1
|
Zhong M, Karma A. Role of ryanodine receptor cooperativity in Ca 2+-wave-mediated triggered activity in cardiomyocytes. J Physiol 2024; 602:6745-6787. [PMID: 39565684 DOI: 10.1113/jp286145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
Ca2+ waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca2+ waves using physiologically realistic models has remained a major challenge. Existing models with low Ca2+ sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca2+ transient amplitude incompatible with the experimental observations. Consequently, current physiologically detailed models of delayed after-depolarizations resort to unrealistic cell architectures to produce Ca2+ waves with a normal Ca2+ transient amplitude. Here, we address these challenges by incorporating RyR cooperativity into a physiologically detailed model with a realistic cell architecture. We represent RyR cooperativity phenomenologically through a Hill coefficient within the sigmoid function of RyR open probability. Simulations in permeabilized myocytes with high Ca2+ sensitivity reveal that a sufficiently large Hill coefficient is required for Ca2+ wave propagation via the fire-diffuse-fire mechanism. In intact myocytes, propagating Ca2+ waves can occur only within an intermediate Hill coefficient range. Within this range, the spark rate is neither too low, enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during diastole of the action potential. Moreover, this model successfully replicates other experimentally observed manifestations of Ca2+-wave-mediated triggered activity, including phase 2 and phase 3 early after-depolarizations and high-frequency voltage-Ca2+ oscillations. These oscillations feature an elevated take-off potential with depolarization mediated by the L-type Ca2+ current. The model also sheds light on the roles of luminal gating of RyRs and the mobile buffer ATP in the genesis of these arrhythmogenic phenomena. KEY POINTS: Existing mathematical models of Ca2+ waves use an excessively large Ca2+-release current or unrealistic diffusive coupling between release units. Our physiologically realistic model, using a Hill coefficient in the ryanodine receptor (RyR) gating function to represent RyR cooperativity, addresses these limitations and generates organized Ca2+ waves at Hill coefficients ranging from ∼5 to 10, as opposed to the traditional value of 2. This range of Hill coefficients gives a spark rate neither too low, thereby enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during the plateau phase of the action potential. Additionally, the model generates Ca2+-wave-mediated phase 2 and phase 3 early after-depolarizations, and coupled membrane voltage with Ca2+ oscillations mediated by the L-type Ca2+ current. This study suggests that pharmacologically targeting RyR cooperativity could be a promising strategy for treating cardiac arrhythmias linked to Ca2+-wave-mediated triggered activity.
Collapse
Affiliation(s)
- Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Bains S, Giammarino L, Nimani S, Alerni N, Tester DJ, Kim CSJ, Christoforou N, Louradour J, Horváth A, Beslac O, Barbieri M, Matas L, Hof TS, Lopez R, Perez-Feliz S, Parodi C, Garcia Casalta LG, Jurgensen J, Barry MA, Bego M, Keyes L, Owens J, Pinkstaff J, Koren G, Zehender M, Brunner M, Casoni D, Praz F, Haeberlin A, Brooks G, Ackerman MJ, Odening KE. KCNQ1 suppression-replacement gene therapy in transgenic rabbits with type 1 long QT syndrome. Eur Heart J 2024; 45:3751-3763. [PMID: 39115049 PMCID: PMC11439107 DOI: 10.1093/eurheartj/ehae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND AIMS Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under β-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.
Collapse
Affiliation(s)
- Sahej Bains
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - Lucilla Giammarino
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolo Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - David J Tester
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - C S John Kim
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | | | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - András Horváth
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Olgica Beslac
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Lluis Matas
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas S Hof
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Ruben Lopez
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stefanie Perez-Feliz
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Chiara Parodi
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Luisana G Garcia Casalta
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Jacqulyn Jurgensen
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory, Mayo Clinic, Rochester, USA
| | - Michael A Barry
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory, Mayo Clinic, Rochester, USA
| | - Mariana Bego
- Formerly from Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lisa Keyes
- Formerly from Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Formerly from the Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jason Pinkstaff
- Drug Safety Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, USA
| | - Manfred Zehender
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Department of Cardiology and Intensive Care, St. Josefskrankenhaus Freiburg, Freiburg, Germany
| | - Daniela Casoni
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Gabriel Brooks
- Formerly from the Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Kabakov AY, Roder K, Bronk P, Turan NN, Dhakal S, Zhong M, Lu Y, Zeltzer ZA, Najman-Licht YB, Karma A, Koren G. E3 ubiquitin ligase rififylin has yin and yang effects on rabbit cardiac transient outward potassium currents (I to) and corresponding channel proteins. J Biol Chem 2024; 300:105759. [PMID: 38367666 PMCID: PMC10945274 DOI: 10.1016/j.jbc.2024.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karim Roder
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Peter Bronk
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Nilüfer N Turan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Saroj Dhakal
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Yichun Lu
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Zachary A Zeltzer
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yonatan B Najman-Licht
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Gideon Koren
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
5
|
Herting JR, König JH, Hadova K, Heinick A, Müller FU, Pauls P, Seidl MD, Soppa C, Kirchhefer U. Hypercontractile cardiac phenotype in mice overexpressing the regulatory subunit PR72 of protein phosphatase 2A. Front Cardiovasc Med 2023; 10:1239555. [PMID: 37868783 PMCID: PMC10590119 DOI: 10.3389/fcvm.2023.1239555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Background The activity, localization, and substrate specificity of the protein phosphatase 2A (PP2A) heterotrimer are controlled by various regulatory B subunits. PR72 belongs to the B'' gene family and has been shown to be upregulated in human heart failure. However, little is known about the functions of PR72 in the myocardium. Methods To address this issue, we generated a transgenic mouse model with heart-specific overexpression of PP2A-PR72. Biochemical and physiological methods were used to determine contractility, Ca2+ cycling parameters, and protein phosphorylation. Results A 2.5-fold increase in PR72 expression resulted in moderate cardiac hypertrophy. Maximal ventricular pressure was increased in catheterized transgenic mice (TG) compared to wild-type (WT) littermates. This was accompanied by an increased shortening of sarcomere length and faster relaxation at the single-cell level in TG. In parallel with these findings, the peak amplitude of Ca2+ transients was increased, and the decay in intracellular Ca2+ levels was shortened in TG compared to WT. The changes in Ca2+ cycling in TG were also evident from an increase in the full duration and width at half maximum of Ca2+ sparks. Consistent with the contractile data, phosphorylation of phospholamban at threonine-17 was higher in TG hearts. The lower expression of the Na+/Ca2+ exchanger may also contribute to the hypercontractile state in transgenic myocardium. Conclusion Our results suggest that PP2A-PR72 plays an important role in regulating cardiac contractile function and Ca2+ cycling, indicating that the upregulation of PR72 in heart failure is an attempt to compensate functionally.
Collapse
Affiliation(s)
- Julius R. Herting
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jule H. König
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Frank U. Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Paul Pauls
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Matthias D. Seidl
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Carolina Soppa
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
6
|
Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, Pradhananga S, Srinivasan D, Nimani S, Alerni N, Louradour J, Mura M, Gnecchi M, Brink P, Zehender M, Koren G, Zaza A, Crotti L, Wilde AAM, Schwartz PJ, Remme CA, Gepstein L, Sala L, Odening KE. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2. Europace 2023; 25:euad094. [PMID: 37099628 PMCID: PMC10228615 DOI: 10.1093/europace/euad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Assad Shiti
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
| | - Simona Casini
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Philip T Sager
- Thryv Therapeutics Inc., Montreal, Canada
- Cardiovascular Research Institute, Stanford University, Palo Alto, CA, USA
| | - Saumya Das
- Thryv Therapeutics Inc., Montreal, Canada
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolò Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Manuela Mura
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Paul Brink
- Department of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, RI, USA
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Arthur A M Wilde
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Carol Ann Remme
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Baggett BC, Murphy KR, Sengun E, Mi E, Cao Y, Turan NN, Lu Y, Schofield L, Kim TY, Kabakov AY, Bronk P, Qu Z, Camelliti P, Dubielecka P, Terentyev D, del Monte F, Choi BR, Sedivy J, Koren G. Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. eLife 2023; 12:e84088. [PMID: 37204302 PMCID: PMC10259375 DOI: 10.7554/elife.84088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.
Collapse
Affiliation(s)
- Brett C Baggett
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Kevin R Murphy
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Elif Sengun
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul UniversityIstanbulTurkey
| | - Eric Mi
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yueming Cao
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Nilufer N Turan
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yichun Lu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Lorraine Schofield
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Anatoli Y Kabakov
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Peter Bronk
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Zhilin Qu
- School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of SurreyGuildfordUnited Kingdom
| | - Patrycja Dubielecka
- Brown UniversityProvidenceUnited States
- Department of Hematology, Rhode Island HospitalProvidenceUnited States
| | - Dmitry Terentyev
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Gideon Koren
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
8
|
Clements RT, Terentyeva R, Hamilton S, Janssen PML, Roder K, Martin BY, Perger F, Schneider T, Nichtova Z, Das AS, Veress R, Lee BS, Kim DG, Koren G, Stratton MS, Csordas G, Accornero F, Belevych AE, Gyorke S, Terentyev D. Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes. Basic Res Cardiol 2023; 118:15. [PMID: 37138037 PMCID: PMC10156626 DOI: 10.1007/s00395-023-00988-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with β-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.
