association with AMC-derived cells, contribute to and are essential for the development of ventral cardiac lymphatics. In addition, regionalized epicardial/mesothelial retinoic acid signaling regulates lymphangiogenesis, contributing to the niche properties. These results uncover a SHF vasculogenic contribution to coronary lymphatic development through a local niche at the base of the great arteries.
Collapse
Affiliation(s)
- Ghislaine Lioux
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Estefanía Ayala
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain.
| |
Collapse
|
32
|
Zhao H, Zhou B. Dual genetic approaches for deciphering cell fate plasticity in vivo: more than double. Curr Opin Cell Biol 2019; 61:101-109. [DOI: 10.1016/j.ceb.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
|
33
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
34
|
Conway SJ, McConnell R, Simmons O, Snider PL. Armadillo-like helical domain containing-4 is dynamically expressed in both the first and second heart fields. Gene Expr Patterns 2019; 34:119077. [PMID: 31655130 DOI: 10.1016/j.gep.2019.119077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022]
Abstract
Armadillo repeat and Armadillo-like helical domain containing proteins form a large family with diverse and fundamental functions in many eukaryotes. Herein we investigated the spatiotemporal expression pattern of Armadillo-like helical domain containing 4 (or Armh4) as an uncharacterized protein coding mouse gene, within the mouse embryo during the initial stages of heart morphogenesis. We found Armh4 is initially expressed in both first heart field as well as the second heart field progenitors and subsequently within predominantly their cardiomyocyte derivatives. Armh4 expression is initially cardiac-restricted in the developing embryo and is expressed in second heart field subpharyngeal mesoderm prior to cardiomyocyte differentiation, but Armh4 diminishes as the embryonic heart matures into the fetal heart. Armh4 is subsequently expressed in craniofacial structures and neural crest-derived dorsal root and trigeminal ganglia. Whereas lithium chloride-induced stimulation of Wnt/β-catenin signaling elevated Armh4 expression in both second heart field subpharyngeal mesodermal progenitors and outflow tract, right ventricle and atrial cardiomyocytes, neither a systemic loss of Islet-1 nor an absence of cardiac neural crest cells had any effect upon Armh4 expression. These results confirm that Wnt/β-catenin-responsive Armh4 is a useful specific biomarker of the FHF and SHF cardiomyocyte derivatives only.
Collapse
Affiliation(s)
- Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Reagan McConnell
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Olga Simmons
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paige L Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
36
|
Maruyama K, Miyagawa-Tomita S, Mizukami K, Matsuzaki F, Kurihara H. Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev Biol 2019; 452:134-143. [DOI: 10.1016/j.ydbio.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
37
|
Wang JJ, Liu HX, Song L, Li HR, Yang YP, Zhang T, Jing Y. Isl-1 positive pharyngeal mesenchyme subpopulation and its role in the separation and remodeling of the aortic sac in embryonic mouse heart. Dev Dyn 2019; 248:771-783. [PMID: 31175693 DOI: 10.1002/dvdy.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Second heart field cells and neural crest cells have been reported to participate in the morphogenesis of the pharyngeal arch arteries (PAAs); however, how the PAAs grow out and are separated from the aortic sac into left and right sections is unknown. RESULTS An Isl-1 positive pharyngeal mesenchyme protrusion in the aortic sac ventrally extends and fuses with the aortic sac wall to form a midsagittal septum that divides the aortic sac. The aortic sac division separates the left and right PAAs to form independent arteries. The midsagittal septum dividing the aortic sac has a different expression pattern from the aortic-pulmonary (AP) septum in which Isl-1 positive cells are absent. At 11 days post-conception (dpc) in a mouse embryo, the Isl-1 positive mesenchyme protrusion appears as a heart-shaped structure, in which subpopulations with Isl-1+ Tbx3+ and Isl-1+ Nkx2.5+ cells are included. CONCLUSIONS The aortic sac is a dynamic structure that is continuously divided during the migration from the pharyngeal mesenchyme to the pericardial cavity. The separation of the aortic sac is not complete until the AP septum divides the aortic sac into the ascending aorta and pulmonary trunk. Moreover, the midsagittal septum and the AP septum are distinct structures.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui-Xia Liu
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Song
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hai-Rong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Zhang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ya Jing
