1
|
Zhang W, Liu L, Liu X, Han C, Li Q. The levels of immunosuppressive checkpoint protein PD-L1 and tumor-infiltrating lymphocytes were integrated to reveal the glioma tumor microenvironment. ENVIRONMENTAL TOXICOLOGY 2024; 39:815-829. [PMID: 37792606 DOI: 10.1002/tox.23979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
In spite of significant strides in the realm of cancer biology and therapeutic interventions, the clinical prognosis for patients afflicted with glioblastoma (GBM) remains distressingly dismal. The tumor immune microenvironment (TIME), a crucial player in the progression, treatment response, and prognostic trajectory of glioma, warrants thorough exploration. Within this intricate microcosm, the immunosuppressive checkpoint protein PD-L1 and tumor-infiltrating lymphocytes (TILs) emerge as pivotal constituents, underscoring their potential role in deciphering glioma biology and informing treatment strategies. However, prognostic models based on the association between PD-L1 expression and TIL infiltration in the tumor immune microenvironment have not been established. The aim of this study was to explore TIME genes associated with PD-L1 expression and TIL invasion and to construct a risk score for predicting the overall survival (OS) of GBM patients based on these genes. The samples were separately classified according to the PD-L1 expression level and TIL score and TIME-related genes were identified using differential expression and weighted gene co-expression network analysis. The DEGs were subjected to least absolute contraction and selection operator (LASSO) -Cox regression to construct TIME associated risk score (TIMErisk). A TIMErisk was developed based on STEAP3 and CXCL13 genes. The STLEAP3 was demonstrated to be involved in glioma progression. The results showed that the patients in the high TIMErisk group had poor OS compared with subjects in the low TIMErisk group. The biological phenotypes associated with TIMErisk were analyzed in terms of functional enrichment, tumor immune profile, and tumor mutation profile. The results on tumor immune dysfunction and exclusion dysfunction (TIDE) score and immune surface score (IPS) showed that GBM patients with different TIME risks had different responses to immunotherapy. Tumor purity analysis indicated that PD-L1 and TIL scores were positively correlated with TIMErisk score and negatively correlated with tumor purity. These results show that the TIMErisk-based prognostic model had high predictive value for the prognosis and immune characteristics of GBM patients. Immunohistochemical staining images of patients in the high and low TIMErisk groups were analyzed, showing that the degree of immune cell infiltration was higher in the high TIMErisk group relative to the low TIMErisk group. The present study provides a basis for understanding glioma tumor microenvironment and a foundation for conducting comprehensive immunogenomic analysis.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Han
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Li
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Hohlstein P, Abu Jhaisha S, Yagmur E, Wawer D, Pollmanns MR, Adams JK, Wirtz TH, Brozat JF, Bündgens L, Hamesch K, Weiskirchen R, Tacke F, Trautwein C, Koch A. Elevated Midkine Serum Levels Are Associated with Long-Term Survival in Critically Ill Patients. Int J Mol Sci 2023; 25:454. [PMID: 38203625 PMCID: PMC10779074 DOI: 10.3390/ijms25010454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Midkine (Mdk) is a multifunctional protein involved in inflammatory processes. Hence, circulating Mdk is increased in sepsis and has been previously suggested as a potential biomarker in these patients. The aim of this study was to elucidate the role of Mdk serum concentrations in critical illness and sepsis and to verify its value as a prognostic biomarker. Thus, we analyzed the Mdk serum concentrations of 192 critically ill patients on admission to the medical intensive care unit (ICU). While the serum levels of Mdk at admission were similar in septic and nonseptic critical illness (362 vs. 337 ng/L, p = 0.727), we found several interesting correlations of Mdk to laboratory and clinical markers associated with ischemia or hypoxia, e.g., to renal failure and hepatic injury. Mdk serum concentrations at admission did not differ between various causes of sepsis or other critical illness. Most noticeable, we observed upregulated Mdk serum concentrations at admission in patients surviving in the long-term, which was only seen in nonseptic critical illness but not in sepsis. Our study suggests a relevant role of Mdk in critically ill patients in general and highlights the possible protective features of Mdk in critical illness.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Eray Yagmur
- Institute of Laboratory Medicine, Western Palatinate Hospital, 67655 Kaiserslautern, Germany;
| | - Dennis Wawer
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Jonathan F. Brozat
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Lukas Bündgens
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| |
Collapse
|
3
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
4
|
Kam NW, Lau CY, Che CM, Lee VHF. Nasopharynx Battlefield: Cellular Immune Responses Mediated by Midkine in Nasopharyngeal Carcinoma and COVID-19. Cancers (Basel) 2023; 15:4850. [PMID: 37835544 PMCID: PMC10571800 DOI: 10.3390/cancers15194850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Clinical evidence suggests that the severe respiratory illness coronavirus disease 2019 (COVID-19) is often associated with a cytokine storm that results in dysregulated immune responses. Prolonged COVID-19 positivity is thought to disproportionately affect cancer patients. With COVID-19 disrupting the delivery of cancer care, it is crucial to gain momentum and awareness of the mechanistic intersection between these two diseases. This review discusses the role of the cytokine midkine (MK) as an immunomodulator in patients with COVID-19 and nasopharyngeal carcinoma (NPC), both of which affect the nasal cavity. We conducted a review and analysis of immunocellular similarities and differences based on clinical studies, research articles, and published transcriptomic datasets. We specifically focused on ligand-receptor pairs that could be used to infer intercellular communication, as well as the current medications used for each disease, including NPC patients who have contracted COVID-19. Based on our findings, we recommend close monitoring of the MK axis to maintain the desirable effects of therapeutic regimens in fighting both NPC and COVID-19 infections.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Cho-Yiu Lau
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
5
|