Collapse
Affiliation(s)
- Richard T Clements
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI, USA
- Department of Medicine, Providence VAMC and Brown University, Providence, RI, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Karim Roder
- Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin Y Martin
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy Schneider
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Anindhya S Das
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Gideon Koren
- Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gyorgy Csordas
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA.
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
You T, Xie Y, Luo C, Zhang K, Zhang H. Mechanistic insights into spontaneous transition from cellular alternans to ventricular fibrillation. Physiol Rep 2023; 11:e15619. [PMID: 36863774 PMCID: PMC9981424 DOI: 10.14814/phy2.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 μM, N = 12; 0.3 μM, N = 10; 1 μM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 μM, N = 5; 0.3 μM, N = 5; 1 μM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of NeurosurgeryXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Yulong Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Cunjin Luo
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
| | - Kevin Zhang
- School of MedicineImperial College of LondonLondonUK
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
10
|
Greene D, Luchko T, Shiferaw Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling. Biophys J 2023; 122:215-229. [PMID: 36348625 PMCID: PMC9822801 DOI: 10.1016/j.bpj.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The ryanodine receptor type 2 (RyR2) is composed of four subunits that control calcium (Ca) release in cardiac cells. RyR2 serves primarily as a Ca sensor and can respond to rapid sub-millisecond pulses of Ca while remaining shut at resting concentrations. However, it is not known how the four subunits interact for the RyR2 to function as an effective Ca sensor. To address this question, and to understand the role of subunit cooperativity in Ca-mediated signal transduction, we have developed a computational model of the RyR2 composed of four interacting subunits. We first analyze the statistical properties of a single RyR2 tetramer, where each subunit can exist in a closed or open conformation. Our findings indicate that the number of subunits in the open state is a crucial parameter that dictates RyR2 kinetics. We find that three or four open subunits are required for the RyR2 to harness cooperative interactions to respond to sub-millisecond changes in Ca, while at the same time remaining shut at the resting Ca levels in the cardiac cell. If the required number of open subunits is lowered to one or two, the RyR2 cannot serve as a robust Ca sensor, as the large cooperativity required to stabilize the closed state prevents channel activation. Using this four-subunit model, we analyze the kinetics of Ca release from a RyR2 cluster. We show that the closure of a cluster of RyR2 channels is highly sensitive to the balance of cooperative interactions between closed and open subunits. Based on this result, we analyze how specific interactions between RyR2 subunits can induce persistent Ca leak from the sarcoplasmic reticulum (SR), which is believed to be arrhythmogenic. Thus, these results provide a framework to analyze how a pharmacologic or genetic modification of RyR2 subunit cooperativity can induce abnormal Ca cycling that can potentially lead to life-threatening arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge
| | - Tyler Luchko
- Department of Physics & Astronomy, California State University, Northridge
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge.
| |
Collapse
|
11
|
Kanaporis G, Blatter LA. Activation of small conductance Ca 2+ -activated K + channels suppresses Ca 2+ transient and action potential alternans in ventricular myocytes. J Physiol 2023; 601:51-67. [PMID: 36426548 PMCID: PMC9878619 DOI: 10.1113/jp283870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of KV 7.1 (with HMR1556) and KV 11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome. KEY POINTS: At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and intracellular Ca2+ release amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We investigated whether pharmacological modulation of SK channels affects the development of cardiac alternans in normal ventricular cells and in cells with drug-induced long QT syndrome (LQTS). While SK channel blockers have only a minor effect on AP morphology, their activation leads to AP shortening and abolishes or reduces the degree of pacing-induced Ca2+ and AP alternans. AP shortening contributed to protection against alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest SK activation as a potential intervention to avert the development of alternans with important ramifications for arrhythmia prevention for patients with LQTS.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
13
|
Zheng J, Dooge HC, Pérez-Hernández M, Zhao YT, Chen X, Hernandez JJ, Valdivia CR, Palomeque J, Rothenberg E, Delmar M, Valdivia HH, Alvarado FJ. Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression. J Mol Cell Cardiol 2022; 167:118-128. [PMID: 35413295 PMCID: PMC9610860 DOI: 10.1016/j.yjmcc.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Holly C Dooge
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marta Pérez-Hernández
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xi Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan J Hernandez
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
14
|
Hamilton S, Terentyeva R, Bogdanov V, Kim TY, Perger F, Yan J, Ai X, Carnes CA, Belevych AE, George CH, Davis JP, Gyorke S, Choi BR, Terentyev D. Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circ Res 2022; 130:711-724. [PMID: 35086342 PMCID: PMC8893133 DOI: 10.1161/circresaha.121.320531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidative stress in cardiac disease promotes proarrhythmic disturbances in Ca2+ homeostasis, impairing luminal Ca2+ regulation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the RyR2 (ryanodine receptor), and increasing channel activity. However, exact mechanisms underlying redox-mediated increase of RyR2 function in cardiac disease remain elusive. We tested whether the oxidoreductase family of proteins that dynamically regulate the oxidative environment within the SR are involved in this process. METHODS A rat model of hypertrophy induced by thoracic aortic banding (TAB) was used for ex vivo whole heart optical mapping and for Ca2+ and reactive oxygen species imaging in isolated ventricular myocytes (VMs). RESULTS The SR-targeted reactive oxygen species biosensor ERroGFP showed increased intra-SR oxidation in TAB VMs that was associated with increased expression of Ero1α (endoplasmic reticulum oxidoreductase 1 alpha). Pharmacological (EN460) or genetic Ero1α inhibition normalized SR redox state, increased Ca2+ transient amplitude and SR Ca2+ content, and reduced proarrhythmic spontaneous Ca2+ waves in TAB VMs under β-adrenergic stimulation (isoproterenol). Ero1α overexpression in Sham VMs had opposite effects. Ero1α inhibition attenuated Ca2+-dependent ventricular tachyarrhythmias in TAB hearts challenged with isoproterenol. Experiments in TAB VMs and human embryonic kidney 293 cells expressing human RyR2 revealed that an Ero1α-mediated increase in SR Ca2+-channel activity involves dissociation of intraluminal protein ERp44 (endoplasmic reticulum protein 44) from the RyR2 complex. Site-directed mutagenesis and molecular dynamics simulations demonstrated a novel redox-sensitive association of ERp44 with RyR2 mediated by intraluminal cysteine 4806. ERp44-RyR2 association in TAB VMs was restored by Ero1α inhibition, but not by reducing agent dithiothreitol, as hypo-oxidation precludes formation of covalent bond between RyR2 and ERp44. CONCLUSIONS A novel axis of intraluminal interaction between RyR2, ERp44, and Ero1α has been identified. Ero1α inhibition exhibits promising therapeutic potential by stabilizing RyR2-ERp44 complex, thereby reducing spontaneous Ca2+ release and Ca2+-dependent tachyarrhythmias in hypertrophic hearts, without causing hypo-oxidative stress in the SR.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (T.Y.K., B.-R.C.)
| | - Fruzsina Perger
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Jiajie Yan
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Xun Ai
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Cynthia A. Carnes
- College of Pharmacy (C.A.C.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Andriy E. Belevych
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | | | - Jonathan P. Davis
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Sandor Gyorke
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (T.Y.K., B.-R.C.)
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| |
Collapse
|
15
|
Odening KE, van der Linde HJ, Ackerman MJ, Volders PGA, ter Bekke RMA. OUP accepted manuscript. Eur Heart J 2022; 43:3018-3028. [PMID: 35445703 PMCID: PMC9443984 DOI: 10.1093/eurheartj/ehac135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
An abundance of literature describes physiological and pathological determinants of cardiac performance, building on the principles of excitation–contraction coupling. However, the mutual influencing of excitation–contraction and mechano-electrical feedback in the beating heart, here designated ‘electromechanical reciprocity’, remains poorly recognized clinically, despite the awareness that external and cardiac-internal mechanical stimuli can trigger electrical responses and arrhythmia. This review focuses on electromechanical reciprocity in the long-QT syndrome (LQTS), historically considered a purely electrical disease, but now appreciated as paradigmatic for the understanding of mechano-electrical contributions to arrhythmogenesis in this and other cardiac conditions. Electromechanical dispersion in LQTS is characterized by heterogeneously prolonged ventricular repolarization, besides altered contraction duration and relaxation. Mechanical alterations may deviate from what would be expected from global and regional repolarization abnormalities. Pathological repolarization prolongation outlasts mechanical systole in patients with LQTS, yielding a negative electromechanical window (EMW), which is most pronounced in symptomatic patients. The electromechanical window is a superior and independent arrhythmia-risk predictor compared with the heart rate-corrected QT. A negative EMW implies that the ventricle is deformed—by volume loading during the rapid filling phase—when repolarization is still ongoing. This creates a ‘sensitized’ electromechanical substrate, in which inadvertent electrical or mechanical stimuli such as local after-depolarizations, after-contractions, or dyssynchrony can trigger abnormal impulses. Increased sympathetic-nerve activity and pause-dependent potentiation further exaggerate electromechanical heterogeneities, promoting arrhythmogenesis. Unraveling electromechanical reciprocity advances the understanding of arrhythmia formation in various conditions. Real-time image integration of cardiac electrophysiology and mechanics offers new opportunities to address challenges in arrhythmia management.