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
38
|
Tucker RP, Degen M. The Expression and Possible Functions of Tenascin-W During Development and Disease. Front Cell Dev Biol 2019; 7:53. [PMID: 31032255 PMCID: PMC6473177 DOI: 10.3389/fcell.2019.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 01/18/2023] Open
Abstract
Tenascins are a family of multifunctional glycoproteins found in the extracellular matrix of chordates. Two of the tenascins, tenascin-C and tenascin-W, form hexabrachions. In this review, we describe the discovery and domain architecture of tenascin-W, its evolution and patterns of expression during embryogenesis and in tumors, and its effects on cells in culture. In avian and mammalian embryos tenascin-W is primarily expressed at sites of osteogenesis, and in the adult tenascin-W is abundant in certain stem cell niches. In primary cultures of osteoblasts tenascin-W promotes cell migration, the formation of mineralized foci and increases alkaline phosphatase activity. Tenascin-W is also prominent in many solid tumors, yet it is missing from the extracellular matrix of most adult tissues. This makes it a potential candidate for use as a marker of tumor stroma and a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Lüönd F, Bill R, Vettiger A, Oller H, Pelczar P, Christofori G. A Transgenic MMTV-Flippase Mouse Line for Molecular Engineering in Mammary Gland and Breast Cancer Mouse Models. J Mammary Gland Biol Neoplasia 2019; 24:39-45. [PMID: 30209717 DOI: 10.1007/s10911-018-9412-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022] Open
Abstract
Genetically engineered mouse models have become an indispensable tool for breast cancer research. Combination of multiple site-specific recombination systems such as Cre/loxP and Flippase (Flp)/Frt allows for engineering of sophisticated, multi-layered conditional mouse models. Here, we report the generation and characterization of a novel transgenic mouse line expressing a mouse codon-optimized Flp under the control of the mouse mammary tumor virus (MMTV) promoter. These mice show robust Flp-mediated recombination in luminal mammary gland and breast cancer cells but no Flp activity in non-mammary tissues, with the exception of limited activity in salivary glands. These mice provide a unique tool for studying mammary gland biology and carcinogenesis in mice.
Collapse
Affiliation(s)
- Fabiana Lüönd
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Ruben Bill
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Andrea Vettiger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
- Focal Area Infection Biology, Biozentrum University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Heide Oller
- Center for Transgenic Models, University of Basel, Mattenstrasse 22, 4058, Basel, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Mattenstrasse 22, 4058, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
40
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
41
|
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:141-178. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.
Collapse
Affiliation(s)
- Mariangela Scalise
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Fabiola Marino
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Surgery, University of Campania "L.Vanvitelli", Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
42
|
A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci Rep 2018; 8:14453. [PMID: 30262904 PMCID: PMC6160450 DOI: 10.1038/s41598-018-32802-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Site-specific recombinases (SSR) are utilized as important genome engineering tools to precisely modify the genome of mice and other model organisms. Reporter mice that mark cells that at any given time had expressed the enzyme are frequently used for lineage tracing and to characterize newly generated mice expressing a recombinase from a chosen promoter. With increasing sophistication of genome alteration strategies, the demand for novel SSR systems that efficiently and specifically recombine their targets is rising and several SSR-systems are now used in combination to address complex biological questions in vivo. Generation of reporter mice for each one of these recombinases is cumbersome and increases the number of mouse lines that need to be maintained in animal facilities. Here we present a multi-reporter mouse line for loci-of-recombination (X) (MuX) that streamlines the characterization of mice expressing prominent recombinases. MuX mice constitutively express nuclear green fluorescent protein after recombination by either Cre, Flp, Dre or Vika recombinase, rationalizing the number of animal lines that need to be maintained. We also pioneer the use of the Vika/vox system in mice, illustrating its high efficacy and specificity, thereby facilitating future designs of sophisticated recombinase-based in vivo genome engineering strategies.