Jia Y, Chen J, Zhong J, He X, Zeng L, Wang Y, Li J, Xia S, Ye E, Zhao J, Ke B, Li C. Novel rare mutation in a conserved site of PTPRB causes human hypoplastic left heart syndrome. Clin Genet 2023; 103:79-86. [PMID: 36148623 DOI: 10.1111/cge.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a rare but fatal birth defect in which the left side of the heart is underdeveloped. HLHS accounts for 2% to 4% of congenital heart anomalies. Whole genome sequencing (WGS) was conducted for a family trio consisting of a proband and his parents. A homozygous rare variant was detected in the PTPRB (Protein Tyrosine Phosphatase Receptor Type B) gene of the proband by functional annotation and co-segregation analysis. Sanger sequencing was used to confirm genotypes of the variant. The in silico prediction tools, including Mutation Taster, SpliceAI, and CADD, were used to predict the impact of the mutation. The allele frequencies across populations were compared based on multiple databases, including "1000 genomes" and "gnomAD". We used two vectors (pcMINI and pcDNA3.1) to generate a minigene construct to validate the mutational effect at the transcriptional level. Family-based WGS analyses showed that only a homozygous splice acceptor variant (NC_000012.12: g.70636068T>G, NM_001109754.4: c.56-2A>C, NG_029940.2: g.6373A>C) at the exon-intron border of PTPRB gene associates with HLHS. This variant is also within the region with the enhancer activity based on UCSC genome annotation. Genotyping and Sanger sequencing revealed that the proband's parents are heterozygous for this variant. Evolutionary conservation analysis revealed that the site (NC_000012.12: g.70636068) is extremely conserved across species, supporting the evolutionary functional constraints of the ancestral wild type (T). In silico tools universally predicted a deleterious or disease-causing impact of the mutation from T to G. The mutation was not found in the 1000 genomes and gnomAD databases, which indicates that this mutation is very rare in most human populations. A splicing assay indicated that the mutated minigene caused aberrant splicing of mRNA, in which a 3 bp missing in the second exon resulted in the deletion of one amino acid (NP_001103224.1:p.Glu19del) compared to the normal protein of PRPTB (also the VE-PTP). Structure prediction revealed that the deletion occurred within the C-region of the signal peptide of VE-PTP, suggesting signal peptide-related defects as a potential mechanism for the HLHS cellular pathogeny. We report a rare homozygous variant with splicing error in PTPRB associated with HLHS. Previous model species studies revealed conserved functions of PTPRB in cardiovascular and heart development in mice and zebrafish. Our study is the first report to show the association between PTPRB and HLHS in humans.
Collapse
Affiliation(s)
- Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zeng
- The Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Jiakun Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Zhao
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin Ke
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Majaj M, Weckbach LT. Midkine-A novel player in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1003104. [PMID: 36204583 PMCID: PMC9530663 DOI: 10.3389/fcvm.2022.1003104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Midkine (MK) is a 13-kDa heparin-binding cytokine and growth factor with anti-apoptotic, pro-angiogenic, pro-inflammatory and anti-infective functions, that enable it to partake in a series of physiological and pathophysiological processes. In the past, research revolving around MK has concentrated on its roles in reproduction and development, tissue protection and repair as well as inflammatory and malignant processes. In the recent few years, MK's implication in a wide scope of cardiovascular diseases has been rigorously investigated. Nonetheless, there is still no broadly accepted consensus on whether MK exerts generally detrimental or favorable effects in cardiovascular diseases. The truth probably resides somewhere in-between and depends on the underlying physiological or pathophysiological condition. It is therefore crucial to thoroughly examine and appraise MK's participation in cardiovascular diseases. In this review, we introduce the MK gene and protein, its multiple receptors and signaling pathways along with its expression in the vascular system and its most substantial functions in cardiovascular biology. Further, we recapitulate the current evidence of MK's expression in cardiovascular diseases, addressing the various sources and modes of MK expression. Moreover, we summarize the most significant implications of MK in cardiovascular diseases with particular emphasis on MK's advantageous and injurious functions, highlighting its ample diagnostic and therapeutic potential. Also, we focus on conflicting roles of MK in a number of cardiovascular diseases and try to provide some clarity and guidance to MK's multifaceted roles. In summary, we aim to pave the way for MK-based diagnostics and therapies that could present promising tools in the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Marina Majaj
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludwig T. Weckbach
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V, Berlin, Germany
| |
Collapse
|
7
|
Ketenci S, Uygar Kalaycı M, Dündar B, Duranay R, Şükrü Aynacıoğlu A. Elevated serum midkine levels in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. Int Immunopharmacol 2022; 110:108939. [PMID: 35717836 PMCID: PMC9181266 DOI: 10.1016/j.intimp.2022.108939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The coronavirus disease-2019 (COVID-19) pandemic has caused important health, economic, social, and cultural problems worldwide. Recent findings demonstrate an excessive cytokine release during the disease development, especially in the seriously life-threatening form of COVID-19. Among other chemokines and cytokines that are released in high amounts at the infection site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), midkine (MK), which is a potent pro-inflammatory growth factor/ cytokine, can be also overexpressed and contribute to the pathophysiological process in patients infected with SARS-CoV-2. MATERIALS AND METHOD Serum was collected from 87 intensive care unit (ICU) patients that are COVID-19 positive and 50 healthy volunteers in the control group with a negative PCR test and without disease symptoms. Circulating MK concentration was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS COVID-19 patients had a significantly higher serum MK concentration compared to non-COVID-19 control subjects (1892.8 ± 1615.8 pg/mL versus 680.7 ± 907.6 pg/mL, respectively; P < 0.001). The cut-off MK concentration was 716.7 pg/ mL, with the sensitivity and specificity of 75.9 % and 76.0 %, respectively. The area under the receiver operating characteristic (ROC) curve of MK was = 0.827. Our findings showed that circulating MK levels are significantly increased in SARS-CoV-2 infected patients. CONCLUSION We suggest that MK is involved in the pathogenesis of COVID-19 and may be a part of hypercytokinaemia. Therefore, MK may serve as a supporting biomarker in the diagnosis of COVID-19, and blocking MK actions or its targets may attenuate the inflammatory process and the severity of the disease.
