1
|
Sivakumar S, Rajavel A, Viswanathan V, Daniel EA, Gangadaran P, Natesan Sella R. miRNA dysregulation in Duchenne muscular dystrophy comorbidities. World J Exp Med 2025; 15:100548. [DOI: 10.5493/wjem.v15.i2.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by mutations in the dystrophin gene. DMD is reported to coexist with other comorbidities, although the occurrence of the triad, autism spectrum disorder (ASD), and epilepsy is very rare. Indeed, only one case of the triad has currently been reported. Here, we present a detailed case report of a ten-year-old boy with DMD, ASD, and epilepsy. We also investigated the dysregulation of miRNAs in this unusual triad (represented as DMD++) compared with a healthy individual and a DMD patient (represented as DMD+) without autism.
AIM To understand the differential expression of miRNAs in rare comorbid DMD cases.
METHODS The Sequin Form Board test, Gesell's drawing test, multiplex ligation probe amplification, and Vineland Social Maturity Scale were applied to confirm the DMD and ASD. Total RNA was isolated from samples using TRIzol. cDNA was synthesized using the Mir-X™ miRNA First-Strand Synthesis kit. qRT-PCR was performed using SYBR Advantage qPCR Premix. The results were statistically analyzed using one-way analysis of variance with Tukey's t-test.
RESULTS miR-146a-5p and miR-132-5p showed significant downregulation in both patient samples. miR-199a-5p and miR-146a-3p showed no change in expression between the diseased and controls. miR-132-3p showed downregulation only in the DMD+ sample (0.21 ± 0.04). The decrease in miR-132-3p can result in failed silencing of the phosphatase and tensin homolog-mediated apoptotic pathway, leading to severe skeletal muscle atrophy. Here, the downregulation of miR-132-3p in DMD+ is consistent with severe muscle loss and higher disease progression than that in DMD++. DMD++ has slower disease progression, and the expression of miRNA involved in inflammatory and apoptotic responses is more similar to that of the control.
CONCLUSION Our study shows marked difference in miRNA expression in this rare case of DMD with autism and epilepsy. These miRNAs also serve as regulators of several muscle regeneration, apoptosis, and inflammatory pathways. This study shows the significance of studying miRNAs in such rare cases in a larger cohort to progress in several intervention treatments utilizing miRNAs.
Collapse
Affiliation(s)
- Subhashree Sivakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, Tamil Nādu, India
| | - Archana Rajavel
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, Tamil Nādu, India
| | - Venkataraman Viswanathan
- Department of Pediatric Neurology, Apollo Children's Hospital, Chennai 600006, Tamil Nādu, India
| | - Evangeline Ann Daniel
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nādu, India
| | - Prakash Gangadaran
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Raja Natesan Sella
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, Tamil Nādu, India
| |
Collapse
|
2
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yang X, Ren Y, Li X, Xia L, Wan J. MiR-146a Reduces Inflammation in Experimental Pancreatitis via the TRAF6-NF-κB Signaling Pathway in Mice. Immun Inflamm Dis 2025; 13:e70163. [PMID: 40018991 PMCID: PMC11868994 DOI: 10.1002/iid3.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The initial inflammatory response plays a pivotal role in the development of acute pancreatitis. MiR-146a is believed to play a key role in negatively regulating inflammation and potentially contributes to anti-inflammatory activity in acute pancreatitis, though its mechanism remains largely unexplored. OBJECTIVES This study aimed to explore the effects of miR-146a on AP in mice and clarify its regulatory mechanisms in pancreatic inflammation and damage. METHODS Adult male BALB/C mice were used. Adeno-associated virus (AAV) vectors were used to modulate miR-146a expression in mice via tail vein injection. AP was induced by intraperitoneal injection of caerulein, caerulein + LPS, or l-arginine. Histological analysis, immunohistochemistry staining, immunofluorescence staining, measurements of amylase and lipase activities, and qRT-PCR were performed. RESULTS Overexpression of miR-146a reduced pancreatic damage and inflammation in caerulein-induced AP. It decreased serum amylase and lipase levels, mitigated pathological features such as interstitial edema and inflammatory cell infiltration in the pancreas and lung, and reduced neutrophil infiltration and proinflammatory cytokine expression. MiR-146a attenuated the activation of the NF-κB signaling pathway by inhibiting the degradation of IκBα and the expression of phosphorylated-p65 and reducing the nuclear translocation of NF-κB p65. Similar protective effects of miR-146a were observed in AP models induced by l-arginine and caerulein combined with LPS. CONCLUSIONS MiR-146a alleviates acute pancreatitis in mice by targeting TRAF6 and suppressing the activation of the NF-κB signaling pathway. These findings suggest that miR-146a could be a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yuping Ren
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xueyang Li
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Liang Xia
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianhua Wan
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
4
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of miR-146a as a potential biomarker for diagnosis of cardiotoxicity induced by chemotherapy in patients with breast cancer. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:4. [PMID: 40200966 PMCID: PMC11974593 DOI: 10.4103/jrms.jrms_840_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/01/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2025]
Abstract
Background Cardiotoxicity from chemotherapy may result in cardiomyopathy and heart failure. Clinicians can use the evaluation of cardiotoxicity-specific biomarkers, such as microRNA, as a tool for the early detection of cardiotoxicity. The study's objective was to assess miR-146a levels as a potential biomarker for the detection of cardiotoxicity brought on by chemotherapy in patients with breast cancer. Materials and Methods Using quantitative reverse transcription-polymerase chain reaction, the levels of miR-146a were assessed in the blood of 37 breast cancer patients receiving anthracyclines without cardiotoxicity and 33 breast cancer patients experiencing cardiotoxicity brought on by chemotherapy after chemotherapy. Left ventricular ejection fraction (LVEF) ≥50% was used to define heart failure by echocardiography. Results MiR-146a did not show any significant difference in expression between these two study groups (P = 0.48, t-test). The expression level of miR-146a was not significantly associated with LVEF, age, and body mass index (P > 0.05), according to Pearson correlation. Conclusion MiR-146a may be a diagnostic or prognostic biomarker for cardiotoxicity brought on by chemotherapy, even though there was no discernible difference in the expression level of miR-146a between the control group and the breast cancer patients who were experiencing this side effect of chemotherapy. Therefore, miR-146a expression needs to be examined in a sizable cohort of breast cancer patients who are experiencing cardiotoxicity brought on by chemotherapy.
Collapse
Affiliation(s)
- Nasrin Zare
- Clinical Research Development Centre, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Metabolomics and Genomics Research Center, Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
6
|
Schwartzová V, Laputková G, Talian I, Marcin M, Schwartzová Z, Glaba D. Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. Int J Mol Sci 2024; 25:12405. [PMID: 39596473 PMCID: PMC11594355 DOI: 10.3390/ijms252212405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Long-term treatment with bisphosphonates is accompanied by an increased risk of medication-related osteonecrosis of the jaw (MRONJ). Currently, no clinically useful biomarkers for the predictive diagnosis of MRONJ are available. To investigate the potential key proteins involved in the pathogenesis of MRONJ, a proteomic LC-MS/MS analysis of saliva was performed. Differentially expressed proteins (DEPs) were analyzed using BiNGO, ClueGO, cytoHubba, MCODE, KEGG, and ReactomeFI software packages using Cytoscape platforms. In total, 1545 DEPs were identified, including 43 up- and 11 down-regulated with a 1.5-fold cut-off value and adj. p-value < 0.05. The analysis provided a panel of hub genes, including APOA2, APOB, APOC2, APOC3, APOE, APOM, C4B, C4BPA, C9, FGG, GC, HP, HRG, LPA, SAA2-SAA4, and SERPIND1. The most prevalent terms in GO of the biological process were macromolecular complex remodeling, protein-lipid complex remodeling, and plasma lipoprotein particle remodeling. DEPs were mainly involved in signaling pathways associated with lipoproteins, the innate immune system, complement, and coagulation cascades. The current investigation advanced our knowledge of the molecular mechanisms underlying MRONJ. In particular, the research identified the principal salivary proteins that are implicated in the onset and progression of this condition.