Collapse
Affiliation(s)
| | - Henk J van der Linde
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | | |
Collapse
|
16
|
Ye M, Zhang JW, Liu J, Zhang M, Yao FJ, Cheng YJ. Association Between Dynamic Change of QT Interval and Long-Term Cardiovascular Outcomes: A Prospective Cohort Study. Front Cardiovasc Med 2021; 8:756213. [PMID: 34917661 PMCID: PMC8669365 DOI: 10.3389/fcvm.2021.756213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The prolongation or shortening of heart rate-corrected QT (QTc) predisposes patients to fatal ventricular arrhythmias and sudden cardiac death (SCD), but the association of dynamic change of QTc interval with mortality in the general population remains unclear. Methods: A total of 11,798 middle-aged subjects from the prospective, population-based cohort were included in this analysis. The QTc interval corrected for heart rate was measured on two occasions around 3 years apart in the Atherosclerosis Risk in Communities (ARIC) study. The ΔQTc interval was calculated by evaluating a change in QTc interval from visit 1 to visit 2. Results: After a median follow-up of 19.5 years, the association between the dynamic change of QTc interval and endpoints of death was U-shaped. The multivariate-adjusted hazard ratios (HRs) comparing subjects above the 95th percentile of Framingham–corrected ΔQTc (ΔQTcF) (≥32 ms) with subjects in the middle quintile (0–8 ms) were 2.69 (95% CI, 1.68–4.30) for SCD, 2.51 (1.68–3.74) for coronary heart disease death, 2.10 (1.50–2.94) for cardiovascular death, and 1.30 (1.11–1.55) for death from any cause. The corresponding HRs comparing subjects with a ΔQTcF below the fifth percentile (<-23 ms) with those in the middle quintile were 1.82 (1.09–3.05) for SCD, 1.83 (1.19–2.81) for coronary heart disease death, 2.14 (1.51–2.96) for cardiovascular death, and 1.31 (1.11–1.56) for death from any cause. Less extreme deviations of ΔQTcF were also associated with an increased risk of death. Similar, albeit weaker associations also were observed with ΔQTc corrected with Bazett's formula. Conclusions: A dynamic change of QTc interval is associated with increased mortality risk in the general population, indicating that repeated measurements of the QTc interval may be available to provide additional prognostic information.
Collapse
Affiliation(s)
- Min Ye
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Assisted Circulation, National Health Commission (NHC), Guangzhou, China.,Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing-Wei Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Liu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng-Juan Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Assisted Circulation, National Health Commission (NHC), Guangzhou, China
| |
Collapse
|
17
|
Kani K, Fujiu K. Electrical Storm. Int Heart J 2021; 62:1195-1198. [PMID: 34853216 DOI: 10.1536/ihj.21-662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kunihiro Kani
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
18
|
Kabakov AY, Sengun E, Lu Y, Roder K, Bronk P, Baggett B, Turan NN, Moshal KS, Koren G. Three-Week-Old Rabbit Ventricular Cardiomyocytes as a Novel System to Study Cardiac Excitation and EC Coupling. Front Physiol 2021; 12:672360. [PMID: 34867432 PMCID: PMC8637404 DOI: 10.3389/fphys.2021.672360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac arrhythmias significantly contribute to cardiovascular morbidity and mortality. The rabbit heart serves as an accepted model system for studying cardiac cell excitation and arrhythmogenicity. Accordingly, primary cultures of adult rabbit ventricular cardiomyocytes serve as a preferable model to study molecular mechanisms of human cardiac excitation. However, the use of adult rabbit cardiomyocytes is often regarded as excessively costly. Therefore, we developed and characterized a novel low-cost rabbit cardiomyocyte model, namely, 3-week-old ventricular cardiomyocytes (3wRbCMs). Ventricular myocytes were isolated from whole ventricles of 3-week-old New Zealand White rabbits of both sexes by standard enzymatic techniques. Using wheat germ agglutinin, we found a clear T-tubule structure in acutely isolated 3wRbCMs. Cells were adenovirally infected (multiplicity of infection of 10) to express Green Fluorescent Protein (GFP) and cultured for 48 h. The cells showed action potential duration (APD90 = 253 ± 24 ms) and calcium transients similar to adult rabbit cardiomyocytes. Freshly isolated and 48-h-old-cultured cells expressed critical ion channel proteins: calcium voltage-gated channel subunit alpha1 C (Cavα1c), sodium voltage-gated channel alpha subunit 5 (Nav1.5), potassium voltage-gated channel subfamily D member 3 (Kv4.3), and subfamily A member 4 (Kv1.4), and also subfamily H member 2 (RERG. Kv11.1), KvLQT1 (K7.1) protein and inward-rectifier potassium channel (Kir2.1). The cells displayed an appropriate electrophysiological phenotype, including fast sodium current (I Na), transient outward potassium current (I to), L-type calcium channel peak current (I Ca,L), rapid and slow components of the delayed rectifier potassium current (I Kr and I Ks), and inward rectifier (I K1). Although expression of the channel proteins and some currents decreased during the 48 h of culturing, we conclude that 3wRbCMs are a new, low-cost alternative to the adult-rabbit-cardiomyocytes system, which allows the investigation of molecular mechanisms of cardiac excitation on morphological, biochemical, genetic, physiological, and biophysical levels.
Collapse
Affiliation(s)
- Anatoli Y. Kabakov
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Elif Sengun
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Yichun Lu
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Karim Roder
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Brett Baggett
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Nilüfer N. Turan
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Karni S. Moshal
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Gideon Koren
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
19
|
Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S, Terentyev D. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca 2+ release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2021; 321:H615-H632. [PMID: 34415186 PMCID: PMC8794228 DOI: 10.1152/ajpheart.00126.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under β-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Biosensing Techniques
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heart Rate
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Microscopy, Confocal
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Up-Regulation
- Ventricular Function, Left
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamín Hernández Orengo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamin Martin
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Richard T Clements
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Sandor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Shemla O, Tsutsui K, Behar JA, Yaniv Y. Beating Rate Variability of Isolated Mammal Sinoatrial Node Tissue: Insight Into Its Contribution to Heart Rate Variability. Front Neurosci 2021; 14:614141. [PMID: 33679288 PMCID: PMC7928380 DOI: 10.3389/fnins.2020.614141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Because of the complexity of the interaction between the internal pacemaker mechanisms, cell interconnected signals, and interaction with other body systems, study of the role of individual systems must be performed under in vivo and in situ conditions. The in situ approach is valuable when exploring the mechanisms that govern the beating rate and rhythm of the sinoatrial node (SAN), the heart's primary pacemaker. SAN beating rate changes on a beat-to-beat basis. However, to date, there are no standard methods and tools for beating rate variability (BRV) analysis from electrograms (EGMs) collected from different mammals, and there is no centralized public database with such recordings. Methods We used EGM recordings obtained from control SAN tissues of rabbits (n = 9) and mice (n = 30) and from mouse SAN tissues (n = 6) that were exposed to drug intervention. The data were harnessed to develop a beat detector to derive the beat-to-beat interval time series from EGM recordings. We adapted BRV measures from heart rate variability and reported their range for rabbit and mouse. Results The beat detector algorithm performed with 99% accuracy, sensitivity, and positive predictive value on the test (mouse) and validation (rabbit and mouse) sets. Differences in the frequency band cutoff were found between BRV of SAN tissue vs. heart rate variability (HRV) of in vivo recordings. A significant reduction in power spectrum density existed in the high frequency band, and a relative increase was seen in the low and very low frequency bands. In isolated SAN, the larger animal had a slower beating rate but with lower BRV, which contrasted the phenomena reported for in vivo analysis. Thus, the non-linear inverse relationship between the average HR and HRV is not maintained under in situ conditions. The beat detector, BRV measures, and databases were contributed to the open-source PhysioZoo software (available at: https://physiozoo.com/). Conclusion Our approach will enable standardization and reproducibility of BRV analysis in mammals. Different trends were found between beating rate and BRV or HRV in isolated SAN tissue vs. recordings collected under in vivo conditions, respectively, implying a complex interaction between the SAN and the autonomic nervous system in determining HRV in vivo.
