1
|
Hitz MP, Dombrowsky G, Melnik N, Vey C. Current and future diagnostics of congenital heart disease (CHD). MED GENET-BERLIN 2025; 37:95-102. [PMID: 40207043 PMCID: PMC11976401 DOI: 10.1515/medgen-2025-2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Congenital heart defects (CHD) are one of the most common anomalies found among live births and represent a complex multifactorial condition. Given that more than 90 % of cases survive due to improved early treatment options (e.g., catheter intervention, surgical procedure, and improved intensive care), genotype-informed patient follow-up should consider lifelong treatment considering different types of comorbidities. Unfortunately, a thorough genetic workup is only offered to a minority of CHD patients. However, a comprehensive understanding of the genetic underpinnings combined with in-depth phenotyping would strengthen our knowledge regarding the impact of environmental (e.g., pre-gestational diabetes) and genetic causes ranging from aneuploidies to single variants and more complex inheritance patterns on early heart development. Therefore, comprehensive genetic analysis in these patients is an essential way of predicting the prognosis and recurrence risk in families and ultimately improving patients' quality of life due to better therapeutic options. In this review, we examine the different types of variants and genes of different molecular genetics techniques to assess the diagnostic yield in different CHD sub-phenotypes. Given the complex inheritance pattern observed in CHD, we also consider possible future methods and frameworks to improve diagnostics and allow for better genotype-phenotype correlation in this patient group. Predicting recurrence risk and prognosis in CHD patients will ultimately allow for better treatment and lifelong therapeutic outcomes for CHD patients.
Collapse
Affiliation(s)
- Marc-Phillip Hitz
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Gregor Dombrowsky
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Nico Melnik
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Chiara Vey
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| |
Collapse
|
2
|
McMullan A, Zwierzynski JB, Jain N, Haneline LS, Shou W, Kua KL, Hota SK, Durbin MD. Role of Maternal Obesity in Offspring Cardiovascular Development and Congenital Heart Defects. J Am Heart Assoc 2025; 14:e039684. [PMID: 40314345 DOI: 10.1161/jaha.124.039684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Congenital heart disease is a leading cause of death in newborns, yet many of its molecular mechanisms remain unknown. Both maternal obesity and diabetes increase the risk of congenital heart disease in offspring, with recent studies suggesting these conditions may have distinct teratogenic mechanisms. The global prevalence of obesity is rising, and while maternal obesity is a known risk factor for fetal congenital heart disease, the specific mechanisms are largely unexplored. METHODS AND RESULTS We used a murine model of diet-induced maternal obesity, without diabetes, to produce dams that were overweight but had normal blood glucose levels. Embryos were generated and their developing hearts analyzed. Transcriptome analysis was performed using single-nucleus and bulk RNA sequencing. Global and phospho-enriched proteome analysis was performed using tandem mass tag-mass spectroscopy. Immunobloting and histologic evaluation were also performed. Analysis revealed disrupted oxidative phosphorylation and reactive oxygen species formation, with reduced antioxidant capacity, evidenced by downregulation of genes Sod1 and Gp4x, and disrupted Hif1a signaling. Evidence of oxidative stress, cell death signaling, and alteration in Rho GTPase and actin cytoskeleton signaling was also observed. Genes involved in cardiac morphogenesis, including Hand2, were downregulated, and fewer mature cardiomyocytes were present. Histologic analysis confirmed increased cardiac defects in embryos exposed to maternal obesity. CONCLUSIONS These findings demonstrate that maternal obesity alone can result in cardiac defects through mechanisms similar to those associated with maternal hyperglycemia. This study provides valuable insight into the role of maternal obesity, a growing and modifiable risk factor, in the development of the most common birth defect, congenital heart disease.
Collapse
Affiliation(s)
- Ashleigh McMullan
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | | | - Nina Jain
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Laura S Haneline
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Weinian Shou
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Kok Lim Kua
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
- Center for Diabetes and Metabolic Disease Research Indiana University School of Medicine Indianapolis IN USA
| | - Swetansu K Hota
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Matthew D Durbin
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
3
|
Helm BM, Wetherill L, Landis BJ, Ware SM. Dysmorphology-Based Prediction Model for Genetic Disorders in Infants With Congenital Heart Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e004895. [PMID: 40151936 PMCID: PMC11999770 DOI: 10.1161/circgen.124.004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Genetic disorders are prevalent in patients with congenital heart disease (CHD), but genetic evaluations are underutilized and nonstandardized. We sought to quantify a dysmorphology score and develop phenotype-based prediction models for genetic diagnoses in CHD. METHODS We used a test-negative case-control study of inpatient infants (<1 year) with CHD undergoing standardized genetic evaluations. We quantified a novel dysmorphology score and combined it with other clinical variables used in multivariable logistic regression models to predict genetic diagnoses identified by genetic testing. RESULTS Of 1008 patients, 24.1% (243/1008) had genetic diagnoses identified. About half of the cohort were either nondysmorphic or mildly dysmorphic with dysmorphology scores ≤2. There were higher dysmorphology scores according to CHD class (P=0.0007), extracardiac anomaly-positive status (P<0.0001), female sex (P=0.05), and genetic diagnosis identified (P<0.0001). Multivariable logistic regression models quantified this effect further: each +1 increase in the dysmorphology score was associated with a 17% to 20% increased risk of genetic diagnoses (odds ratios, 1.17-1.20, P<0.0001). Extracardiac anomaly-positive status remained a stronger predictor of genetic diagnoses (odds ratios, 2.81-3.39). Nonetheless, about 10% of the cohort were minimally dysmorphic (dysmorphology scores ≤2), had isolated CHD, and were found to have genetic diagnoses, indicating that dysmorphology-based screening can be used to risk-stratify but not exclude genetic diagnoses. CONCLUSIONS The dysmorphology score is a novel screen for patients with CHD at high risk of having genetic diagnoses identified by genetic testing, including disorders not easily recognized by clinicians. We used these results to develop predicted probability plots for genetic diagnoses in patients with CHD.
Collapse
Affiliation(s)
- Benjamin M. Helm
- Dept of Medical & Molecular Genetics, Indiana University School of Medicine
- Dept. of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, IN
| | - Leah Wetherill
- Dept of Medical & Molecular Genetics, Indiana University School of Medicine
| | | | - Stephanie M. Ware
- Dept of Medical & Molecular Genetics, Indiana University School of Medicine
- Dept of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
4
|
Zhang X, Qi M, Fu Q. Molecular genetics of congenital heart disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2861-9. [PMID: 40163266 DOI: 10.1007/s11427-024-2861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Congenital heart disease (CHD) is the most prevalent human birth defect and remains a leading cause of mortality in childhood. Although advancements in surgical and medical interventions have significantly reduced mortality rates among infants with critical CHDs, many survivors experience substantial cardiac and extracardiac comorbidities that affect their quality of life. The etiology of CHD is multifactorial, involving both genetic and environmental factors, yet a definitive cause remains unidentified in many cases. Recent advancements in genetic testing technologies have improved our ability to identify the genetic causes of CHD. This review presents an updated summary of the established genetic contributions to CHD, including chromosomal aberrations and mutations in genes associated with transcription factors, cardiac structural proteins, chromatin modifiers, cilia-related proteins, and cell signaling pathways. Furthermore, we discuss recent findings that support the roles of non-coding mutations and complex inheritance in the etiology of CHD.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
5
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. eLife 2025; 13:RP100797. [PMID: 40080060 PMCID: PMC11906159 DOI: 10.7554/elife.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A Bisson
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Ritu Kumar
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | | | - Ellen Yang
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Kelly M Banks
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Wendy K Chung
- Childrens Hospital, Harvard Medical SchoolBostonUnited States
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Todd Evans
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell MedicineNew YorkUnited States
- Center for Genomic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
6
|
Kars ME, Stein D, Stenson PD, Cooper DN, Chung WK, Gruber PJ, Seidman CE, Shen Y, Tristani-Firouzi M, Gelb BD, Itan Y. Deciphering the digenic architecture of congenital heart disease using trio exome sequencing data. Am J Hum Genet 2025; 112:583-598. [PMID: 39983722 PMCID: PMC11947165 DOI: 10.1016/j.ajhg.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly and a leading cause of infant morbidity and mortality. Despite extensive exploration of the monogenic causes of CHD over the last decades, ∼55% of cases still lack a molecular diagnosis. Investigating digenic interactions, the simplest form of oligogenic interactions, using high-throughput sequencing data can elucidate additional genetic factors contributing to the disease. Here, we conducted a comprehensive analysis of digenic interactions in CHD by utilizing a large CHD trio exome sequencing cohort, comprising 3,910 CHD and 3,644 control trios. We extracted pairs of presumably deleterious rare variants observed in CHD-affected and unaffected children but not in a single parent. Burden testing of gene pairs derived from these variant pairs revealed 29 nominally significant gene pairs. These gene pairs showed a significant enrichment for known CHD genes (p < 1.0 × 10-4) and exhibited a shorter average biological distance to known CHD genes than expected by chance (p = 3.0 × 10-4). Utilizing three complementary biological relatedness approaches including network analyses, biological distance calculations, and candidate gene prioritization methods, we prioritized 10 final gene pairs that are likely to underlie CHD. Analysis of bulk RNA-sequencing data showed that these genes are highly expressed in the developing embryonic heart (p < 1 × 10-4). In conclusion, our findings suggest the potential role of digenic interactions in CHD pathogenesis and provide insights into unresolved molecular diagnoses. We suggest that the application of the digenic approach to additional disease cohorts will significantly enhance genetic discovery rates.
