1
|
Tian W, Ju J, Guan B, Wang T, Zhang J, Song L, Xu H. Role of hyperhomocysteinemia in atherosclerosis: from bench to bedside. Ann Med 2025; 57:2457527. [PMID: 39898976 PMCID: PMC11792134 DOI: 10.1080/07853890.2025.2457527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Atherosclerosis is a leading cause of global mortality, driven by complex interactions between genetic, metabolic, and environmental factors. Among these, hyperhomocysteinemia (HHcy) has emerged as a significant and modifiable risk factor, contributing to endothelial dysfunction, oxidative stress, and vascular inflammation. Despite increasing recognition of its role in atherogenesis, the precise mechanisms and clinical implications of HHcy remain incompletely understood, necessitating a comprehensive review to connect recent mechanistic insights with practical applications. METHODS We analyzed the various mechanisms whereby HHcy accelerates the progression of atherosclerosis, and conducted a comprehensive review of publications in the fields of HHcy and atherosclerosis. RESULTS HHcy promotes atherosclerosis through several mechanisms, including inflammation, oxidative stress, epigenetic modification, and lipoprotein metabolism alteration. Moreover, this discussion extends to current strategies for the prevention and clinical management of HHcy-induced atherosclerosis. CONCLUSION This review consolidates and elucidates the latest advancements and insights into the role of HHcy in atherosclerosis. The comprehensive narrative connects fundamental research with clinical applications. Contemporary studies highlight the complex interplay between HHcy and atherosclerosis, establishing HHcy as not only a contributing risk factor but also an accelerator of various atherogenic processes.
Collapse
Affiliation(s)
- Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jiqian Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| |
Collapse
|
2
|
Yin Y, Wang B, Yang Y, Jiang Y, Fu W. Tectorigenin mitigates homocysteine-induced inflammation and ferroptosis in BV-2 microglial cells through promoting the SIRT1/SLC7A11 pathway. Brain Res Bull 2025; 224:111272. [PMID: 40058656 DOI: 10.1016/j.brainresbull.2025.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
Ferroptosis and inflammation are central to the pathophysiology of hyperhomocysteinemia (HHcy)-associated neurological disorders. Tectorigenin, a natural flavonoid aglycone extracted from numerous plants, possesses antioxidant, anti-inflammatory, and neuroprotective properties. This study aimed to investigate whether tectorigenin mitigates elevated homocysteine (Hcy)-induced toxicity in BV-2 microglial cells, focusing on its effects on inflammation and ferroptosis. Cell viability, lactate dehydrogenase (LDH) release, and proliferation assays were employed to evaluate cell injury. Inflammatory cytokines levels were determined by ELISA. Ferroptosis markers, including reactive oxygen species (ROS), lipid ROS, malondialdehyde (MDA), 4-hydroxy-nonenal (4-HNE), mitochondrial membrane potential (MMP), ATP, Fe2 + content, antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]) activities were evaluated. mRNA and protein expressions were analyzed by qRT-PCR and western blotting, respectively. Our findings revealed that tectorigenin pretreatment significantly alleviated Hcy-induced cell injury and inflammatory response in BV-2 microglial cells. Furthermore, tectorigenin pretreatment reduced lipid peroxidation, enhanced antioxidant capacity, and alleviated ferroptotic cell death in Hcy-treated cells. Importantly, ferroptosis inhibitor Fer-1 also alleviated Hcy-induced cell injury and inflammation. Mechanistically, tectorigenin pretreatment activated the SIRT1/SLC7A11 pathway, and silencing SIRT1 reversed its protective effects. Collectively, these results indicate that tectorigenin attenuates Hcy-induced microglial injury by inhibiting inflammation and ferroptosis through the activation of the SIRT1/SLC7A11 pathway.
Collapse
Affiliation(s)
- Ye Yin
- The First Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yan Yang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yichen Jiang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
3
|
Yu Y, Shao L, Zhang M, Guo X, Chen Y, Shen H, Teng X, Zhu J, Yu M, Hu S, Shen Z. MTHFR variant links homocysteine metabolism and endothelial cell dysfunction by targeting mitophagy in human thoracic aortic dissection patient induced pluripotent stem cell (iPSC) models. J Adv Res 2025:S2090-1232(25)00130-4. [PMID: 40015453 DOI: 10.1016/j.jare.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025] Open
Abstract
AIMS Genetics and environmental cues boost the development of human diseases. Methylenetetrahydrofolate reductase (MTHFR) is involved in the metabolism of homocysteine, and a common variant rs1801133 of MTHFR has been reported in human cardiovascular diseases. This study aims to providing a novel strategy for patient stratification with specific genetic and metabolic screening, finally for personalized healthcare for patients with thoracic aortic dissection. METHODS AND RESULTS We corrected the MTHFR variant to generate an isogenic control iPSC line (Isogenic-iPSC) with CRISPR/Cas9 method, and this isogenic-iPSC shared the same other genetic information with our previously established MTHFR-iPSC line, providing a promising approach for analysis the phenotype and mechanism of rs1801133. During the direct differentiation of endothelial cells from both iPSC lines, rs1801133 variant did not affect the endothelial cell fate determination. Without homocysteine, this variant has little effect on endothelial cell function. While administration of homocysteine, the MTHFR-iPSC derived endothelial cells exhibited disrupted mitophagy, increased cell apoptosis and decreased cell viability. Bulk RNA-seq data indicated LAMP3 is a target of homocysteine, activation of LAMP3 might contribute to homocysteine induced the disruption of mitochondrial structure and cell apoptosis. With chemical compounds screening, kaempferol ameliorated the homocysteine-induced cell toxicity by restoring the mitochondrial structure. The direct relationship between homocysteine metabolism and MTHFR rs1801133 variant was investigated, and the molecular target for homocysteine and translational perspective has also been demonstrated. CONCLUSIONS Collectively, this study provided the direct evidence of a specific genetic variant in MTHFR and homocysteine metabolism. Investigating the molecular mechanism of homocysteine activated LAMP3 on endothelial cell dysfunction and mitophagy could provide novel insights for targeted disease prevention and improving individual outcomes. TRANSLATIONAL PERSPECTIVE Thoracic aortic dissection (TAD) is a life-threatening cardiovascular disease with a high mortality, lacking effective medical treatment and early diagnosis. Endothelial cells dysfunction has been considered into the development of TAD. Here, we show that MTHFR variant is responsible for the elevated homocysteine in iPSC-ECs, and disrupted mitochondrial structures by homocysteine significantly impaired endothelial function. Understanding the mechanism and translational medicine of homocysteine-induced endothelial toxicity in human with MTHFR variant could benefit the novel strategy for prevention and vessel protection against metabolism injury. Meanwhile, targeting mitophagy and application of small molecule, such as kaempferol, also provide an insight for endothelial protection.
Collapse
Affiliation(s)
- You Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lianbo Shao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meng Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingyou Guo
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Department of Vascular Surgery, Suqian First Hospital, Suqian, Jiangsu 223800, China
| | - Yihuan Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Han Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaomei Teng
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingze Zhu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Miao Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Tsuchida K, Oyanagi N, Tanaka K, Hosaka Y, Takahashi K, Oda H. Determinants of Trunk Muscle Size Decrease in Patients with Type B Acute Aortic Dissection. Int Heart J 2025; 66:106-113. [PMID: 39828333 DOI: 10.1536/ihj.24-483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Trunk muscle decrease is reportedly associated with an increased risk of multiple adverse clinical outcomes. Acute aortic dissection (AAD) involves a systemic inflammatory response which is associated with exaggerated muscle protein catabolism. AAD requires prolonged hospitalization and potentially exacerbates muscle size decrease.Cross-sectional areas (CSA) of both the bilateral psoas muscle area (PMA) and L4 vertebral body were determined using CT scans on admission to calculate the psoas-lumbar vertebral index (PLVI = bilateral PMA/L4 body CSA) in 141 hospitalized type B AAD patients. Serial CT scans within 30 days were performed to investigate PLVI change (%/day) calculated as: (PLVI at follow-up - PLVI at admission) /PLVI at admission × 100/follow-up interval (days). Patients were categorized into a large decrease of PLVI (LD) group and a modest decrease and increase of PLVI (MDI) group according to the median value of decreased PLVI change (-0.48%/day).A large PLVI decrease was correlated with a higher peak C-reactive protein (CRP) value (13.8 versus 10.9 mg/dL, P = 0.010), and larger false lumen (FL) diameter (13.6 versus 11.4 mm, P = 0.015). The days until ambulation and the length of hospital stay were slightly longer in the LD group than in the MDI group (days until ambulation, P = 0.111; length of hospital stay, P = 0.053). Logistic regression model analysis demonstrated a higher peak CRP level (OR = 3.43; 95% CI, 1.50-7.84) and larger %FL diameter (OR = 3.88; 95% CI, 1.55-9.69) were predictive of a large PLVI decrease.Our results indicate that a larger FL and subsequent exaggerated inflammatory response may result in a trunk muscle decrease in type B AAD patients.
Collapse
Affiliation(s)
| | | | - Komei Tanaka
- Department of Cardiology, Niigata City General Hospital
| | - Yukio Hosaka
- Department of Cardiology, Niigata City General Hospital
| | | | - Hirotaka Oda
- Department of Cardiology, Niigata City General Hospital
| |
Collapse
|
5
|
Chen K, He J, Fu L, Song X, Cao N, Yuan H. Prediction of ischemic stroke in patients with H-type hypertension based on biomarker. Sci Rep 2025; 15:1221. [PMID: 39774965 PMCID: PMC11707281 DOI: 10.1038/s41598-024-83662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension combined with hyperhomocysteinemia significantly raises the risk of ischemic stroke. Our study aimed to develop and validate a biomarker-based prediction model for ischemic stroke in Hyperhomocysteinemia-type (H-type) hypertension patients. We retrospectively included 3,305 patients in the development cohort, and externally validated in 103 patients from another cohort. Logistic regression, least absolute shrinkage and selection operator regression, and best subset selection analysis were used to assess the contribution of variables to ischemic stroke, and models were derived using four machine learning algorithms. Area Under Curve (AUC), calibration plot and decision-curve analysis respectively evaluated the discrimination and calibration of four models, then external validation and visualization of the best-performing model. There were 1,415 and 42 patients with ischemic stroke in the development and validation cohorts. The final model included 8 predictors: age, antihypertensive therapy, biomarkers (serum magnesium, serum potassium, proteinuria and hypersensitive C-reactive protein), and comorbidities (atrial fibrillation and hyperlipidemia). The optimal model, named A2BC ischemic stroke model, showed good discrimination and calibration ability for ischemic stroke with AUC of 0.91 and 0.87 in the internal and external validation cohorts. The A2BC ischemic stroke model had satisfactory predictive performances to assist clinicians in accurately identifying the risk of ischemic stroke for patients with H-type hypertension.