Collapse
Affiliation(s)
- Vladimíra Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Zuzana Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Dominik Glaba
- Faculty of Medicine, University of P. J. Šafárik, 041 90 Košice, Slovakia;
| |
Collapse
|
7
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
8
|
Liang Z, Yang Z, Xie H, Rao J, Xu X, Lin Y, Wang C, Chen C. Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization. Neural Regen Res 2024; 19:2259-2269. [PMID: 38488560 PMCID: PMC11034578 DOI: 10.4103/1673-5374.391194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00027/figure1/v/2024-02-06T055622Z/r/image-tiff Spinal cord injury is a disabling condition with limited treatment options. Multiple studies have provided evidence suggesting that small extracellular vesicles (SEVs) secreted by bone marrow mesenchymal stem cells (MSCs) help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury. Strikingly, hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs (HSEVs) exhibit increased therapeutic potency. We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair. SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation. HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation. HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro. MicroRNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that miR-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1. Reducing miR-146a-5p expression in HSEVs partially attenuated macrophage polarization. Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting miR-146a-5p, which alters macrophage polarization. This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
Collapse
Affiliation(s)
- Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Haishu Xie
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| |
Collapse
|
9
|
Ardinal AP, Wiyono AV, Estiko RI. Unveiling the therapeutic potential of miR-146a: Targeting innate inflammation in atherosclerosis. J Cell Mol Med 2024; 28:e70121. [PMID: 39392102 PMCID: PMC11467738 DOI: 10.1111/jcmm.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Atherosclerosis is the foremost vascular disease, precipitating debilitating complications. Although therapeutic strategies have historically focused on reducing cholesterol deposition, recent insights emphasize the pivotal role of inflammation. Innate inflammation significantly contributes to plaque instability and rupture, underscoring the need for intervention across all disease stages. Numerous studies have highlighted the therapeutic potential of targeting innate immune pathways in atherosclerosis, revealing significant advancements in understanding the molecular mechanisms underlying inflammatory processes within arterial lesions. Notably, research has demonstrated that the modulation of microRNA-146a (miR-146a) expression impacts innate inflammation, effectively halts atherosclerosis progression, and enhances plaque stability by targeting interleukin-1 receptor-associated kinase (IRAK) and activating TNF receptor-associated factor 6 (TRAF6), a signalling pathway involving toll-like receptors (TLRs). Understanding the intricate mechanisms involved is crucial. This study provides a comprehensive analysis of the evidence and underlying mechanisms through which miR-146a exerts its effects. Integrating these findings into clinical practice may herald a transformative era in managing atherosclerotic cardiovascular disease.
Collapse
|
10
|
Dutta B, Mahanty M, Kesavalu L, Rahaman SO. Mechanisms underlying TRPV4-mediated regulation of miR-146a expression. Front Immunol 2024; 15:1437540. [PMID: 39403372 PMCID: PMC11471512 DOI: 10.3389/fimmu.2024.1437540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Persistent inflammation is a major contributor in the development of various inflammatory diseases like atherosclerosis. Our study investigates how transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, interacts with microRNA-146a (miR-146a), within the context of inflammation and atherosclerosis. Micro-RNAs play a critical role in controlling gene expression, and miR-146a is notable for its anti-inflammatory actions. TRPV4 is activated by diverse soluble and mechanical stimuli, and often associated with inflammatory responses in various diseases. Here, we find that TRPV4 negatively regulates miR-146a expression in macrophages, especially following stimulation by lipopolysaccharides or alterations in matrix stiffness. We show that in atherosclerosis, a condition characterized by matrix stiffening, TRPV4 decreases miR-146a expression in aortic tissue macrophages. We find that TRPV4's impact on miR-146a is independent of activation of NFκB, Stat1, P38, and AKT, but is rather mediated through a mechanism involving histone deacetylation instead of DNA methylation at the miR-146a promoter site. Furthermore, we show that N-terminal residues 1 to 130 in TRPV4 is essential in suppression of miR-146a expression in LPS-stimulated macrophages. Altogether, this study identifies a regulatory mechanism of miR-146a expression by TRPV4 which may open new potential therapeutic strategies for managing inflammatory diseases.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Lakshmyya Kesavalu
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
11
|
Akahane S, Matsuura H, Kaido T, Usami Y, Ishimine N, Uehara T, Yamauchi K. Apolipoprotein E-containing lipoproteins and their extracellular interactions with LRP1 affect LPS-induced inflammation. Biol Chem 2024; 405:383-393. [PMID: 38488124 DOI: 10.1515/hsz-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 06/02/2024]
Abstract
The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways.
Collapse
Affiliation(s)
- Shogo Akahane
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
| | - Hiroto Matsuura
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
| | - Takahiro Kaido
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Nau Ishimine
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Kazuyoshi Yamauchi
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
- Department of Biomedical Laboratory Sciences, 34808 School of Health Sciences, Shinshu University , 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
12
|
McMaster MW, Shah A, Kangarlu J, Cheikhali R, Frishman WH, Aronow WS. The Impact of the Apolipoprotein E Genotype on Cardiovascular Disease and Cognitive Disorders. Cardiol Rev 2024:00045415-990000000-00250. [PMID: 38661359 DOI: 10.1097/crd.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Apolipoprotein E (ApoE) plays a critical role in cholesterol transport and protection against the development of atherosclerotic cardiovascular disease (ASCVD). Humans have 3 prevalent isoforms of ApoE: apolipoprotein E2 (ApoE2), apolipoprotein E3 (ApoE3), and apolipoprotein E4 (ApoE4). The E4 allele has been associated with higher ASCVD risk. While E4 patients do have higher cholesterol levels, they do not have enough to account for the substantially elevated ASCVD risk relative to E2 and E3 patients. ASCVD risk calculators would underestimate the true effect of E4 if the difference was caused entirely by a difference in cholesterol level. This article reviews the function of ApoE in atherosclerosis, and how each isoform functions differently. We review what is known about the molecular mechanisms through which ApoE prevents endothelial dysfunction and damage, how ApoE stimulates macrophage efflux of cholesterol from atherogenic lesions, and the ways in which ApoE decreases inflammation throughout atherosclerosis. The impact of ApoE on Alzheimer's disease and a discussion of why it is possibly unrelated to ASCVD prevention are included. Clinical applications to hyperlipidemia management and ASCVD prevention in specific patient populations are discussed.
Collapse
Affiliation(s)
- Matthew W McMaster
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Avisha Shah
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| | - John Kangarlu
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Ryan Cheikhali
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| |
Collapse
|
13
|
Dutta B, Mahanty M, Kesavalu L, Rahaman SO. Mechanisms underlying TRPV4-mediated regulation of miR-146a expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587984. [PMID: 38617263 PMCID: PMC11014524 DOI: 10.1101/2024.04.03.587984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Persistent inflammation is a major contributor in the development of various inflammatory diseases like atherosclerosis. Our study investigates how transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, interacts with microRNA-146a (miR-146a), within the context of inflammation and atherosclerosis. Micro-RNAs play a critical role in controlling gene expression, and miR-146a is notable for its anti-inflammatory actions. TRPV4 is activated by diverse soluble and mechanical stimuli, and often associated with inflammatory responses in various diseases. Here, we find that TRPV4 negatively regulates miR-146a expression in macrophages, especially following stimulation by lipopolysaccharides or alterations in matrix stiffness. We show that in atherosclerosis, a condition characterized by matrix stiffening, TRPV4 decreases miR-146a expression in aortic tissue macrophages. We find that TRPV4's impact on miR-146a is independent of activation of NFκB, Stat1, P38, and AKT, but is rather mediated through a mechanism involving histone deacetylation instead of DNA methylation at the miR-146a promoter site. Furthermore, we show that N-terminal residues 1 to 130 in TRPV4 is essential in suppression of miR-146a expression in LPS-stimulated macrophages. Altogether, this study identifies a regulatory mechanism of miR-146a expression by TRPV4 which may open new potential therapeutic strategies for managing inflammatory diseases.
Collapse
|
14
|
Jiang S, Li X, Li Y, Chang Z, Yuan M, Zhang Y, Zhu H, Xiu Y, Cong H, Yin L, Yu ZW, Fan J, He W, Shi K, Tian DC, Zhang J, Verkhratsky A, Jin WN, Shi FD. APOE from patient-derived astrocytic extracellular vesicles alleviates neuromyelitis optica spectrum disorder in a mouse model. Sci Transl Med 2024; 16:eadg5116. [PMID: 38416841 DOI: 10.1126/scitranslmed.adg5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune astrocytopathy of the central nervous system, mediated by antibodies against aquaporin-4 water channel protein (AQP4-Abs), resulting in damage of astrocytes with subsequent demyelination and axonal damage. Extracellular communication through astrocyte-derived extracellular vesicles (ADEVs) has received growing interest in association with astrocytopathies. However, to what extent ADEVs contribute to NMOSD pathogenesis remains unclear. Here, through proteomic screening of patient-derived ADEVs, we observed an increase in apolipoprotein E (APOE)-rich ADEVs in patients with AQP4-Abs-positive NMOSD. Intracerebral injection of the APOE-mimetic peptide APOE130-149 attenuated microglial reactivity, neuroinflammation, and brain lesions in a mouse model of NMOSD. The protective effect of APOE in NMOSD pathogenesis was further established by the exacerbated lesion volume in APOE-deficient mice, which could be rescued by exogenous APOE administration. Genetic knockdown of the APOE receptor lipoprotein receptor-related protein 1 (LRP1) could block the restorative effects of APOE130-149 administration. The transfusion ADEVs derived from patients with NMOSD and healthy controls also alleviated astrocyte loss, reactive microgliosis, and demyelination in NMOSD mice. The slightly larger beneficial effect of patient-derived ADEVs as compared to ADEVs from healthy controls was further augmented in APOE-/- mice. These results indicate that APOE from astrocyte-derived extracellular vesicles could mediate disease-modifying astrocyte-microglia cross-talk in NMOSD.