Collapse
Affiliation(s)
- Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Stein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Gruber
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA 02115, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Martin Tristani-Firouzi
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Zhang S, Kang C, Cui J, Xue H, Zhao S, Chen Y, Lu H, Ye L, Wang D, Chen F, Zhao Y, Pei L, Qu P. Development of machine learning-based models to predict congenital heart disease: A matched case-control study. Int J Med Inform 2025; 195:105741. [PMID: 39647289 DOI: 10.1016/j.ijmedinf.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The current congenital heart disease (CHD) prediction tools lack adequate interpretability and convenience, hindering the development of personalized CHD management strategies. We developed a machine learning-based risk stratification model for CHD prediction. METHODS This study utilized data from 1,759 participants in a case-control study of CHD conducted across six birth defects surveillance hospitals located in Xi'an, Shaanxi Province, Northwest China, spanning from January 2014 to December 2016. The data was partitioned into training and testing datasets with a ratio of 7:3. Predictors were selected from a total of 47 input variables through the Least Absolute Shrinkage and Selection Operator (LASSO). Five machine learning algorithms were used to build the CHD risk prediction models. Model performance was assessed based on a range of learning metrics, including the area under the receiver operating characteristic curve (AUROC), F1 score, and Brier score. Permutation feature importance was employed to elucidate the prediction model. The best-performing model was used to conduct the risk scores. RESULTS The eXtreme Gradient Boosting (XGB) model demonstrated superior performance among CHD prediction models, achieving an AUROC of 0.772 (95 % CI 0.728, 0.817) in the testing dataset and 0.738 (0.699, 0.775) in the external validation dataset. The pivotal predictors (top 3) identified by the model included living in rural areas, the low wealth index, and folic acid supplements (<90 days). The resultant risk score exhibited robust calibration capabilities. Utilizing the risk scores, participants were stratified into low, moderate, and high-risk categories, signifying substantial variations in CHD risk. CONCLUSION This study underscores the feasibility and efficacy of employing a machine learning-based approach for CHD prediction. The risk scores exhibited potential in identifying pregnant women at high risk for fetal CHD, offering valuable insights for guiding primary prevention and CHD management.
Collapse
Affiliation(s)
- Shutong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Chenxi Kang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jing Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Haodan Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Shanshan Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yukui Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Haixia Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Duolao Wang
- Biostatistics Unit, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fangyao Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yaling Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Leilei Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Pengfei Qu
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an 710061, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China.
| |
Collapse
|
8
|
Zodanu GKE, Hwang JH, Mudery J, Sisniega C, Kang X, Wang LK, Barsegian A, Biniwale RM, Si MS, Halnon NJ, UCLA Congenital Heart Defects-BioCore Faculty, Grody WW, Satou GM, Van Arsdell GS, Nelson SF, Touma M. Whole-Exome Sequencing Identifies Novel GATA5/6 Variants in Right-Sided Congenital Heart Defects. Int J Mol Sci 2025; 26:2115. [PMID: 40076735 PMCID: PMC11901071 DOI: 10.3390/ijms26052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
One out of every hundred live births present with congenital heart abnormalities caused by the aberrant development of the embryonic cardiovascular system. The conserved zinc finger transcription factor proteins, which include GATA binding protein 5 (GATA5) and GATA binding protein (GATA6) play important roles in embryonic development and their inactivation may result in congenital heart defects (CHDs). In this study, we performed genotypic-phenotypic analyses in two families affected by right-sided CHD diagnosed by echocardiography imaging. Proband A presented with pulmonary valve stenosis, and proband B presented with complex CHD involving the right heart structures. For variant detection, we employed whole-genome single-nucleotide polymorphism (SNP) microarray and family-based whole-exome sequencing (WES) studies. Proband A is a full-term infant who was admitted to the neonatal intensive care unit (NICU) at five days of life for pulmonary valve stenosis (PVS). Genomic studies revealed a normal SNP microarray; however, quad WES analysis identified a novel heterozygous [Chr20:g.61041597C>G (p.Arg237Pro)] variant in the GATA5 gene. Further analysis confirmed that the novel variant was inherited from the mother but was absent in the father and the maternal uncle with a history of heart murmur. Proband B was born prematurely at 35 weeks gestation with a prenatally diagnosed complex CHD. A postnatal evaluation revealed right-sided heart defects including pulmonary atresia with intact ventricular septum (PA/IVS), right ventricular hypoplasia, tricuspid valve hypoplasia, hypoplastic main and bilateral branch pulmonary arteries, and possible coronary sinusoids. Cardiac catheterization yielded anatomy and hemodynamics unfavorable to repair. Hence, heart transplantation was indicated. Upon genomic testing, a normal SNP microarray was observed, while trio WES analysis identified a novel heterozygous [Chr18:c.1757C>T (p.Pro586Leu)] variant in the GATA6 gene. This variant was inherited from the father, who carries a clinical diagnosis of tetralogy of Fallot. These findings provide new insights into novel GATA5/6 variants, elaborate on the genotypic and phenotypic association, and highlight the critical role of GATA5 and GATA6 transcription factors in a wide spectrum of right-sided CHDs.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Jordan Mudery
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Lee-Kai Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Reshma M. Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Nancy J. Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | | | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanly F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Phillips M, Nimmo M, Rugonyi S. Developmental and Evolutionary Heart Adaptations Through Structure-Function Relationships. J Cardiovasc Dev Dis 2025; 12:83. [PMID: 40137081 PMCID: PMC11942974 DOI: 10.3390/jcdd12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
While the heart works as an efficient pump, it also has a high level of adaptivity by changing its structure to maintain function during healthy and diseased states. In this Review, we present examples of structure-function relationships across species and throughout embryonic development in mammals and birds. We also summarize current research on avian models aiming at understanding how biophysical and biological mechanisms closely interact during heart formation. We conclude by underscoring similarities between cardiac adaptations and structural changes over developmental and evolutionary time scales and how understanding the mechanisms behind these adaptations can help prevent or alleviate the effects of cardiac malformations and contribute to cardiac regeneration efforts.
Collapse
Affiliation(s)
| | | | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA; (M.P.); (M.N.)
| |
Collapse
|
10
|
Liang YL, Hu YX, Li FF, You HM, Chen J, Liang C, Guo ZF, Jing Q. Adaptor protein Src-homology 2 domain containing E (SH2E) deficiency induces heart defect in zebrafish. Acta Pharmacol Sin 2025; 46:404-415. [PMID: 39313516 PMCID: PMC11747093 DOI: 10.1038/s41401-024-01392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Adaptor proteins play crucial roles in signal transduction across diverse signaling pathways. Src-homology 2 domain-containing E (SH2E) is the adaptor protein highly expressed in vascular endothelial cells and myocardium during zebrafish embryogenesis. In this study we investigated the function and mechanisms of SH2E in cardiogenesis. We first analyzed the spatiotemporal expression of SH2E and then constructed zebrafish lines with SH2E deficiency using the CRISPR-Cas9 system. We showed that homozygous mutants developed progressive pericardial edema (PCE), dilated atrium, abnormal atrioventricular looping and thickened atrioventricular wall from 3 days post fertilization (dpf) until death; inducible overexpression of SH2E was able to partially rescue the PCE phenotype. Using transcriptome sequencing analysis, we demonstrated that the MAPK/ERK and NF-κB signaling pathways might be involved in SH2E-deficiency-caused PCE. This study underscores the pivotal role of SH2E in cardiogenesis, and might help to identify innovative diagnostic techniques and therapeutic strategies for congenital heart disease.
Collapse
Affiliation(s)
- Yu-Lai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yang-Xi Hu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang-Fang Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Hong-Min You
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jian Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Zhi-Fu Guo
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602666. [PMID: 39026742 PMCID: PMC11257636 DOI: 10.1101/2024.07.09.602666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hours of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A. Bisson
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- current address: Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ellen Yang
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly M. Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
- current address: College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Wendy K. Chung
- Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Dai FF, Chen J, Ma Z, Yang MH, Sun T, Ma J, Zhou MJ, Wei ZR, Zou Y, Zhang S, Zang MX. The polycomb protein complex interacts with GATA-6/PPARα to inhibit α-MHC expression. Dev Growth Differ 2025; 67:23-32. [PMID: 39723530 DOI: 10.1111/dgd.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6. By overexpression and knockout of EZH2/BMI1, it was demonstrated that the polycomb protein complex inhibits cardiac differentiation induced by GATA-6 and PPARα. Together, our results demonstrate that the polycomb protein complex interacts with GATA-6/PPARα to inhibit cardiac differentiation, a finding that could facilitate the development of new therapies for congenital heart disease.