Collapse
Affiliation(s)
- Ke Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Jianxun He
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Lan Fu
- Physical Examination Center, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xiaohua Song
- Physical Examination Center, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Ning Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Yinghuayuan East Street No. 2, Chaoyang District, Beijing, 100029, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
6
|
Roslik M, Zharikov Y, Vovkogon A, Zharova N, Pontes-Silva A, Zharikova T. Aortic aneurysm: Correlations with phenotypes associated with connective tissue dysplasia. Microvasc Res 2025; 157:104754. [PMID: 39401669 DOI: 10.1016/j.mvr.2024.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
An aortic aneurysm is a localized enlargement that exceeds the normal diameter of the vessel by 50 %, posing a risk due to the likelihood of rupture. The cause of aortic aneurysm, especially in young people, is connective tissue dysplasia, a condition characterized by defects in the assembly of collagen and elastin proteins, leading to changes in elastic properties and disruption of the formation of organs and their systems. The article presents data confirming the relationship between many morphological manifestations of connective tissue dysplasia (e.g., funnel-shaped deformation of the sternum, scoliosis of the thoracic spine, abdominal hernias, arterial tortuosity, striae of atypical localization) and the risk of aortic aneurysm formation. The literature suggests that the identified combinations of some external manifestations of connective tissue dysplasia deserve special attention and may be constitutional markers for the possible development of aortic aneurysm, which is a promising direction for further research in this area.
Collapse
Affiliation(s)
- Maria Roslik
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Yury Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Andzhela Vovkogon
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Nataliya Zharova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| | - Tatiana Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| |
Collapse
|
7
|
Xie C, Hu Y, Yin Z. Inhibiting YAP1 reduced abdominal aortic aneurysm formation by suppressing adventitial fibroblast phenotype transformation and migration. J Cell Mol Med 2024; 28:e70159. [PMID: 39495769 PMCID: PMC11534076 DOI: 10.1111/jcmm.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
The adventitial fibroblast (AF) is the most abundant cell in the vascular adventitia, a few studies had confirmed that AF contributed to abdominal aortic aneurysm (AAA) development; YAP1 involved in several vascular diseases by promoting AF transformed to myofibroblast, the role of YAP1 in AAA is not clear yet. This study aims to determine whether YAP1 play a role in AAA process by regulating AF function. We found the expression of YAP1was significantly increased in aneurysm tissues of AAA patients compared to normal adjacent vascular tissues and mainly in adventitia. YAP1 also upregulated in elastase-induced and CaCl2-induced mice AAA model. Suppressed YAP1 function with YAP1 inhibitor-Verteporfin declined AAA incident rate remarkably in mice, and the collagen deposition in the adventitia was alleviated obviously. Afterwards, we studied the effect of YAP1 on the function of AF, Verteporfin was used to block YAP1 in vitro, the process of AF transforming to myofibroblast and migration were almost completely eliminated after inhibiting YAP1 expression. This study demonstrated that YAP1 may play a key role in AAA development, inhibiting YAP1 significantly reduced AAA formation through suppressed the process of AF transformed to myofibroblast and migration.
Collapse
Affiliation(s)
- Cuiping Xie
- Department of General Intensive Care Unit, Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanting Hu
- Department of General Intensive Care Unit, Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhehui Yin
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
8
|
Shi M, Zheng J, Liu Y, Mao X, Wu X, Chu M, Niu H, Sun L, Chang X, He Y, Liu Y, Guo D, Zhang Y, Zhu Z, Zhao J. Folate, Homocysteine, and Adverse Outcomes After Ischemic Stroke. J Am Heart Assoc 2024; 13:e036527. [PMID: 39291496 DOI: 10.1161/jaha.124.036527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND As a risk factor of cardiovascular diseases, homocysteine can be effectively lowered by folate. However, the associations of folate and homocysteine levels with the prognosis of ischemic stroke remained unclear. METHODS AND RESULTS A total of 3530 patients with ischemic stroke were included. Serum folate and homocysteine levels were measured at admission. The primary outcome was composite of death and major disability (modified Rankin Scale score≥3) at 3 months after stroke onset. Univariate and multivariate logistic regression models were used. The mediation effect of homocysteine was examined. During follow-up, 1056 participants developed the primary outcome. In the univariate model, participants in the highest quartile of folate had a 29% (95% CI, 0.58-0.87) decreased risk of primary outcome compared with those in the lowest quartile. After multivariate adjustment, the odds ratio associated with the highest quartile of folate was 0.58 (95% CI, 0.46-0.73) for primary outcome. In contrast, participants in the highest quartile of homocysteine had a 52% (95% CI, 1.24-1.98) increased risk of primary outcome compared with those in the lowest quartile. After multivariate adjustment, the odds ratio associated with highest quartile of homocysteine was 1.57 (95% CI, 1.24-1.98) for primary outcome. In addition, 25.5% of the observed associations between folate and primary outcome was mediated through homocysteine (P=0.012). CONCLUSIONS High folate levels were associated with low risks of death and major disability among Chinese patients with ischemic stroke, and homocysteine partially mediated the observed potential beneficial role of folate.
Collapse
Affiliation(s)
- Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Jin Zheng
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
| | - Yang Liu
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
- Institute of Science and Technology for Brain Inspired Intelligence Fudan University Shanghai China
| | - Xueyu Mao
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
| | - Xuechun Wu
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
| | - Min Chu
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
| | - Huicong Niu
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Daoxia Guo
- School of Nursing Suzhou Medical College of Soochow University Suzhou China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Jing Zhao
- Department of Neurology Minhang Hospital, Fudan University Shanghai China
- Institute of Healthy Yangtze River Delta Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
9
|
Xu J, Liu Z, Yang Q, Ma Q, Zhou Y, Cai Y, Zhao D, Zhao G, Lu T, Ouyang K, Hong M, Kim HW, Shi H, Zhang J, Fulton D, Miller C, Malhotra R, Weintraub NL, Huo Y. Adenosine kinase inhibition protects mice from abdominal aortic aneurysm via epigenetic modulation of VSMC inflammation. Cardiovasc Res 2024; 120:1202-1217. [PMID: 38722818 PMCID: PMC11368124 DOI: 10.1093/cvr/cvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of the intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing, and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The heterozygous deficiency of ADK protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of ADK in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization, and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. The metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis, and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation, and AAA formation. CONCLUSION Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Adenosine/metabolism
- Adenosine/analogs & derivatives
- Adenosine Kinase/antagonists & inhibitors
- Angiotensin II/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortitis/prevention & control
- Aortitis/enzymology
- Aortitis/pathology
- Aortitis/metabolism
- Aortitis/chemically induced
- Aortitis/genetics
- Calcium Chloride
- Cells, Cultured
- Disease Models, Animal
- DNA Methylation
- Epigenesis, Genetic
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Morpholines
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines
- Signal Transduction
Collapse
Affiliation(s)
- Jiean Xu
- Department of Physiology, Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, University Town, Guangzhou, 510006, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tammy Lu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- Emory University, Atlanta, GA 30322, USA
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Clint Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Liu Z, Feng G, Chen Y, Fan J, Liang Z, Bi J, Dai X. Hyperhomocysteinemia may aggravate abdominal aortic aneurysm formation by up-regulating RASSF2. Gene 2024; 898:148036. [PMID: 38036076 DOI: 10.1016/j.gene.2023.148036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a fatal cardiovascular disorder with high mortality and morbidity rates. To date, no drug has shown to significantly alleviate the risk of AAA. Previous studies have indicated that hyperhomocysteinemia (HHcy) significantly increases the incidence of AAA by disrupting endothelial cell homeostasis; however, the potential molecular mechanisms require clarification. Herein, we aimed to integrate transcriptomics analysis and molecular biology experiments to explore the potential molecular targets by which HHcy may increase the incidence of AAA. We integrated two AAA data profiles (GSE57691 and GSE7084) based on previously published microarray ribonucleic acid sequencing (RNAseq) data from the GEO database. Additionally, 500 μM homocysteine-treated human aorta endothelium cells microarray dataset (GSE175748) was downloaded and processed. Subsequently, single-cell RNA-seq profiles of the aortic aneurysms (GSE155468) were downloaded, scaled, and processed for further analysis. The microarray profiles analysis demonstrated that the Ras association domain family member 2 (RASSF2) and interleukin (IL)-1β are potentially the target genes involved in the HHcy-mediated aggravation of AAA formation. Single-cell RNAseq analysis revealed that RASSF2 might impair endothelial cell function by increasing inflammatory cell infiltration to participate in AAA formation. Finally, we conducted reverse transcription quantitative polymerase chain reaction and immunofluorescence analysis to validate the up-regulated mRNA expression of RASSF2 (p = 0.008) and IL-1β (p = 0.002) in AAA tissue compared to control tissue. Immunofluorescence staining revealed overexpression of RASSF2 protein in AAA tissue sections compared to control tissue (p = 0.037). Co-localization of RASSF2 and the aortic endothelium cell marker, CD31, was observed in tissue sections, indicating the potential involvement of RASSF2 in aortic endothelial cells. To summarise, our preliminary study revealed that HHcy may worsen AAA formation by up-regulating the expression of RASSF2 and IL-1β in aortic endothelium cells.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Guilin Feng
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yonghui Chen
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jibo Fan
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhian Liang
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jiaxue Bi
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiangchen Dai
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
12
|
Vats S, Sundquist K, Sundquist J, Zhang N, Wang X, Acosta S, Gottsäter A, Memon AA. Oxidative stress-related genetic variation and antioxidant vitamin intake in intact and ruptured abdominal aortic aneurysm: a Swedish population-based retrospective cohort study. Eur J Prev Cardiol 2024; 31:61-74. [PMID: 37665957 DOI: 10.1093/eurjpc/zwad271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
AIMS The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible. METHODS AND RESULTS The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.6% and of rAAA 0.3% after a median follow-up of 24.3 years. A variant in NOX3 (rs3749930) was associated with higher rAAA risk in males [adjusted hazard ratio (aHR): 2.49; 95% confidence interval (CI): 1.36-4.35] and the overall population (aHR: 1.88; 95% CI: 1.05-3.37). Higher intakes of antioxidant vitamins, riboflavin, and folate were associated with 20% and 19% reduced intact AAA incidence, respectively. Interestingly, the inverse associations between riboflavin and vitamin D intake with intact AAA incidence were stronger in the individuals carrying the NOX3 variant as compared with the wild-type recessive genotype, i.e. by 60% and 66%, respectively (P for interaction < 0.05). Higher riboflavin intake was associated with a 33% male-specific intact AAA risk reduction, while higher intake of vitamin B12 intake was associated with 55% female-specific intact AAA risk increase; both these associations were significantly modified by sex (P for interaction < 0.05). CONCLUSIONS Our findings highlight the role of oxidative stress genetic variations and antioxidant vitamin intake in AAA. Although a low AAA/rAAA sample size limited some analyses, especially in females, our findings highlight the need for future randomized controlled trials and mechanistic studies, to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.