Collapse
Affiliation(s)
- Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xindi Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yan Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhilin Chang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Meng Yuan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ying Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huimin Zhu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuwen Xiu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hengri Cong
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Linlin Yin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhen-Wei Yu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Junwan Fan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenyan He
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - De-Cai Tian
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
- National Human Brain Bank for Health and Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Alexei Verkhratsky
- Health and Medicine, University of Manchester, Manchester M13 9PL, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
15
|
Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep 2024; 26:51-60. [PMID: 38206553 PMCID: PMC10844442 DOI: 10.1007/s11886-023-02014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs)-short, non-coding RNAs-play important roles in almost all aspects of cardiovascular biology, and changes in intracellular miRNA expression are indicative of cardiovascular disease development and progression. Extracellular miRNAs, which are easily measured in blood and can be reflective of changes in intracellular miRNA levels, have emerged as potential non-invasive biomarkers for disease. This review summarizes current knowledge regarding miRNAs as biomarkers for assessing cardiovascular disease risk and prognosis. RECENT FINDINGS Numerous studies over the last 10-15 years have identified associations between extracellular miRNA profiles and cardiovascular disease, supporting the potential use of extracellular miRNAs as biomarkers for risk stratification. However, clinical application of extracellular miRNA profiles has been hampered by poor reproducibility and inter-study variability that is due largely to methodological differences between studies. While recent studies indicate that circulating extracellular miRNAs are promising biomarkers for cardiovascular disease, evidence for clinical implementation is lacking. This highlights the need for larger, well-designed studies that use standardized methods for sample preparation, miRNA isolation, quantification, and normalization.
Collapse
Affiliation(s)
- Charles D Searles
- Emory University School of Medicine and Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA.
| |
Collapse
|
16
|
Wu L, Gao B, Shen M, Wei L, Li Z, Zhuang W. lncRNA LENGA sponges miR-378 to promote myocardial fibrosis in atrial fibrillation. Open Med (Wars) 2023; 18:20230831. [PMID: 38025533 PMCID: PMC10656758 DOI: 10.1515/med-2023-0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
miR-378 is known to suppress myocardial fibrosis, while its upstream regulators have not been identified. lncRNA LENGA is a recently identified lncRNA in cancer biology. We observed the altered expression of LENGA in atrial fibrillation (AF) patients and predicted its interaction with miR-378. We then explored the interaction between LENGA and miR-378 in AF. Angiotensin-II (Ang-II)-induced human atrial cardiac fibroblasts and human atrial muscle tissues were collected and the expression of LENGA and miR-378 was determined by RT-qPCR. The interaction between LENGA and miR-378 was analyzed through bioinformatics analysis and confirmed by RNA pulldown assay. Cell proliferation and collagen production were analyzed through in vitro assay to analyze the role of LENGA and miR-378 in MF. AF patients showed increased expression of LENGA and deceased expression of miR-378 compared to the sinus rhythm group. LENGA and miR-378 interacted with each other, while they are not closely correlated with each other. Overexpression assay showed that LENGA and miR-378 overexpression failed to affect each other's expression. LENGA promoted collagen production and proliferation of Ang-II-induced atrial fibroblasts, while miR-378 played opposite roles. Moreover, LENGA suppressed the function of miR-378. Therefore, LENGA may sponge miR-378 to promote MF in AF.
Collapse
Affiliation(s)
- Liting Wu
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Bingjing Gao
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Mengyuan Shen
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Lu Wei
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Zhumeng Li
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Wenfang Zhuang
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Yangpu DistrictShanghai, 200438, China
| |
Collapse
|
17
|
Namous H, Krueger C, Cheng Y, Melo PHC, Peppas A, Kaluza GL, Stoffregen WC, Reed J, Khatib H, Granada JF. Longitudinal dynamics of circulating miRNAs in a swine model of familial hypercholesterolemia during early atherosclerosis. Sci Rep 2023; 13:19355. [PMID: 37935844 PMCID: PMC10630391 DOI: 10.1038/s41598-023-46762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Atherosclerosis is a complex progressive disease involving intertwined biological mechanisms. We aimed to identify miRNA expression dynamics at the early stages of atherosclerosis using a large swine model (Wisconsin Miniature Swine, WMS). A total of 18 female pigs; 9 familial hypercholesterolemic (WMS-FH) and 9 normal control swine (WMS-N) were studied. miRNA sequencing was performed on plasma cell-free RNA at 3, 6, and 9 months of age. RT-qPCR validated DE miRNAs in a new cohort of animals (n = 30) with both sexes. Gene ontology and mRNA targets for DE miRNAs were identified. In vivo multimodality imaging and histopathology were performed to document the presence of atherosclerosis at termination. 20, 19, and 9 miRNAs were significantly DE between the groups at months 3, 6, and 9, respectively. Most DE miRNAs and their target genes are involved in human atherosclerosis development. Coronary atherosclerosis was documented in 7/9 WMS-FH pigs. Control animals had no lesions. miR-138, miR-152, miR-190a, and miR-196a showed a significant diagnostic power at month 3, whereas miR-486, miR-126-3p, miR-335, and miR-423-5p were of significant diagnostic power at month 9. In conclusion, specific DE miRNAs with significant discriminatory power may be promising biomarkers for the early detection of coronary atherosclerosis.
Collapse
Affiliation(s)
- Hadjer Namous
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Christian Krueger
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Yanping Cheng
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Pedro H C Melo
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Athanasios Peppas
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Grzegorz L Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | | | - Jess Reed
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA.
| | - Juan F Granada
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA.
| |
Collapse
|
18
|
Decano JL, Maiorino E, Matamalas JT, Chelvanambi S, Tiemeijer BM, Yanagihara Y, Mukai S, Jha PK, Pestana DV, D’Souza E, Whelan M, Ge R, Asano T, Sharma A, Libby P, Singh SA, Aikawa E, Aikawa M. Cellular Heterogeneity of Activated Primary Human Macrophages and Associated Drug-Gene Networks: From Biology to Precision Therapeutics. Circulation 2023; 148:1459-1478. [PMID: 37850387 PMCID: PMC10624416 DOI: 10.1161/circulationaha.123.064794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Interferon-γ (IFNγ) signaling plays a complex role in atherogenesis. IFNγ stimulation of macrophages permits in vitro exploration of proinflammatory mechanisms and the development of novel immune therapies. We hypothesized that the study of macrophage subpopulations could lead to anti-inflammatory interventions. METHODS Primary human macrophages activated by IFNγ (M(IFNγ)) underwent analyses by single-cell RNA sequencing, time-course cell-cluster proteomics, metabolite consumption, immunoassays, and functional tests (phagocytic, efferocytotic, and chemotactic). RNA-sequencing data were analyzed in LINCS (Library of Integrated Network-Based Cellular Signatures) to identify compounds targeting M(IFNγ) subpopulations. The effect of compound BI-2536 was tested in human macrophages in vitro and in a murine model of atherosclerosis. RESULTS Single-cell RNA sequencing identified 2 major clusters in M(IFNγ): inflammatory (M(IFNγ)i) and phagocytic (M(IFNγ)p). M(IFNγ)i had elevated expression of inflammatory chemokines and higher amino acid consumption compared with M(IFNγ)p. M(IFNγ)p were more phagocytotic and chemotactic with higher Krebs cycle activity and less glycolysis than M(IFNγ)i. Human carotid atherosclerotic plaques contained 2 such macrophage clusters. Bioinformatic LINCS analysis using our RNA-sequencing data identified BI-2536 as a potential compound to decrease the M(IFNγ)i subpopulation. BI-2536 in vitro decreased inflammatory chemokine expression and secretion in M(IFNγ) by shrinking the M(IFNγ)i subpopulation while expanding the M(IFNγ)p subpopulation. BI-2536 in vivo shifted the phenotype of macrophages, modulated inflammation, and decreased atherosclerosis and calcification. CONCLUSIONS We characterized 2 clusters of macrophages in atherosclerosis and combined our cellular data with a cell-signature drug library to identify a novel compound that targets a subset of macrophages in atherosclerosis. Our approach is a precision medicine strategy to identify new drugs that target atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Enrico Maiorino
- Channing Division of Network Medicine (E.M., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Joan T. Matamalas
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bart M. Tiemeijer
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Yoshihiro Yanagihara
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Prabhash Kumar Jha
- Department of Medicine, and Center for Excellence in Vascular Biology (P.K.J., P.L., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Diego V.S. Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Edwin D’Souza
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mary Whelan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Rile Ge
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Takaharu Asano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Amitabh Sharma