Collapse
Affiliation(s)
- Ori Shemla
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Kenta Tsutsui
- Department of Cardiovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan.,Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | | | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| |
Collapse
|
21
|
Liu H, Zhao Y, Xie A, Kim TY, Terentyeva R, Liu M, Shi G, Feng F, Choi BR, Terentyev D, Hamilton S, Dudley SC. Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. ACTA ACUST UNITED AC 2021; 6:42-52. [PMID: 33532665 PMCID: PMC7838050 DOI: 10.1016/j.jacbts.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Diabetes-induced arrhythmic risk involved activation of innate immunity, elevation of IL-1β, mitochondrial oxidative stress, SR calcium release channel oxidation, and QT prolongation. Diabetes-induced arrhythmic risk could be inhibited by IL-1β antagonism, mitoROS scavenging, and SR calcium release stabilization. The relationship of inflammation and arrhythmic risk may account for increased susceptibility of diabetic patients to the effects of COVID-19.
Diabetes mellitus (DM) is associated with increased arrhythmia. Type 2 DM (T2DM) mice showed prolonged QT interval and increased ventricular arrhythmic inducibility, accompanied by elevated cardiac interleukin (IL)-1β, increased mitochondrial reactive oxygen species (mitoROS), and oxidation of the sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor 2 [RyR2]). Inhibiting IL-1β and mitoROS reduced RyR2 oxidation and the ventricular arrhythmia in DM. Inhibiting SR Ca2+ leak by stabilizing the oxidized RyR2 channel reversed the diabetic arrhythmic risk. In conclusion, cardiac IL-1β mediated the DM-associated arrhythmia through mitoROS generation that enhances SR Ca2+ leak. The mechanistic link between inflammation and arrhythmias provides new therapeutic options.
Collapse
Key Words
- APD, action potential duration
- DM, diabetes mellitus
- EAD, early afterdepolarization
- IL, interleukin
- IL-1RA, interleukin-1 receptor antagonist
- Ito, transient outward potassium current
- RyR2, ryanodine receptor
- SR, sarcoplasmic reticulum
- T1DM, type 1 diabetes mellitus
- T2DM, type 2 diabetes mellitus
- VT, ventricular tachycardia
- calcium handling
- inflammation
- mitoROS, mitochondrial reactive oxygen species
- mitochondria
- oxidation
- sudden cardiac death
Collapse
Affiliation(s)
- Hong Liu
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yang Zhao
- Division of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - An Xie
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Tae-Yun Kim
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Radmila Terentyeva
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Man Liu
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Guangbin Shi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Feng Feng
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Bum-Rak Choi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Dmitry Terentyev
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Hamilton S, Veress R, Belevych A, Terentyev D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch 2021; 473:377-387. [PMID: 33404893 PMCID: PMC7940310 DOI: 10.1007/s00424-020-02505-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na + and Ca 2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021; 116:58. [PMID: 34648073 PMCID: PMC8516771 DOI: 10.1007/s00395-021-00900-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.
Collapse
Affiliation(s)
- Bence Hegyi
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Risto-Pekka Pölönen
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA ,grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kim T. Hellgren
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Christopher Y. Ko
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Kenneth S. Ginsburg
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Julie Bossuyt
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Mark Mercola
- grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Donald M. Bers
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|
24
|
Turan NN, Moshal KS, Roder K, Baggett BC, Kabakov AY, Dhakal S, Teramoto R, Chiang DYE, Zhong M, Xie A, Lu Y, Dudley SC, MacRae CA, Karma A, Koren G. The endosomal trafficking regulator LITAF controls the cardiac Nav1.5 channel via the ubiquitin ligase NEDD4-2. J Biol Chem 2020; 295:18148-18159. [PMID: 33093176 PMCID: PMC7939464 DOI: 10.1074/jbc.ra120.015216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.
Collapse
Affiliation(s)
- Nilüfer N Turan
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karni S Moshal
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karim Roder
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Brett C Baggett
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Anatoli Y Kabakov
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Saroj Dhakal
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Ryota Teramoto
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Yi-Eng Chiang
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - An Xie
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yichun Lu
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Samuel C Dudley
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
25
|
Hwang J, Kim TY, Terentyev D, Zhong M, Kabakov AY, Bronk P, Arunachalam K, Belardinelli L, Rajamani S, Kunitomo Y, Pfeiffer Z, Lu Y, Peng X, Odening KE, Qu Z, Karma A, Koren G, Choi BR. Late I Na Blocker GS967 Supresses Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long QT Type 2. Circ Arrhythm Electrophysiol 2020; 13:e006875. [PMID: 32628505 PMCID: PMC10626560 DOI: 10.1161/circep.118.006875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Long QT syndrome has been associated with sudden cardiac death likely caused by early afterdepolarizations (EADs) and polymorphic ventricular tachycardias (PVTs). Suppressing the late sodium current (INaL) may counterbalance the reduced repolarization reserve in long QT syndrome and prevent EADs and PVTs. METHODS We tested the effects of the selective INaL blocker GS967 on PVT induction in a transgenic rabbit model of long QT syndrome type 2 using intact heart optical mapping, cellular electrophysiology and confocal Ca2+ imaging, and computer modeling. RESULTS GS967 reduced ventricular fibrillation induction under a rapid pacing protocol (n=7/14 hearts in control versus 1/14 hearts at 100 nmol/L) without altering action potential duration or restitution and dispersion. GS967 suppressed PVT incidences by reducing Ca2+-mediated EADs and focal activity during isoproterenol perfusion (at 30 nmol/L, n=7/12 and 100 nmol/L n=8/12 hearts without EADs and PVTs). Confocal Ca2+ imaging of long QT syndrome type 2 myocytes revealed that GS967 shortened Ca2+ transient duration via accelerating Na+/Ca2+ exchanger (INCX)-mediated Ca2+ efflux from cytosol, thereby reducing EADs. Computer modeling revealed that INaL potentiates EADs in the long QT syndrome type 2 setting through (1) providing additional depolarizing currents during action potential plateau phase, (2) increasing intracellular Na+ (Nai) that decreases the depolarizing INCX thereby suppressing the action potential plateau and delaying the activation of slowly activating delayed rectifier K+ channels (IKs), suggesting important roles of INaL in regulating Nai. CONCLUSIONS Selective INaL blockade by GS967 prevents EADs and abolishes PVT in long QT syndrome type 2 rabbits by counterbalancing the reduced repolarization reserve and normalizing Nai. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Jungmin Hwang
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
- College of Pharmacy, Univ of Rhode Island, Kingstown, RI
| | - Tae Yun Kim
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Dmitry Terentyev
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | | | - Anatoli Y. Kabakov
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Peter Bronk
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Karuppiah Arunachalam
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | | | - Sridharan Rajamani
- Former employee: Dept of Biology, Gilead Science, Foster City, CA
- Amgen Inc, South San Francisco, CA
| | - Yukiko Kunitomo
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Zachary Pfeiffer
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Yichun Lu
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Xuwen Peng
- Dept of Comparative Medicine, Pennsylvania State Univ College of Medicine, Hershey, PA
| | - Katja E. Odening
- Dept of Cardiology & Angiology I, Heart Ctr, Univ of Freiburg, Germany
| | - Zhilin Qu
- Dept of Medicine, Univ of California, Los Angeles
| | - Alain Karma
- Dept of Physics, Northeastern Univ, Boston, MA
| | - Gideon Koren
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| | - Bum-Rak Choi
- Cardiovascular Rsrch Ctr, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown Univ, Providence
| |
Collapse
|
26
|
Hamilton S, Terentyeva R, Martin B, Perger F, Li J, Stepanov A, Bonilla IM, Knollmann BC, Radwański PB, Györke S, Belevych AE, Terentyev D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol 2020; 115:38. [PMID: 32444920 PMCID: PMC7244455 DOI: 10.1007/s00395-020-0797-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
Cardiac disease is associated with deleterious emission of mitochondrial reactive oxygen species (mito-ROS), as well as enhanced oxidation and activity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor (RyR2). The transfer of Ca2+ from the SR via RyR2 to mitochondria is thought to play a key role in matching increased metabolic demand during stress. In this study, we investigated whether augmented RyR2 activity results in self-imposed exacerbation of SR Ca2+ leak, via altered SR-mitochondrial Ca2+ transfer and elevated mito-ROS emission. Fluorescent indicators and spatially restricted genetic ROS probes revealed that both pharmacologically and genetically enhanced RyR2 activity, in ventricular myocytes from rats and catecholaminergic polymorphic ventricular tachycardia (CPVT) mice, respectively, resulted in increased ROS emission under β-adrenergic stimulation. Expression of mitochondrial Ca2+ probe mtRCamp1h revealed diminished net mitochondrial [Ca2+] with enhanced SR Ca2+ leak, accompanied by depolarization of the mitochondrial matrix. While this may serve as a protective mechanism to prevent mitochondrial Ca2+ overload, protection is not complete and enhanced mito-ROS emission resulted in oxidation of RyR2, further amplifying proarrhythmic SR Ca2+ release. Importantly, the effects of augmented RyR2 activity could be attenuated by mitochondrial ROS scavenging, and experiments with dominant-negative paralogs of the mitochondrial Ca2+ uniporter (MCU) supported the hypothesis that SR-mitochondria Ca2+ transfer is essential for the increase in mito-ROS. We conclude that in a process whereby leak begets leak, augmented RyR2 activity modulates mitochondrial Ca2+ handling, promoting mito-ROS emission and driving further channel activity in a proarrhythmic feedback cycle in the diseased heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Martin
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Fruzsina Perger
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiaoni Li
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrei Stepanov
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Laboratory of Cell Pathology, Institute RAS, Saint Petersburg, Russia
| | - Ingrid M Bonilla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Przemyslaw B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andriy E Belevych
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, Crotti L, Wong P, Schwartz PJ, Gnecchi M, Shim W. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 2019; 39:1446-1455. [PMID: 29020304 DOI: 10.1093/eurheartj/ehx394] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Aims Loss-of-function mutations in the hERG gene causes long-QT syndrome type 2 (LQT2), a condition associated with reduced IKr current. Four different mutation classes define the molecular mechanisms impairing hERG. Among them, Class 2 mutations determine hERG trafficking defects. Lumacaftor (LUM) is a drug acting on channel trafficking already successfully tested for cystic fibrosis and its safety profile is well known. We hypothesize that LUM might rescue also hERG trafficking defects in LQT2 and exert anti-arrhythmic effects. Methods and results From five LQT2 patients, we generated lines of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harbouring Class 1 and 2 mutations. The effects of LUM on corrected field potential durations (cFPD) and calcium-handling irregularities were verified by multi electrode array and by calcium transients imaging, respectively. Molecular analysis was performed to clarify the mechanism of action of LUM on hERG trafficking and calcium handling. Long-QT syndrome type 2 induced pluripotent stem cell-derived cardiomyocytes mimicked the clinical phenotypes and showed both prolonged cFPD (grossly equivalent to the QT interval) and increased arrhythmias. Lumacaftor significantly shortened cFPD in Class 2 iPSC-CMs by correcting the hERG trafficking defect. Furthermore, LUM seemed to act also on calcium handling by reducing RyR2S2808 phosphorylation in both Class 1 and 2 iPSC-CMs. Conclusion Lumacaftor, a drug already in clinical use, can rescue the pathological phenotype of LQT2 iPSC-CMs, particularly those derived from Class 2 mutated patients. Our results suggest that the use of LUM in LQT2 patients not protected by β-blockers is feasible and may represent a novel therapeutic option.