Collapse
Affiliation(s)
- Sakshi Vats
- Center for Primary Health Care Research, Wallenberg Laboratory, 5th floor, Inga Marie Nilsson's gata 53, 214 28, Malmö, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Xiao Wang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Anders Gottsäter
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
13
|
Wang Y, Liu Z, Song S, Wang J, Jin C, Jia L, Ma Y, Yuan T, Cai Z, Xiang M. IRF5 governs macrophage adventitial infiltration to fuel abdominal aortic aneurysm formation. JCI Insight 2024; 9:e171488. [PMID: 38175709 PMCID: PMC11143966 DOI: 10.1172/jci.insight.171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhenjie Liu
- Department of Vascular Surgery, The second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfang Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Chunna Jin
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Liangliang Jia
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Yuankun Ma
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Tan Yuan
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhejun Cai
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Meixiang Xiang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| |
Collapse
|
14
|
Peng F, Xu B, Xia J, Chen X, Liu A. Association Between Serum Homocysteine Concentration, Aneurysm Wall Inflammation, and Aneurysm Symptoms in Intracranial Fusiform Aneurysm. Acad Radiol 2024; 31:168-179. [PMID: 37211477 DOI: 10.1016/j.acra.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
RATIONALE AND OBJECTIVES The pathophysiology of fusiform intracranial aneurysm (FIA) involves inflammatory processes, and homocysteine plays a role in the inflammatory processes in the vessel wall. Moreover, aneurysm wall enhancement (AWE) has emerged as a new imaging biomarker of aneurysm wall inflammatory pathologies. To investigate the pathophysiological mechanisms of aneurysm wall inflammation and FIA instability, we aimed to determine the associations between the homocysteine concentration, AWE, and FIAs' related symptoms. MATERIALS AND METHODS We retrospectively reviewed the data of 53 patients with FIA who underwent both high-resolution magnetic resonance imaging and serum homocysteine concentration measurement. FIAs' related symptoms were defined as ischemic stroke or transient ischemic attack, cranial nerve compression, brainstem compression, and acute headache. The contrast ratio of the signal intensity of the aneurysm wall to the pituitary stalk (CRstalk) was used to indicate AWE. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to determine how well the independent factors could predict FIAs' related symptoms. Predictors of CRstalk were also investigated. Spearman's correlation coefficient was used to identify the potential associations between these predictors. RESULTS Fifty-three patients were included, of whom 23 (43.4%) presented with FIAs' related symptoms. After adjusting for baseline differences in the multivariate logistic regression analysis, the CRstalk (odds ratio [OR]=3.207, P = .023) and homocysteine concentration (OR=1.344, P = .015) independently predicted FIAs' related symptoms. The CRstalk was able to differentiate between FIAs with and without symptoms (area under the ROC curve [AUC]=0.805), with an optimal cutoff value of 0.76. The homocysteine concentration could also differentiate between FIAs with and without symptoms (AUC=0.788), with an optimal cutoff value of 13.13. The combination of the CRstalk and homocysteine concentration had a better ability to identify symptomatic FIAs (AUC=0.857). Male sex (OR=0.536, P = .018), FIAs' related symptoms (OR=1.292, P = .038), and homocysteine concentration (OR=1.254, P = .045) independently predicted the CRstalk. CONCLUSION A higher serum homocysteine concentration and greater AWE indicate FIA instability. Serum homocysteine concentration may be a useful biomarker of FIA instability; however, this needs to be verified in future studies.
Collapse
Affiliation(s)
- Fei Peng
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Boya Xu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Jiaxiang Xia
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Xuge Chen
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Aihua Liu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.).
| |
Collapse
|
15
|
Li L, Tong X, Ma Z, Lv L, Liu H, Chen GL. Folic acid enhances the cardiovascular protective effect of amlodipine in renal hypertensive rats with elevated homocysteine. Clin Exp Hypertens 2023; 45:2205058. [PMID: 37154141 DOI: 10.1080/10641963.2023.2205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVES To investigate the actions of amlodipine-folic acid (amlodipine-FA) preparation on hypertension and cardiovascular in renal hypertensive rats with hyperhomocysteinemia (HHcy), so as to provide experimental basis for clinical research of amlodipine folic acid tablets. METHODS Rats model of renal hypertension with HHcy were established. The rats were randomly divided into groups of model, amlodipine, folic acid (FA) and amlodipine-FA of various dosages. Normal rats were used as normal control group. Blood pressure, Hcy as well as plasma NO, ET-1 and hemodynamics were assayed. Histological alterations of heart and abdominal aorta were also examined. RESULTS Compared with the normal group, blood pressure, plasma Hcy, and NO of the rats in model group were significantly increased, while the plasma ET-1 was decreased. Compared with the normal group, the animals in the model group had reduced cardiac function, thickened wall of the aorta and narrowed lumen. In FA group and amlodipine group, the rat plasma NO was increased while ET-1 was decreased, the protective effect of amlodipine-FA group on endothelial cells was further enhanced. In amlodipine group, the rat hemodynamics (LVSP, LVEDP and ±dp/dtmax, et al.) and vascular damage were significantly reduced, while in amlodipine-FA group, the heart function were further improved, and myocardial and vascular hypertrophy were significantly reduced. CONCLUSIONS As compared to amlodipine alone, amlodipine -FA can lower both blood pressure and plasma Hcy, significantly enhancing vascular endothelial function to protect the heart and blood vessel in renal hypertensive rats with HHcy.
Collapse
Affiliation(s)
- Li Li
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zebin Ma
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Lv
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haipeng Liu
- Institute of Pediatrics, Anhui Provincial Children's Hospital, Hefei, China
| | - Guang Liang Chen
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Li S, Li J, Cheng W, He W, Dai SS. Independent and Interactive Roles of Immunity and Metabolism in Aortic Dissection. Int J Mol Sci 2023; 24:15908. [PMID: 37958896 PMCID: PMC10647240 DOI: 10.3390/ijms242115908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic dissection (AD) is a cardiovascular disease that seriously endangers the lives of patients. The mortality rate of this disease is high, and the incidence is increasing annually, but the pathogenesis of AD is complicated. In recent years, an increasing number of studies have shown that immune cell infiltration in the media and adventitia of the aorta is a novel hallmark of AD. These cells contribute to changes in the immune microenvironment, which can affect their own metabolism and that of parenchymal cells in the aortic wall, which are essential factors that induce degeneration and remodeling of the vascular wall and play important roles in the formation and development of AD. Accordingly, this review focuses on the independent and interactive roles of immunity and metabolism in AD to provide further insights into the pathogenesis, novel ideas for diagnosis and new strategies for treatment or early prevention of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Cheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Shuang Dai
- School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
17
|
Fan R, Wang Y, Zhang J, An X, Liu S, Bai J, Li J, Lin Q, Xie Y, Liao J, Xia Y. Hyperhomocysteinaemia Promotes Doxorubicin-Induced Cardiotoxicity in Mice. Pharmaceuticals (Basel) 2023; 16:1212. [PMID: 37765020 PMCID: PMC10534320 DOI: 10.3390/ph16091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin, a widely used chemotherapeutic drug in clinical oncology, causes a series of cardiac side effects referred to as doxorubicin-induced cardiotoxicity. Hyperhomocysteinaemia is an independent risk factor for multiple cardiovascular diseases. However, whether hyperhomocysteinaemia contributes to doxorubicin-induced cardiotoxicity is currently unknown. In this study, we explored the pathogenic effects of hyperhomocysteinaemia induced by dietary methionine supplementation (2% wt/wt in rodent chow) in a mouse model of doxorubicin-induced cardiotoxicity. Our data showed that methionine supplementation doubled serum homocysteine levels, inducing mild hyperhomocysteinaemia. Doxorubicin at a cumulative dosage of 25 mg/kg body weight led to significant weight loss and severe cardiac dysfunction, which were further exacerbated by methionine-induced mild hyperhomocysteinaemia. Doxorubicin-induced cardiac atrophy, cytoplasmic vacuolisation, myofibrillar disarray and loss, as well as cardiac fibrosis, were also exacerbated by methionine-induced mild hyperhomocysteinaemia. Additional folic acid supplementation (0.006% wt/wt) prevented methionine-induced hyperhomocysteinaemia and inhibited hyperhomocysteinaemia-aggravated cardiac dysfunction and cardiomyopathy. In particular, hyperhomocysteinaemia increased both serum and cardiac oxidative stress, which could all be inhibited by folic acid supplementation. Therefore, we demonstrated for the first time that hyperhomocysteinaemia could exacerbate doxorubicin-induced cardiotoxicity in mice, and the pathogenic effects of hyperhomocysteinaemia might at least partially correlate with increased oxidative stress and could be prevented by folic acid supplementation. Our study provides preliminary experimental evidence for the assessment of hyperhomocysteinaemia as a potential risk factor for chemotherapy-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Rui Fan
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jinjin Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116004, China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiuyue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
18
|
Gadanec LK, Andersson U, Apostolopoulos V, Zulli A. Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction. Nutrients 2023; 15:3186. [PMID: 37513606 PMCID: PMC10383373 DOI: 10.3390/nu15143186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
19
|
Han J, Zuo Z, Shi X, Zhang Y, Peng Z, Xing Y, Pang X. Hirudin ameliorates diabetic nephropathy by inhibiting Gsdmd-mediated pyroptosis. Cell Biol Toxicol 2023; 39:573-589. [PMID: 34212273 DOI: 10.1007/s10565-021-09622-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023]
Abstract
Our group previously reported that hirudin ameliorated diabetic nephropathy (DN) in streptozotocin (STZ)-injected rats, but the mechanism remained largely unknown. Therefore, we further explored its possible mechanism. We subcutaneously injected 5 U hirudin into STZ-induced WT mice or Gasdermin D (Gsdmd)-/- (KO) mice daily for 12 weeks, respectively, and evaluated their kidney injury. Next, glomerular endothelial cells (GECs), renal tubular epithelial cells (RTECs), and bone-marrow-derived macrophages (BMDMs) were isolated from WT mice and treated with hirudin in the presence of high glucose/lipopolysaccharides and ATP to measure the release of interleukin-18 and interleukin-1β. Kidney injury induced by STZ injection was significantly ameliorated by hirudin through inhibiting Gsdmd-mediated pyroptosis in the mice, not Caspase 1-mediated apoptosis. Meanwhile, hirudin also suppressed pyroptosis in primary GECs, RTECs, and BMDMs in vitro. Moreover, the deletion of Gsdmd reduced pyroptosis and kidney injury both in vivo and in vitro. We also found that hirudin regulated the expression of Gsdmd by inhibiting interferon regulatory factor 2 (Irf2). Hirudin ameliorated Gsdmd-mediated pyroptosis by inhibiting irf2, leading to the improvement of kidney injury. Therefore, hirudin might serve as a potential therapeutic strategy to treat DN.