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine (E.M., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- Department of Medicine, and Center for Excellence in Vascular Biology (P.K.J., P.L., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, and Center for Excellence in Vascular Biology (P.K.J., P.L., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., J.T.M., S.C., B.M.T., Y.Y., S.M., D.V.S.P., E.D., M.W., R.G., T.A., A.S., S.A.S., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine (E.M., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, and Center for Excellence in Vascular Biology (P.K.J., P.L., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Phu TA, Vu NK, Ng M, Gao AS, Stoolman JS, Chandel NS, Raffai RL. ApoE enhances mitochondrial metabolism via microRNA-142a/146a-regulated circuits that suppress hematopoiesis and inflammation in hyperlipidemia. Cell Rep 2023; 42:113206. [PMID: 37824329 DOI: 10.1016/j.celrep.2023.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Apolipoprotein E (ApoE) is recognized for its pleiotropic properties that suppress inflammation. We report that ApoE serves as a metabolic rheostat that regulates microRNA control of glycolytic and mitochondrial activity in myeloid cells and hematopoietic stem and progenitor cells (HSPCs). ApoE expression in myeloid cells increases microRNA-146a, which reduces nuclear factor κB (NF-κB)-driven GLUT1 expression and glycolytic activity. In contrast, ApoE expression reduces microRNA-142a, which increases carnitine palmitoyltransferase 1a (CPT1A) expression, fatty acid oxidation, and oxidative phosphorylation. Improved mitochondrial metabolism by ApoE expression causes an enrichment of tricarboxylic acid (TCA) cycle metabolites and nicotinamide adenine dinucleotide (NAD+) in macrophages. The study of mice with conditional ApoE expression supports the capacity of ApoE to foster microRNA-controlled immunometabolism. Modulation of microRNA-146a and -142a in the hematopoietic system of hyperlipidemic mice using RNA mimics and antagonists, respectively, improves mitochondrial metabolism, which suppresses inflammation and hematopoiesis. Our findings unveil microRNA regulatory circuits, controlled by ApoE, that exert metabolic control over hematopoiesis and inflammation in hyperlipidemia.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Besin V, Yulianti T, Notopuro PB, Humardani FM. Genetic Polymorphisms of Ischemic Stroke in Asians. Clin Chim Acta 2023; 549:117527. [PMID: 37666385 DOI: 10.1016/j.cca.2023.117527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The increasing incidence of ischemic stroke emphasizes the necessity for early detection and preventive strategies. Diagnostic biomarkers currently available for ischemic stroke only become detectable shortly before the manifestation of stroke symptoms. Genetic variants associated with ischemic stroke offer a potential solution to address this diagnostic limitation. However, it is crucial to acknowledge that genetic variants cannot be modified in the same way as epigenetic changes. Nevertheless, individuals carrying risk or protective variants can modify their lifestyle to potentially influence the associated epigenetic factors. This study aims to summarize specific variants relevant to Asian populations that may aid in the early detection of ischemic stroke and explore their impact on the disease's pathophysiology. These variants give us important information about the genes that play a role in ischemic stroke by affecting things like atherosclerosis pathway, blood coagulation pathway, homocysteine metabolism, transporter function, transcription, and the activity of neurons regulation. It is important to recognize the variations in genetic variants among different ethnicities and avoid generalizing the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Paulus Budiono Notopuro
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| |
Collapse
|
22
|
Huang H, Lin D, Hu L, Wang J, Yu Y, Yu Y, Li K, Chen F. RNA Binding Protein Quaking Promotes Hypoxia-induced Smooth Muscle Reprogramming in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:159-171. [PMID: 37146099 DOI: 10.1165/rcmb.2022-0349oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/04/2023] [Indexed: 05/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by progressive increases in pulmonary vascular resistance and remodeling, which eventually leads to right ventricular failure and death. The aim of this study was to identify novel molecular mechanisms involved in the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. In this study, we first demonstrated that the mRNA and protein expression amounts of QKI (Quaking), an RNA-binding protein, were elevated in human and rodent PH lung and pulmonary artery tissues and hypoxic human PASMCs. QKI deficiency attenuated PASMC proliferation in vitro and vascular remodeling in vivo. Next, we elucidated that QKI increases STAT3 (signal transducer and activator of transcription 3) mRNA stability by binding to its 3' untranslated region. QKI inhibition reduced STAT3 expression and alleviated PASMC proliferation in vitro. Moreover, we also observed that the upregulated expression of STAT3 promoted PASMC proliferation in vitro and in vivo. In addition, as a transcription factor, STAT3 bound to microRNA (miR)-146b promoter to enhance its expression. We further showed that miR-146b promoted the proliferation of smooth muscle cells by inhibiting STAT1 and TET2 (Tet methylcytosine dioxygenase 2) during pulmonary vascular remodeling. This study has demonstrated new mechanistic insights into hypoxic reprogramming that arouses vascular remodeling, thus providing proof of concept for targeting vascular remodeling by directly modulating the QKI-STAT3-miR-146b pathway in PH.
Collapse
Affiliation(s)
| | | | - Li Hu
- Department of Forensic Medicine and
| | - Jie Wang
- Department of Forensic Medicine and
| | | | | | - Kai Li
- Department of Forensic Medicine and
| | - Feng Chen
- Department of Forensic Medicine and
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Phu TA, Ng M, Vu NK, Gao AS, Raffai RL. ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles. J Extracell Vesicles 2023; 12:e12345. [PMID: 37593979 PMCID: PMC10436255 DOI: 10.1002/jev2.12345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023] Open
Abstract
While apolipoprotein E (apoE) expression by myeloid cells is recognized to control inflammation, whether such benefits can be communicated via extracellular vesicles is not known. Through the study of extracellular vesicles produced by macrophages derived from the bone marrow of Wildtype (WT-BMDM-EV) and ApoE deficient (EKO-BMDM-EV) mice, we uncovered a critical role for apoE expression in regulating their cell signaling properties. WT-BMDM-EV communicated anti-inflammatory properties to recipient myeloid cells by increasing cellular levels of apoE and miR-146a-5p, that reduced NF-κB signalling. They also downregulated cellular levels of miR-142a-3p, resulting in increased levels of its target carnitine palmitoyl transferase 1A (CPT1A) which improved fatty acid oxidation (FAO) and oxidative phosphorylation (OxPHOS) in recipient cells. Such favorable metabolic polarization enhanced cell-surface MerTK levels and the phagocytic uptake of apoptotic cells. In contrast, EKO-BMDM-EV exerted opposite effects by reducing cellular levels of apoE and miR-146a-5p, which increased NF-κB-driven GLUT1-mediated glucose uptake, aerobic glycolysis, and oxidative stress. Furthermore, EKO-BMDM-EV increased cellular miR-142a-3p levels, which reduced CPT1A levels and impaired FAO and OxPHOS in recipient myeloid cells. When cultured with naïve CD4+ T lymphocytes, EKO-BMDM-EV drove their activation and proliferation, and fostered their transition to a Th1 phenotype. While infusions of WT-BMDM-EV into hyperlipidemic mice resolved inflammation, infusions of EKO-BMDM-EV increased hematopoiesis and drove inflammatory responses in myeloid cells and T lymphocytes. ApoE-dependent immunometabolic signaling by macrophage extracellular vesicles was dependent on transcriptional axes controlled by miR-146a-5p and miR-142a-3p that could be reproduced by infusing miR-146a mimics & miR-142a antagonists into hyperlipidemic apoE-deficient mice. Together, our findings unveil a novel property for apoE expression in macrophages that modulates the immunometabolic regulatory properties of their secreted extracellular vesicles.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Martin Ng
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Ngan K. Vu
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Alex S. Gao
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Robert L. Raffai
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
- Department of SurgeryDivision of Endovascular and Vascular SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
24
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Xue X, Li F, Xu M, Chen B, Zhao Y, Wang M, Li L. Gastrodin ameliorates atherosclerosis by inhibiting foam cells formation and inflammation through down-regulating NF-κB pathway. Nutr Metab (Lond) 2023; 20:9. [PMID: 36759876 PMCID: PMC9912514 DOI: 10.1186/s12986-022-00722-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Gastrodin is an effective polyphenol extracted from Chinese natural herbal Gastrodiae elata Blume, which exhibits antioxidant and anti-inflammatory effects. It has been reported to benefit neurodegenerative diseases, but the effect of Gastrodin on atherosclerosis and the underlying mechanisms remain elusive. The aim of this study is to investigate the function and mechanism of Gastrodin in atherosclerosis. METHODS Atherosclerosis mouse model was established by fed low density lipoprotein receptor-deficient (Ldlr-/-) mice with a high fat diet (HFD, 20% fat and 0.5 cholesterol) for 8 weeks and Gastrodin was administered daily via oral gavage. Plasma lipid levels were measured using commercial kits. En face and aortic sinus lipid accumulation were analyzed with Oil Red O staining. In vitro cell models using foam cell formation model and classical atherosclerosis inflammation model, macrophages were incubated with oxygenized low-density lipoproteins (ox-LDL) or lipopolysaccharide (LPS) in the presence of different concentration of Gastrodin or vehicle solution. Foam cell formation and cellular lipid content were evaluated by Oil Red O staining and intracellular lipids extraction analysis. Gene expression and proteins related to cholesterol influx and efflux were examined by quantitative reverse transcription PCR (RT-qPCR) and western blotting analysis. Furthermore, the effect of Gastrodin on LPS induced macrophage inflammatory responses and NF-κB pathway were evaluated by RT-qPCR and western blotting analysis. RESULTS Gastrodin administration reduced the body weight, plasma lipid levels in Ldlr-/- mice after fed a high fat diet. Oil Red O staining showed Gastrodin-treated mice displayed less atherosclerosis lesion area. Furthermore, Gastrodin treatment significantly ameliorated ox-LDL-induced macrophage-derived foam cells formation through suppressing genes expression related to cholesterol efflux including scavenger receptor class B and ATP-binding cassette transporter A1. Moreover, Gastrodin markedly suppressed pro-inflammatory cytokines secretion and LPS induced inflammatory response in macrophage through downregulating NF-κB pathway. CONCLUSIONS Our study demonstrated that Gastrodin attenuates atherosclerosis by suppressing foam cells formation and LPS-induced inflammatory response and represents a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaofei Xue