Collapse
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Manuela Mura
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy
| | - Lia Crotti
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Philip Wong
- Department of Cardiology, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Massimiliano Gnecchi
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,Department of Medicine, University of Cape Town, Old main Building, J-Floor Groote Schuur Hospital Observatory Cape Town 7925, South Africa
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
28
|
Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, Ma J, Guo L, Ge J, Qiu Y, Chen L, Liu H, Yan X, Liu X, Ye J, He W, Shen Y, Wang C, Mohler PJ, Hong K. Ankyrin-B Q1283H Variant Linked to Arrhythmias Via Loss of Local Protein Phosphatase 2A Activity Causes Ryanodine Receptor Hyperphosphorylation. Circulation 2018; 138:2682-2697. [PMID: 30571258 PMCID: PMC6276866 DOI: 10.1161/circulationaha.118.034541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human loss-of-function variants of ANK2 (ankyrin-B) are linked to arrhythmias and sudden cardiac death. However, their in vivo effects and specific arrhythmogenic pathways have not been fully elucidated. METHODS We identified new ANK2 variants in 25 unrelated Han Chinese probands with ventricular tachycardia by whole-exome sequencing. The potential pathogenic variants were validated by Sanger sequencing. We performed functional and mechanistic experiments in ankyrin-B knockin (KI) mouse models and in single myocytes isolated from KI hearts. RESULTS We detected a rare, heterozygous ANK2 variant (p.Q1283H) in a proband with recurrent ventricular tachycardia. This variant was localized to the ZU5C region of ANK2, where no variants have been previously reported. KI mice harboring the p.Q1283H variant exhibited an increased predisposition to ventricular arrhythmias after catecholaminergic stress in the absence of cardiac structural abnormalities. Functional studies illustrated an increased frequency of delayed afterdepolarizations and Ca2+ waves and sparks accompanied by decreased sarcoplasmic reticulum Ca2+ content in KI cardiomyocytes on isoproterenol stimulation. The immunoblotting results showed increased levels of phosphorylated ryanodine receptor Ser2814 in the KI hearts, which was further amplified on isoproterenol stimulation. Coimmunoprecipitation experiments demonstrated dissociation of protein phosphatase 2A from ryanodine receptor in the KI hearts, which was accompanied by a decreased binding of ankyrin-B to protein phosphatase 2A regulatory subunit B56α. Finally, the administration of metoprolol or flecainide decreased the incidence of stress-induced ventricular arrhythmias in the KI mice. CONCLUSIONS ANK2 p.Q1283H is a disease-associated variant that confers susceptibility to stress-induced arrhythmias, which may be prevented by the administration of metoprolol or flecainide. This variant is associated with the loss of protein phosphatase 2A activity, increased phosphorylation of ryanodine receptor, exaggerated delayed afterdepolarization-mediated trigger activity, and arrhythmogenesis.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Cen Wang
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianyong Ma
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Linjuan Guo
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ge
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yumin Qiu
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Leifeng Chen
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Hualong Liu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Peter J. Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, College of Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Departments of Physiology and Cell Biology and Internal Medicine, Columbus (P.J.M.)
| | - Kui Hong
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
29
|
Huang X, Song Z, Qu Z. Determinants of early afterdepolarization properties in ventricular myocyte models. PLoS Comput Biol 2018; 14:e1006382. [PMID: 30475801 PMCID: PMC6283611 DOI: 10.1371/journal.pcbi.1006382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development. Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation. The same bifurcations are also responsible for certain types of bursting behaviors in other cell types, such as beta cells and neuronal cells. EADs are known to play important role in the genesis of lethal arrhythmias and have been widely studied in both experiments and computer models. However, a detailed comparison between the properties of EADs observed in experiments and those from mathematical models have not been carried out. In this study, we performed theoretical analyses and computer simulations of different ventricular action potential models as well as different species to investigate the properties of EADs and compared these properties to those observed in experiments. While the EAD properties in the action potential models capture many of the EAD properties seen in experiments, the inter-EAD intervals in the computer models differ a lot from model to model, and some of them show very large discrepancy with those observed in experiments. This discrepancy needs to be addressed in future cardiac action potential model development.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang JC, Wu HL, Chen Q, Xie XT, Zou T, Zhu C, Dong Y, Xiang GJ, Ye L, Li Y, Zhu PL. Calcium-Mediated Oscillation in Membrane Potentials and Atrial-Triggered Activity in Atrial Cells of Casq2 R33Q/R33Q Mutation Mice. Front Physiol 2018; 9:1447. [PMID: 30450052 PMCID: PMC6224359 DOI: 10.3389/fphys.2018.01447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Aim: We investigated the underlying mechanisms in atrial fibrillation (AF) associated with R33Q mutation and Ca2+-triggered activity. Methods and Results: We examined AF susceptibility with intraesophageal burst pacing in the sarcoplasmic reticulum (SR) Ca2+ leak model calsequestrin 2 R33Q (Casq2R33Q/R33Q) mice. Atrial trigger appeared in R33Q mice but not WT mice (17.24%, 5/29 vs. 0.00%, 0/32, P < 0.05). AF was induced by 25 Hz pacing in R33Q mice (48.27%, 14/29 vs. 6.25%, 2/32, P < 0.01). The mice were given 1.5 mg/kg isoproterenol (Iso), and the incidences of AF increased (65.51%, 19/29 vs. 9.21%, 3/32, P < 0.01). Electrophysiology experiments and the recording of intracellular Ca2+ indicated significant increases in the Ca2+ sparks (5.24 ± 0.75 100 μM-1.s-1 vs. 0.29 ± 0.04 100 μM-1.s-1, n = 20, P < 0.05), intracellular free Ca2+ (0.238 ± 0.009 μM vs. 0.172 ± 0.006 μM, n = 20, P < 0.05), Ca2+ wave (11.74% vs. 2.24%, n = 20, P < 0.05), transient inward current (ITi) (-0.56 ± 0.02 pA/pF vs. -0.42 ± 0.01 pA/pF, n = 10, P < 0.05), and oscillation in membrane potentials (10.71%, 3/28 vs. 4.16%, 1/24, P < 0.05) in the R33Q group, but there was no significant difference in the L-type calcium current. These effects were enhanced by Iso, and the inhibition of calmodulin-dependent protein kinase II (CaMKII) by 1 μM KN93 reversed the effects of Iso on Ca2+ sparks (5.01 ± 0.66 100 μm-1.s-1 vs. 11.33 ± 1.63 100 μm-1.s-1, P < 0.05), intracellular Ca2+ (0.245 ± 0.005 μM vs. 0.324 ± 0.008 μM, P < 0.05), Ca2+ wave (12.35% vs. 17.83%, P < 0.05), ITi (-0.61 ± 0.02 pA/pF vs. -0.78 ± 0.03 pA/pF, n = 10, P < 0.05), and oscillation in membrane potential (17.85% 5/28 vs. 32.17% 9/28, P < 0.05). The reduction of ryanodine receptor 2 (RyR2) stable subunits (Casq2, triadin, and junctin) rather than RYR2 and the increase in CaMKII, phosphor-CaMKII, phosphor-RyR2 (Ser 2814), SERCA, and NCX1.1 was reflected in the R33Q group. Conclusion: This study demonstrates that the increase in spontaneous calcium elevations corresponding to ITi that may trigger the oscillation in membrane potentials in the R33Q group, thereby increasing the risk of AF. The occurrence of spontaneous calcium elevations in R33Q atrial myocytes is due to the dysfunction of RyR2 stable subunits, CaMKII hyperactivity, and CaMKII-mediated RyR phosphorylation. An effective therapeutic strategy to intervene in Ca2+-induced AF associated with the R33Q mutation may be through CaMKII inhibition.