Collapse
Affiliation(s)
- Jiarui Han
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Zhenkui Zuo
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
- Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Xiujie Shi
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Zining Peng
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yufeng Xing
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
20
|
Peng Z, Wang X, Zhu Q, Wang H, Li B, Pang X, Han J. CMKLR1 Antagonist Alpha-NETA Protects against Diabetic Nephropathy in Mice. Kidney Blood Press Res 2023; 48:405-413. [PMID: 37231814 PMCID: PMC10308536 DOI: 10.1159/000530763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect of a CMKLR1 antagonist, 2-(anaphthoyl)ethyltrimethylammonium iodide (α-NETA), on DN. METHODS To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks. RESULTS α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN. CONCLUSION In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.
Collapse
Affiliation(s)
- Zining Peng
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xueyi Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing Zhu
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huili Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Li
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), Zhengzhou, China
| | - Jiarui Han
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Le L, Shan H, Lin Y, Xia W, Ma X, Jiang C, Shi Z, Xu Y. The ubiquitination of RIPK2 is mediated by Peli3 and negatively regulates the onset of infectious osteomyelitis. Jpn J Infect Dis 2023. [PMID: 37121674 DOI: 10.7883/yoken.jjid.2022.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Osteomyelitis is the infection and destruction of bone. Until now, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was implicated in the development of osteomyelitis. However, its detailed mechanism remains unknown. 6-8 weeks old wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3) deficiency mice were injected with S. aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages (BMDMs) isolated from mice, were treated with lipopolysaccharides (LPS). Knocking down Peli3 in RAW264.7 cells increased the expressions of inflammatory cytokines after the stimulation of LPS, including interleukin-1β, interleukin-6 and tumor necrosis factor-α. Inflammation was also activated in S. aureus-induced Peli3 deficiency mice. Moreover, Peli3 deficiency mice also displayed more severe symptoms of osteomyelitis in S. aureus-infected mice. Moreover, Peli3 targeted and degraded RIPK2 through K48-linked ubiquitination. Peli3 negatively modulates osteomyelitis by degrading RIPK2. Our data further expand current understanding of RIPK2 on osteomyelitis, which suggests that RIPK2 might serve as novel therapeutic target for treating osteomyelitis.
Collapse
Affiliation(s)
- Lixiang Le
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Haojie Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiwei Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Wenyang Xia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Xin Ma
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Chaolai Jiang
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Youjia Xu
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| |
Collapse
|
22
|
Abstract
BACKGROUND Diabetic retinopathy is a common and specific microvascular complication of diabetes, which is also the leading cause of preventable blindness. Therefore, we aimed to find a promising therapeutic strategy for diabetic retinopathy. METHODS To investigate the role of toll-like receptor 4 (TLR4) in the diabetic retinopathy, we injected streptozotocin (STZ) into wild-type (wt) and TLR4 knock-out mice to induce diabetes. RESULTS While STZ induced diabetes both in wt and TLR4-/- mice, deletion of TLR4 in diabetic mice significantly improved diabetic retinopathy compared to diabetic wt mice, as judged by the enhanced thickness of retinal tissue. Furthermore, TLR4-dependent NF-κB pathway, inflammatory cytokine release and the expressions of vascular endothelial growth factor (VEGF) and glial fibrillary acidic protein (GFAP), which were all remarkably stimulated in STZ-injected wt mice, were inhibited in STZ-injected TLR4-/- mice. CONCLUSION TLR4 could serve as an independent target for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Hongyu Fu
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, China
| | - Huiqiang Liu
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
23
|
Zhang YB, Bao YR, Wang S, Li TJ, Tai H, Leng JP, Yang XX, Wang BC, Meng XS. Possible mechanisms associated with immune escape and apoptosis on anti-hepatocellular carcinoma effect of Mu Ji Fang granules. World J Gastrointest Oncol 2023; 15:504-522. [PMID: 37009316 PMCID: PMC10052660 DOI: 10.4251/wjgo.v15.i3.504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers with high mortality rates worldwide. The main ingredients in Mu Ji Fang Granules (MJF) are alkaloids, flavonoids, and polysaccharides. MJF has been used in the clinical treatment of hepatitis, cirrhosis and HCC for more than 30 years. Few previous studies have focused on the mechanism of MJF on tumor immu-nology in the treatment of HCC.
AIM To explore the mechanism of action of MJF on tumor immunology in the treatment of HCC.
METHODS The absorbable ingredients of MJF were identified using Molecule Network related to High Performance Liquid Chromatography-Electron Spray Ionization-Time of Flight- Mass Spectrometry, and hub potential anti-HCC targets were screened using network pharmacology and pathway enrichment analysis. Forty male mice were randomly divided into the Blank, Model, and MJF groups (1.8, 5.4, and 10.8 g/kg/d) following 7 d of oral administration. Average body weight gain, spleen and thymus indices were calculated, tumor tissues were stained with hematoxylin and eosin, and Interferon gamma (IFN-γ), Tumor necrosis factor α (TNF-α), Interleukin-2, aspartate aminotransferase, alanine aminotransferase, alpha-fetoprotein (AFP), Fas, and FasL were measured by Enzyme-linked Immunosorbent Assay. Relevant mRNA expression of Bax and Bcl2 was evaluated by Real Time Quantitative PCR (RT-qPCR) and protein expression of Transforming growth factor β1 (TGF-β1) and Mothers against decapentaplegic homolog (SMAD) 4 was assessed by Western blotting. The HepG2 cell line was treated with 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL of MJF, and another 3 groups were treated with TGF-β1 inhibitor (LY364947) and different doses of MJF. Relevant mRNA expression of TNF-α, IFN-γ, Bax and Bcl2 was evaluated by RT-qPCR and protein expression of TGF-β1, SMAD2, p-SMAD2, SMAD4, and SMAD7 was assessed by Western blotting.
RESULTS It was shown that MJF improved body weight gain and tumor inhibition rate in H22 tumor-bearing mice, protected immune organs and liver function, reduced the HCC indicator AFP, affected immunity and apoptosis, and up-regulated the TGF-β1/SMAD signaling pathway, by increasing the relative expression of TGF-β1, SMAD2, p-SMAD2 and SMAD4 and decreasing SMAD7, reducing immune factors TNF-α and IFN-γ, decreasing apoptosis cytokines Fas, FasL and Bcl2/Bax, and inhibiting the effect of LY364947 in HepG2 cells.
CONCLUSION MJF inhibits HCC by activating the TGF-β1/SMAD signaling pathway, and affecting immune and apoptotic cytokines, which may be due to MJF adjusting immune escape and apoptosis.
Collapse
Affiliation(s)
- Yi-Bing Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
- Department of Clinical Trail Institution Office, Dalian Municipal Central Hospital, Dalian 116033, Liaoning Province, China
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
- Technical Innovation Center of Multidimensional Analysis of Traditional Chinese Medicine of Liaoning Province, Dalian 116600, Liaoning Province, China
- Engineering Laboratory of Modern Chinese Medicine Research of Liaoning Province, Dalian 116600, Liaoning Province, China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
- Technical Innovation Center of Multidimensional Analysis of Traditional Chinese Medicine of Liaoning Province, Dalian 116600, Liaoning Province, China
- Engineering Laboratory of Modern Chinese Medicine Research of Liaoning Province, Dalian 116600, Liaoning Province, China
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
- Technical Innovation Center of Multidimensional Analysis of Traditional Chinese Medicine of Liaoning Province, Dalian 116600, Liaoning Province, China
- Engineering Laboratory of Modern Chinese Medicine Research of Liaoning Province, Dalian 116600, Liaoning Province, China
| | - He Tai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Jia-Peng Leng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Xin-Xin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Bo-Cai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
- Technical Innovation Center of Multidimensional Analysis of Traditional Chinese Medicine of Liaoning Province, Dalian 116600, Liaoning Province, China
- Engineering Laboratory of Modern Chinese Medicine Research of Liaoning Province, Dalian 116600, Liaoning Province, China
| |
Collapse
|
24
|
Guéant JL, Guéant-Rodriguez RM, Oussalah A, Zuily S, Rosenberg I. Hyperhomocysteinemia in Cardiovascular Diseases: Revisiting Observational Studies and Clinical Trials. Thromb Haemost 2023; 123:270-282. [PMID: 36170884 DOI: 10.1055/a-1952-1946] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thromboembolic manifestations are relatively frequent in patients with intermediate/severe hyperhomocysteinemia (>30 µmol/L) related to inherited disorders and deficiencies in vitamin B12 and folate. In contrast, moderate hyperhomocysteinemia (15-30 µmol/L) is a modest predictor of cardiovascular risk. The recognition of homocysteine as a cardiovascular risk factor has been challenged by some but not all randomized clinical trials. We reviewed the main data of this controversy and formulated conclusions to be translated in clinical practice.Homocysteine-lowering trials have been performed in cardiovascular subjects with moderate but not intermediate/severe hyperhomocysteinemia despite the dose-effect risk association. The first meta-analyses found no benefit and led cardiology societies not recommending homocysteine in the assessment of cardiovascular risk. This guideline challenged the need to diagnose and treat the nutritional and genetic causes of intermediate/major hyperhomocysteinemia and was not revised when larger meta-analyses concluded to a reduced risk of stroke. In a recent observational study, 84% of consecutive cardiovascular patients assessed for homocysteine had intermediate or major hyperhomocysteinemia, which was properly assessed in only half of the cases and related to B12 and/or folate deficiency and Addison/Biermer disease in 55% of these cases.In conclusion, revisiting observational studies and clinical trials suggests that cardiovascular patients should be screened for hyperhomocysteinemia, when no other risk factor is found. Patients with intermediate/major hyperhomocysteinemia should be properly assessed and treated for B vitamin deficiencies and inherited disorders according to current guidelines. Further trials are needed to assess the effect of lowering homocysteine according to hyperhomocysteinemia categories at baseline.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, Departments of Hepato-Gastroenterology and Molecular Medicine, University Hospital of Nancy, F-54000 Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, F-54000 Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, F-54000 Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, Departments of Hepato-Gastroenterology and Molecular Medicine, University Hospital of Nancy, F-54000 Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, F-54000 Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, F-54000 Nancy, France