Collapse
Affiliation(s)
- Sema Ketenci
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Pharmacology, Istanbul, Turkey
| | - M. Uygar Kalaycı
- Istanbul Atlas University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Bağnu Dündar
- Istanbul Atlas University, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Recep Duranay
- Istanbul Atlas University, Faculty of Engineering, Computer Engineering, Istanbul, Turkey
| | - A. Şükrü Aynacıoğlu
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Pharmacology, Istanbul, Turkey,Corresponding author at: Istanbul Atlas University, Anadolu Cad. No: 40, Kağıthane, 34408 Istanbul, Turkey
| |
Collapse
|
8
|
Ruozi G, Bortolotti F, Mura A, Tomczyk M, Falcione A, Martinelli V, Vodret S, Braga L, Dal Ferro M, Cannatà A, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Cardioprotective factors against myocardial infarction selected in vivo from an AAV secretome library. Sci Transl Med 2022; 14:eabo0699. [PMID: 36044596 DOI: 10.1126/scitranslmed.abo0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these conditions and lack of curative treatments. To systematically identify previously unidentified cardioactive biologicals in an unbiased manner in vivo, we developed cardiac FunSel, a method for the systematic, functional selection of effective factors using a library of 1198 barcoded adeno-associated virus (AAV) vectors encoding for the mouse secretome. By pooled vector injection into the heart, this library was screened to functionally select for factors that confer cardioprotection against myocardial infarction. After two rounds of iterative selection in mice, cardiac FunSel identified three proteins [chordin-like 1 (Chrdl1), family with sequence similarity 3 member C (Fam3c), and Fam3b] that preserve cardiomyocyte viability, sustain cardiac function, and prevent pathological remodeling. In particular, Chrdl1 exerted its protective activity by binding and inhibiting extracellular bone morphogenetic protein 4 (BMP4), which resulted in protection against cardiomyocyte death and induction of autophagy in cardiomyocytes after myocardial infarction. Chrdl1 also inhibited fibrosis and maladaptive cardiac remodeling by binding transforming growth factor-β (TGF-β) and preventing cardiac fibroblast differentiation into myofibroblasts. Production of secreted and circulating Chrdl1, Fam3c, and Fam3b from the liver also protected the heart from myocardial infarction, thus supporting the use of the three proteins as recombinant factors. Together, these findings disclose a powerful method for the in vivo, unbiased selection of tissue-protective factors and describe potential cardiac therapeutics.
Collapse
Affiliation(s)
- Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Cardiovascular Department, ASUGI, 34149 Trieste, Italy
| | - Antonio Mura
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Mateusz Tomczyk
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Antonella Falcione
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Valentina Martinelli
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | | | - Antonio Cannatà
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
9
|
Midkine release during hemodialysis is predictive of hypervolemia and associates with excess (cardiovascular) mortality in patients with end-stage renal disease: a prospective study. Int Urol Nephrol 2022; 54:2407-2420. [PMID: 35211826 PMCID: PMC9372127 DOI: 10.1007/s11255-022-03141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/30/2022] [Indexed: 01/02/2023]
Abstract
Background In end-stage renal disease, a high cardiovascular risk profile and endothelial damage prevails. The heparin-binding growth factor midkine stimulates neo-angiogenesis in ischemic diseases, coordinates neutrophil influx, and raises blood pressure through stimulated angiotensin synthesis. Methods We determined changes of midkine serum levels during hemodialysis sessions under the assumption that endothelial cell-derived midkine is released. Periprocedural differences (∆midkine) were calculated and correlated with cardiovacular biomarkers and fluid status (clinical assessment, V. cava collapse, comet tail phenomenon), cardiovascular morbidities, mortality rates. Blood was collected before and after dialysis from hemodialysis patients (n = 171; diabetes: n = 70; hypervolemia: n = 83; both: n = 32). Results Baseline midkine levels were ~ fourfold elevated compared to healthy controls (n = 100). Further, on average a tenfold rise was detected during dialysis, the extent of which was partially related to non-fractionated heparin application (r2 = 0.17). Inter-individual differences were highly reproducible. Hypervolemic patients responded with a less than average rise in midkine levels during dialysis (p < 0.02), this difference became more obvious with co-existing diabetes (p < 0.001 for long dialysis-free interval) and was confirmed in an independently enrolled dialysis cohort (n = 88). In Kaplan Meier survival curves, low delta midkine levels correlated with cardiovascular/overall mortality rates, similar to elevated uPAR levels, whereas other markers (NTproANP, galectin, tenascin-C) were less predictive. Following intervention with successful fluid removal in hypervolemic dialysis patients to optimize fluid homeostasis, midkine values increased (p < 0.002), which was not observed in patients that failed to decrease weight. Conclusion Thus, for dialysis patients inadequate periprocedural midkine upregulation is linked with hypervolemia and associates with cardiovascular events. Supplementary Information The online version contains supplementary material available at 10.1007/s11255-022-03141-4.
Collapse
|
10
|
Basyigit F, Karayigit O, Nurkoc S, Duyuler S, Duyuler P. Association of serum pleiotrophin levels with acute coronary syndrome. INTERNATIONAL JOURNAL OF THE CARDIOVASCULAR ACADEMY 2022. [DOI: 10.4103/ijca.ijca_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
11
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|
12
|
Campbell VK, Gately RP, Krishnasamy R, Burg D, Robertson GR, Gray NA. Midkine and chronic kidney disease-associated multisystem organ dysfunctions. Nephrol Dial Transplant 2021; 36:1577-1584. [PMID: 32542315 DOI: 10.1093/ndt/gfaa084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive multisystem condition with yet undefined mechanistic drivers and multiple implicated soluble factors. If identified, these factors could be targeted for therapeutic intervention for a disease that currently lacks specific treatment. There is increasing preclinical evidence that the heparin/endothelial glycocalyx-binding molecule midkine (MK) has a pathological role in multiple CKD-related, organ-specific disease processes, including CKD progression, hypertension, vascular and cardiac disease, bone disease and CKD-related cancers. Concurrent with this are studies documenting increases in circulating and urine MK proportional to glomerular filtration rate (GFR) loss in CKD patients and evidence that administering soluble MK reverses the protective effects of MK deficiency in experimental kidney disease. This review summarizes the growing body of evidence supporting MK's potential role in driving CKD-related multisystem disease, including MK's relationship with the endothelial glycocalyx, the deranged MK levels and glycocalyx profile in CKD patients and a proposed model of MK organ interplay in CKD disease processes and highlights the importance of ongoing research into MK's potential as a therapeutic target.