Collapse
Affiliation(s)
- Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Juan Ma
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Li C, Tan Z, Li H, Yao X, Peng C, Qi Y, Wu B, Zhao T, Li C, Shen J, Wang H. Elevated microRNA-187 causes cardiac endothelial dysplasia to promote congenital heart disease through inhibition of NIPBL. J Clin Invest 2024; 135:e178355. [PMID: 39585787 DOI: 10.1172/jci178355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Cardiac endothelial cells are essential for heart development, and disruption of this process can lead to congenital heart disease (CHD). However, how microRNAs influence cardiac endothelial cells in CHD remains unclear. This study identified elevated microRNA-187 (miR-187) expression in embryonic heart endothelial cells from CHD fetuses. Using a conditional knockin model, we showed that increased miR-187 levels in embryonic endothelial cells induce CHD in homozygous fetal mice, closely mirroring human CHD. Mechanistically, miR-187 targets NIPBL, which is responsible for recruiting the cohesin complex and facilitating chromatin accessibility. Consequently, the endothelial cell-specific upregulation of miR-187 inhibited NIPBL, leading to reduced chromatin accessibility and impaired gene expression, which hindered endothelial cell development and ultimately caused heart septal defects and reduced heart size both in vitro and in vivo. Importantly, exogenous miR-187 expression in human cardiac organoids mimicked developmental defects in the cardiac endothelial cells, and this was reversible by NIPBL replenishment. Our findings establish the miR-187/NIPBL axis as a potent regulator that inhibits cardiac endothelial cell development by attenuating the transcription of numerous endothelial genes, with our mouse and human cardiac organoid models effectively replicating severe defects from minor perturbations. This discovery suggests that targeting the miR-187/NIPBL pathway could offer a promising therapeutic approach for CHD.
Collapse
Affiliation(s)
- Chao Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zizheng Tan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hongdou Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaoying Yao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
| | - Chuyue Peng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yue Qi
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Chentao Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Prenatal Diagnosis Center of Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
15
|
Sutter C, Haas C, Bode PK, Neubauer J, Dyrberg Andersen J. Exploratory DNA methylation analysis in post-mortem heart tissue of sudden unexplained death. Clin Epigenetics 2024; 16:167. [PMID: 39578896 PMCID: PMC11585171 DOI: 10.1186/s13148-024-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sudden unexplained death (SUD) is a devastating event in the young. Despite efforts to identify causal genetic variants, many cases remain unexplained after genetic screening. This study aimed to investigate an alternative potential contributor to SUD by studying the human methylome using the MethylationEPIC v2.0 BeadChip kit in heart tissue from SUD cases. The genome-wide methylation results of the SUD cases were compared to the results of a control cohort. The SUD cases were divided into three main groups based on their autopsy reports, heart morphology and histopathology (primaryN: macroscopically and histologically normal heart; primaryCM: macroscopically or histologically abnormal heart, suspected cardiomyopathies; and secondary: myocardial damage due to other underlying conditions). The main focus of this study was to identify differentially methylated regions (DMRs) between the case groups and the control cohort. RESULTS We identified DMRs for both the primaryN and primaryCM groups, whereas the secondary group yielded no such results. In the primaryN cases, the corresponding genes for each DMR led to the identification of genes with common biological pathways. Some were associated with heart morphology (e.g. heart outflow tract morphogenesis or trabecular morphogenesis), but the majority belonged to more general cellular regulatory pathways (e.g. transcription coactivator activity, long non-coding RNAs, etc.). Although no common pathways were found for the primaryCM group, some common regulatory molecular functions were identified, such as p53 binding and transcription coactivator activity. CONCLUSIONS Our study is the first to investigate the whole human methylome in heart tissue of SUD cases. We propose that there are observable differences in the methylation patterns of the case groups that may have contributed to SUD. Still, further studies are required to improve our understanding of the impact of methylation levels on SUD risk and to pinpoint methylation-based screening opportunities for SUD relatives.
Collapse
Affiliation(s)
- Charlotte Sutter
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Peter K Bode
- Institute of Pathology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
de Oliveira FG, Foletto JVP, Medeiros YCS, Schuler-Faccini L, Kowalski TW. Bioinformatic Multi-Strategy Profiling of Congenital Heart Defects for Molecular Mechanism Recognition. Int J Mol Sci 2024; 25:12052. [PMID: 39596121 PMCID: PMC11594028 DOI: 10.3390/ijms252212052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Congenital heart defects (CHDs) rank among the most common birth defects, presenting diverse phenotypes. Genetic and environmental factors are critical in molding the process of cardiogenesis. However, these factors' interactions are not fully comprehended. Hence, this study aimed to identify and characterize differentially expressed genes involved in CHD development through bioinformatics pipelines. We analyzed experimental datasets available in genomic databases, using transcriptome, gene enrichment, and systems biology strategies. Network analysis based on genetic and phenotypic ontologies revealed that EP300, CALM3, and EGFR genes facilitate rapid information flow, while NOTCH1, TNNI3, and SMAD4 genes are significant mediators within the network. Differential gene expression (DGE) analysis identified 2513 genes across three study types, (1) Tetralogy of Fallot (ToF); (2) Hypoplastic Left Heart Syndrome (HLHS); and (3) Trisomy 21/CHD, with LYVE1, PLA2G2A, and SDR42E1 genes found in three of the six studies. Interaction networks between genes from ontology searches and the DGE analysis were evaluated, revealing interactions in ToF and HLHS groups, but none in Trisomy 21/CHD. Through enrichment analysis, we identified immune response and energy generation as some of the relevant ontologies. This integrative approach revealed genes not previously associated with CHD, along with their interactions and underlying biological processes.
Collapse
Affiliation(s)
- Fabyanne Guimarães de Oliveira
- Laboratory of Medical Genetics and Evolution, Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (F.G.d.O.); (J.V.P.F.); (L.S.-F.)
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil;
| | - João Vitor Pacheco Foletto
- Laboratory of Medical Genetics and Evolution, Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (F.G.d.O.); (J.V.P.F.); (L.S.-F.)
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil;
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Yasmin Chaves Scimczak Medeiros
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil;
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Lavínia Schuler-Faccini
- Laboratory of Medical Genetics and Evolution, Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (F.G.d.O.); (J.V.P.F.); (L.S.-F.)
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil;
- National Institute on Population Medical Genetics (INAGEMP), Porto Alegre 90035-903, Brazil
- Graduate Program in Children and Adolescent Health, Medicine Faculty, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Medical Genetics and Evolution, Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (F.G.d.O.); (J.V.P.F.); (L.S.-F.)
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil;
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- National Institute on Population Medical Genetics (INAGEMP), Porto Alegre 90035-903, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Graduate Program in Medicine: Medical Sciences, Medicine Faculty, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| |
Collapse
|
18
|
Zhu L, Chen M, Shi Y, Huang X, Ding H. Prenatal detection of novel compound heterozygous variants of the PLD1 gene in a fetus with congenital heart disease. Front Genet 2024; 15:1498485. [PMID: 39553471 PMCID: PMC11564120 DOI: 10.3389/fgene.2024.1498485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and heart valve defects are the most common cardiac defect, accounting for over 25% of all congenital heart diseases. To date, more than 400 genes have been linked to CHD, the genetic analysis of CHD cases is crucial for both clinical management and etiological determination. Patients with autosomal-recessive variants of PLD1 are predisposed to Cardiac Valvular Dysplasia-1 (CVDP1), which predominantly affects the right-sided heart valves, including the pulmonic, tricuspid, and mitral valves. Methods Databases were utilized to predict the impact of the c.1062-59A>G variant on splicing. Whole-exome sequencing (WES), reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing, and TA clone sequencing were conducted on both the parents and the fetus. Results A compound heterozygous variation in the PLD1(NM_002662.5):c.1937G>C (p. G646A) from the father and PLD1(NM_002662.5):c.1062-59A>G from the mother, was identified and confirmed in the fetus. The c.1937G>C (p. G646A) and the c.1062-59A>G variants were all classified as variant of uncertain significance (VUS) per ACMG guidelines. RT-PCR and TA clone sequencing revealed a 76-bp intronic insertion and exon 11 skipping in the proband and her mother's transcripts, causing a frameshift and premature stop codon in PLD1. Consequently, after being informed about the risks of their variant of unknown significance (VUS), the couple chose pre-implantation genetic testing for monogenic disorders (PGT-M) and had a healthy child. Conclusion Our study identified novel variants to expand the mutation spectrum of CHD and provided reliable evidence for the recurrent risk and reproductive care options.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yubo Shi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaxi Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huiqing Ding
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Reynolds WT, Votava-Smith JK, Gabriel G, Lee VK, Rajagopalan V, Wu Y, Liu X, Yagi H, Slabicki R, Gibbs B, Tran NN, Weisert M, Cabral L, Subramanian S, Wallace J, del Castillo S, Baust T, Weinberg JG, Lorenzi Quigley L, Gaesser J, O’Neil SH, Schmithorst V, Panigrahy A, Ceschin R, Lo CW. Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease. J Clin Med 2024; 13:5772. [PMID: 39407833 PMCID: PMC11476423 DOI: 10.3390/jcm13195772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology.