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Fulei Li
- grid.412633.10000 0004 1799 0733Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengke Xu
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Bowen Chen
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Yanyan Zhao
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Mengyu Wang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Jing Y, Hu S, Song J, Dong X, Zhang Y, Sun X, Wang D. Association between polymorphisms in miRNAs and ischemic stroke: A meta-analysis. Medicine (Baltimore) 2022; 101:e32078. [PMID: 36596006 PMCID: PMC9803434 DOI: 10.1097/md.0000000000032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis remains a predominant cause of ischemic stroke (IS). Four miRNA polymorphisms associated with arteriosclerosis mechanism were meta-analyzed to explore whether they had predictive significance for IS. METHODS PubMed, Excerpta Medica database, Web of Science, Cochrane Library, Scopus, China National Knowledge Infrastructure, and China Wanfang Database were searched for relevant case-control studies published before September 2022. Two researchers independently reviewed the studies and extracted the data. Data synthesis was carried out on eligible studies. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using Stata software 16.0. RESULTS Twenty-two studies were included, comprising 8879 cases and 12,091 controls. The results indicated that there were no significant associations between miR-146a C>G (rs2910164), miR-196a2 T>C (rs11614913) and IS risk in the overall analyses, but miR-149 T>C (rs2292832) and miR-499 A>G (rs3746444) increased IS risk under the allelic model, homozygote model and recessive model. The subgroup analyses based on Trial of Org 101072 in Acute Stroke Treatment classification indicated that rs2910164 increased small artery occlusion (SAO) risk under the allelic model, heterozygote model and dominant model; rs11614913 decreased the risk of SAO under the allelic model, homozygote model, heterozygote model and dominant model. CONCLUSION This Meta-analysis showed that all 4 single nucleotide polymorphisms were associated with the risk of IS or SAO, even though the overall and subgroup analyses were not entirely consistent.
Collapse
Affiliation(s)
- Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Song
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- * Correspondence: Dongyan Wang, Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Dajie, Nangang District, Harbin City, Heilongjiang Province 150000, China (e-mail: )
| |
Collapse
|
28
|
Teixeira AR, Ferreira VV, Pereira-da-Silva T, Ferreira RC. The role of miRNAs in the diagnosis of stable atherosclerosis of different arterial territories: A critical review. Front Cardiovasc Med 2022; 9:1040971. [PMID: 36505351 PMCID: PMC9733725 DOI: 10.3389/fcvm.2022.1040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerotic disease is a major cause of morbidity and mortality worldwide. Atherosclerosis may be present in different arterial territories and as a single- or multi-territorial disease. The different phenotypes of atherosclerosis are attributable only in part to acquired cardiovascular risk factors and genetic Mendelian inheritance. miRNAs, which regulate the gene expression at the post-transcriptional level, may also contribute to such heterogeneity. Numerous miRNAs participate in the pathophysiology of atherosclerosis by modulating endothelial function, smooth vascular cell function, vascular inflammation, and cholesterol homeostasis in the vessel, among other biological processes. Moreover, miRNAs are present in peripheral blood with high stability and have the potential to be used as non-invasive biomarkers for the diagnosis of atherosclerosis. However, the circulating miRNA profile may vary according to the involved arterial territory, considering that atherosclerosis expression, including the associated molecular phenotype, varies according to the affected arterial territory. In this review, we discuss the specific circulating miRNA profiles associated with atherosclerosis of different arterial territories, the common circulating miRNA profile of stable atherosclerosis irrespective of the involved arterial territory, and the circulating miRNA signature of multi-territorial atherosclerosis. miRNAs may consist of a simple non-invasive method for discriminating atherosclerosis of different arterial sites. The limitations of miRNA profiling for such clinical application are also discussed.
Collapse
Affiliation(s)
- Ana Rita Teixeira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- *Correspondence: Ana Rita Teixeira
| | - Vera Vaz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
29
|
Sun Z, Liu X, Lu M, Zhang X, Sun J. Serum-derived exosomes induce proinflammatory cytokines production in Cynoglossus semilaevis via miR-133-3p. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104497. [PMID: 35921922 DOI: 10.1016/j.dci.2022.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are small membrane-enclosed vesicles secreted by various types of cells. In mammals, a wide range of physiological and pathological functions have been confirmed and attributed to EVs carrying a variety of molecular cargoes, including miRNAs. However, studies on the biological functions and related molecular mechanisms of serum exosomes isolated from teleost fish are limited. Indeed, the molecular mechanisms underlying the effects of serum exosomes on immune responses and inflammatory processes are unknown. Chinese tongue sole (Cynoglossus semilaevis) is an economically important species used widely in industrial aquaculture. Vibrio harveyi, a common bacterial pathogen that infects C. semilaevis and some other fish, causes excessive inflammatory reactions, which are characterized by skin ulceration. Here, we isolated serum-derived exosomes from C. semilaevis and investigated their effects on inflammatory processes following V. harveyi infection. We found that compared with uninfected fish, exosome abundance in infected fish blood increased with bacterial infection time, while expression of TNF-α increased, and that of IL-10 decreased, significantly. Moreover, artificial infection studies demonstrated that injection of serum exosomes isolated from infected fish increased expression of TNF-α, IL-6, and IL-8, which is consistent with the increase in proinflammatory cytokines induced by V. harveyi infection. To further investigate the mechanisms by which exosomes increase proinflammatory cytokine production, we performed miRNA expression profiling and found that 26 differentially expressed miRNAs were associated with bacterial infection and immune responses; of these, miR-133-3p was considerably more abundant in serum exosomes from infected fish. Bioinformatics analysis suggested that miR-133-3p inhibits NF-κB signaling pathways by targeting PP2A and affecting cytokine release. We also found that miR-133-3p increased expression of TNF-α, IL-6, and IL-8 in fish blood and kidney, whereas an miR-133-3p inhibitor showed the opposite results. Thus, the data suggest that serum exosomes participate in innate immunity in teleost fish by promoting inflammatory responses to bacterial infection. Exosome-mediated transfer of miR-133-3p increases expression of proinflammatory cytokines in C. semilaevis, resulting in excessive inflammatory responses during V. harveyi infection. These data may lead to development of methods and strategies that control skin ulceration in Chinese tongue sole.
Collapse
Affiliation(s)
- Zhanpeng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; Faculty of Education, Tianjin Normal University, Tianjin, China.
| | - Xiaozhu Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Meiyi Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Xiao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
30
|
Mahdavi FS, Mardi S, Mohammadi S, Ansari S, Yaslianifard S, Fallah P, Mozhgani SH. MicroRNA-146: Biomarker and Mediator of Cardiovascular Disease. DISEASE MARKERS 2022; 2022:7767598. [PMID: 39281713 PMCID: PMC11401689 DOI: 10.1155/2022/7767598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/15/2022] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the prime cause of morbidity and mortality worldwide. Although noticeable progress has been made in the diagnosis, prognosis, and treatment, there is still a critical demand for new diagnostic biomarkers and novel therapeutic interventions to reduce this disease incidence. Many investigations have been conducted on the regulatory effects of microRNAs in cardiovascular diseases. miRNA circulating serum level changes are correlated with several CVDs. In addition, there is growing evidence representing the potential role of miRNAs as diagnostic biomarkers or potential therapeutic targets for CVD. Preliminary studies identified the prominent role of miR-146 in host defense, innate immunity, and different immunological diseases by regulating cytokine production and innate immunity modification in bacterial infections. However, more recently, it was also associated with CVD development. miR-146 has received much attention, with positive results in most studies. Research demonstrated the crucial role of this molecule in the pathogenesis of cardiac disease and related mechanisms. As a result, many potential applications of miR-146 are expected. In this paper, we provide an overview of recent studies highlighting the role of miR-146 in CVD, focusing on CAD (coronary artery disease), cardiomyopathy, and MI (myocardial infarction) in particular and discussing its current scientific state, and use a prognostic biomarker as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Sadat Mahdavi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sareh Mohammadi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sarina Ansari
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Laboratory Science, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
31
|
Scavenger receptor-targeted plaque delivery of microRNA-coated nanoparticles for alleviating atherosclerosis. Proc Natl Acad Sci U S A 2022; 119:e2201443119. [PMID: 36122215 PMCID: PMC9522431 DOI: 10.1073/pnas.2201443119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.