Collapse
Affiliation(s)
- Victoria K Campbell
- Renal Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia.,University of Queensland, St Lucia, Queensland, Australia.,Intensive Care Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Ryan P Gately
- Renal Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Rathika Krishnasamy
- Renal Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia.,University of Queensland, St Lucia, Queensland, Australia
| | | | | | - Nicholas A Gray
- Renal Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
13
|
Jeffrey DA, Pires Da Silva J, Garcia AM, Jiang X, Karimpour-Fard A, Toni LS, Lanzicher T, Peña B, Miyano CA, Nunley K, Korst A, Sbaizero O, Taylor MR, Miyamoto SD, Stauffer BL, Sucharov CC. Serum circulating proteins from pediatric dilated cardiomyopathy patients cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight 2021; 6:e148637. [PMID: 34383712 PMCID: PMC8525651 DOI: 10.1172/jci.insight.148637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum–treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum–treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.
Collapse
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Xuan Jiang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anis Karimpour-Fard
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Lee S Toni
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Brisa Peña
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carissa A Miyano
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Karin Nunley
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Armin Korst
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew Rg Taylor
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| |
Collapse
|
14
|
Zhang ZZ, Wang G, Yin SH, Yu XH. Midkine: A multifaceted driver of atherosclerosis. Clin Chim Acta 2021; 521:251-257. [PMID: 34331952 DOI: 10.1016/j.cca.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis constitutes the pathological basis of life-threatening events, including heart attack and stroke. Midkine is a heparin-binding growth factor and forms a small protein family with pleiotrophin. Under inflammatory or hypoxic conditions, midkine expression is up-regulated. Upon binding to its receptors, midkine can activate multiple signal pathways to regulate cell survival and migration, epithelial-to-mesenchymal transition, and oncogenesis. Circulating midkine levels are significantly increased in patients with essential hypertension, obesity or severe peripheral artery disease. Importantly, midkine exerts a proatherogenic effect by altering multiple pathophysiological processes involving atherogenesis, including macrophage lipid accumulation, vascular inflammation, neointima formation, insulin resistance and macrophage apoptosis. Midkine represents a potential therapeutic target for atherosclerosis-associated diseases. This review described the structure characteristics, expression patterns and signal transduction pathways of midkine with an emphasis on its role in atherosclerosis.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang 421005, Hunan, China
| | - Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Shan-Hui Yin
- Department of Neonatology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China.
| |
Collapse
|
15
|
Trocha M, Fleszar MG, Fortuna P, Lewandowski Ł, Gostomska-Pampuch K, Sozański T, Merwid-Ląd A, Krzystek-Korpacka M. Sitagliptin Modulates Oxidative, Nitrative and Halogenative Stress and Inflammatory Response in Rat Model of Hepatic Ischemia-Reperfusion. Antioxidants (Basel) 2021; 10:antiox10081168. [PMID: 34439416 PMCID: PMC8388898 DOI: 10.3390/antiox10081168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
A possibility of repurposing sitagliptin, a well-established antidiabetic drug, for alleviating injury caused by ischemia-reperfusion (IR) is being researched. The aim of this study was to shed some light on the molecular background of the protective activity of sitagliptin during hepatic IR. The expression and/or concentration of inflammation and oxidative stress-involved factors have been determined in rat liver homogenates using quantitative RT-PCR and Luminex® xMAP® technology and markers of nitrative and halogenative stress were quantified using targeted metabolomics (LC-MS/MS). Animals (n = 36) divided into four groups were treated with sitagliptin (5 mg/kg) (S and SIR) or saline solution (C and IR), and the livers from IR and SIR were subjected to ischemia (60 min) and reperfusion (24 h). The midkine expression (by 2.2-fold) and the free 3-nitrotyrosine (by 2.5-fold) and IL-10 (by 2-fold) concentration were significantly higher and the Nox4 expression was lower (by 9.4-fold) in the IR than the C animals. As compared to IR, the SIR animals had a lower expression of interleukin-6 (by 4.2-fold) and midkine (by 2-fold), a lower concentration of 3-nitrotyrosine (by 2.5-fold) and a higher Nox4 (by 2.9-fold) and 3-bromotyrosine (by 1.4-fold). In conclusion, IR disturbs the oxidative, nitrative and halogenative balance and aggravates the inflammatory response in the liver, which can be attenuated by low doses of sitagliptin.
Collapse
Affiliation(s)
- Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
- Correspondence: (M.T.); (M.K.-K.)
| | - Mariusz G. Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Paulina Fortuna
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
- Correspondence: (M.T.); (M.K.-K.)
| |
Collapse
|
16
|
Grivas D, González-Rajal Á, de la Pompa JL. Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Front Cell Dev Biol 2021; 9:669439. [PMID: 34026760 PMCID: PMC8138450 DOI: 10.3389/fcell.2021.669439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Unlike the hearts of mammals, the adult zebrafish heart regenerates after injury. Heart cryoinjury in zebrafish triggers the formation of a fibrotic scar that gradually degrades, leading to regeneration. Midkine-a (Mdka) is a multifunctional cytokine that is activated after cardiac injury. Here, we investigated the role of mdka in zebrafish heart regeneration. We show that mdka expression was induced at 1-day post-cryoinjury (dpci) throughout the epicardial layer, whereas by 7 dpci expression had become restricted to the epicardial cells covering the injured area. To study the role of mdka in heart regeneration, we generated mdka-knock out (KO) zebrafish strains. Analysis of injured hearts showed that loss of mdka decreased endothelial cell proliferation and resulted in an arrest in heart regeneration characterized by retention of a collagenous scar. Transcriptional analysis revealed increases in collagen transcription and intense TGFβ signaling activity. These results reveal a critical role for mdka in fibrosis regulation during heart regeneration.