Collapse
Affiliation(s)
- William T. Reynolds
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ruby Slabicki
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Nhu N. Tran
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Molly Weisert
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sylvia del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 51213, USA
| | - Jacqueline G. Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lauren Lorenzi Quigley
- Cardiac Neurodevelopmental Care Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jenna Gaesser
- Division of Neurology and Child Development, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sharon H. O’Neil
- Division of Neurology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Yaqoob H, Ahmad H, Ali SI, Patel N, Arif A. Missense mutations in the CITED2 gene may contribute to congenital heart disease. BMC Cardiovasc Disord 2024; 24:516. [PMID: 39333893 PMCID: PMC11429617 DOI: 10.1186/s12872-024-04035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is a lifelong abnormality present from birth. Multiple studies have shown that mutations in genes involved in heart development could cause congenital heart disease. The CITED2 gene works as a transcription factor in the hypoxic pathway for the development of the heart. Therefore, five CHD types, ventricular septal defect, atrial septal defect, atrioventricular septal defect, tetralogy of fallot, and patent ductus arteriosus, were evaluated by conducting a targeted single nucleotide polymorphism (SNP) analysis of the CITED2 gene variant rs375393125 (T > C). This study aimed to identify the association of CITED2 gene mutations in CHD patients. METHODS Three hundred fifty samples, 250 from patients and 100 from controls, were collected for this genetic analysis. Allele-specific PCR and gel electrophoresis were used to identify the target missense mutations. The genotypic results of the CHDs were further validated through Sanger sequencing. RESULTS The frequency of the homozygous mutant (CC) in CHD patients was 48.4%, and of the heterozygous mutant (TC) genotype was 11.4%; these percentages are higher than controls (1%). The control samples had only one heterozygous TC and no homozygous CC genotype. The chi-square value was obtained at 103.9 with a probability of 0.05, more significant than the significance value of 21.03. The odds ratio was 43.7, which is > 1. The calculated value of ANOVA was 11.6, which was more significant than the F critical value of 3.7. As a result of sequencing, the mutant sample of each selected CHD type was found heterozygous or homozygous, and the results were like those obtained through conventional PCR. CONCLUSION The samples of CHD patients showed mutations. Therefore, the CITED2 gene SNP might be associated with CHD.
Collapse
Affiliation(s)
- Hira Yaqoob
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Hussain Ahmad
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Syed Irtiza Ali
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Najma Patel
- National Institute of Cardiovascular Diseases Pakistan Rafiqui (H.J.), Shaheed Road, Karachi, Pakistan
| | - Afsheen Arif
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
21
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
22
|
Yuan V, Vukadinovic M, Kwan AC, Rader F, Li D, Ouyang D. Clinical and genetic associations of asymmetric apical and septal left ventricular hypertrophy. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:591-600. [PMID: 39318696 PMCID: PMC11417484 DOI: 10.1093/ehjdh/ztae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
Aims Increased left ventricular mass has been associated with adverse cardiovascular outcomes including incident cardiomyopathy and atrial fibrillation. Such associations have been studied in relation to total left ventricular hypertrophy, while the regional distribution of myocardial hypertrophy is extremely variable. The clinically significant and genetic associations of such variability require further study. Methods and results Here, we use deep learning-derived phenotypes of disproportionate patterns of hypertrophy, namely, apical and septal hypertrophy, to study genome-wide and clinical associations in addition to and independent from total left ventricular mass within 35 268 UK Biobank participants. Using polygenic risk score and Cox regression, we quantified the relationship between incident cardiovascular outcomes and genetically determined phenotypes in the UK Biobank. Adjusting for total left ventricular mass, apical hypertrophy is associated with elevated risk for cardiomyopathy and atrial fibrillation. Cardiomyopathy risk was increased for subjects with increased apical or septal mass, even in the absence of global hypertrophy. We identified 17 genome-wide associations for left ventricular mass, 3 unique associations with increased apical mass, and 3 additional unique associations with increased septal mass. An elevated polygenic risk score for apical mass corresponded with an increased risk of cardiomyopathy and implantable cardioverter-defibrillator implantation. Conclusion Apical and septal mass may be driven by genes distinct from total left ventricular mass, suggesting unique genetic profiles for patterns of hypertrophy. Focal hypertrophy confers independent and additive risk to incident cardiovascular disease. Our findings emphasize the significance of characterizing distinct subtypes of left ventricular hypertrophy. Further studies are needed in multi-ethnic cohorts.
Collapse
Affiliation(s)
- Victoria Yuan
- School of Medicine, University of California, Los Angeles, CA, USA
| | - Milos Vukadinovic
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90034, USA
- Samueli Bioengineering, University of California, Los Angeles, CA, USA
| | - Alan C Kwan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90034, USA
| | - Florian Rader
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90034, USA
| | - Debiao Li
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90034, USA
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90034, USA
| |
Collapse
|
23
|
Lu Q, Luo L, Zeng B, Luo H, Wang X, Qiu L, Yang Y, Feng C, Zhou J, Hu Y, Huang T, Ma P, Huang T, Xie K, Yuan H, Huang S, Yang B, Zou Y, Liu Y. Prenatal chromosomal microarray analysis in a large Chinese cohort of fetuses with congenital heart defects: a single center study. Orphanet J Rare Dis 2024; 19:307. [PMID: 39175064 PMCID: PMC11342572 DOI: 10.1186/s13023-024-03317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Congenital heart defect (CHD) is one of the most common birth defects. The aim of this cohort study was to evaluate the prevalence of chromosomal abnormalities and the clinical utility of chromosomal microarray analysis (CMA) in fetuses with different types of CHD, aiming to assist genetic counseling and clinical decision-making. METHODS In this study, 642 fetuses with CHD were enrolled from a single center over a six-year period (2017-2022). Both conventional karyotyping and CMA were performed simultaneously on these fetuses. RESULTS The diagnostic yield of CMA in fetuses with CHD in our study was 15.3% (98/642). Our findings revealed a significant increase in the diagnostic yield of CMA compared to karyotyping in fetuses with CHD. Among CHD subgroups, the diagnostic yields were high in complex CHD (34.9%), conotruncal defects (28.6%), right ventricular outflow tract obstructive defects (RVOTO) (25.9%), atrioventricular septal defects (AVSD) (25.0%) and left ventricular outflow tract obstructive defects (LVOTO) (24.1%), while those in other CHD (10.6%) and septal defects (10.9%) were relatively low. The overall detection rate of clinically significant chromosomal abnormalities was significantly higher in the non-isolated CHD group compared to the isolated CHD group (33.1% vs. 9.9%, P < 0.0001). Interestingly, numerical chromosomal abnormalities were more likely to occur in the non-isolated CHD group than in the isolated CHD group (20.3% vs. 2.0%, P < 0.0001). The rate of termination of pregnancy (TOP)/Still birth in the non-isolated CHD group was significantly higher than that in the isolated CHD group (40.5% vs. 20.6%, P < 0.0001). Compared to the isolated CHD group, the detection rate of clinically significant chromosomal abnormalities was significantly higher in the group of CHD with soft markers (35.6% vs. 9.9%, P < 0.0001) and in the group of CHD with additional structural anomalies (36.1% vs. 9.9%, P < 0.0001). CONCLUSIONS CMA is a reliable and high-resolution technique that should be recommended as the front-line test for prenatal diagnosis of fetuses with CHD. The prevalence of chromosomal abnormalities varies greatly among different subgroups of CHD, and special attention should be given to prenatal non-isolated cases of CHD, especially those accompanied by additional structural anomalies or soft markers.