| | - Abderrahim Oussalah
- Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, Departments of Hepato-Gastroenterology and Molecular Medicine, University Hospital of Nancy, F-54000 Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, F-54000 Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, F-54000 Nancy, France
| | - Stéphane Zuily
- Vascular Medicine Division and Regional Competence Center for Rare Auto-Immune Diseases, INSERM UMR_S 1116 DCAC and CHRU-Nancy, Université de Lorraine, F-54000 Nancy, France
| | - Irwin Rosenberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
25
|
Li F, Zhang J, Luo L, Hu J. Protective Effects of Xanthohumol against Diabetic Nephropathy in a Mouse Model. Kidney Blood Press Res 2023; 48:92-101. [PMID: 36592619 DOI: 10.1159/000528650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a long-term loss of renal function occurring in the diabetic patients, leading to 5 million deaths in 2015, and this number is dramatically growing annually. Due to unsatisfied outcome of current treatment, there is urgent need to develop more effective therapeutic drugs for DN. METHODS Approximately 150 kinds of natural small molecule drugs that have been used on the market or in the clinical trials in the presence of high glucose were tested individually on the same batch of human renal glomerular endothelial cells (GECs) and human kidney 2 (HK-2) cells with triplicated wells by using a robotic pipetting workstation to screen for the potential drug candidate. Cell viability and oxidative stress were examined in the GECs and HK-2 cells. DN mouse model was established and treated with 25 mg/kg xanthohumol. RESULTS By measuring cell viability, xanthohumol was selected as our predicted drug candidate for DN because it could mostly protect renal cells from high glucose with about 90% survived GECs and HK-2 cells, about 2.12- and 2.37-fold increase compared to glucose group which was with 42.78% and 37.69% survived GECs and HK-2 cells, respectively. Then, xanthohumol inhibited high glucose-induced oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro. Moreover, xanthohumol (25 mg/kg) significantly decreased the levels of serum creatinine, blood urea nitrogen, urea protein, and kidney weight/body weight ratio in DN mice. In addition, the increase of reactive oxygen species production and the decrease of superoxide dismutase and catalase activities in DN mice were partially reversed by xanthohumol. mRNA levels of Nrf2, Hmox1, and Nqol genes were all decreased by xanthohumol DN mice. CONCLUSION Xanthohumol could ameliorate DN-related impairments via Nrf2 signaling pathway, which might serve as a promising drug candidate for treatment of DN.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Pharmacy, Daqing Longnan Hospital, Daqing, China
| | - Jinling Zhang
- Department of Nephrology, Daqing Longnan Hospital, Daqing, China
| | - Le Luo
- Anhui Isotex Biotech Co. Ltd, Xuancheng, China
| | - Jing Hu
- Department of Endocrine, Daqing Longnan Hospital, Daqing, China
| |
Collapse
|
26
|
Jiang Y, Luo B. Histone deacetylase 3 inhibitor attenuates diabetic retinopathy in mice. J Neurophysiol 2023; 129:177-183. [PMID: 36541629 DOI: 10.1152/jn.00477.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy is one of the most common microvascular complications of diabetes. Inhibition of histone deacetylase 3 (Hdac3) was proven to be a successful way to ameliorate central nervous system injury and vision problem in a glaucoma mouse model. However, its role in diabetic retinopathy remains largely unknown. Eight-week-old C57BL/6J mice were intraperitoneally injected with 50 mg of streptozotocin for 5 consecutive days to induce diabetes. After 1 wk, diabetic mice were selected and treated with Hdac3 inhibitor RGFP966 once every 3 days for 12 consecutive weeks. It was found that RGFP966 could decrease the mRNA and protein expression of Hdac3. It significantly increased diabetic retinopathy-reduced retinal thickness without affecting fasting blood glucose. It also decreased diabetic retinopathy-activated oxidative stress and cell apoptosis. Moreover, diabetic retinopathy mice displayed an increased expression of vascular endothelial growth factor and a decreased expression of glial fibrillary acidic protein, both of which were partially restored by RGFP966 treatment. Mechanically, RGFP966 decreased the expression of NADPH oxidase 2 (Nox2) whereas it increased the expression of superoxide dismutase 2 (Sod2) in diabetic retinopathy mice. In conclusion, RGFP966 significantly reduces oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with its modulation of Nox2 and Sod2 expression.NEW & NOTEWORTHY The study demonstrated that RGFP966 significantly reduced oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with Nox2 and Sod2 expression.
Collapse
Affiliation(s)
- Yu Jiang
- Ophthalmology Department, Hefei Red Cross Eye Hospital, Hefei, Anhui, China
| | - Bo Luo
- Shanghai Yunhao Biotechnology Center, Shanghai, China
| |
Collapse
|
27
|
He YB, Jin HZ, Zhao JL, Wang C, Ma WR, Xing J, Zhang XB, Zhang YY, Dai HD, Zhao NS, Zhang JF, Zhang GX, Zhang J. Single-cell transcriptomic analysis reveals differential cell subpopulations and distinct phenotype transition in normal and dissected ascending aorta. Mol Med 2022; 28:158. [PMID: 36536281 PMCID: PMC9764678 DOI: 10.1186/s10020-022-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute thoracic aortic dissection (ATAD) is a fatal condition characterized by tear of intima, formation of false lumen and rupture of aorta. However, the subpopulations of normal and dissected aorta remain less studied. METHODS Single-cell RNA sequencing was performed including 5 patients with ATAD and 4 healthy controls. Immunohistochemistry and immunofluorescence were used to verify the findings. RESULTS We got 8 cell types from human ascending aorta and identified 50 subpopulations including vascular smooth muscle cells (VSMCs), endothelial cells, fibroblasts, neutrophils, monocytes and macrophages. Six transmembrane epithelial antigen of prostate 4 metalloreductase (STEAP4) was identified as a new marker of synthetic VSMCs. CytoTRACE identified subpopulations with higher differentiation potential in specified cell types including synthetic VSMCs, enolase 1+ fibroblasts and myeloid-derived neutrophils. Synthetic VSMCs-derived C-X-C motif chemokine ligand 12 (CXCL12) might interact with neutrophils and fibroblasts via C-X-C motif chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), respectively, which might recruit neutrophils and induce transdifferentitation of fibroblasts into synthetic VSMCs. CONCLUSION We characterized signatures of different cell types in normal and dissected human ascending aorta and identified a new marker for isolation of synthetic VSMCs. Moreover, we proposed a potential mechanism that synthetic VSMCs might interact with neutrophils and fibroblasts via CXCL12-CXCR4/ACKR3 axis whereby deteriorating the progression of ATAD, which might provide new insights to better understand the development and progression of ATAD.
Collapse
Affiliation(s)
- Yu-bin He
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Hai-zhen Jin
- grid.16821.3c0000 0004 0368 8293Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-long Zhao
- grid.412528.80000 0004 1798 5117Department of Cardiovascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chong Wang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Wen-rui Ma
- grid.8547.e0000 0001 0125 2443Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Xing
- grid.16821.3c0000 0004 0368 8293Department of Biobank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-bin Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Yang-yang Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Huang-dong Dai
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Nai-shi Zhao
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Jian-feng Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Guan-xin Zhang
- grid.73113.370000 0004 0369 1660Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, No.168, Changhai Road, Shanghai, China
| | - Jing Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| |
Collapse
|
28
|
Establishment of a meta-analysis based novel aortic dissection mouse model. Sci Rep 2022; 12:21434. [PMID: 36509789 PMCID: PMC9744727 DOI: 10.1038/s41598-022-25369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a life-threatening disease and the detailed mechanism remains unclear. Thus, proper animal models are urgently required to better understand its pathogenesis. Our current study aims to establish a reliable, time and cost-effective mouse AD model. To conduct the meta-analysis, we searched PubMed for related studies up to 2021 and statistical analysis was conducted using Review Manager 5.4. For the animal experiment, 6-week-old male ApoE-/- mice were given β-aminopropionitrile (BAPN) at a concentration of 1 g/L for 3 weeks before being infused with saline, 1000 ng/kg/min or 2500 ng/kg/min angiotensin II (AngII) via osmotic mini pumps for 2 or 4 weeks. To determine the presence of AD, we performed B-ultrasonography, hematoxylin and eosin (H&E) staining, and van Gieson staining. The result of the meta-analysis showed that the use of BAPN and more than 2000 ng/kg/min AngII can increase the rate of AD formation, whereas administrating Ang II for more than 28 days has no significant effect on the rate of AD formation when compared with the less than 14 days group. In the present study, mice treated with BAPN combined with 2500 ng/kg/min AngII for 2 weeks (12/20) had a significantly higher AD formation rate than mice treated with BAPN combined with 1000 ng/kg/min Ang II for 4 weeks (2/10), and had a similar model formation rate compared with the mice treated withβ-aminopropionitrile combined with 2500 ng/kg/min AngII for 4 weeks (6/10). There were 3 mice (3/10) and 6 mice (6/20) who died in the group treated with β-aminopropionitrile combined with 2500 ng/kg/min AngII for 4 weeks and 2 weeks respectively, and only one mouse (1/10) died in the group treated with β-aminopropionitrile combined with 1000 ng/kg/min AngII for 4 weeks. In 6-week-old male ApoE-/- mice that received with 1 g/L BAPN in the drinking water for 3 weeks along with 2500 ng/kg/min AngII infusion via osmotic mini pumps for 2 weeks, the highest model formation rate and relative lower cumulative mortality were noted.