Collapse
Affiliation(s)
- Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain.,Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
17
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
18
|
Cai YQ, Lv Y, Mo ZC, Lei J, Zhu JL, Zhong QQ. Multiple pathophysiological roles of midkine in human disease. Cytokine 2020; 135:155242. [PMID: 32799009 DOI: 10.1016/j.cyto.2020.155242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Midkine (MK) is a low molecular-weight protein that was first identified as the product of a retinoic acid-responsive gene involved in embryonic development. Recent studies have indicated that MK levels are related to various diseases, including cardiovascular disease (CVD), renal disease and autoimmune disease. MK is a growth factor involved in multiple pathophysiological processes, such as inflammation, the repair of damaged tissues and cancer. The pathophysiological roles of MK are diverse. MK enhances the recruitment and migration of inflammatory cells upon inflammation directly and also through induction of chemokines, and contributes to tissue damage. In lung endothelial cells, oxidative stress increased the expression of MK, which induced angiotensin-converting enzyme (ACE) expression and the consequent conversion from Ang I to Ang II, leading to further oxidative stress. MK inhibited cholesterol efflux from macrophages by reducing ATP-binding cassette transporter A1 (ABCA1) expression, which is involved in lipid metabolism, suggesting that MK is an important positive factor involved in inflammation, oxidative stress and lipid metabolism. Furthermore, MK can regulate the expansion, differentiation and activation of T cells as well as B-cell survival; mediate angiogenic and antibacterial activity; and possess anti-apoptotic activity. In this paper, we summarize the pathophysiological roles of MK in human disease.
Collapse
Affiliation(s)
- Ya-Qin Cai
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yuncheng Lv
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhong-Cheng Mo
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiashun Lei
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Qiao-Qing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
19
|
Zhao B, Wang Y, Wang Y, Chen W, Liu PH, Kong Z, Dai C, Wang Y, Ma W. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma. J Cell Physiol 2020; 236:507-522. [PMID: 32572951 DOI: 10.1002/jcp.29878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 01/31/2023]
Abstract
Gliomas are infiltrative neoplasms with a highly invasive nature. Due to its distinct genomic, genetic and epigenetic features, the immune prognostic signature (IPS) and immune microenvironment of glioblastoma (GBM) merit further research. We aimed to explore prognosis-related immune genes and develop an IPS model for predicting prognosis in GBM. RNA-sequencing data, as well as clinical information, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) public cohorts were analyzed. To develop the IPS, least absolute shrinkage and selection operator (LASSO) Cox analysis was performed for immune-related genes that were differentially expressed between GBM and normal tissues. Then, interaction effects of the IPS on the immune microenvironment were systematically analyzed; the precise prognostic model was developed based on the IPS and clinical data and was then further validated. A total of 21 immune prognostic genes were identified based on GBM microenvironment status. An 8-gene IPS was established, and the GBM patients were effectively stratified into low- and high-risk groups in the TCGA cohort as a training set. Univariate and multivariate Cox analyses revealed that IPS was an independent prognostic factor, and the prognostic performance of individual IPS genes was systematically illustrated. In addition, a comprehensive and novel nomogram model was initially established to estimate overall survival in TCGA-GBM patients, and high-risk patients had higher levels of dendritic cell and neutrophil infiltration. Furthermore, the nomogram model was developed and validated in the CGGA validation set. The low-risk IPS was linked to a stronger response to anti-PD-L1 immunotherapy and clinical advantages in the IMvigor210 cohort. This novel IPS with promising biomarkers classifies GBM patients into subgroups with distinct clinical outcomes and immunophenotypes. Our findings and this resource may help to characterize the immune microenvironment, inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenlin Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Hao Liu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziren Kong
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Congxin Dai
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int 2020; 44:1353-1362. [PMID: 32125033 DOI: 10.1002/cbin.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)-induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP-sensitive K+ (KATP) channel blocker 5-hydroxydecanoate (5-HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit-8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm ), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt-C), Bax, Bcl-2, cleaved caspase-3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK-3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R-induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt-C release into cytoplasm, and maintenance of ΔΨm . Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK-3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5-HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK-3β and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chunlei Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| |
Collapse
|
21
|