Collapse
Affiliation(s)
- Qing Lu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Laipeng Luo
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Baitao Zeng
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Haiyan Luo
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Xianjin Wang
- Department of Ultrasound, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
| | - Lijuan Qiu
- Department of Ultrasound, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
| | - Yan Yang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Chuanxin Feng
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Jihui Zhou
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Yanling Hu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Tingting Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Pengpeng Ma
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Ting Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Kang Xie
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Huizhen Yuan
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Shuhui Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Bicheng Yang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| | - Yongyi Zou
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| | - Yanqiu Liu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| |
Collapse
|
24
|
Jia W, Wang Y, Chen R, Ye J, Li D, Yin F, Yu J, Chen J, Shu Q, Xu W. ZCHSound: Open-Source ZJU Paediatric Heart Sound Database With Congenital Heart Disease. IEEE Trans Biomed Eng 2024; 71:2278-2286. [PMID: 38194403 DOI: 10.1109/tbme.2023.3348800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Congenital heart disease (CHD) is a common birth defect in children. Intelligent auscultation algorithms have been proven to reduce the subjectivity of diagnoses and alleviate the workload of doctors. However, the development of this algorithm has been limited by the lack of reliable, standardized, and publicly available pediatric heart sound databases. Therefore, the objective of this research is to develop a large-scale, high-standard, high-quality, and accurately labeled pediatric CHD heart sound database. METHOD From 2020 to 2022, we collaborated with experienced cardiac surgeons from three general children's hospitals to collect heart sound signals from 1259 participants using electronic stethoscopes. To ensure the accuracy of the labels, the labels for all data were confirmed by two cardiac experts. To establish the baseline of ZCHsound, we extracted 84 features and used machine learning models to evaluate the performance of the classification task. RESULTS The ZCHSound database was divided into two datasets: one is a high-quality, filtered clean heart sound dataset, and the other is a low-quality, noisy heart sound dataset. In the evaluation of the high-quality dataset, our random forest ensemble model achieved an F1 score of 90.3% in the classification task of normal and pathological heart sounds. CONCLUSION This study has successfully established a large-scale, high-quality, rigorously standardized pediatric CHD sound database with precise disease diagnosis. This database not only provides important learning resources for clinical doctors in auscultation knowledge but also offers valuable data support for algorithm engineers in developing intelligent auscultation algorithms.
Collapse
|
25
|
Liu X, Li C, Wang J, Jin Y, Zhu J, Li S, Shi H. The developmental processes of ventricular septal defects with outflow tract malalignment. Ann Anat 2024; 255:152293. [PMID: 38823492 DOI: 10.1016/j.aanat.2024.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Ventricular septal defects (VSD) with outflow tract (OFT) malalignment are a common group of congenital heart diseases with varying severity. The developmental process of these defects is challenging to understand due to the complex nature of cardiac morphogenesis and the difficulties in visualizing the temporal and spatial changes that occur during pathogenesis. However, recent advancements in imaging techniques, such as high-resolution episcopic microscopy, have provided valuable insights into the normal septation of ventricular chambers and OFT alignment. Building upon this knowledge, we have utilized lightsheet microscopy, another innovative imaging method, to further investigate the developmental processes that lead to abnormal formation of the ventricular septum and the malalignment of arterial roots with the ventricular chambers. Our study highlights endocardial cushion hypoplasia and insufficient rotation of the outflow tract as two interrelated central factors contributing to the pathogenesis of these defects. This finding has the potential to enhance our understanding of the etiology of congenital heart diseases and may contribute to the development of improved diagnostic and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Chenxi Li
- School of Medicine, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Jianfeng Wang
- School of Medicine, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yuxia Jin
- Department of Prenatal Diagnostic, Yiwu Maternity and Children Health Care Hospital, Yiwu 322000, China
| | - Jianjun Zhu
- Department of Fetal Medicine Center, Jiaxing Maternity and Child Health Care Hospital, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, China
| | - Suping Li
- Department of Fetal Medicine Center, Jiaxing Maternity and Child Health Care Hospital, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, China.
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
26
|
Bartoli-Leonard F, Harris AG, Saunders K, Madden J, Cherrington C, Sheehan K, Baquedano M, Parolari G, Bamber A, Caputo M. Altered Inflammatory State and Mitochondrial Function Identified by Transcriptomics in Paediatric Congenital Heart Patients Prior to Surgical Repair. Int J Mol Sci 2024; 25:7487. [PMID: 39000594 PMCID: PMC11242307 DOI: 10.3390/ijms25137487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Congenital heart disease (CHD) remains the most common birth defect, with surgical intervention required in complex cases. Right ventricle (RV) function is known to be a major predictor of sustained cardiac health in these patients; thus, by elucidating the divergent profiles between CHD and the control through tissue analysis, this study aims to identify new avenues of investigation into the mechanisms surrounding reduced RV function. Transcriptomic profiling, in-silico deconvolution and functional network analysis were conducted on RV biopsies, identifying an increase in the mitochondrial dysfunction genes RPPH1 and RMPR (padj = 4.67 × 10-132, 2.23 × 10-107), the cytotoxic T-cell markers CD8a, LAGE3 and CD49a (p = 0.0006, p < 0.0001, and p = 0.0118) and proinflammatory caspase-1 (p = 0.0055) in CHD. Gene-set enrichment identified mitochondrial dysfunctional pathways, predominately changes within oxidative phosphorylation processes. The negative regulation of mitochondrial functions and metabolism was identified in the network analysis, with dysregulation of the mitochondrial complex formation. A histological analysis confirmed an increase in cellular bodies in the CHD RV tissue and positive staining for both CD45 and CD8, which was absent in the control. The deconvolution of bulk RNAseq data suggests a reduction in CD4+ T cells (p = 0.0067) and an increase in CD8+ T cells (p = 0.0223). The network analysis identified positive regulation of the immune system and cytokine signalling clusters in the inflammation functional network, as there were lymphocyte activation and leukocyte differentiation. Utilising RV tissue from paediatric patients undergoing CHD cardiac surgery, this study identifies dysfunctional mitochondrial pathways and an increase in inflammatory T-cell presence prior to reparative surgery.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1UD, UK; (A.G.H.); (M.B.); (M.C.)
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Amy G. Harris
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1UD, UK; (A.G.H.); (M.B.); (M.C.)
| | - Kelly Saunders
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Julie Madden
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Carrie Cherrington
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Karen Sheehan
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Mai Baquedano
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1UD, UK; (A.G.H.); (M.B.); (M.C.)
| | - Giulia Parolari
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| | - Andrew Bamber
- North Bristol NHS Trust, Westbury on Trym, Bristol BS10 5NB, UK
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1UD, UK; (A.G.H.); (M.B.); (M.C.)
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK; (K.S.); (J.M.); (C.C.); (K.S.); (G.P.)
| |
Collapse
|
27
|
Mires S, Sommella E, Merciai F, Salviati E, Caponigro V, Basilicata MG, Marini F, Campiglia P, Baquedano M, Dong T, Skerritt C, Eastwood KA, Caputo M. Plasma metabolomic and lipidomic profiles accurately classify mothers of children with congenital heart disease: an observational study. Metabolomics 2024; 20:70. [PMID: 38955892 PMCID: PMC11219374 DOI: 10.1007/s11306-024-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Congenital heart disease (CHD) is the most common congenital anomaly, representing a significant global disease burden. Limitations exist in our understanding of aetiology, diagnostic methodology and screening, with metabolomics offering promise in addressing these. OBJECTIVE To evaluate maternal metabolomics and lipidomics in prediction and risk factor identification for childhood CHD. METHODS We performed an observational study in mothers of children with CHD following pregnancy, using untargeted plasma metabolomics and lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). 190 cases (157 mothers of children with structural CHD (sCHD); 33 mothers of children with genetic CHD (gCHD)) from the children OMACp cohort and 162 controls from the ALSPAC cohort were analysed. CHD diagnoses were stratified by severity and clinical classifications. Univariate, exploratory and supervised chemometric methods were used to identify metabolites and lipids distinguishing cases and controls, alongside predictive modelling. RESULTS 499 metabolites and lipids were annotated and used to build PLS-DA and SO-CovSel-LDA predictive models to accurately distinguish sCHD and control groups. The best performing model had an sCHD test set mean accuracy of 94.74% (sCHD test group sensitivity 93.33%; specificity 96.00%) utilising only 11 analytes. Similar test performances were seen for gCHD. Across best performing models, 37 analytes contributed to performance including amino acids, lipids, and nucleotides. CONCLUSIONS Here, maternal metabolomic and lipidomic analysis has facilitated the development of sensitive risk prediction models classifying mothers of children with CHD. Metabolites and lipids identified offer promise for maternal risk factor profiling, and understanding of CHD pathogenesis in the future.
Collapse
Affiliation(s)
- Stuart Mires
- Translational Health Sciences, University of Bristol, Bristol, UK.
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.
| | | | | | | | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Mai Baquedano
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Tim Dong
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Clare Skerritt
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kelly-Ann Eastwood
- Translational Health Sciences, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Massimo Caputo
- Translational Health Sciences, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
28
|
Juergensen S, Liu J, Xu D, Zhao Y, Moon-Grady AJ, Glenn O, McQuillen P, Peyvandi S. Fetal circulatory physiology and brain development in complex congenital heart disease: A multi-modal imaging study. Prenat Diagn 2024; 44:856-864. [PMID: 37817395 PMCID: PMC11004088 DOI: 10.1002/pd.6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Fetuses with complex congenital heart disease have altered physiology, contributing to abnormal neurodevelopment. The effects of altered physiology on brain development have not been well studied. We used multi-modal imaging to study fetal circulatory physiology and brain development in hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (TGA). METHODS This prospective, cross-sectional study investigated individuals with fetal congenital heart disease and controls undergoing fetal echocardiography and fetal brain MRI. MRI measured total brain volume and cerebral oxygenation by the MRI quantification method T2*. Indexed cardiac outputs (CCOi) and vascular impedances were calculated by fetal echocardiography. Descriptive statistics assessed MRI and echocardiogram measurement relationships by physiology. RESULTS Sixty-six participants enrolled (control = 20; HLHS = 25; TGA = 21), mean gestational age 33.8 weeks (95% CI: 33.3-34.2). Total brain volume and T2* were significantly lower in fetuses with cardiac disease. CCOi was lower in HLHS, correlating with total brain volume - for every 10% CCOi increase, volume increased 8 mm3 (95% CI: 1.78-14.1; p = 0.012). Echocardiography parameters and cerebral oxygenation showed no correlation. TGA showed no CCOi or aortic output correlation with MRI measures. CONCLUSIONS In HLHS, lower cardiac output is deleterious to brain development. Our findings provide insight into the role of fetal cardiovascular physiology in brain health.