Collapse
|
29
|
Zhang J, Zeng C, Huang X, Liao Q, Chen H, Liu F, Sun D, Luo S, Xiao Y, Xu W, Zeng D, Song M, Tian F. Association of homocysteine and polymorphism of methylenetetrahydrofolate reductase with early-onset post stroke depression. Front Nutr 2022; 9:1078281. [PMID: 36562046 PMCID: PMC9763289 DOI: 10.3389/fnut.2022.1078281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Homocysteine (Hcy) has been indicated to be involved in pathophysiology of post stroke depression (PSD). There is a lack of research to study the relationship between Hcy metabolism genes and PSD. Our study aims to investigate the relationship among Hcy metabolism genes, Hcy, and early-onset PSD. Materials and methods We recruited 212 patients with stroke and collected their peripheral blood sample, clinical data, and laboratory test on admission. 12 single nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), and methionine synthase (MTR) genes were genotyped by high-resolution melt analysis. PSD was diagnosed by DSM-V at 2 weeks after stroke. Binary logistic regression and haplotype analysis were used to examine the association between Hcy metabolism genes and PSD. Mediation analysis was performed to clarify whether the SNPs exerted their effect on PSD by affecting the Hcy level. Results 81 patients were diagnosed with PSD, and the incidence rate was 38.2%. Hcy level in PSD group was significantly higher than it in non-PSD group (p = 0.019). MTHFR rs1801133 AA genotype an A allele were associated with an elevated risk of PSD after adjustment for some confounding factors (OR = 4.021, 95% CI: 1.459∼11.080, p = 0.007 for AA genotype; OR = 1.808, 95% CI: 1.172∼2.788, p = 0.007 for A allele). Furthermore, the effect of MTHFR rs1801133 AA genotype on PSD was mediated by Hcy (OR = 1.569, 95% CI: 0.013∼3.350, p < 0.05). Conclusion MTHFR rs1801133 and Hcy were associated with PSD, and MTHFR rs1801133 may exert an effect on PSD via mediating Hcy level. This offers a new perspective for treating PSD and understanding the mechanism of PSD.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Huang
- Department of Critical Care Medicine, The First People’s Hospital of Huaihua, Huaihua, China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengshu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shihang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqing Xiao
- Department of Neurology, Hengyang Central Hospital, Hengyang, China
| | - Weiye Xu
- Department of Human Anatomy and Neurobiology, School of Basic Medicine, Central South University, Changsha, China
| | - Danfeng Zeng
- Department of Neurology, Xiangtan Central Hospital, Xiangtan, China
| | - Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Mingyu Song,
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Fafa Tian,
| |
Collapse
|
30
|
Epigenetic Regulation by microRNAs in Hyperhomocysteinemia-Accelerated Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012452. [PMID: 36293305 PMCID: PMC9604464 DOI: 10.3390/ijms232012452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Increased serum levels of homocysteine (Hcy) is a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature such as atherosclerosis. However, the precise mechanisms by which Hcy contributes to this condition remain elusive. During the development of atherosclerosis, epigenetic modifications influence gene expression. As such, epigenetic modifications are an adaptive response to endogenous and exogenous factors that lead to altered gene expression by methylation and acetylation reactions of different substrates and the action of noncoding RNA including microRNAs (miRNAs). Epigenetic remodeling modulates cell biology in both physiological and physiopathological conditions. DNA and histone modification have been identified to have a crucial role in the progression of atherosclerosis. However, the potential role of miRNAs in hyperHcy (HHcy)-related atherosclerosis disease remains poorly explored and might be essential as well. There is no review available yet summarizing the contribution of miRNAs to hyperhomocystein-mediated atherogenicity or their potential as therapeutic targets even though their important role has been described in numerous studies. Specifically, downregulation of miR-143 or miR-125b has been shown to regulate VSCMs proliferation in vitro. In preclinical studies, downregulation of miR-92 or miR195-3p has been shown to increase the accumulation of cholesterol in foam cells and increase macrophage inflammation and atherosclerotic plaque formation, respectively. Another preclinical study found that there is a reciprocal regulation between miR-148a/152 and DNMT1 in Hcy-accelerated atherosclerosis. Interestingly, a couple of studies have shown that miR-143 or miR-217 may be used as potential biomarkers in patients with HHcy that may develop atherosclerosis. Moreover, the current review will also update current knowledge on miRNA-based therapies, their challenges, and approaches to deal with Hcy-induced atherosclerosis.
Collapse
|
31
|
Yin L, Gregg AC, Riccio AM, Hoyt N, Islam ZH, Ahn J, Le Q, Patel P, Zhang M, He X, McKinney M, Kent E, Wang B. Dietary therapy in abdominal aortic aneurysm - Insights from clinical and experimental studies. Front Cardiovasc Med 2022; 9:949262. [PMID: 36211542 PMCID: PMC9532600 DOI: 10.3389/fcvm.2022.949262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high mortality rates upon rupture. Despite its prevalence in elderly populations, there remain limited treatment options; invasive surgical repair, while risky, is the only therapeutic intervention with proven clinical benefits. Dietary factors have long been suggested to be closely associated with AAA risks, and dietary therapies recently emerged as promising avenues to achieve non-invasive management of a wide spectrum of diseases. However, the role of dietary therapies in AAA remains elusive. In this article, we will summarize the recent clinical and pre-clinical efforts in understanding the therapeutic and mechanistic implications of various dietary patterns and therapeutic approaches in AAA.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Zain Hussain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jungeun Ahn
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Quang Le
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paranjay Patel
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xinran He
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Matthew McKinney
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Eric Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Bowen Wang
| |
Collapse
|
32
|
Exosomal miR-195 in hUC-MSCs alleviates hypoxia-induced damage of trophoblast cells through tissue factor pathway inhibitor 2. Curr Res Transl Med 2022; 70:103352. [PMID: 35940082 DOI: 10.1016/j.retram.2022.103352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 01/31/2023]
Abstract
MicroRNA-195 (miR-195) was decreased in the patients with pre-eclampsia (PE), which was implicated to modulate PE. Moreover, tissue factor pathway inhibitor 2 (TFPI2), which was highly expressed in the placenta of PE patients, was negatively correlated with miR-195 levels. This study aimed to explore the role of miR-195 in the cell therapy for the treatment of PE and the underlying mechanisms. Human umbilical cord mesenchymal stem cells (hUC-MSCs) were transfected with miR-195 mimic or mimic negative control to extract exosomes. HTR8/SVneo was incubated under hypoxia condition to induce cell damage, and co-co-cultured with exosomes derived from hUC-MSCs to evaluate its effect. Hypoxia time-dependently caused a decrease on miR-195 level with an increase on TFPI2 expression in HTR8/SVneo. MiR-195 directly bind to TFPI2 and inhibited TFPI2 expression in hUC-MSCs. Moreover, hypoxia-induced cell damage in HTR8/SVneo was significantly attenuated by co-culture with hUC-MSC-derived exosomes. Exosomes extracted from miR-195-overexpressed hUC-MSCs, could further ameliorate hypoxia-induced cell damage, due to the excessive amount of miR-195 delivered by exosomes. Exosomal miR-195 in hUC-MSCs alleviated hypoxia-induced cell damage through TFPI2, which might provide a potential therapeutic approach for pre-eclampsia.
Collapse
|
33
|
Lei L, Zhou Y, Wang T, Zheng Z, Chen L, Pan Y. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells. Int Immunopharmacol 2022; 112:109177. [PMID: 36049351 DOI: 10.1016/j.intimp.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal vascular disease in absence of effective pharmaceutical therapy. Adenosine monophosphate-activated protein kinase α (AMPKα) plays a critical role in various cardiovascular diseases. Whether AMPKα is involved in the pathogenesis of aortic dissection remains unknown. We aimed to determine whether activation of AMPKα prevents the formation of AD. METHODS AND RESULTS Reduced expression of phosphorylated AMPKα (Thr172) and exacerbated phenotypic switching were observed in human aortic tissues from aortic dissection patients compared with those in tissues from controls. In vivo, the formation of aortic dissection in ApoE-/- mice was successfully induced by continuous infusion of angiotensin II (AngII) for two weeks, characterized by the activation of vascular inflammation, infiltration of macrophages and phenotypic switching of vascular smooth muscle cells (VSMCs). rAAV2-mediated overexpression of constitutively active AMPKα (CA-AMPKα) enhanced the expression of phosphorylated AMPKα (Thr172) and attenuated AngII-induced occurrence of aortic dissection by suppressing the infiltration of macrophages, activation of vascular inflammation and phenotypic switching of VSMCs. The pathogenesis above was conversely exacerbated by rAAV2-mediated overexpression of dominant negative AMPKα2 (DN-AMPKα). In vitro, we demonstrated that the administration of an AMPK agonist (AICAR) or transfection of CA-AMPKα induced the activation of AMPKα and then ameliorated AngII-induced phenotypic switching in the VSMCs and inflammation in the bone marrow-derived macrophages (BMDMs). This could be reversed by the addition of AMPK inhibitor compound C or transfection of DN-AMPKα. CONCLUSION Impaired activation of AMPKα may increase the susceptibility to aortic dissection. Our findings verified the protective effects of AMPKα on the formation of aortic dissection and may provide evidence for clinical prevention or treatment.
Collapse
Affiliation(s)
- Lei Lei
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanrong Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiemao Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Zheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youmin Pan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Wang Y, Wang G, Liu X, Yun D, Cui Q, Wu X, Lu W, Yang X, Zhang M. Inhibition of APLN suppresses cell proliferation and migration and promotes cell apoptosis in esophageal cancer cells <em>in vitro</em>, through activating PI3K/mTOR signaling pathway. Eur J Histochem 2022; 66. [PMID: 35920446 PMCID: PMC9422863 DOI: 10.4081/ejh.2022.3336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Esophageal cancer is the sixth leading cause of cancer mortalities globally with a high incidence rate. Apelin (APLN) plays regulatory roles in different organs. However, its role in esophageal cancer remains unknown. Therefore, our study aims to explore the effect of APLN on esophageal cancer. One hundred and eighty-four (184) esophageal tumor tissues samples from patients with esophageal cancer, and 11 esophageal tissues samples from healthy volunteers were analyzed for the expression of APLN. APLN was highly expressed in the tumor of patients with esophageal cancer and esophageal cancer cells. Patients with high expressions of APLN had a lower survival rate than the ones with low to medium expressions of APLN. Human esophageal carcinoma cell lines, TE-1 and ECA-109 cells were transfected with APLN siRNA to knockdown APLN, or transfected with pcDNA-APLN to overexpress APLN. Inhibition of APLN by siRNA-APLN reduced proliferative, migrative, and invasive abilities of esophageal cancer cells and promoted cell apoptosis, which could be all restored by pcDNA-APLN. Moreover, knocking down APLN by siRNA-APLN suppressed the PI3K/mTOR signaling pathway. These findings identify that APLN inhibition might ameliorate esophageal cancer through activating the PI3K/mTOR signaling pathway, thus APLN could be a potential target for esophageal cancer.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University.
| | - Gang Wang
- Pharmacy Department, Puai District of Huangshi Central Hospital. Wuhan.
| | - Xiaojun Liu
- Pharmacy Department, Puai District of Huangshi Central Hospital, Wuhan.
| | - Dong Yun
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University.
| | - Qing Cui
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University.
| | - Xiaoting Wu
- Shanghai Jiao Tong University School of Medicine.
| | - Wenfeng Lu
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital, Fudan University.
| | - Xiwen Yang
- Shanghai Literature Institute of Traditional Chinese Medicine.
| | - Ming Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University.