Mariero LH, Torp M, Heiestad CM, Baysa A, Li Y, Valen G, Vaage J, Stensløkken K. Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. Br J Pharmacol 2019; 176:4360-4372. [PMID: 31412132 PMCID: PMC6887679 DOI: 10.1111/bph.14830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Cellular debris causes sterile inflammation after myocardial infarction. Mitochondria constitute about 30 percent of the human heart. Mitochondrial DNA (mtDNA) is a damage-associated-molecular-pattern that induce injurious sterile inflammation. Little is known about mtDNA's inflammatory signalling pathways in cardiomyocytes and how mtDNA is internalized to associate with its putative receptor, toll-like receptor 9 (TLR9). EXPERIMENTAL APPROACH We hypothesized that mtDNA can be internalized in cardiomyocytes and induce an inflammatory response. Adult mouse cardiomyocytes were exposed to hypoxia-reoxygenation and extracellular DNA. Microscale thermophoresis was used to demonstrate binding between nucleolin and DNA. KEY RESULTS Expression of the pro-inflammatory cytokines IL-1β and TNFα were upregulated by mtDNA, but not by nuclear DNA (nDNA), in cardiomyocytes exposed to hypoxia-reoxygenation. Blocking the RNA/DNA binding protein nucleolin with midkine reduced expression of IL-1β/TNFα and the nucleolin inhibitor AS1411 reduced interleukin-6 release in adult mouse cardiomyocytes. mtDNA bound 10-fold stronger than nDNA to nucleolin. In HEK293-NF-κB reporter cells, mtDNA induced NF-κB activity in normoxia, while CpG-DNA and hypoxia-reoxygenation, synergistically induced TLR9-dependent NF-κB activity. Protein expression of nucleolin was found in the plasma membrane of cardiomyocytes and inhibition of nucleolin with midkine inhibited cellular uptake of CpG-DNA. Inhibition of endocytosis did not reduce CpG-DNA uptake in cardiomyocytes. CONCLUSION AND IMPLICATIONS mtDNA, but not nDNA, induce an inflammatory response in mouse cardiomyocytes during hypoxia-reoxygenation. In cardiomyocytes, nucleolin is expressed on the membrane and blocking nucleolin reduce inflammation. Nucleolin might be a therapeutic target to prevent uptake of immunogenic DNA and reduce inflammation. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Lars Henrik Mariero
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - May‐Kristin Torp
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Christina Mathisen Heiestad
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Anton Baysa
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Yuchuan Li
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - Guro Valen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Jarle Vaage
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Emergency Medicine and Intensive CareOslo University HospitalOsloNorway
| | - Kåre‐Olav Stensløkken
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| |
Collapse
|
22
|
Lackner I, Weber B, Baur M, Haffner-Luntzer M, Eiseler T, Fois G, Gebhard F, Relja B, Marzi I, Pfeifer R, Halvachizadeh S, Lipiski M, Cesarovic N, Pape HC, Kalbitz M. Midkine Is Elevated After Multiple Trauma and Acts Directly on Human Cardiomyocytes by Altering Their Functionality and Metabolism. Front Immunol 2019; 10:1920. [PMID: 31552013 PMCID: PMC6736577 DOI: 10.3389/fimmu.2019.01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Post-traumatic cardiac dysfunction often occurs in multiply injured patients (ISS ≥ 16). Next to direct cardiac injury, post-traumatic cardiac dysfunction is mostly induced by the release of inflammatory biomarkers. One of these is the heparin-binding factor Midkine, which is elevated in humans after fracture, burn injury and traumatic spinal cord injury. Midkine is associated with cardiac pathologies but the exact role of Midkine in the development of those diseases is ambiguous. The systemic profile of Midkine after multiple trauma, its effects on cardiomyocytes and the association with post-traumatic cardiac dysfunction, remain unknown. Experimental Approach: Midkine levels were investigated in blood plasma of multiply injured humans and pigs. Furthermore, human cardiomyocytes (iPS) were cultured in presence/absence of Midkine and analyzed regarding viability, apoptosis, calcium handling, metabolic alterations, and oxidative stress. Finally, the Midkine filtration capacity of the therapeutic blood absorption column CytoSorb ®300 was tested with recombinant Midkine or plasma from multiply injured patients. Key Results: Midkine levels were significantly increased in blood plasma of multiply injured humans and pigs. Midkine acts on human cardiomyocytes, altering their mitochondrial respiration and calcium handling in vitro. CytoSorb®300 filtration reduced Midkine concentration ex vivo and in vitro depending on the dosage. Conclusion and Implications: Midkine is elevated in human and porcine plasma after multiple trauma, affecting the functionality and metabolism of human cardiomyocytes in vitro. Further examinations are required to determine whether the application of CytoSorb®300 filtration in patients after multiple trauma is a promising therapeutic approach to prevent post-traumatic cardiac disfunction.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | | - Tim Eiseler
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | |
Collapse
|
23
|
Chang W, Peng F, Sun Q, Meng SS, Qiu HB, Xu JY. Plasma Midkine Is Associated With 28-Day Mortality and Organ Function in Sepsis. J Intensive Care Med 2019; 35:1290-1296. [PMID: 31284807 DOI: 10.1177/0885066619861580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Midkine has been reported to play a crucial role in inflammatory, hypoxia, and tissue injury processes. We aimed to investigate plasma midkine in septic patients and its association with 28-day mortality and organ function. METHODS Septic patients admitted to the Department of Critical Care Medicine, Zhongda Hospital, a tertiary hospital, from November 2017 to March 2018 were enrolled in the study. The baseline characteristics of the septic patients were recorded at admission. A peripheral blood sample was obtained at admission, and plasma midkine levels were evaluated with an immunoassay. All patients were followed up with for 28 days, with all-cause mortality being recorded. RESULTS A total of 26 septic patients were enrolled, which included 18 survivors and 8 nonsurvivors at day 28. Plasma midkine levels were significantly elevated in the nonsurvivor group compared with the survivors (ng/L, 763.6 [404.7-1305], 268.5 [147.8-511.4]; P = .0387]. Plasma midkine levels were elevated in septic patients with moderate/severe acute respiratory distress syndrome (ARDS) compared with patients with non/mild ARDS (ng/L, 522.3 [336.6-960.1] vs 243.8 [110.3-478.9]; P = .0135) and in those with acute kidney injury compared with those without (ng/L, 489.8 [259.2-1058] vs 427.9 [129.6-510.3]; P = .0973). Changes in plasma midkine levels were also associated with extravascular lung water index (P = .063) and pulmonary vascular permeability index (P = .049). CONCLUSIONS Plasma midkine was associated with 28-day mortality, as well as pulmonary and kidney injury, in septic patients.