Collapse
|
43
|
Liu K, Yu W, Tang M, Tang J, Liu X, Liu Q, Li Y, He L, Zhang L, Evans SM, Tian X, Lui KO, Zhou B. A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development 2018; 145:dev.167775. [PMID: 30111655 DOI: 10.1242/dev.167775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
Abstract
In vivo genomic engineering is instrumental for studying developmental biology and regenerative medicine. Development of novel systems with more site-specific recombinases (SSRs) that complement with the commonly used Cre-loxP would be valuable for more precise lineage tracing and genome editing. Here, we introduce a new SSR system via Nigri-nox. By generating tissue-specific Nigri knock-in and its responding nox reporter mice, we show that the Nigri-nox system works efficiently in vivo by targeting specific tissues. As a new orthogonal system to Cre-loxP, Nigri-nox provides an additional control of genetic manipulation. We also demonstrate how the two orthogonal systems Nigri-nox and Cre-loxP could be used simultaneously to map the cell fate of two distinct developmental origins of cardiac valve mesenchyme in the mouse heart, providing dynamics of cellular contribution from different origins for cardiac valve mesenchyme during development. This work provides a proof-of-principle application of the Nigri-nox system for in vivo mouse genomic engineering. Coupled with other SSR systems, Nigri-nox would be valuable for more precise delineation of origins and cell fates during development, diseases and regeneration.
Collapse
Affiliation(s)
- Kuo Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Tang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuxiu Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaozhen Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Libo Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China .,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
44
|
Abstract
This review by Jain and Epstein discusses the developmental processes that influence cardiac lineage decisions and cellular competence and advances our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of “chromatin competence” that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Debbache J, Parfejevs V, Sommer L. Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis 2018; 56:e23105. [PMID: 29673028 PMCID: PMC6099459 DOI: 10.1002/dvg.23105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023]
Abstract
The neural crest is one of the embryonic structures with the broadest developmental potential in vertebrates. Morphologically, neural crest cells emerge during neurulation in the dorsal folds of the neural tube before undergoing an epithelial‐to‐mesenchymal transition (EMT), delaminating from the neural tube, and migrating to multiple sites in the growing embryo. Neural crest cells generate cell types as diverse as peripheral neurons and glia, melanocytes, and so‐called mesectodermal derivatives that include craniofacial bone and cartilage and smooth muscle cells in cardiovascular structures. In mice, the fate of neural crest cells has been determined mainly by means of transgenesis and genome editing technologies. The most frequently used method relies on the Cre‐loxP system, in which expression of Cre‐recombinase in neural crest cells or their derivatives genetically enables the expression of a Cre‐reporter allele, thus permanently marking neural crest‐derived cells. Here, we provide an overview of the Cre‐driver lines used in the field and discuss to what extent these lines allow precise neural crest stage and lineage‐specific fate mapping.
Collapse
Affiliation(s)
- Julien Debbache
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Vadims Parfejevs
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| |
Collapse
|
46
|
Hatzistergos KE, Jiang Z, Valasaki K, Takeuchi LM, Balkan W, Atluri P, Saur D, Seidler B, Tsinoremas N, DiFede DL, Hare JM. Simulated Microgravity Impairs Cardiac Autonomic Neurogenesis from Neural Crest Cells. Stem Cells Dev 2018; 27:819-830. [PMID: 29336212 DOI: 10.1089/scd.2017.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
Collapse
Affiliation(s)
| | - Zhijie Jiang
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | | | - Lauro M Takeuchi
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Wayne Balkan
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Preethi Atluri
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Dieter Saur
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Barbara Seidler
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Nicholas Tsinoremas
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Joshua M Hare
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| |
Collapse
|
47
|
Nikolic I, Elsworth B, Dodson E, Wu SZ, Gould CM, Mestdagh P, Marshall GM, Horvath LG, Simpson KJ, Swarbrick A. Discovering cancer vulnerabilities using high-throughput micro-RNA screening. Nucleic Acids Res 2018; 45:12657-12670. [PMID: 29156009 PMCID: PMC5728403 DOI: 10.1093/nar/gkx1072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype.
Collapse
Affiliation(s)
- Iva Nikolic
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Benjamin Elsworth
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Sunny Z Wu
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Cathryn M Gould
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent B-9000, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent B-9000, Belgium
| | - Glenn M Marshall
- Sydney Children's Hospital and Children's Cancer Institute, Sydney, NSW 2750, Australia
| | - Lisa G Horvath
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia.,University of Sydney, Camperdown, NSW 2050, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
48
|
Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 2017; 23:1488-1498. [PMID: 29131159 DOI: 10.1038/nm.4437] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
The Cre-loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre-rox recombination system to enhance the precision of conventional Cre-loxP-mediated lineage tracing. The Dre-rox system permits rigorous control of Cre-loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates-the contribution of c-Kit+ cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9+ hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre-loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.