Collapse
Affiliation(s)
- Jian-Cheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Hong-Lin Wu
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Qian Chen
- Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Xiao-Ting Xie
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Tian Zou
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Chao Zhu
- Department of Cardiology, General Hospital of People's Liberation Army, Beijing, China
| | - Ying Dong
- Department of Cardiology, General Hospital of People's Liberation Army, Beijing, China
| | - Guo-Jian Xiang
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation Army, Beijing, China
| | - Peng-Li Zhu
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Radwański PB, Johnson CN, Györke S, Veeraraghavan R. Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Front Physiol 2018; 9:1228. [PMID: 30233404 PMCID: PMC6131669 DOI: 10.3389/fphys.2018.01228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation–contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other’s function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christopher N Johnson
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, United States
| | - Sándor Györke
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Zhong M, Rees CM, Terentyev D, Choi BR, Koren G, Karma A. NCX-Mediated Subcellular Ca 2+ Dynamics Underlying Early Afterdepolarizations in LQT2 Cardiomyocytes. Biophys J 2018; 115:1019-1032. [PMID: 30173888 DOI: 10.1016/j.bpj.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Long QT syndrome type 2 (LQT2) is a congenital disease characterized by loss of function mutations in hERG potassium channels (IKr). LQT2 is associated with fatal ventricular arrhythmias promoted by triggered activity in the form of early afterdepolarizations (EADs). We previously demonstrated that intracellular Ca2+ handling is remodeled in LQT2 myocytes. Remodeling leads to aberrant late RyR-mediated Ca2+ releases that drive forward-mode Na+-Ca2+ exchanger (NCX) current and slow repolarization to promote reopening of L-type calcium channels and EADs. Forward-mode NCX was found to be enhanced despite the fact that these late releases do not significantly alter the whole-cell cytosolic calcium concentration during a vulnerable period of phase 2 of the action potential corresponding to the onset of EADs. Here, we use a multiscale ventricular myocyte model to explain this finding. We show that because the local NCX current is a saturating nonlinear function of the local submembrane calcium concentration, a larger number of smaller-amplitude discrete Ca2+ release events can produce a large increase in whole-cell forward-mode NCX current without increasing significantly the whole-cell cytosolic calcium concentration. Furthermore, we develop novel insights, to our knowledge, into how alterations of stochastic RyR activity at the single-channel level cause late aberrant Ca2+ release events. Experimental measurements in transgenic LTQ2 rabbits confirm the critical arrhythmogenic role of NCX and identify this current as a potential target for antiarrhythmic therapies in LQT2.
Collapse
Affiliation(s)
- Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts
| | - Colin M Rees
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts
| | - Dmitry Terentyev
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bum-Rak Choi
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
33
|
Behar JA, Rosenberg AA, Shemla O, Murphy KR, Koren G, Billman GE, Yaniv Y. A Universal Scaling Relation for Defining Power Spectral Bands in Mammalian Heart Rate Variability Analysis. Front Physiol 2018; 9:1001. [PMID: 30116198 PMCID: PMC6083004 DOI: 10.3389/fphys.2018.01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Power spectral density (PSD) analysis of the heartbeat intervals in the three main frequency bands [very low frequency (VLF), low frequency (LF), and high frequency (HF)] provides a quantitative non-invasive tool for assessing the function of the cardiovascular control system. In humans, these frequency bands were standardized following years of empirical evidence. However, no quantitative approach has justified the frequency cutoffs of these bands and how they might be adapted to other mammals. Defining mammal-specific frequency bands is necessary if the PSD analysis of the HR is to be used as a proxy for measuring the autonomic nervous system activity in animal models. Methods: We first describe the distribution of prominent frequency peaks found in the normalized PSD of mammalian data using a Gaussian mixture model while assuming three components corresponding to the traditional VLF, LF and HF bands. We trained the algorithm on a database of human electrocardiogram recordings (n = 18) and validated it on databases of dogs (n = 17) and mice (n = 8). Finally, we tested it to predict the bands for rabbits (n = 4) for the first time. Results: Double-logarithmic analysis demonstrates a scaling law between the GMM-identified cutoff frequencies and the typical heart rate (HRm): fVLF-LF = 0.0037⋅ HR m 0.58 , fLF-HF = 0.0017⋅ HR m 1.01 and fHFup = 0.0128⋅ HR m 0.86 . We found that the band cutoff frequencies and Gaussian mean scale with a power law of 1/4 or 1/8 of the typical body mass (BMm), thus revealing allometric power laws. Conclusion: Our automated data-driven approach allowed us to define the frequency bands in PSD analysis of beat-to-beat time series from different mammals. The scaling law between the band frequency cutoffs and the HRm can be used to approximate the PSD bands in other mammals.
Collapse
Affiliation(s)
| | | | - Ori Shemla
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Kevin R. Murphy
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - George E. Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Yael Yaniv
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
34
|
Jones DC, Gong JQX, Sobie EA. A privileged role for neuronal Na + channels in regulating ventricular [Ca 2+] and arrhythmias. J Gen Physiol 2018; 150:901-905. [PMID: 29899058 PMCID: PMC6028496 DOI: 10.1085/jgp.201812120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jones et al. provide commentary on the intricate crosstalk between ion transporters that goes awry in long QT arrhythmia.