Collapse
Affiliation(s)
- Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| | - Fei Peng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| | - Qin Sun
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| | - Shan-Shan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, 12579Southeast University, Nanjing, China
| |
Collapse
|
24
|
Gao Z, Qu B, Yao L, Ma Z, Cui P, Zhang S. Identification and functional characterization of amphioxus Miple, ancestral type of vertebrate midkine/pleiotrophin homologues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:31-43. [PMID: 30096337 DOI: 10.1016/j.dci.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Midkine (MK) and pleiotrophin (PTN) are the only two members of heparin-binding growth factor family. MK/PTN homologues found from Drosophila to humans are shown to have antibacterial activities and their antibacterial domains are conserved during evolution. However, little is known about MK/PTN homologue in the basal chordate amphioxus, and overall, information regarding MK/PTN homologues is rather limited in invertebrates. In this study, we identified a single MK/PTN homologue in Branchiostoma japonicum, termed BjMiple, which has a novel domain structure of PTN-PTNr1-PTNr2, and represents the ancestral form of vertebrate MK/PTN family proteins. BjMiple was expressed mainly in the ovary in a tissue-dependent fashion, and its expression was remarkably up-regulated following challenge with bacteria or their signature molecules LPS and LTA, suggesting its involvement in antibacterial responses. Functional assays revealed that BjMiple had strong antimicrobial activity, capable of killing a panel of Gram-negative and Gram-positive bacteria via a membranolytic mechanism, including interaction with bacterial membrane via LPS and LTA, membrane depolarization and high intracellular levels of ROS. Importantly, strong antibacterial activity was localized in PTN42-61 and PTNr142-66. Additionally, BjMiple and its derived peptides PTN42-61 and PTNr142-66 were not cytotoxic to human RBCs and mammalian cells. Taken together, our study suggests that amphioxus Miple is the ancestral type of vertebrate MK/PTN family homologues, and can play important roles as innate peptide antibiotics, which renders it a promising template for the design of novel peptide antibiotics against multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Cui
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
25
|
Inflammatory biomarker profiling in classical orthostatic hypotension: Insights from the SYSTEMA cohort. Int J Cardiol 2018; 259:192-197. [PMID: 29579600 DOI: 10.1016/j.ijcard.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/02/2023]
|
26
|
Takemoto Y, Horiba M, Harada M, Sakamoto K, Takeshita K, Murohara T, Kadomatsu K, Kamiya K. Midkine Promotes Atherosclerotic Plaque Formation Through Its Pro-Inflammatory, Angiogenic and Anti-Apoptotic Functions in Apolipoprotein E-Knockout Mice. Circ J 2017; 82:19-27. [PMID: 28781288 DOI: 10.1253/circj.cj-17-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A recent study suggested that midkine (MK), a heparin-binding growth factor, is associated with atherosclerosis progression in patients with artery disease. It has previously been reported that MK plays a critical role in neointima formation in a restenosis model, whereas the role of MK in the development of atherosclerosis has not been investigated. The present study assessed the effect of MK administration on the process of atherosclerotic plaque formation in apolipoprotein E-knockout (ApoE-/-) mice. METHODS AND RESULTS Using an osmotic pump, human recombinant MK protein was intraperitoneally administered for 12 weeks in C57BL/6 ApoE-/-(ApoE-/--MK) and ApoE+/+mice fed a high-fat diet. Saline was administered to the control groups of ApoE-/-(ApoE-/--saline) and ApoE+/+mice. The atherosclerotic lesion areas in longitudinal aortic sections were significantly larger in ApoE-/--MK mice than in ApoE-/--saline mice. The aortic mRNA levels of pro-inflammatory and angiogenic factors, and the percentage of macrophages in aortic root lesions, were significantly higher in ApoE-/--MK mice than in ApoE-/--saline mice, whereas the percentage of apoptotic cells was significantly lower in ApoE-/--MK mice than in ApoE-/--saline mice. CONCLUSIONS The systemic administration of MK in ApoE-/-mice promoted atherosclerotic plaque formation through pro-inflammatory, angiogenic, and anti-apoptotic effects. MK may serve as a potential therapeutic target for the prevention of atherosclerosis under atherogenic conditions.
Collapse
Affiliation(s)
- Yoshio Takemoto
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital
| | - Mitsuru Horiba
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University
- Department of Biochemistry, Nagoya University Graduate School of Medicine
- Suizawa Hospital
| | - Masahide Harada
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University
- Department of Cardiology, Fujita Health University
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine
| | - Kaichiro Kamiya
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University
| |
Collapse
|
27
|
Abstract
Midkine (MDK) is a heparin-binding growth factor that is normally expressed in mid-gestational development mediating mesenchymal and epithelial interactions. As organisms age, expression of MDK diminishes; however, in adults, MDK expression is associated with acute and chronic pathologic conditions such as myocardial infarction and heart failure (HF). The role of MDK is not clear in cardiovascular disease and currently there is no consensus if it plays a beneficial or detrimental role in HF. The lack of clarity in the literature is exacerbated by differing roles that circulating and myocardial MDK play in signaling pathways in cardiomyocytes (some of which have yet to be elucidated). Of particular interest, serum MDK is elevated in adults with chronic heart failure and higher circulating MDK is associated with worse cardiac function. In addition, pediatric HF patients have higher levels of myocardial MDK. This review focuses on what is known about the effect of exogenous versus myocardial MDK in various cardiac disease models in an effort to better clarify the role of midkine in HF.
Collapse
|
28
|
Sorrelle N, Dominguez ATA, Brekken RA. From top to bottom: midkine and pleiotrophin as emerging players in immune regulation. J Leukoc Biol 2017; 102:277-286. [PMID: 28356350 DOI: 10.1189/jlb.3mr1116-475r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokines are pivotal in the generation and resolution of the inflammatory response. The midkine/pleiotrophin (MK/PTN) family of cytokines, composed of just two members, was discovered as heparin-binding neurite outgrowth-promoting factors. Since their discovery, expression of this cytokine family has been reported in a wide array of inflammatory diseases and cancer. In this minireview, we will discuss the emerging appreciation of the functions of the MK/PTN family in the immune system, which include promoting lymphocyte survival, sculpting myeloid cell phenotype, driving immune cell chemotaxis, and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Adrian T A Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and .,Division of Surgical Oncology, Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Su Z, Lv X, Liu Y, Zhang J, Guan J, Gai Z. Circulating midkine in children with Henoch-Schönlein purpura: Clinical implications. Int Immunopharmacol 2016; 39:246-250. [PMID: 27497193 DOI: 10.1016/j.intimp.2016.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/30/2016] [Accepted: 07/28/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Midkine (MK) is a heparin-binding growth factor, which behaves like a cytokine, involved in various cellular processes such as cellular proliferation, differentiation, survival, adhesion, and migration. Studies provided evidence for a role of MK in acute and chronic inflammatory processes. The association between midkine and Henoch-Schönlein purpura (HSP) has not yet been explored. The aim of our study was to investigate the potential role of midkine in children with HSP. METHODS A total of 152 cases consisting of 92 children with HSP and 60 age- and sex-matched healthy control children were enrolled in this prospective study. Circulating midkine, IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, and IL-17A was measured in all of the 92 patients and 60 healthy controls. Midkine diagnostic value was evaluated by receiver operating characteristic (ROC) analysis. RESULTS Renal involvement occurred in 36 of the 92 patients. Circulating midkine level was elevated in children with HSPN than those of patients without renal involvement and of the controls (326.58 (266.58-459.25) pg/ml versus 280.72 (233.67-384.36) pg/ml and 217.3 (198.98-243.65) pg/ml, respectively; P<0.05). Midkine positively correlated with IL-4, IL-6, IL17A, IgA and IgE. The threshold MK concentration of HSPN was 295.58pg/ml, with the sensitivity and specificity of 80.6% and 88.3%, respectively. The area under the receiver operating characteristic (ROC) curve (AUCROC) of MK was 0.902. CONCLUSIONS MK seems to be involved in the development of HSP. Measurement of serum levels of MK is helpful in confirming the diagnosis of HSP and predicting HSPN.