Collapse
|
32
|
Yang J, Zhou X, Lu J, Li M. miR-146-5p restrains calcification of vascular smooth muscle cells by suppressing TRAF6. Open Med (Wars) 2022; 17:1515-1527. [PMID: 36237831 PMCID: PMC9510824 DOI: 10.1515/med-2022-0471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Vascular calcification is a prominent manifestation of advanced atherosclerosis. Tumor necrosis factor-receptor-associated factors (TRAFs) were reported to participate in atherosclerosis development. In this study, the role and mechanism of TRAF6 in vascular calcification were explored. To induce the vascular calcification, oxidized low-density lipoprotein (Ox-LDL) was applied to treat vascular smooth muscle cells (VSMCs). TRAF6 protein expression in VSMCs was assessed by western blotting. Osteogenic differentiation of VSMCs was assessed by alkaline phosphatase activity analysis. Mineral deposition in VSMCs was evaluated by von Kossa staining. VSMC proliferation, migration, apoptosis, inflammation, and reactive oxygen species (ROS) generation were detected using cell counting kit-8, Transwell, flow cytometry, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and dichlorodihydrofluorescein diacetate staining, respectively. Luciferase reporter assay was utilized to identify the binding relationship between miR-146-5p and TRAF6 in VSMCs. We found that Ox-LDL administration induced the calcification of VSMCs and elevated the TRAF6 level. TRAF6 knockdown restrained VSMC calcification, proliferation, migration, inflammation, and ROS generation caused by Ox-LDL. Mechanically, TRAF6 was targeted by miR-146-5p in VSMCs. Furthermore, TRAF6 overexpression offset the inhibitory effects of miR-146-5p upregulation on vascular calcification in VSMCs under the Ox-LDL condition. Overall, miR-146-5p restrains the calcification of VSMCs by suppressing TRAF6.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cardiology, The Fourth Hospital of Harbin Medical University , Harbin 150001 , Heilongjiang , China
| | - Xiaoman Zhou
- Department of Radiology, Wuhan Pulmonary Hospital , Wuhan 430030 , Hubei , China
| | - Jingwei Lu
- Department of Physical Examination, The Fourth Hospital of Harbin Medical University , Harbin 150001 , Heilongjiang , China
| | - Meng Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University , 37 Yiyuan Street, Nangang District , Harbin 150001 , Heilongjiang , China
| |
Collapse
|
33
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
34
|
Liang ZY, Xu XJ, Rao J, Yang ZL, Wang CH, Chen CM. Mesenchymal Stem Cell-Derived Exosomal MiRNAs Promote M2 Macrophages Polarization: Therapeutic Opportunities for Spinal Cord Injury. Front Mol Neurosci 2022; 15:926928. [PMID: 35903172 PMCID: PMC9319398 DOI: 10.3389/fnmol.2022.926928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is an enormous public health concern affecting approximately 250,000–500,000 people worldwide each year. It is mostly irreversible considering the limitations of currently available treatments, and its prevention and management have been the prime focus of many studies. Mesenchymal stem cell (MSC) transplantation is one of the most promising treatments for SCI. The role of MSCs in SCI has been studied extensively, and MSCs have been shown to have many limitations. Moreover, the therapeutic effects of MSCs are more likely related to paracrine effects. In SCIs, macrophages from peripheral sources differentiate into M1 macrophages, promoting inflammation and aggravating neuronal damage; however, studies have shown that MSC-derived exosomes can induce the polarization of macrophages from the M1 to the M2 phenotype, thereby promoting nerve function recovery in patients with SCI. In this review, we discussed the research progress of MSC-derived exosomal miRNAs in promoting M2 macrophage differentiation in the SCI, and introduced some exosomal miRNAs that can regulate the differentiation of M2 macrophages in non-SCI; it is hoped that the regulatory role of these exosome-derived miRNAs can be confirmed in SCI.
Collapse
Affiliation(s)
- Ze-Yan Liang
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| | | | | | | | - Chun-Hua Wang
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| | - Chun-Mei Chen
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| |
Collapse
|
35
|
Shen Y, Gu HM, Zhai L, Wang B, Qin S, Zhang DW. The role of hepatic Surf4 in lipoprotein metabolism and the development of atherosclerosis in apoE -/- mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159196. [PMID: 35803528 DOI: 10.1016/j.bbalip.2022.159196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr-/-) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE-/-) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE-/- mice. In apoE-/- mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE-/- mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Zhai
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Binxiang Wang
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. IL-4 polarized human macrophage exosomes control cardiometabolic inflammation and diabetes in obesity. Mol Ther 2022; 30:2274-2297. [PMID: 35292359 PMCID: PMC9171286 DOI: 10.1016/j.ymthe.2022.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiometabolic disease is an increasing cause of morbidity and death in society. While M1-like macrophages contribute to metabolic inflammation and insulin resistance, those polarized to an M2-like phenotype exert protective properties. Building on our observations reporting M2-like macrophage exosomes in atherosclerosis control, we tested whether they could serve to control inflammation in the liver and adipose tissue of obese mice. In thinking of clinical translation, we studied human THP-1 macrophages exposed to interleukin (IL)-4 as a source of exosomes (THP1-IL4-exo). Our findings show that THP1-IL4-exo polarized primary macrophages to an anti-inflammatory phenotype and reprogramed their energy metabolism by increasing levels of microRNA-21/99a/146b/378a (miR-21/99a/146b/378a) while reducing miR-33. This increased lipophagy, mitochondrial activity, and oxidative phosphorylation (OXPHOS). THP1-IL4-exo exerted a similar regulation of these miRs in cultured 3T3-L1 adipocytes. This enhanced insulin-dependent glucose uptake through increased peroxisome proliferator activated receptor gamma (PPARγ)-driven expression of GLUT4. It also increased levels of UCP1 and OXPHOS activity, which promoted lipophagy, mitochondrial activity, and beiging of 3T3-L1 adipocytes. Intraperitoneal infusions of THP1-IL4-exo into obese wild-type and Ldlr-/- mice fed a Western high-fat diet reduced hematopoiesis and myelopoiesis, and favorably reprogramed inflammatory signaling and metabolism in circulating Ly6Chi monocytes. This also reduced leukocyte numbers and inflammatory activity in the circulation, aorta, adipose tissue, and the liver. Such treatments reduced hepatic steatosis and increased the beiging of white adipose tissue as revealed by increased UCP1 expression and OXPHOS activity that normalized blood insulin levels and improved glucose tolerance. Our findings support THP1-IL4-exo as a therapeutic approach to control cardiometabolic disease and diabetes in obesity.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Laura Bouchareychas
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
38
|
miR-146a contributes to atherosclerotic plaque stability by regulating the expression of TRAF6 and IRAK-1. Mol Biol Rep 2022; 49:4205-4216. [PMID: 35195809 DOI: 10.1007/s11033-022-07253-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease. The vulnerable plaque of atherosclerotic can lead to the development of many diseases including acute coronary syndrome and coronary heart disease. It is well known that miR-146a is the key brake miRNA of the inflammatory signal transduction pathway. However, the effect of miR-146a on the stability of atherosclerotic plaque remains to be elucidated. METHODS AND RESULTS We constructed animal models of atherosclerosis and foam cell models, and overexpressed and knocked-down miR-146a in models. After staining with Hematoxylin-Eosin (HE), Oil Red O, immunocytochemistry (IHC) and Sirius Red, we used the proportion of (Lipids area + Macrophage area) and (SMCs area + collagen area) to evaluate atherosclerotic plaque stability. TUNEL and flow cytometry were performed to detect the apoptosis level of macrophages. Levels of inflammatory factors were detected via ELISA assay. The results showed that miR-146a, IRAK1 and TRAF6 were abnormally expressed in plaques of atherosclerotic animals. Overexpression of miR-146a contributed to the stability of plaques that inhibited plaque formation, macrophage apoptosis and levels of pro-inflammatory factors. The Dual-luciferase reporter gene assay, IF and FISH were used to verify the regulatory mechanism of miR-146a on IRAK1 and TRAF6. We found that IRAK1 and TRAF6 promoted lipid uptake, apoptosis, and release of pro-inflammatory factors of RAW264.7 macrophages, whereas miR-146a restored RAW264.7 macrophages phenotype by inhibiting IRAK1 and TRAF6 expression. CONCLUSIONS We display for the first time that miR-146a inhibits the formation of foam cells, RAW264.7 macrophage apoptosis and pro-inflammatory reaction through negative regulation of IRAK1 and TRAF6 expression, thereby enhancing the stability of atherosclerotic plaques.