Collapse
Affiliation(s)
- DeAnalisa C Jones
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jingqi Q X Gong
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Odening KE. Another step towards a mechanism-based, subtype-specific therapy in long QT syndrome. Int J Cardiol 2018; 263:67-68. [DOI: 10.1016/j.ijcard.2018.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
36
|
Val-Blasco A, Navarro-García JA, Tamayo M, Piedras MJ, Prieto P, Delgado C, Ruiz-Hurtado G, Rozas-Romero L, Gil-Fernández M, Zaragoza C, Boscá L, Fernández-Velasco M. Deficiency of NOD1 Improves the β-Adrenergic Modulation of Ca 2+ Handling in a Mouse Model of Heart Failure. Front Physiol 2018; 9:702. [PMID: 29962957 PMCID: PMC6010671 DOI: 10.3389/fphys.2018.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by cardiac dysfunction, Ca2+ mishandling, and chronic activation of the innate immune system. Reduced cardiac output in HF leads to compensatory mechanisms via activation of the adrenergic nervous system. In turn, chronic adrenergic overstimulation induces pro-arrhythmic events, increasing the rate of sudden death in failing patients. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an innate immune modulator that plays a key role in HF progression. NOD1 deficiency in mice prevents Ca2+ mishandling in HF under basal conditions, but its role during β-adrenergic stimulation remains unknown. Here, we evaluated whether NOD1 regulates the β-adrenergic modulation of Ca2+ signaling in HF. Ca2+ dynamics were examined before and after isoproterenol perfusion in cardiomyocytes isolated from healthy and from post-myocardial infarction (PMI) wild-type (WT) and Nod1-/- mice. Isoproterenol administration induced similar effects on intracellular [Ca2+]i transients, cell contraction, and sarcoplasmic reticulum (SR)-Ca2+ load in healthy WT and Nod1-/- cells. However, compared with WT-PMI cells, isoproterenol exposure induced a significant increase in the [Ca2+]i transients and cell contraction parameters in Nod1-/--PMI cells, which mainly due to an increase in SR-Ca2+ load. NOD1 deficiency also prevented the increase in diastolic Ca2+ leak (Ca2+ waves) induced by isoproterenol in PMI cells. mRNA levels of β1 and β2 adrenergic receptors were significantly higher in Nod1-/--PMI hearts vs WT-PMI hearts. Healthy cardiomyocytes pre-treated with the selective agonist of NOD1, iE-DAP, and perfused with isoproterenol showed diminished [Ca2+]i transients amplitude, cell contraction, and SR-Ca2+ load compared with vehicle-treated cells. iE-DAP-treated cells also presented increased diastolic Ca2+ leak under β-adrenergic stimulation. The selectivity of iE-DAP on Ca2+ handling was validated by pre-treatment with the inactive analog of NOD1, iE-Lys. Overall, our data establish that NOD1 deficiency improves the β-adrenergic modulation of Ca2+ handling in failing hearts.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Jose A. Navarro-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Tamayo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria J. Piedras
- Department of Anatomy, Faculty of Health Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, Spain
| | - Patricia Prieto
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Delgado
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Rozas-Romero
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Marta Gil-Fernández
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), CIBERCV, Madrid, Spain
| | - Lisardo Boscá
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Fernández-Velasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
37
|
Choi BR, Li W, Terentyev D, Kabakov AY, Zhong M, Rees CM, Terentyeva R, Kim TY, Qu Z, Peng X, Karma A, Koren G. Transient Outward K + Current (I to) Underlies the Right Ventricular Initiation of Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long-QT Syndrome Type 1. Circ Arrhythm Electrophysiol 2018; 11:e005414. [PMID: 29769222 PMCID: PMC6081959 DOI: 10.1161/circep.117.005414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sudden death in long-QT syndrome type 1 (LQT1), an inherited disease caused by loss-of-function mutations in KCNQ1, is triggered by early afterdepolarizations (EADs) that initiate polymorphic ventricular tachycardia (pVT). We investigated ionic mechanisms that underlie pVT in LQT1 using a transgenic rabbit model of LQT1. METHODS Optical mapping, cellular patch clamping, and computer modeling were used to elucidate the mechanisms of EADs in transgenic LQT1 rabbits. RESULTS The results showed that shorter action potential duration in the right ventricle (RV) was associated with focal activity during pVT initiation. RV cardiomyocytes demonstrated higher incidence of EADs under 50 nmol/L isoproterenol. Voltage-clamp studies revealed that the transient outward potassium current (Ito) magnitude was 28% greater in RV associated with KChiP2 but with no differences in terms of calcium-cycling kinetics and other sarcolemmal currents. Perfusing with the Ito blocker 4-aminopyridine changed the initial focal sites of pVT from the RV to the left ventricle, corroborating the role of Ito in pVT initiation. Computer modeling showed that EADs occur preferentially in the RV because of the larger conductance of the slow-inactivating component of Ito, which repolarizes the membrane potential sufficiently rapidly to allow reactivation of ICa,L before IKr has had sufficient time to activate. CONCLUSIONS Ito heterogeneity creates both triggers and an arrhythmogenic substrate in LQT1. In the absence of IKs, Ito interactions with ICa,L and IKr promote EADs in the RV while prolonging action potential duration in the left ventricle. This heterogeneity of action potential enhances dispersion of refractoriness and facilitates conduction blocks that initiate pVTs.
Collapse
Affiliation(s)
- Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.).
| | - Weiyan Li
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.)
| | - Dmitry Terentyev
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.)
| | - Anatoli Y Kabakov
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.)
| | - Mingwang Zhong
- Department of Physics, Northeastern University, Boston MA (M.Z., C.M.R., A.K.)
| | - Colin M Rees
- Department of Physics, Northeastern University, Boston MA (M.Z., C.M.R., A.K.)
| | - Radmila Terentyeva
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.)
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.)
| | - Zhilin Qu
- Department of Medicine (Cardiology), University of California, Los Angeles (Z.Q.)
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.)
| | - Alain Karma
- Department of Physics, Northeastern University, Boston MA (M.Z., C.M.R., A.K.)
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence (B.-R.C., W.L., D.T., A.Y.K., R.T., T.Y.K., G.K.).
| |
Collapse
|
38
|
Koleske M, Bonilla I, Thomas J, Zaman N, Baine S, Knollmann BC, Veeraraghavan R, Györke S, Radwański PB. Tetrodotoxin-sensitive Na vs contribute to early and delayed afterdepolarizations in long QT arrhythmia models. J Gen Physiol 2018; 150:991-1002. [PMID: 29793933 PMCID: PMC6028491 DOI: 10.1085/jgp.201711909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neuronal Na+ channels contribute to catecholaminergic polymorphic ventricular tachycardia in the heart, but their role in other types of arrhythmias is unknown. Koleske et al. show that they contribute to early and delayed afterdepolarizations common to long QT, catecholaminergic polymorphic ventricular tachycardia, and overlap phenotypes. Recent evidence suggests that neuronal Na+ channels (nNavs) contribute to catecholamine-promoted delayed afterdepolarizations (DADs) and catecholaminergic polymorphic ventricular tachycardia (CPVT). The newly identified overlap between CPVT and long QT (LQT) phenotypes has stoked interest in the cross-talk between aberrant Na+ and Ca2+ handling and its contribution to early afterdepolarizations (EADs) and DADs. Here, we used Ca2+ imaging and electrophysiology to investigate the role of Na+ and Ca2+ handling in DADs and EADs in wild-type and cardiac calsequestrin (CASQ2)-null mice. In experiments, repolarization was impaired using 4-aminopyridine (4AP), whereas the L-type Ca2+ and late Na+ currents were augmented using Bay K 8644 (BayK) and anemone toxin II (ATX-II), respectively. The combination of 4AP and isoproterenol prolonged action potential duration (APD) and promoted aberrant Ca2+ release, EADs, and DADs in wild-type cardiomyocytes. Similarly, BayK in the absence of isoproterenol induced the same effects in CASQ2-null cardiomyocytes. In vivo, it prolonged the QT interval and, upon catecholamine challenge, precipitated wide QRS polymorphic ventricular tachycardia that resembled human torsades de pointes. Treatment with ATX-II produced similar effects at both the cellular level and in vivo. Importantly, nNav inhibition with riluzole or 4,9-anhydro-tetrodotoxin reduced the incidence of ATX-II–, BayK-, or 4AP-induced EADs, DADs, aberrant Ca2+ release, and VT despite only modestly mitigating APD prolongation. These data reveal the contribution of nNaVs to triggered arrhythmias in murine models of LQT and CPVT-LQT overlap phenotypes. We also demonstrate the antiarrhythmic impact of nNaV inhibition, independent of action potential and QT interval duration, and provide a basis for a mechanistically driven antiarrhythmic strategy.
Collapse
Affiliation(s)
- Megan Koleske
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ingrid Bonilla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Justin Thomas
- Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Naveed Zaman
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Stephen Baine
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN
| | - Rengasayee Veeraraghavan
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH .,Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| |
Collapse
|
39
|
Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J Physiol 2018; 596:1341-1355. [PMID: 29377142 DOI: 10.1113/jp275492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Medicine, University of California, Los Angeles, California, USA.,School of Science, Jiangxi University of Science and Technology, Ganzhou, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xiaodong Huang
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Physics, South China University of Technology, Guangzhou, China
| | - Michael B Liu
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Biomathematics, University of California, Los Angeles, California, USA
| |
Collapse
|
40
|
The role of RyR2 oxidation in the blunted frequency-dependent facilitation of Ca 2+ transient amplitude in rabbit failing myocytes. Pflugers Arch 2018; 470:959-968. [PMID: 29500669 DOI: 10.1007/s00424-018-2122-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Defective Ca2+ regulation plays a key role in the blunted force-frequency response in heart failure (HF). Since HF is commonly associated with oxidative stress, we studied whether oxidation of ryanodine receptor (RyR2) contributes to this defect. In control ventricular myocytes, oxidative stress induced formation of disulfide bonds between RyR2 subunits: intersubunit cross-linking (XL). Western blot analysis and Ca2+ imaging revealed a strong positive correlation between RyR2 XL and sarcoplasmic reticulum (SR) Ca2+ leak. These results illustrate that RyR2 XL can be used as a sensitive indicator of RyR2 dysfunction during oxidative stress. HF myocytes were in a state of oxidative stress since they exhibited an increase in reactive oxygen species (ROS) level, a decrease in ROS defense and an overall protein oxidation. These myocytes were also characterized by RyR2 XL and increased SR Ca2+ leak. Moreover, the frequency-dependent increase of Ca2+ transient amplitude was suppressed due to the inability of the SR to maintain Ca2+ load at high pacing rates. Because SR Ca2+ load is determined by the balance between SR Ca2+ uptake and leak, the blunted frequency-dependent inotropy in HF can be mediated by ROS-induced SR Ca2+ leak. Preventing RyR2 XL in HF myocytes decreased SR Ca2+ leak and increased Ca2+ transients at high pacing rate. We also studied whether RyR2 oxidation alone can cause the blunted frequency-dependent facilitation of Ca2+ transient amplitude in control myocytes. When RyR2 XL was induced in control myocytes to a similar level seen in HF, an increase of Ca2+ transient amplitude at high pacing rate was significantly suppressed. These results suggest that SR Ca2+ leak induced by RyR2 oxidation can play an important role in the blunted frequency-dependent inotropy of HF.