Collapse
Affiliation(s)
- Stephan Juergensen
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yili Zhao
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, California, USA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Shorbaji A, Pushparaj PN, Bakhashab S, Al-Ghafari AB, Al-Rasheed RR, Siraj Mira L, Basabrain MA, Alsulami M, Abu Zeid IM, Naseer MI, Rasool M. Current genetic models for studying congenital heart diseases: Advantages and disadvantages. Bioinformation 2024; 20:415-429. [PMID: 39132229 PMCID: PMC11309114 DOI: 10.6026/973206300200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Congenital heart disease (CHD) encompasses a diverse range of structural and functional anomalies that affect the heart and the major blood vessels. Epidemiological studies have documented a global increase in CHD prevalence, which can be attributed to advancements in diagnostic technologies. Extensive research has identified a plethora of CHD-related genes, providing insights into the biochemical pathways and molecular mechanisms underlying this pathological state. In this review, we discuss the advantages and challenges of various In vitro and in vivo CHD models, including primates, canines, Xenopus frogs, rabbits, chicks, mice, Drosophila, zebrafish, and induced pluripotent stem cells (iPSCs). Primates are closely related to humans but are rare and expensive. Canine models are costly but structurally comparable to humans. Xenopus frogs are advantageous because of their generation of many embryos, ease of genetic modification, and cardiac similarity. Rabbits mimic human physiology but are challenging to genetically control. Chicks are inexpensive and simple to handle; however, cardiac events can vary among humans. Mice differ physiologically, while being evolutionarily close and well-resourced. Drosophila has genes similar to those of humans but different heart structures. Zebrafish have several advantages, including high gene conservation in humans and physiological cardiac similarities but limitations in cross-reactivity with mammalian antibodies, gene duplication, and limited embryonic stem cells for reverse genetic methods. iPSCs have the potential for gene editing, but face challenges in terms of 2D structure and genomic stability. CRISPR-Cas9 allows for genetic correction but requires high technical skills and resources. These models have provided valuable knowledge regarding cardiac development, disease simulation, and the verification of genetic factors. This review highlights the distinct features of various models with respect to their biological characteristics, vulnerability to developing specific heart diseases, approaches employed to induce particular conditions, and the comparability of these species to humans. Therefore, the selection of appropriate models is based on research objectives, ultimately leading to an enhanced comprehension of disease pathology and therapy.
Collapse
Affiliation(s)
- Ayat Shorbaji
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana R Al-Rasheed
- Experimental Biochemistry Unit, King Fahad research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Abdullah Basabrain
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alsulami
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Farhadi Hassankiadeh R, Dobson A, Rahimi S, Jalilian A, Schmid VJ, Mahaki B. Spatial Distribution and Birth Prevalence of Congenital Heart Disease in Iran: A Systematic Review and Hierarchical Bayesian Meta-analysis. Int J Health Policy Manag 2024; 13:7931. [PMID: 39099509 PMCID: PMC11270618 DOI: 10.34172/ijhpm.2024.7931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This study aimed to comprehensively analyze the overall congenital heart disease (CHD) prevalence in live births and children in Iran, along with evaluating the spatial distribution of CHD birth prevalence across various geographical regions within the country. METHODS A Bayesian hierarchical meta-analysis (PROSPERO 2022: CRD42022331281) was performed to determine the pooled prevalence. A systematic search was conducted using Web of Science, ScienceDirect, PubMed, Iranian Research Institute for Information Science and Technology (IranDoc), Scientific Information Database (SID), and Magiran until October 4, 2023. Cross-sectional and cohort studies in both English and Persian languages, focusing on the age range of 0-10 years, were considered for the study population. The study quality was evaluated using the Agency for Healthcare Research and Quality (AHRQ) Risk of Bias tool. Heterogeneity was assessed by I2 and τ2 statistics, and publication bias by Egger's and Begg's tests. RESULTS The meta-analysis included 62 studies, revealing an overall CHD prevalence of 2.5 per 1000 births. Over time, CHD birth prevalence in Iran has consistently increased. Spatial distribution analysis, including spatial autocorrelation and local spatial autocorrelation, indicated no spatial clustering (P=.46) or aggregation (P=.65) among Iran's provinces. Geographic disparities were significant (P=.000), with the northern and eastern regions showing the highest and lowest CHD prevalence, respectively. CONCLUSION The overall CHD prevalence in Iran is lower than global rates, but it continues to rise. Furthermore, there are variations in birth prevalence among different regions of Iran. Environmental, genetic, socioeconomic, and diagnostic accessibility differences are possibly involved in regional variation. The limitations like heterogeneity among studies, the potential inaccuracy of reports due to limited use of accurate diagnostic methods in some studies, and the absence of population-based models to investigate prevalence, underscore the urgent need for standardized diagnostic approaches, and the utilization of population-wide birth defect registries to accurately assess CHD prevalence in Iran.
Collapse
Affiliation(s)
| | - Annette Dobson
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Somayeh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Volker J. Schmid
- Department of Statistics, LudwigMaximilians-University, Munich, Germany
| | - Behzad Mahaki
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Zuo JY, Chen HX, Yang Q, He GW. Variants of the promoter of MYH6 gene in congenital isolated and sporadic patent ductus arteriosus: case-control study and cellular functional analyses. Hum Mol Genet 2024; 33:884-893. [PMID: 38340456 DOI: 10.1093/hmg/ddae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| |
Collapse
|
32
|
Wei W, Li B, Li F, Sun K, Jiang X, Xu R. Variants in FOXC1 and FOXC2 identified in patients with conotruncal heart defects. Genomics 2024; 116:110840. [PMID: 38580085 DOI: 10.1016/j.ygeno.2024.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Conotruncal heart defects (CTD), subtypes of congenital heart disease, result from abnormal cardiac outflow tract development (OFT). FOXC1 and FOXC2 are closely related members of the forkhead transcription factor family and play essential roles in the development of OFT. We confirmed their expression pattern in mouse and human embryos, identifying four variants in FOXC1 and three in FOXC2 by screening these two genes in 605 patients with sporadic CTD. Western blot demonstrated expression levels, while Dual-luciferase reporter assay revealed affected transcriptional abilities for TBX1 enhancer in two FOXC1 variants and three FOXC2 variants. This might result from the altered DNA-binding abilities of mutant proteins. These results indicate that functionally impaired FOXC1 and FOXC2 variants may contribute to the occurrence of CTD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Bojian Li
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Fen Li
- Shanghai Jiaotong University School of Medicine Shanghai Children's Medical Center, China
| | - Kun Sun
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xuechao Jiang
- Scientific Research Center, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Rang Xu
- Scientific Research Center, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China.
| |
Collapse
|
33
|
Aburawi EH, Östlundh L, Aburawi HE, Al Rifai RH, Bhagavathula A, Bellou A. Epigenetics of conotruncal congenital heart disease: Protocol for a systematic review and meta-analysis. PLoS One 2024; 19:e0302642. [PMID: 38687747 PMCID: PMC11060528 DOI: 10.1371/journal.pone.0302642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Conotruncal congenital heart defects (CTD) are a subset of congenital heart diseases (CHD) that involve structural anomalies of the right, left, or both cardiac outflow tracts. CHD is caused by multifactorial inheritance and changes in the genes or chromosomes. Recently, CHD was found to be due to epigenetic alterations, which are a combination of genetic and other environmental factors. Epigenetics is the study of how a gene's function changes as a result of environmental and behavioral influences. These causative factors can indirectly cause CHD by altering the DNA through epigenetic modifications. This is a protocol for a systematic review and meta-analysis that aims to explore whether the strength of association between various epigenetic changes and CTD types varies by race. Furthermore, to determine and compare the changes in gene expression of each mutation. METHODS Our protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) guidelines. A comprehensive pre-search has been developed in PubMed and PubMed's Medical Subject Headings (MeSH). The final search will be performed in June 2023 in PubMed, Embase, Scopus, Web of Science, Cochrane Library, CIANHL, and PsycInfo, without restrictions on publication years. The Covidence systematic review software will be used for blinded screening and selection. Conflicts will be resolved by a third, independent reviewer. The risk of bias in selected studies will be assessed using the National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The data to be extracted will cover basic information on the included studies, study sample size, number of patients with various types of epigenetic changes, number of patients with various CTD types, measures of association and their 95% confidence interval between each epigenetic change and each CTD. The protocol has been registered with the International Prospero Register of Systematic Review (PROSPERO) [CRD42023377597]. DISCUSSION To the best of our knowledge, this protocol outlines the first systematic review and meta-analysis of the epigenetics of CTD. There is a growing body of evidence on epigenetics and its indirect involvement in disease by altering the DNA through epigenetic modifications in the genes associated with the causative factors for CHD. We will conduct a comprehensive and systematic search for literature in the above-mentioned seven core biomedical databases. It is very important to identify population-specific risk factors for CHD, which will have significant creative, custom-made, and effective prevention programs for the future generation.