| |
Collapse
|
35
|
Sun S, Wang F, Sun Y, Bai L. miR-146a suppresses the expression of vascular endothelial growth factor and inflammatory responses in diabetic retinopathy. Growth Factors 2022; 40:89-97. [PMID: 35605149 DOI: 10.1080/08977194.2022.2077732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study was designed to explore the role of miR-146a in diabetic retinopathy (DR). 30 healthy control (HC), 50 patients with type 2 diabetes mellitus, and 48 DR patients were enrolled. Blood was collected and levels of miR-146a expression, vascular endothelial growth factor (VEGF), and three inflammatory cytokines (NF-κB, IL-1β, and TNF-α) were detected. Moreover, ARPE-19 cells were treated with miR-146a mimic or inhibitor in the presence of high glucose to evaluate its effect in vitro. DR patients had the lowest level of miR-146a and the highest level of VEGF as well as the most severe inflammation among the three groups. In addition, the miR-146a level was negatively correlated with the expression of VEGF and three inflammatory cytokines, respectively in DR patients. Moreover, VEGF expression was positively correlated with these three inflammatory cytokines in DR patients. In summary, miR-146a could inhibit VEGF expression and inflammation in DR.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Neurology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yao Sun
- Department of Radiology, The Hebei Province Hospital of TCM, Shijiazhuang, Hebei, China
| | - Lei Bai
- Department of Endocrinology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Wang Y, Gao P, Li F, Du J. Insights on aortic aneurysm and dissection: Role of the extracellular environment in vascular homeostasis. J Mol Cell Cardiol 2022; 171:90-101. [DOI: 10.1016/j.yjmcc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
|
37
|
Wu T, Yang X, Cong Y, Xia S, Liu B, Zou R, Zeng J, Yang H. Effects of Qidantang Granule on early stage of diabetic kidney disease in rats. Aging (Albany NY) 2022; 14:4888-4896. [PMID: 35696643 PMCID: PMC9217703 DOI: 10.18632/aging.204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Diabetic kidney disease (DKD), is one of the most common vascular diseases caused by diabetes, eventually progressing into glomerular sclerosis. Qidantang Granule is a traditional Chinese medicine that is commonly used for DKD. However, there is still no experimental evidence for its effectiveness on DKD. 8-week-old Sprague Dawley male rats were fed on high-fat and high-sugar diet for 4 weeks, and then intraperitoneally injected with 35 mg/kg streptozotocin (STZ) to induce diabetes. Diabetic rats were randomly divided into three groups, and orally administrated with vehicle, 50 mg/kg or 200 mg/kg Qidantang Granule respectively, once daily for 9 weeks. Qidantang Granule effectively reduced food and water intake, body weight and fasting blood glucose, decreased inflammation and oxidative stress, ameliorated renal injury through suppressing PI3K signaling pathway in STZ-induced DKD rats. Our results provide experimental evidence to demonstrate the pharmacological mechanism of Qidantang Granule in the treatment of DKD.
Collapse
Affiliation(s)
- Tengfei Wu
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Xinyu Yang
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Yilei Cong
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Shisi Xia
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Bowen Liu
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Ran Zou
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Juanhua Zeng
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Hua Yang
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| |
Collapse
|
38
|
Ma Y, Liu L, Li B, Wang W, Zhao T. Cdk2 suppresses IL-23 expression and the onset of severe acute pancreatitis. Immun Inflamm Dis 2022; 10:e631. [PMID: 35634959 PMCID: PMC9119007 DOI: 10.1002/iid3.631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Acute pancreatitis is a sudden inflammation of the pancreas. Although interleukin-23 (IL-23) is associated with the severity of acute pancreatitis, the underlying mechanism remains largely unknown. Herein, its regulatory mechanisms were explored in this study. METHODS RNA-sequencing analysis selected the differently expressed genes in cerulean-induced acute pancreatitis mice. Polymerase chain reaction analysis determined IL-23 expression in cyclin-dependent kinase 2 (Cdk2) short hairpin RNA (shRNA)-pretreated or DDB1-cullin-4-associated factor-2 (DCAF2)-overexpressed RAW264.7 cells or CDKs inhibitor AT7519/cullin ring-finger ubiquitin ligase inhibitor MLN4924-treated bone marrow-derived macrophages in the presence of lipopolysaccharides (LPS). Pancreatic damages were evaluated in AT7519-treated pancreatitis mice. RESULTS Pancreatitis mice displayed an increased expression on IL-23 and a decreased expression of Cdk2. Inhibiting Cdk2 by shRNA or AT7519 significantly induced IL-23 expression in LPS-treated RAW cells. Moreover, AT7519 treatment significantly aggravated the severity of acute pancreatitis in mice. Furthermore, AT7519 remarkably increased DCAF2 expression, which was also induced by MLN4924 no matter with or without AT7519 in vitro. On the contrary, overexpressing DCAF2 blocked the stimulatory effect of AT7519 on IL-23 expression. CONCLUSION Cdk2 negatively regulates IL-23 expression by inhibiting DCAF2 in acute pancreatitis, indicating that Cdk2 might serve as a promising therapeutic target for acute pancreatitis.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery of East DistrictThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Longlong Liu
- Department of General Surgery of East DistrictThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bin Li
- Department of General Surgery of East DistrictThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Wenyao Wang
- Department of General Surgery of East DistrictThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Tingting Zhao
- Preventive Health ServiceThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
39
|
Puspitasari YM, Ministrini S, Schwarz L, Karch C, Liberale L, Camici GG. Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Front Cell Dev Biol 2022; 10:882211. [PMID: 35663390 PMCID: PMC9158480 DOI: 10.3389/fcell.2022.882211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Caroline Karch
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Reduced Tripartite Motif-Containing Protein 29 Deteriorates the Severity of Severe Acute Pancreatitis. Pancreas 2022; 51:469-475. [PMID: 35835099 DOI: 10.1097/mpa.0000000000002047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Severe acute pancreatitis (SAP) is the most serious subtype of acute pancreatitis, manifested as multiple-organ failure resulting in high morbidity and mortality. Based on the role of tripartite motif-containing protein 29 (TRIM29) in immune responses, we aimed to explore its effect on SAP. METHODS Peripheral blood monocyte cells from the SAP or non-SAP patients, as well as bone marrow-derived macrophages from wild-type, TRIM29 -/- , or stimulator of interferon genes (STING) -/- mice after injecting 50 mg/kg of cerulein to induce SAP, were isolated to analyze the role of TRIM29 and STING in the SAP. RESULTS Tripartite motif-containing protein 29 was significantly reduced in SAP patients. Compared with wild-type mice, TRIM29 deficiency mice displayed more severe symptom of acute pancreatitis after cerulein injection, which were lost in TRIM29 -/- STING -/- mice. Moreover, interferon and its related genes, as well as STING degradation, were decreased in TRIM29 -/- mice. CONCLUSIONS Our study demonstrated that TRIM29 negatively regulated the severity of SAP by degrading STING at its downstream, suggesting that TRIM29 and STING might serve as therapeutic targets for SAP.
Collapse
|
41
|
Trans-anethole attenuates diet-induced nonalcoholic steatohepatitis through suppressing TGF-β-mediated fibrosis. Clin Res Hepatol Gastroenterol 2022; 46:101833. [PMID: 34785385 DOI: 10.1016/j.clinre.2021.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonalcoholic Steatohepatitis (NASH) is the most severe type of non-alcoholic fatty liver disease (NAFLD) and one of the most common chronic liver diseases, leading to the increased risk of liver failure, cirrhosis and hepatocellular carcinoma. Trans-anethole was reported to have anti-inflammatory, anti-obesity and anti-diabetic activities. However, its role in NASH remains unknown. Therefore, we aimed to explore the effect of Trans-anethole on NASH. METHODS Eight-week-old C57BL/6 mice were fed on a methionine- and choline-deficient (MCD) diet for 8 weeks to induce NASH in mice, and on the meanwhile, mice were also orally administrated with or without 100 mg/kg Trans-anethole daily to evaluate the effect of Trans-anethole on NASH. RESULTS Trans-anethole dose-dependently ameliorated liver injury in MCD diet-fed mice, then the most effective dose of Trans-anethole 100 mg/kg was chosen. Trans-anethole significantly attenuated hepatic steatosis, inflammation and hepatic fibrosis in MCD diet-induced NASH mice. Moreover, Trans-anethole reduced hepatic fibrosis by inhibiting transforming growth factor-beta signaling pathway both in vivo and in vitro. CONCLUSION Trans-anethole effectively ameliorated NASH in MCD diet-fed mice, which suggested that Trans-anethole might serve as a therapeutic strategy for NASH.
Collapse
|
42
|
The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022; 14:nu14071412. [PMID: 35406025 PMCID: PMC9003430 DOI: 10.3390/nu14071412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma homocysteine (HCY) is an established risk factor for cardiovascular disease CVD and stroke. However, more than two decades of intensive research activities has failed to demonstrate that Hcy lowering through B-vitamin supplementation results in a reduction in CVD risk. Therefore, doubts about a causal involvement of hyperhomocysteinemia (HHcy) and B-vitamin deficiencies in atherosclerosis persist. Existing evidence indicates that HHcy increases oxidative stress, causes endoplasmatic reticulum (ER) stress, alters DNA methylation and, thus, modulates the expression of numerous pathogenic and protective genes. Moreover, Hcy can bind directly to proteins, which can change protein function and impact the intracellular redox state. As most mechanistic evidence is derived from experimental studies with rather artificial settings, the relevance of these results in humans remains a matter of debate. Recently, it has also been proposed that HHcy and B-vitamin deficiencies may promote CVD through accelerated telomere shortening and telomere dysfunction. This review provides a critical overview of the existing literature regarding the role of HHcy and B-vitamin deficiencies in CVD. At present, the CVD risk associated with HHcy and B vitamins is not effectively actionable. Therefore, routine screening for HHcy in CVD patients is of limited value. However, B-vitamin depletion is rather common among the elderly, and in such cases existing deficiencies should be corrected. While Hcy-lowering with high doses of B vitamins has no beneficial effects in secondary CVD prevention, the role of Hcy in primary disease prevention is insufficiently studied. Therefore, more intervention and experimental studies are needed to address existing gaps in knowledge.