Collapse
|
39
|
Abdollahi E, Keyhanfar F, Delbandi AA, Falak R, Hajimiresmaiel SJ, Shafiei M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol 2022; 918:174715. [PMID: 35026193 DOI: 10.1016/j.ejphar.2021.174715] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Evidence has demonstrated that a new class of anti-diabetic drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors, could exert beneficial effects on atherosclerotic complications of diabetes. Atherosclerosis is widely accepted as an inflammatory disease. Therefore, we aimed to assess the direct anti-inflammatory effects of SGLT2 inhibitors dapagliflozin (DAPA) on two cell types involved in the process of atherogenesis. Human umbilical vein endothelial cells (HUVECs) and macrophages were exposed to DAPA and lipopolysaccharide (LPS 20 ng/mL) for 24 h under normal (5.5 mmol/L, NG) or high glucose (25 mmol/L, HG) conditions. Then, levels of TLR-4/p-NF-κB, inflammatory cytokines, inflammation-related miR-146a and miR-155 as well as alteration in the ratio of M1/M2 macrophage polarization was assessed. DAPA (0.5 μM) could significantly attenuate LPS-induced TLR-4 overexpression (23.9% and 33.1% under NG and HG conditions in HUVECs and 53.3% and 52.4% under NG and HG states in macrophages, respectively). NF-κB p65 phosphorylation was also significantly decreased to 30.1% under NG condition in HUVECs and 51.9% and 34.5% under NG and HG states in macrophages by 0.5 μM DAPA. Moreover, DAPA elevated expression levels of anti-inflammatory miR-146a, while values of miR-155 decreased in those cells. DAPA also caused a shift from inflammatory M1 macrophages toward M2-dominant macrophages. These data suggest that regardless of glucose concentrations, DAPA could exert direct anti-inflammatory effects, at least partly, by inhibiting the expression of TLR-4 and activation of NF-κB along with the secretion of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Elaheh Abdollahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | | | - Massoumeh Shafiei
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| |
Collapse
|
40
|
Abstract
Regulatory RNAs like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) control vascular and immune cells' phenotype and thus play a crucial role in atherosclerosis. Moreover, the mutual interactions between miRNAs and lncRNAs link both types of regulatory RNAs in a functional network that affects lesion formation. In this review, we deduce novel concepts of atherosclerosis from the analysis of the current data on regulatory RNAs' role in endothelial cells (ECs) and macrophages. In contrast to arterial ECs, which adopt a stable phenotype by adaptation to high shear stress, macrophages are highly plastic and quickly change their activation status. At predilection sites of atherosclerosis, such as arterial bifurcations, ECs are exposed to disturbed laminar flow, which generates a dysadaptive stress response mediated by miRNAs. Whereas the highly abundant miR-126-5p promotes regenerative proliferation of dysadapted ECs, miR-103-3p stimulates inflammatory activation and impairs endothelial regeneration by aberrant proliferation and micronuclei formation. In macrophages, miRNAs are essential in regulating energy and lipid metabolism, which affects inflammatory activation and foam cell formation.Moreover, lipopolysaccharide-induced miR-155 and miR-146 shape inflammatory macrophage activation through their oppositional effects on NF-kB. Most lncRNAs are not conserved between species, except a small group of very long lncRNAs, such as MALAT1, which blocks numerous miRNAs by providing non-functional binding sites. In summary, regulatory RNAs' roles are highly context-dependent, and therapeutic approaches that target specific functional interactions of miRNAs appear promising against cardiovascular diseases.
Collapse
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - Saffiyeh Saboor Maleki
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
41
|
Barutta F, Corbetta B, Bellini S, Guarrera S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. MicroRNA 146a is associated with diabetic complications in type 1 diabetic patients from the EURODIAB PCS. J Transl Med 2021; 19:475. [PMID: 34823560 PMCID: PMC8614036 DOI: 10.1186/s12967-021-03142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNA-146a-5p (miR-146a-5p) is a key regulator of inflammatory processes. Expression of miR-146a-5p is altered in target organs of diabetic complications and deficiency of miR-146a-5p has been implicated in their pathogenesis. We investigated if serum miR-146a-5p levels were independently associated with micro/macrovascular complications of type 1 diabetes (DM1). Methods A nested case–control study from the EURODIAB PCS of 447 DM1 patients was performed. Cases (n = 294) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. Total RNA was isolated from all subjects and miR-146a-5p levels measured by qPCR. Both the endogenous controls U6 snRNA and the spike (Cel-miR-39) were used to normalize the results. Logistic regression analysis was carried out to investigate the association of miR-146a-5p with diabetes complications. Results MiR-146a-5p levels were significantly lower in cases [1.15 (0.32–3.34)] compared to controls [1.74 (0.44–6.74) P = 0.039]. Logistic regression analysis showed that levels of miR-146a-5p in the upper quartile were inversely associated with reduced odds ratio (OR) of all complications (OR 0.34 [95% CI 0.14–0.76]) and particularly with cardiovascular diseases (CVD) (OR 0.31 [95% CI 0.11–0.84]) and diabetic retinopathy (OR 0.40 [95% CI 0.16–0.99]), independently of age, sex, diabetes duration, A1c, hypertension, AER, eGFR, NT-proBNP, and TNF-α. Conclusions In this large cohort of DM1 patients, we reported an inverse and independent association of miR-146a-5p with diabetes chronic complications and in particular with CVD and retinopathy, suggesting that miR-146a-5p may be a novel candidate biomarker of DM1 complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03142-4.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.
| | - Beatrice Corbetta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Stefania Bellini
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Matullo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.,Medical Genetics Unit, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Michela Scandella
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sabita S Soedamah-Muthu
- Center of Research On Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.,Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Marilena Durazzo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
42
|
Ye Q, Liu Q, Ma X, Bai S, Chen P, Zhao Y, Bai C, Liu Y, Liu K, Xin M, Zeng C, Zhao C, Yao Y, Ma Y, Wang J. MicroRNA-146b-5p promotes atrial fibrosis in atrial fibrillation by repressing TIMP4. J Cell Mol Med 2021; 25:10543-10553. [PMID: 34643044 PMCID: PMC8581305 DOI: 10.1111/jcmm.16985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Alteration of tissue inhibitors of matrix metalloproteinases (TIMP)/matrix metalloproteinases (MMP) associated with collagen upregulation has an important role in sustained atrial fibrillation (AF). The expression of miR-146b-5p, whose the targeted gene is TIMPs, is upregulated in atrial cardiomyocytes during AF. This study was to determine whether miR-146b-5p could regulate the gene expression of TIMP4 and the contribution of miRNA to atrial fibrosis in AF. Collagen synthesis was observed after miR-146b-5p transfection in human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs)-fibroblast co-culture cellular model in vitro. Furthermore, a myocardial infarction (MI) mouse model was used to confirm the protective effect of miR-146b-5p downregulation on atrial fibrosis. The expression level of miR-146b-5p was upregulated, while the expression level of TIMP4 was downregulated in the fibrotic atrium of canine with AF. miR-146b-5p transfection in hiPSC-aCMs-fibroblast co-culture cellular model increased collagen synthesis by regulating TIMP4/MMP9 mediated extracellular matrix proteins synthesis. The inhibition of miR-146b-5p expression reduced the phenotypes of cardiac fibrosis in the MI mouse model. Fibrotic marker MMP9, TGFB1 and COL1A1 were significantly downregulated, while TIMP4 was significantly upregulated (at both mRNA and protein levels) by miR-146b-5p inhibition in cardiomyocytes of MI heart. We concluded that collagen fibres were accumulated in extracellular space on miR-146b-5p overexpressed co-culture cellular model. Moreover, the cardiac fibrosis induced by MI was attenuated in antagomiR-146 treated mice by increasing the expression of TIMP4, which indicated that the inhibition of miR-146b-5p might become an effective therapeutic approach for preventing atrial fibrosis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Quan Liu
- Department of Cardiothoracic SurgeryBenq HospitalAffiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaolong Ma
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Shuyun Bai
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Pengfei Chen
- Department of Cardiac SurgeryFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yichen Zhao
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Chen Bai
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yang Liu
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kemin Liu
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Meng Xin
- Center for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Caiwu Zeng
- Center for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Cheng Zhao
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yan Yao
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yue Ma
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- Medical School of University of Chinese Academy of SciencesBeijingChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
| | - Jiangang Wang
- Department of Cardiac SurgeryBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
43
|
Hernandez JD, Li T, De Filippis E. ω-3PUFA supplementation ameliorates adipose tissue inflammation and insulin-stimulated glucose disposal in subjects with obesity: a potential role for apolipoprotein E. Int J Obes (Lond) 2021; 45:2286-2287. [PMID: 34140628 PMCID: PMC8458233 DOI: 10.1038/s41366-021-00882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Affiliation(s)
- James D. Hernandez
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ting Li
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Arizona, Scottsdale, AZ, USA,Correspondence and requests for materials should be addressed to E.D.F.