Collapse
Affiliation(s)
- Elhadi H. Aburawi
- Department of Pediatrics, UAE University, Al Ain, United Arab Emirates
| | - Linda Östlundh
- Örebro University Library, Örebro University, Örebro, Sweden
| | - Hanan E. Aburawi
- Department of Biology, College of Sciences, UAE University, Al Ain, United Arab Emirates
| | - Rami H. Al Rifai
- Institute of Public Health, College of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Akshaya Bhagavathula
- Department of Public Health, North Dakota State University, Fargo, ND, United States of America
| | - Abdelouahab Bellou
- Department of Pediatrics, UAE University, Al Ain, United Arab Emirates
- Department of Emergency Medicine, Institute of Sciences in Emergency Medicine, Guangdong Provincial People ‘s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America
- Global Network on Emergency Medicine, Brookline, MA, United States of America
| |
Collapse
|
34
|
Sun H, He Z, Gao Y, Yang Y, Wang Y, Gu A, Xu J, Quan Y, Yang Y. Polyoxyethylene tallow amine and glyphosate exert different developmental toxicities on human pluripotent stem cells-derived heart organoid model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170675. [PMID: 38316312 DOI: 10.1016/j.scitotenv.2024.170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhazheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yachang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1. Curr Cardiol Rep 2024; 26:147-165. [PMID: 38546930 DOI: 10.1007/s11886-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Congenital heart disease (CHD) is the most frequently occurring birth defect. Majority of the earlier reviews focussed on the association of genetic factors with CHD. A few epidemiological studies provide convincing evidence for environmental factors in the causation of CHD. Although the multifactorial theory of gene-environment interaction is the prevailing explanation, explicit understanding of the biological mechanism(s) involved, remains obscure. Nonetheless, integration of all the information into one platform would enable us to better understand the collective risk implicated in CHD development. RECENT FINDINGS Great strides in novel genomic technologies namely, massive parallel sequencing, whole exome sequencing, multiomics studies supported by system-biology have greatly improved our understanding of the aetiology of CHD. Molecular genetic studies reveal that cardiac specific gene variants in transcription factors or signalling molecules, or structural proteins could cause CHD. Additionally, non-hereditary contributors such as exposure to teratogens, maternal nutrition, parental age and lifestyle factors also contribute to induce CHD. Moreover, DNA methylation and non-coding RNA are also correlated with CHD. Here, we inform that a complex combination of genetic, environmental and epigenetic factors interact to interfere with morphogenetic processes of cardiac development leading to CHD. It is important, not only to identify individual genetic and non-inherited risk factors but also to recognize which factors interact mutually, causing cardiac defects.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
36
|
Lorente-Bermúdez R, Pan-Lizcano R, Núñez L, López-Vázquez D, Rebollal-Leal F, Vázquez-Rodríguez JM, Hermida-Prieto M. Analysis of the Association between Copy Number Variation and Ventricular Fibrillation in ST-Elevation Acute Myocardial Infarction. Int J Mol Sci 2024; 25:2548. [PMID: 38473795 DOI: 10.3390/ijms25052548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Sudden cardiac death due to ventricular fibrillation (VF) during ST-elevation acute myocardial infarction (STEAMI) significantly contributes to cardiovascular-related deaths. Although VF has been linked to genetic factors, variations in copy number variation (CNV), a significant source of genetic variation, have remained largely unexplored in this context. To address this knowledge gap, this study performed whole exome sequencing analysis on a cohort of 39 patients with STEAMI who experienced VF, aiming to elucidate the role of CNVs in this pathology. The analysis revealed CNVs in the form of duplications in the PARP2 and TTC5 genes as well as CNVs in the form of deletions in the MUC15 and PPP6R1 genes, which could potentially serve as risk indicators for VF during STEAMI. The analysis also underscores notable CNVs with an average gene copy number equal to or greater than four in DEFB134, FCGR2C, GREM1, PARM1, SCG5, and UNC79 genes. These findings provide further insight into the role of CNVs in VF in the context of STEAMI.
Collapse
Affiliation(s)
- Roberto Lorente-Bermúdez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ricardo Pan-Lizcano
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Lucía Núñez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
- GRINCAR Research Group, Departamento de Ciencias de la Salud, Universidade da Coruña, 15403 A Coruña, Spain
| | - Domingo López-Vázquez
- Servicio de Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Fernando Rebollal-Leal
- Servicio de Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - José Manuel Vázquez-Rodríguez
- Servicio de Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Hermida-Prieto
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
37
|
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol 2024; 156:297-331. [PMID: 38556426 DOI: 10.1016/bs.ctdb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Collapse
Affiliation(s)
| | - Felix Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
38
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Bolunduț AC, Nazarie F, Lazea C, Șufană C, Miclea D, Lazăr C, Mihu CM. A Pilot Study of Multiplex Ligation-Dependent Probe Amplification Evaluation of Copy Number Variations in Romanian Children with Congenital Heart Defects. Genes (Basel) 2024; 15:207. [PMID: 38397197 PMCID: PMC10887610 DOI: 10.3390/genes15020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Congenital heart defects (CHDs) have had an increasing prevalence over the last decades, being one of the most common congenital defects. Their etiopathogenesis is multifactorial in origin. About 10-15% of all CHD can be attributed to copy number variations (CNVs), a type of submicroscopic structural genetic alterations. The aim of this study was to evaluate the involvement of CNVs in the development of congenital heart defects. We performed a cohort study investigating the presence of CNVs in the 22q11.2 region and GATA4, TBX5, NKX2-5, BMP4, and CRELD1 genes in patients with syndromic and isolated CHDs. A total of 56 patients were included in the study, half of them (28 subjects) being classified as syndromic. The most common heart defect in our study population was ventricular septal defect (VSD) at 39.28%. There were no statistically significant differences between the two groups in terms of CHD-type distribution, demographical, and clinical features, with the exceptions of birth length, weight, and length at the time of blood sampling, that were significantly lower in the syndromic group. Through multiplex ligation-dependent probe amplification (MLPA) analysis, we found two heterozygous deletions in the 22q11.2 region, both in patients from the syndromic group. No CNVs involving GATA4, NKX2-5, TBX5, BMP4, and CRELD1 genes were identified in our study. We conclude that the MLPA assay may be used as a first genetic test in patients with syndromic CHD and that the 22q11.2 region may be included in the panels used for screening these patients.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Florina Nazarie
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Crina Șufană
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Diana Miclea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- Medical Genetics Compartment, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Călin Lazăr
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
41
|
Perrot A, Rickert-Sperling S. Human Genetics of Defects of Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:705-717. [PMID: 38884744 DOI: 10.1007/978-3-031-44087-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
42
|
Dorn C, Perrot A, Grunert M, Rickert-Sperling S. Human Genetics of Tetralogy of Fallot and Double-Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:629-644. [PMID: 38884738 DOI: 10.1007/978-3-031-44087-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.