Collapse
|
49
|
van Vliet PP, Lin L, Boogerd CJ, Martin JF, Andelfinger G, Grossfeld PD, Evans SM. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol 2017; 429:249-259. [PMID: 28669819 PMCID: PMC5580348 DOI: 10.1016/j.ydbio.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/04/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022]
Abstract
Correct cardiac development is essential for fetal and adult life. Disruptions in a variety of signaling pathways result in congenital heart defects, including outflow and inflow tract defects. We previously found that WNT11 regulates outflow tract development. However, tissue specific requirements for WNT11 in this process remain unknown and whether WNT11 is required for inflow tract development has not been addressed. Here we find that germline Wnt11 null mice also show hypoplasia of the dorsal mesenchymal protrusion (DMP), which is required for atrioventricular septation. Ablation of Wnt11 with myocardial cTnTCre recapitulated outflow tract defects observed in germline Wnt11 null mice, but DMP development was unaffected. In contrast, ablation of Wnt11 with Isl1Cre fully recapitulated both outflow tract and DMP defects of Wnt11 germline nulls. DMP hypoplasia in Wnt11 mutants was associated with reduced proliferation within the DMP, but no evident defects in myocardial differentiation of the DMP. Examination of Pitx2-, Axin2-, or Patched-lacZ reporter mice revealed no alterations in reporter expression, suggesting that WNT11 was required downstream of, or in parallel to, these signaling pathways to regulate DMP formation. These studies revealed a previously unappreciated role for WNT11 for DMP formation and distinct tissue-specific requirements for WNT11 in outflow tract and DMP development.
Collapse
Affiliation(s)
| | - Lizhu Lin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA; Department of Pediatrics, School of Medicine, UCSD, La Jolla, USA
| | - Cornelis J Boogerd
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA
| | - James F Martin
- Baylor College of Medicine, Texas Heart Institute, Houston, USA
| | | | - Paul D Grossfeld
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, USA.
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA; Department of Medicine, UCSD, La Jolla, USA; Department of Pharmacology, UCSD, La Jolla, USA.
| |
Collapse
|
50
|
The use and abuse of Cre/Lox recombination to identify adult cardiomyocyte renewal rate and origin. Pharmacol Res 2017; 127:116-128. [PMID: 28655642 DOI: 10.1016/j.phrs.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022]
Abstract
The adult mammalian heart, including the human, is unable to regenerate segmental losses after myocardial infarction. This evidence has been widely and repeatedly used up-to-today to suggest that the myocardium, contrary to most adult tissues, lacks an endogenous stem cell population or more specifically a bona-fide cardiomyocyte-generating progenitor cell of biological significance. In the last 15 years, however, the field has slowly evolved from the dogma that no new cardiomyocytes were produced from shortly after birth to the present consensus that new cardiomyocytes are formed throughout lifespan. This endogenous regenerative potential increases after various forms of injury. Nevertheless, the degree/significance and more importantly the origin of adult new cardiomyocytes remains strongly disputed. Evidence from independent laboratories has shown that the adult myocardium harbours bona-fide tissue-specific cardiac stem cells (CSCs). Their transplantation and in situ activation have demonstrated the CSCs regenerative potential and have been used to develop regeneration protocols which in pre-clinical tests have shown to be effective in the prevention and treatment of heart failure. Recent reports purportedly tracking the c-kit+CSC's fate using Cre/lox recombination in the mouse have challenged the existence and regenerative potential of the CSCs and have raised scepticism about their role in myocardial homeostasis and regeneration. The validity of these reports, however, is controversial because they failed to show that the experimental approach used is capable to both identify and tract the fate of the CSCs. Despite these serious shortcomings, in contraposition to the CSCs, these publications have proposed the proliferation of existing adult fully-matured cardiomyocytes as the relevant mechanism to explain cardiomyocyte renewal in the adult. This review critically ponders the available evidence showing that the adult mammalian heart possesses a definable myocyte-generating progenitor cell of biological significance. This endogenous regenerative potential is expected to provide the bases for novel approaches of myocardial repair in the near future.
Collapse
|