| |
Collapse
|
44
|
Wang M, Liu F, Fang B, Huo Q, Yang Y. Proteome-scale profiling reveals MAFF and MAFG as two novel key transcription factors involved in palmitic acid-induced umbilical vein endothelial cell apoptosis. BMC Cardiovasc Disord 2021; 21:448. [PMID: 34535081 PMCID: PMC8447594 DOI: 10.1186/s12872-021-02246-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Vascular endothelial cell apoptosis is the leading risk factor of atherosclerosis (AS). The purpose of our study was to use a new generation high-throughput transcription factor (TF) detection method to identify novel key TFs in vascular endothelial cell apoptosis induced by palmitic acid (PA). Methods Human umbilical vein endothelial cells (HUVECs) were treated with 0, 300, or 500 µM PA. Candidate TFs in the three groups were identified by differential expression, pathway enrichment, Western Blot (WB), and RT-qPCR analyses. Apoptosis was assessed by fluorescence-activated cell sorting (FACS) using FITC-annexin V and propidium iodide staining. Results We established a HUVEC apoptosis model to simulate the process of atherosclerosis onset and identified 51 significant TFs. of the 51 TFs, v-maf musculoaponeurotic fibrosarcoma oncogene family protein G (MAFG) and v-maf musculoaponeurotic fibrosarcoma oncogene family protein F (MAFF), were matched to known AS signalling pathways and were validated by WB and RT-qPCR analyses in our study. Overexpression of MAFG or MAFF in HUVECs significantly inhibited PA-induced early apoptosis. Conclusions We identified MAFF and MAFG as novel key TFs in vascular endothelial cell apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02246-5.
Collapse
Affiliation(s)
- Mangyuan Wang
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.,Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Binbin Fang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Qiang Huo
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.
| | - Yining Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China.
| |
Collapse
|
45
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
46
|
Dai N, Tang C, Liu H, Huang S. Effect of electroacupuncture on inhibition of inflammatory response and oxidative stress through activating ApoE and Nrf2 in a mouse model of spinal cord injury. Brain Behav 2021; 11:e2328. [PMID: 34423582 PMCID: PMC8442587 DOI: 10.1002/brb3.2328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Electroacupuncture protects neurons and myelinated axons after spinal cord injury by mitigating the inflammatory response and oxidative stress, but how it exerts these effects is unclear. METHODS AND RESULTS Spinal cord injury was induced in C57BL/6 wild-type and apolipoprotein E (ApoE) knockout (ApoE-/- ) mice, followed by electroacupuncture or ApoE mimetic peptide COG112 treatment. Mice with spinal cord injury suffered loss of myelinated axons and hindlimb motor function through the detections of Basso mouse scale, histology, and transmission electron microscopy; electroacupuncture partially reversed these effects in wild-type mice but not in ApoE-/- mice. Combining exogenous ApoE administration with electroacupuncture significantly mitigated the effects of spinal cord injury in both mouse strains, and these effects were associated with up-regulation of anti-inflammatory cytokines and down-regulation of pro-inflammatory cytokines which were detected by quantitative reverse transcription-polymerase chain reaction. Combination treatment also reduced oxidative stress by up-regulating ApoE and Nrf2/HO-1 signaling pathway through the detections of immunofluorescence and western blot analysis. CONCLUSIONS These results suggest that electroacupuncture protects neurons and myelinated axons following spinal cord injury through an ApoE-dependent mechanism.
Collapse
Affiliation(s)
- Ni Dai
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
48
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
49
|
Li HY, Yang HG, Wu HM, Yao QQ, Zhang ZY, Meng QS, Fan LL, Wang JQ, Zheng N. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J Dairy Sci 2021; 104:7383-7392. [PMID: 33838887 DOI: 10.3168/jds.2020-19232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
This study tested the ability of lactoferrin to modulate pulmonary inflammation. To construct in vitro and in vivo inflammatory lung models, cells from the human lung adenocarcinoma cell line (A549) were exposed to lipopolysaccharide (LPS, 1 µg/mL), and mice (CD-1) were intratracheally administered LPS [10 mg/kg of body weight (BW), tracheal lumen injection], respectively. The A549 cells were preincubated with lactoferrin (10 mg/mL), and the mice were intraperitoneally injected with lactoferrin (100 mg/kg of BW), followed by LPS treatment. The concentrations of proinflammatory cytokines (IL-1β and TNF-α) in culture medium of A549 cells and in bronchoalveolar lavage fluid of the mice were determined using enzyme-linked immunosorbent assays. The toll-like receptor 4-related pathway (TLR4/MyD88/IRAK1/TRAF6/NFκB) was determined at gene and protein expression levels in A549 cells and mouse lung tissue. Results showed that LPS treatment significantly elevated the concentrations of IL-1β and TNF-α in the A549 cell culture medium and in bronchoalveolar lavage fluid of the mice; it also elevated both the mRNA and protein expressions of TLR4 and the TLR4 downstream factors in A549 cells and mouse lung tissue. Nevertheless, lactoferrin apparently depressed the releases of IL-1β and TNF-α from A549 cells and lung tissues stimulated by LPS, and significantly suppressed the TLR4 signaling pathway. Lactoferrin also promoted the enhancement of miR-146a expression in A549 cells and mouse lung tissue. Moreover, 100°C heating for 3 min caused total loss of the previously listed bioactivity of lactoferrin. Collectively, we proved that lactoferrin intervened in LPS-induced inflammation in the pulmonary cell model and in the mouse model, through inhibiting the TLR4-related pathway.
Collapse
Affiliation(s)
- H Y Li
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - H G Yang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, P. R. China
| | - H M Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Q Q Yao
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Z Y Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Q S Meng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - L L Fan
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - J Q Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - N Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
50
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Cruz Ferreira R, Mota Carmo M. Association between miR-146a and Tumor Necrosis Factor Alpha (TNF-α) in Stable Coronary Artery Disease. ACTA ACUST UNITED AC 2021; 57:medicina57060575. [PMID: 34199767 PMCID: PMC8230353 DOI: 10.3390/medicina57060575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Tumor necrosis factor alpha (TNF-α) is proatherogenic and associated with the risk of acute ischemic events, although the mechanisms that regulate TNF-α expression in stable coronary artery disease (SCAD) are not fully understood. We investigated whether metabolic, inflammatory, and epigenetic (microRNA (miRNA)) markers are associated with TNF-α expression in SCAD. Materials and Methods: Patients with SCAD were prospectively recruited and their metabolic and inflammatory profiles were assessed. TNF-α levels were assessed using an enzyme-linked immunosorbent assay. The relative expression of six circulating miRNAs associated with the regulation of inflammation and/or atherosclerosis was determined. Results: Of the 24 included patients with the mean age of 65 (9) years, 88% were male, and 54% were diabetic. The TNF-α levels were (median (interquartile range)) 1.0 (0.7–1.1) pg/mL. The percentage of glycosylated hemoglobin (r = 0.418, p = 0.042), serum triglyceride levels (r = 0.429, p = 0.037), and C-reactive protein levels (r = 0.407, p = 0.048) were positively correlated with TNF-α levels. Of the candidate miRNAs, miR-146a expression levels were negatively correlated with TNF-α levels (as indicated by r = 0.500, p = 0.035 for correlation between delta cycle threshold (ΔCt) miR-146a and TNF-α levels). In multivariate analysis, serum triglyceride levels and miR-146a expression levels were independently associated with TNF-α levels. miR-146 expression levels were not associated with metabolic or other inflammatory parameters and were negatively correlated with the number of coronary vessels with obstructive disease (as indicated by r = 0.556, p = 0.017 for correlation between ΔCt miR-146a and number of diseased vessels). Conclusions: miR-146a expression levels were negatively correlated with TNF-α levels in patients with SCAD, irrespective of other metabolic or inflammatory markers, and with the severity of coronary artery disease. The results add to the knowledge on the role of miR-146a in TNF-α-based inflammation in SCAD and support future research on the potential therapeutic use of miR-146a in such a clinical scenario.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Doctoral School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: ; Tel.: +351-919908505
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|