Collapse
|
43
|
Li Q, Tao X, Zhang Y. Rosmarinic acid alleviates diabetic osteoporosis by suppressing the activation of NLRP3 inflammasome in rats. Physiol Int 2022; 109:46-57. [PMID: 35230263 DOI: 10.1556/2060.2022.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/21/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Diabetic osteoporosis is a common metabolic bone disorder characterized by bone loss in diabetic patients, which causes an enormous social burden due to the unsatisfactory outcome of current therapeutic strategy. METHODS Based on the importance of inflammasome activation in diabetic osteoporosis, we evaluated the protective effect of an antioxidant, rosmarinic acid (RA) in diabetic osteoporosis. Bone marrow-derived monocytes isolated from rats were treated with receptor activator of nuclear factor kappa-Β ligand (RANKL) and macrophage colony stimulating factor to differentiate into mature osteoclasts (OCs). Next OCs were stimulated with RA under high glucose condition to evaluate bone resorption. Next, streptozotocin (STZ)-injected rats were orally treated with 50 mg kg-1 RA to analyze its effect on diabetic osteoporosis. RESULTS RA inhibited high glucose-stimulated inflammation and inflammasome activation in OCs. Bone resorption was also reduced after RA treatment as shown by the resorption pits assay. Moreover, RA significantly reduced bone resorption, alleviated bone weight loss and increased bone mineral density by inhibiting the activation of NACHT-LRR-PYD domains-containing protein 3 (NLRP3) inflammasome in STZ-induced diabetic rats, leading to the improvement of diabetic osteoporosis. CONCLUSION RA effectively ameliorates diabetic osteoporosis in STZ-induced rats by inhibiting the activation of NLRP3 inflammasome in OCs, which suggests that RA might serve as a potential candidate drug for treating diabetic osteoporosis.
Collapse
Affiliation(s)
- Qingsong Li
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| | - Xueshun Tao
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| | - Yubing Zhang
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| |
Collapse
|
44
|
Cao J, Peng Q. NLRP3 Inhibitor Tranilast Attenuates Gestational Diabetes Mellitus in a Genetic Mouse Model. Drugs R D 2022; 22:105-112. [PMID: 35124792 PMCID: PMC8885922 DOI: 10.1007/s40268-022-00382-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Jing Cao
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Qian Peng
- School of Medicine, Nankai University, Nankai District, Tianjin, China
| |
Collapse
|
45
|
Wang X, Tang Y, Xiao R. Chemerin contributes to inflammatory responses and suppresses osteogenic differentiation in chronic periodontitis. Oral Dis 2022; 29:1706-1714. [PMID: 35029006 DOI: 10.1111/odi.14130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 01/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic periodontitis (CP) is a common disease of oral cavity, and approximately 35% of adults suffered from CP. Therefore, its underlying mechanism needs to be explored for new therapeutic approaches. Chemerin as a multifunctional adipokine, is found to be highly expressed in the gingival crevicular fluid (GCF), gingival tissues and the plasma of periodontitis patients. Thus, we aimed to uncover the underlying mechanism of chemerin in CP. METHODS 36 CP patients and 25 healthy volunteers were enrolled. Periodontal ligament stem cells (PDLSCs) were isolated from CP patients and healthy ones respectively. Then normal PDLSCs or PDLSCs-differentiated osteoblasts were treated with different doses of recombinant human chemerin. RESULTS Chemerin and inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, were higher in the GCF and serum of CP patients than healthy ones. Moreover, chemerin was positively correlated with these three inflammatory cytokines respectively in CP patients. PDLSCs isolated from CP patients had higher expressions of chemerin and these cytokines than the ones isolated from normal individuals. Furthermore, chemerin dose-dependently increased inflammatory responses and inhibited osteogenic differentiation of PDLSCs. CONCLUSION Chemerin accelerated inflammatory responses and suppressed osteogenic differentiation of PDLSCs, thus chemerin might sever as a therapeutic target of CP.
Collapse
Affiliation(s)
- Xinling Wang
- Department of Stomatology, First Medical Center of Chinese, PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yuejun Tang
- Suzhou Industrial Park Hudong Dental Doctor Clinic Co, Ltd. No. 278, Suzhou East Avenue, Suzhou Industrial Park, Suzhou, 215000, Jiangsu, China
| | - Rui Xiao
- Department of Stomatology, First Medical Center of Chinese, PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
46
|
Zhang J, Li L, Xiu F. Sesamin inhibits cellular inflammation of microglial cells in the retina and alleviates diabetic retinopathy. J Neurophysiol 2022; 127:405-411. [PMID: 35020533 DOI: 10.1152/jn.00466.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common micro-vascular complication of diabetes, and the leading cause of vision loss and blindness globally. Due to the unsatisfied outcome of current therapies, a novel strategy needs to be developed. BV2 microglial cells were treated with 25 natural compounds respectively in the stimulation of high glucose (HG), to screen for the potential candidate drug. Streptozotocin (STZ)- induced diabetic mice were injected with different doses of the candidate Sesamin every two days for one month. Then, its protective role and possible mechanism were evaluated. Sesamin was selected as candidate drug due to its inhibition on the secretion of tumor necrosis factor-α (TNFα) in the screen assay. Sesamin also dose-dependently inhibited mRNA levels of HG-induced inflammatory cytokines, including TNFα, interleukin (IL)-1β and IL-6, activated NF-κB signaling pathway, and reduced oxidative stress by decreasing reactive oxygen species levels and increasing antioxidant enzymes in the BV2 and primary retinal microglia. Additionally, Sesamin alleviated brain-retinal barrier breakdown by Evan's blue leakage assay and reduced inflammation in Streptozotocin-induced diabetic mice. In conclusion, Sesamin effectively inhibits HG-induced microglial inflammation in the retina both in vivo and in vitro, suggesting that Sesamin might serve as a candidate drug for DR treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, People's Hospital of Rizhao, Donggang District, Rizhao, Shandong, China
| | - Linlin Li
- Department of Ophthalmology, People's Hospital of Rizhao, Donggang District, Rizhao, Shandong, China
| | - Fangwei Xiu
- Department of Ophthalmology, People's Hospital of Rizhao, Donggang District, Rizhao, Shandong, China
| |
Collapse
|
47
|
Li B, Song X, Guo W, Hou Y, Hu H, Ge W, Fan T, Han Z, Li Z, Yang P, Gao R, Zhao H, Wang J. Single-Cell Transcriptome Profiles Reveal Fibrocytes as Potential Targets of Cell Therapies for Abdominal Aortic Aneurysm. Front Cardiovasc Med 2021; 8:753711. [PMID: 34901214 PMCID: PMC8652037 DOI: 10.3389/fcvm.2021.753711] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is potentially life-threatening in aging population due to the risk of aortic rupture and a lack of optimal treatment. The roles of different vascular and immune cells in AAA formation and pathogenesis remain to be future characterized. Single-cell RNA sequencing was performed on an angiotensin (Ang) II-induced mouse model of AAA. Macrophages, B cells, T cells, fibroblasts, smooth muscle cells and endothelial cells were identified through bioinformatic analyses. The discovery of multiple subtypes of macrophages, such as the re-polarization of Trem2+Acp5+ osteoclast-like and M2-like macrophages toward the M1 type macrophages, indicates the heterogenous nature of macrophages during AAA development. More interestingly, we defined CD45+COL1+ fibrocytes, which was further validated by flow cytometry and immunostaining in mouse and human AAA tissues. We then reconstituted these fibrocytes into mice with Ang II-induced AAA and found the recruitment of these fibrocytes in mouse AAA. More importantly, the fibrocyte treatment exhibited a protective effect against AAA development, perhaps through modulating extracellular matrix production and thus enhancing aortic stability. Our study reveals the heterogeneity of macrophages and the involvement of a novel cell type, fibrocyte, in AAA. Fibrocyte may represent a potential cell therapy target for AAA.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yangfeng Hou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huiyuan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,First Clinical College, Xi'an Jiaotong University, ShaanXi, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhifa Han
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
A designed nanomedicine reprogrammes the phenotype and enhances the phagocytic ability of macrophages to ameliorate lung cancer in a mouse model. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Fan W, Kang W, Li T, Luo D, Huang L, Yang Y, Sun Y. Interleukin-33 and its receptor soluble suppression of tumorigenicity 2 in the diagnosis of gestational diabetes mellitus. Int J Clin Pract 2021; 75:e14944. [PMID: 34605145 DOI: 10.1111/ijcp.14944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common pregnancy-related disease that increases the risk of metabolic disorders for the pregnancies and their offspring. GDM could be effectively prevented by early diagnosis and timely treatment. METHODS 120 patients with GDM and 108 gestational week-matched pregnancies with normal glucose tolerance (NGT) were enrolled in our study. Their blood samples were collected, and demographic characteristics were analysed. RESULTS Compared to NGT pregnancies, patients with GDM had increased the secretions of interleukin (IL)-33, soluble suppression of tumorigenicity 2 (sST2), IL-6 and tumour necrosis factor-α (TNF-α) in their plasma with elevated homeostatic model assessment (HOMA). Moreover, IL-33/sST2 was positively correlated with HOMA, IL-6 and TNF-α levels in the plasma of patients with GDM respectively. CONCLUSION IL-33/sST2 might serve as a novel potential biomarker for early diagnosis of GDM.
Collapse
Affiliation(s)
- Wei Fan
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Wei Kang
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Tao Li
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Dandan Luo
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Lei Huang
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Yimei Yang
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Yu Sun
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| |
Collapse
|
50
|
Zhang H, Hao Y, Yang A, Xie L, Ding N, Xu L, Wang Y, Yang Y, Bai Y, Zhang H, Jiang Y. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1318-1335. [PMID: 34853730 PMCID: PMC8609111 DOI: 10.1016/j.omtn.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
It has been demonstrated that homocysteine (Hcy) can cause inflammatory diseases. Long noncoding RNAs (lncRNA) and microRNAs (miRNAs) are involved in this biological process, but the mechanism underlying Hcy-induced inflammation remains poorly understood. Here, we found that lncRNA TGFB3-AS1 was highly expressed in macrophages treated with Hcy and the peripheral blood monocytes from cystathionine beta-synthase heterozygous knockout (CBS+/−) mice with a high-methionine diet using lncRNA microarray. In vivo and in vitro experiments further confirmed that TGFB3-AS1 accelerated Hcy-induced inflammation of macrophages through the Rap1a/wnt signaling pathway. Meanwhile, TGFB3-AS1 interacted with Rap1a and reduced degradation of Rap1a through inhibiting its ubiquitination in macrophages treated with Hcy. Rap1a mediated inflammation induced by Hcy and serves as a direct target of miR-144. Moreover, TGFB3-AS1 regulated miR-144 by binding to pri-miR-144 and inhibiting its maturation, which further regulated Rap1a expression. More importantly, we found that high expression of TGFB3-AS1 was positively correlated with the levels of Hcy and proinflammatory cytokines in serum of healthy individuals and patients with HHcy. Our study revealed a novel mechanism by which TGFB3-AS1 promoted inflammation of macrophages through inhibiting miR-144 maturation to stay miR-144 regulated inhibition of functional Rap1a expression.
Collapse
Affiliation(s)
- Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yanhua Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yong Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yongsheng Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Corresponding author Huiping Zhang, Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, 804 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
- Corresponding author Yideng Jiang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| |
Collapse
|