Collapse
|
41
|
Frommeyer G, Krawczyk J, Ellermann C, Bögeholz N, Kochhäuser S, Dechering DG, Fehr M, Eckardt L. Ryanodine-receptor inhibition by dantrolene effectively suppresses ventricular arrhythmias in an ex vivo model of long-QT syndrome. J Cardiovasc Electrophysiol 2018; 29:471-476. [PMID: 29314443 DOI: 10.1111/jce.13412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
AIMS A significant antiarrhythmic potential of ryanodine receptor inhibition was reported in experimental studies. The aim of the present study was to assess potential antiarrhythmic effects of dantrolene in an experimental whole-heart model of drug-induced long-QT syndrome (LQTS). METHODS In 12 isolated rabbit hearts, long-QT-2-syndrome was simulated by infusion of erythromycin (300 μM). Twelve rabbit hearts were treated with veratridine (0.5 μM) to mimic long-QT-3-syndrome. RESULTS Monophasic action potentials and ECG showed a significant prolongation of QT-interval (+71 ms, P < 0.01) and action potential duration (APD, +43 ms, P < 0.01) after infusion of erythromycin as compared with baseline. Similar results were obtained in veratridine-treated hearts (QT-interval: +43 ms, P < 0.01; APD: +36 ms, P < 0.01). Both erythromycin (+36 ms, P < 0.05) and veratridine (+38 ms) significantly increased dispersion of repolarization. Additional infusion of dantrolene (20 μM) did not significantly alter QT-interval and APD but resulted in a significant reduction of dispersion of repolarization (erythromycin group: -33 ms, P < 0.05; veratridine group: -29 ms, P < 0.05). Lowering of potassium concentration resulted in the occurrence of early afterdepolarizations (EAD) and polymorphic ventricular tachycardia (VT) in 9 of 12 erythromycin-treated hearts (175 episodes) and 8 of 12 veratridine-treated hearts (66 episodes). Additional infusion of dantrolene significantly reduced occurrence of polymorphic VT and resulted in occurrence of EAD and polymorphic VT in 1 of 12 erythromycin-treated hearts (18 episodes) and 1 of 12 veratridine-treated hearts (3 episodes). CONCLUSION Inhibition of the ryanodine receptor by dantrolene significantly reduced occurrence of polymorphic VT in drug-induced LQTS. A significant reduction of spatial dispersion of repolarization represents a major antiarrhythmic mechanism. These results imply that dantrolene may represent a promising antiarrhythmic option in drug-induced LQTS.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Julius Krawczyk
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Nils Bögeholz
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Michael Fehr
- Clinic of Exotic Pets, Reptiles, Exotic and Feral Birds, University of Hanover, Hanover, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
42
|
Krogh-Madsen T, Jacobson AF, Ortega FA, Christini DJ. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes. Front Physiol 2017; 8:1059. [PMID: 29311985 PMCID: PMC5742183 DOI: 10.3389/fphys.2017.01059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Trine Krogh-Madsen
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Anna F Jacobson
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Francis A Ortega
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School, New York, NY, United States
| | - David J Christini
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
43
|
Wilson D, Ermentrout B, Němec J, Salama G. A model of cardiac ryanodine receptor gating predicts experimental Ca 2+-dynamics and Ca 2+-triggered arrhythmia in the long QT syndrome. CHAOS (WOODBURY, N.Y.) 2017; 27:093940. [PMID: 28964110 DOI: 10.1063/1.5000711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abnormal Ca2+ handling is well-established as the trigger of cardiac arrhythmia in catecholaminergic polymorphic ventricular tachycardia and digoxin toxicity, but its role remains controversial in Torsade de Pointes (TdP), the arrhythmia associated with the long QT syndrome (LQTS). Recent experimental results show that early afterdepolarizations (EADs) that initiate TdP are caused by spontaneous (non-voltage-triggered) Ca2+ release from Ca2+-overloaded sarcoplasmic reticulum (SR) rather than the activation of the L-type Ca2+-channel window current. In bradycardia and long QT type 2 (LQT2), a second, non-voltage triggered cytosolic Ca2+ elevation increases gradually in amplitude, occurs before overt voltage instability, and then precedes the rise of EADs. Here, we used a modified Shannon-Puglisi-Bers model of rabbit ventricular myocytes to reproduce experimental Ca2+ dynamics in bradycardia and LQT2. Abnormal systolic Ca2+-oscillations and EADs caused by SR Ca2+-release are reproduced in a modified 0-dimensional model, where 3 gates in series control the ryanodine receptor (RyR2) conductance. Two gates control RyR2 activation and inactivation and sense cytosolic Ca2+ while a third gate senses luminal junctional SR Ca2+. The model predicts EADs in bradycardia and low extracellular [K+] and cessation of SR Ca2+-release terminate salvos of EADs. Ca2+-waves, systolic cell-synchronous Ca2+-release, and multifocal diastolic Ca2+ release seen in subcellular Ca2+-mapping experiments are observed in the 2-dimensional version of the model. These results support the role of SR Ca2+-overload, abnormal SR Ca2+-release, and the subsequent activation of the electrogenic Na+/Ca2+-exchanger as the mechanism of TdP. The model offers new insights into the genesis of cardiac arrhythmia and new therapeutic strategies.
Collapse
Affiliation(s)
- Dan Wilson
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Jan Němec
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
44
|
Roston TM, Cunningham T, Lehman A, Laksman ZW, Krahn AD, Sanatani S. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698134. [PMID: 28469493 PMCID: PMC5392026 DOI: 10.1177/1179546817698134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.
Collapse
Affiliation(s)
- Thomas M Roston
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Taylor Cunningham
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Zachary W Laksman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Andrew D Krahn
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada.,Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
45
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
46
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|
48
|
Huang X, Kim TY, Koren G, Choi BR, Qu Z. Spontaneous initiation of premature ventricular complexes and arrhythmias in type 2 long QT syndrome. Am J Physiol Heart Circ Physiol 2016; 311:H1470-H1484. [PMID: 27765749 DOI: 10.1152/ajpheart.00500.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The occurrence of early afterdepolarizations (EADs) and increased dispersion of repolarization are two known factors for arrhythmogenesis in long QT syndrome. However, increased dispersion of repolarization tends to suppress EADs due to the source-sink effect, and thus how the two competing factors cause initiation of arrhythmias remains incompletely understood. Here we used optical mapping and computer simulation to investigate the mechanisms underlying spontaneous initiation of arrhythmias in type 2 long QT (LQT2) syndrome. In optical mapping experiments of transgenic LQT2 rabbit hearts under isoproterenol, premature ventricular complexes (PVCs) were observed to originate from the steep spatial repolarization gradient (RG) regions and propagated unidirectionally. The same PVC behaviors were demonstrated in computer simulations of tissue models of rabbits. Depending on the heterogeneities, these PVCs could lead to either repetitive focal excitations or reentry without requiring an additional vulnerable substrate. Systematic simulations showed that cellular phase 2 EADs were either suppressed or confined to the long action potential region due to the source-sink effect. Tissue-scale phase 3 EADs and PVCs occurred due to tissue-scale dynamical instabilities caused by RG and enhanced L-type calcium current (ICa,L), occurring under both large and small RG. Presence of cellular EADs was not required but potentiated PVCs when RG was small. We also investigated how other factors affect the dynamical instabilities causing PVCs. Our main conclusion is that tissue-scale dynamical instabilities caused by RG and enhanced ICa,L give rise to both the trigger and the vulnerable substrate simultaneously for spontaneous initiation of arrhythmias in LQT2 syndrome.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Physics, South China University of Technology, Guangzhou, China; and
| | - Tae Yun Kim
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bum-Rak Choi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California; .,Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
49
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
50
|
Lancaster MC, Sobie EA. Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms. Clin Pharmacol Ther 2016; 100:371-9. [PMID: 26950176 DOI: 10.1002/cpt.367] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Abstract
The ventricular arrhythmia Torsades de Pointes (TdP) is a common form of drug-induced cardiotoxicity, but prediction of this arrhythmia remains an unresolved issue in drug development. Current assays to evaluate arrhythmia risk are limited by poor specificity and a lack of mechanistic insight. We addressed this important unresolved issue through a novel computational approach that combined simulations of drug effects on dynamics with statistical analysis and machine-learning. Drugs that blocked multiple ion channels were simulated in ventricular myocyte models, and metrics computed from the action potential and intracellular (Ca(2+) ) waveform were used to construct classifiers that distinguished between arrhythmogenic and nonarrhythmogenic drugs. We found that: (1) these classifiers provide superior risk prediction; (2) drug-induced changes to both the action potential and intracellular (Ca(2+) ) influence risk; and (3) cardiac ion channels not typically assessed may significantly affect risk. Our algorithm demonstrates the value of systematic simulations in predicting pharmacological toxicity.
Collapse
Affiliation(s)
- M Cummins Lancaster
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - E A Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|