Collapse
Affiliation(s)
- Cornelia Dorn
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | | |
Collapse
|
43
|
Safdar M, Ullah M, Wahab A, Hamayun S, Ur Rehman M, Khan MA, Khan SU, Ullah A, Din FU, Awan UA, Naeem M. Genomic insights into heart health: Exploring the genetic basis of cardiovascular disease. Curr Probl Cardiol 2024; 49:102182. [PMID: 37913933 DOI: 10.1016/j.cpcardiol.2023.102182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Cardiovascular diseases (CVDs) are considered as the leading cause of death worldwide. CVD continues to be a major cause of death and morbidity despite significant improvements in its detection and treatment. Therefore, it is strategically important to be able to precisely characterize an individual's sensitivity to certain illnesses. The discovery of genes linked to cardiovascular illnesses has benefited from linkage analysis and genome-wide association research. The last 20 years have seen significant advancements in the field of molecular genetics, particularly with the development of new tools like genome-wide association studies. In this article we explore the profound impact of genetic variations on disease development, prognosis, and therapeutic responses. And the significance of genetics in cardiovascular risk assessment and the ever-evolving realm of genetic testing, offering insights into the potential for personalized medicine in this domain. Embracing the future of cardiovascular care, the article explores the implications of pharmacogenomics for tailored treatments, the promise of emerging technologies in cardiovascular genetics and therapies, including the transformative influence of nanotechnology. Furthermore, it delves into the exciting frontiers of gene editing, such as CRISPR/Cas9, as a novel approach to combat cardiovascular diseases. And also explore the potential of stem cell therapy and regenerative medicine, providing a holistic view of the dynamic landscape of cardiovascular genomics and its transformative potential for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Muhammad Amir Khan
- Department of Foreign Medical education, Fergana Medical institute of Public Health, 2A Yangi Turon street, Fergana 150100, Uzbekistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan.
| |
Collapse
|
44
|
Geng Z, Li W, Yang P, Zhang S, Wu S, Xiong J, Sun K, Zhu D, Chen S, Zhang B. Whole exome sequencing reveals genetic landscape associated with left ventricular outflow tract obstruction in Chinese Han population. Front Genet 2023; 14:1267368. [PMID: 38164514 PMCID: PMC10757952 DOI: 10.3389/fgene.2023.1267368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Left ventricular outflow tract obstruction (LVOTO), a major form of outflow tract malformation, accounts for a substantial portion of congenital heart defects (CHDs). Unlike its prevalence, the genetic architecture of LVOTO remains largely unknown. To unveil the genetic mutations and risk genes potentially associated with LVOTO, we enrolled a cohort of 106 LVOTO patients and 100 healthy controls and performed a whole-exome sequencing (WES). 71,430 rare deleterious mutations were found in LVOTO patients. By using gene-based burden testing, we further found 32 candidate genes enriched in LVOTO patient including known pathological genes such as GATA5 and GATA6. Most variants of 32 risk genes occur simultaneously rather exclusively suggesting polygenic inherence of LVOTO and 14 genes out of 32 risk genes interact with previously discovered CHD genes. Single cell RNA-seq further revealed dynamic expressions of GATA5, GATA6, FOXD3 and MYO6 in endocardium and neural crest lineage indicating the mutations of these genes lead to LVOTO possibly through different lineages. These findings uncover the genetic architecture of LVOTO which advances the current understanding of LVOTO genetics.
Collapse
Affiliation(s)
- Zilong Geng
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Yang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Odogwu NM, Hagen C, Nelson TJ. Transcriptome studies of congenital heart diseases: identifying current gaps and therapeutic frontiers. Front Genet 2023; 14:1278747. [PMID: 38152655 PMCID: PMC10751320 DOI: 10.3389/fgene.2023.1278747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Congenital heart disease (CHD) are genetically complex and comprise a wide range of structural defects that often predispose to - early heart failure, a common cause of neonatal morbidity and mortality. Transcriptome studies of CHD in human pediatric patients indicated a broad spectrum of diverse molecular signatures across various types of CHD. In order to advance research on congenital heart diseases (CHDs), we conducted a detailed review of transcriptome studies on this topic. Our analysis identified gaps in the literature, with a particular focus on the cardiac transcriptome signatures found in various biological specimens across different types of CHDs. In addition to translational studies involving human subjects, we also examined transcriptomic analyses of CHDs in a range of model systems, including iPSCs and animal models. We concluded that RNA-seq technology has revolutionized medical research and many of the discoveries from CHD transcriptome studies draw attention to biological pathways that concurrently open the door to a better understanding of cardiac development and related therapeutic avenue. While some crucial impediments to perfectly studying CHDs in this context remain obtaining pediatric cardiac tissue samples, phenotypic variation, and the lack of anatomical/spatial context with model systems. Combining model systems, RNA-seq technology, and integrating algorithms for analyzing transcriptomic data at both single-cell and high throughput spatial resolution is expected to continue uncovering unique biological pathways that are perturbed in CHDs, thus facilitating the development of novel therapy for congenital heart disease.
Collapse
Affiliation(s)
- Nkechi Martina Odogwu
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Clinton Hagen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Timothy J. Nelson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
46
|
Costa SS, Fishman V, Pinheiro M, Rodrigueiro A, Sanseverino MT, Zielinsky P, Carvalho CMB, Rosenberg C, Krepischi ACV. A germline chimeric KANK1-DMRT1 transcript derived from a complex structural variant is associated with a congenital heart defect segregating across five generations. RESEARCH SQUARE 2023:rs.3.rs-3740005. [PMID: 38168413 PMCID: PMC10760254 DOI: 10.21203/rs.3.rs-3740005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis, and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, whole-genome sequencing (WGS), RNA-seq and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined WGS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints match the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2Mb region on chromosome 9 with a SINE element insertion at the more distal breakpoint. Interestingly, this hypothesized genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by RNA-seq on blood from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p segregating with a familial congenital clinical trait, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.
Collapse
|
47
|
Xia Y, Chen L, Lu J, Ma J, Zhang Y. The comprehensive study on the role of POSTN in fetal congenital heart disease and clinical applications. J Transl Med 2023; 21:901. [PMID: 38082393 PMCID: PMC10714640 DOI: 10.1186/s12967-023-04529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Congenital heart defect (CHD) is the most common congenital abnormality, and it has long been a clinical and public health concern. Our previous findings have found Periostin (POSTN) and Pappalysin-1 (PAPPA) as potential biomarkers for fetal CHD. We aim to further elucidate POSTN's role in fetal heart development and explore the clinical applicability of POSTN and PAPPA as diagnostic marker for fetal CHD. This study is poised to establish a theoretical framework for mitigating the incidence of CHD and advance a novel approach for prenatal screening of fetal CHD. METHODS We verified differential expression of POSTN and PAPPA in gravida serum and fetal amniotic fluid based on our previous research. We established the Postn knockout mouse by CRISPR/Cas9 to investigate whether Postn deletion leads to cardiac abnormalities in mice. Besides, we explored the mechanism of POSTN on heart development through Postn knockout mouse model and cell experiments. Finally, we established the logistic regression model and decision curve analysis to evaluate the clinical utility of POSTN and PAPPA in fetal CHD. RESULTS We observed a significant decrease in POSTN and increase in PAPPA in the CHD group. Atrial septal defects occurred in Postn-/- and Postn± C57BL/6 fetal heart, while ventricular septal defects with aortic saddle were observed in Postn± C57BL/6 fetal heart. Disruption of the extracellular matrix (ECM) in cardiomyocytes and multiple abnormalities in cellular sub-organelles were observed in Postn knockout mice. POSTN may positively regulate cell behaviors and unsettle ECM via the TGFβ-Smad2/3 signaling pathway. The combination of serum biomarkers POSTN and PAPPA with Echocardiogram can enhance the diagnostic accuracy of CHD. Furthermore, the comprehensive model including POSTN, PAPPA, and two clinical indicators (NT and age) exhibits significantly higher predictive ability than the diagnosis group without the use of serum biomarkers or clinical indicators. CONCLUSIONS It is the first evidence that Postn deletion leads to cardiac developmental abnormalities in fetal mice. This may involve the regulation of the TGFβ signaling pathway. Importantly, POSTN and PAPPA possess clinical utility as noninvasive prenatal promising screening indicators of CHD.
Collapse
Affiliation(s)
- Yi Xia
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - Liang Chen
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - JinWen Lu
- Department of Ultrasound, Wuhan University Zhongnan Hospital, Wuhan, 430071, Hubei, China
| | - Jianhong Ma
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, Hubei, China
- Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, Hubei, China
| | - Yuanzhen Zhang
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, Hubei, China.
- Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Tournoy TK, Moons P, Daelman B, De Backer J. Biological Age in Congenital Heart Disease-Exploring the Ticking Clock. J Cardiovasc Dev Dis 2023; 10:492. [PMID: 38132660 PMCID: PMC10743752 DOI: 10.3390/jcdd10120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Over the past 50 years, there has been a major shift in age distribution of patients with congenital heart disease (CHD) thanks to significant advancements in medical and surgical treatment. Patients with CHD are, however, never cured and face unique challenges throughout their lives. In this review, we discuss the growing data suggesting accelerated aging in this population. Adults with CHD are more often and at a younger age confronted with age-related cardiovascular complications such as heart failure, arrhythmia, and coronary artery disease. These can be related to the original birth defect, complications of correction, or any residual defects. In addition, and less deductively, more systemic age-related complications are seen earlier, such as renal dysfunction, lung disease, dementia, stroke, and cancer. The occurrence of these complications at a younger age makes it imperative to further map out the aging process in patients across the spectrum of CHD. We review potential feasible markers to determine biological age and provide an overview of the current data. We provide evidence for an unmet need to further examine the aging paradigm as this stresses the higher need for care and follow-up in this unique, newly aging population. We end by exploring potential approaches to improve lifespan care.
Collapse
Affiliation(s)
- Tijs K. Tournoy
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Philip Moons
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
- Institute of Health and Care Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7700, South Africa
| | - Bo Daelman
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
| | - Julie De Backer
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
49
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
50
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 PMCID: PMC11726350 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|