Collapse
Affiliation(s)
- Zhantao Su
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China; Department of Pediatric, Shandong Police Hospital, Ji'nan 250002, China
| | - Xin Lv
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China
| | - Jinhang Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China
| | - Jingyun Guan
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan 250022, China.
| |
Collapse
|
30
|
The role of midkine in the inflammatory process and its correlation with other inflammatory markers in renal transplant recipients. Int J Artif Organs 2016; 39:277-81. [PMID: 27470002 DOI: 10.5301/ijao.5000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Midkine (MK), which is expressed in the proximal tubular epithelial cells of the kidney, is thought to have a role in the pathophysiology of inflammation-related renal diseases. Both immunological and nonimmunological mechanisms may affect renal functions negatively during the early and late post-transplantation periods. We aimed in our study to evaluate the relationship of MK with clinical findings and inflammatory markers, including high sensitivity C-reactive protein (hs-CRP), interleukin (IL-6) and tumor necrosis factor (TNF-α) in the pretransplant and post-transplant period. METHODS Forty-one consecutive patients transplanted from living related donors were included in this prospective observational study. All patients received the same immunosuppressive treatment protocol. MK, hsCRP, IL-6 and TNF-α levels were measured before and 2 months after renal transplantation. RESULTS Pretransplant MK levels correlated positively with hsCRP (r = 0.41, p = 0.004) and IL-6 (r = 0.58, p<0.001). The mean post-transplant MK level was found to be higher than the pretransplant level (143 ± 350 pg/mL, 2792 ± 4235 pg/mL respectively, p = <0.001), while the mean hsCRP, IL-6 and TNF-α levels did not change significantly. Post-transplant IL-6 correlated significantly with MK (r = 0.388, p = 0.012), hsCRP (r = 0.41, p = 0.007) and TNF-α (r = 0.348, p = 0.026). There was no significant correlation between clinical findings and inflammatory markers. CONCLUSIONS MK may be a good inflammatory marker in renal transplant recipients as in other inflammatory diseases. Moreover, it seems that it is not affected by factors other than inflammation during the post-transplantation period.
Collapse
|
31
|
Honda Y, Shishido T, Takahashi T, Watanabe T, Netsu S, Kinoshita D, Narumi T, Kadowaki S, Nishiyama S, Takahashi H, Arimoto T, Miyamoto T, Kishida S, Kadomatsu K, Takeishi Y, Kubota I. Midkine Deteriorates Cardiac Remodeling via Epidermal Growth Factor Receptor Signaling in Chronic Kidney Disease. Hypertension 2016; 67:857-65. [PMID: 26975703 DOI: 10.1161/hypertensionaha.115.06922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/12/2016] [Indexed: 01/13/2023]
Abstract
In chronic kidney disease, activation of the epidermal growth factor receptor (EGFR) leads to cardiac hypertrophy, which affects morbidity and mortality. In patients with renal insufficiency and heart failure, the expression of midkine, a heparin-binding growth factor, is increased. Therefore, we investigated the association between midkine and EGFR in the induction of cardiac hypertrophy and dysfunction in chronic kidney disease. We performed subtotal nephrectomies in midkine-knockout mice and wild-type mice. We found that subtotal nephrectomy-induced cardiac hypertrophy and phosphorylation of extracellular signal-regulated kinase 1/2 and AKT were attenuated in midkine-knockout mice compared with wild-type mice. An antiphosphotyrosine receptor antibody array was used to demonstrate that EGFR phosphorylation in the heart was also lower in midkine-knockout mice than in wild-type mice. Midkine induced EGFR, extracellular signal-regulated kinase 1/2, and AKT phosphorylation and led to hypertrophy in neonatal rat cardiomyocytes. Pretreatment with EGFR inhibitors or EGFR silencing suppressed midkine-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, induction of fetal cardiac gene expression, and hypertrophy in cardiomyocytes. To confirm the association between midkine and EGFR in vivo, mice subjected to subtotal nephrectomy were treated with the EGFR inhibitor gefitinib. Gefitinib treatment attenuated subtotal nephrectomy-induced cardiac hypertrophy. These results indicate that midkine might be a key mediator of cardiorenal interactions through EGFR activation, which plays a crucial role in cardiac hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Yuki Honda
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.).
| | - Tetsuya Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Shunsuke Netsu
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Daisuke Kinoshita
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Taro Narumi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Shinpei Kadowaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Takuya Miyamoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Satoshi Kishida
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Kenji Kadomatsu
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Yasuchika Takeishi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Isao Kubota
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| |
Collapse
|
32
|
Bădilă E, Daraban AM, Ţintea E, Bartoş D, Alexandru N, Georgescu A. Midkine proteins in cardio-vascular disease. Where do we come from and where are we heading to? Eur J Pharmacol 2015; 762:464-71. [PMID: 26101065 DOI: 10.1016/j.ejphar.2015.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 01/22/2023]
Abstract
Midkine is a recently identified new growth factor/cytokine with pleiotropic functions in the human organism. First discovered in the late eighties, midkines have now become the subject of numerous studies in cardiovascular, neurologic, renal diseases and also various types of cancers. We summarize here the most important functions of midkine in cardiovascular diseases, emphasizing its role in inflammation and its antiapoptotic and proangiogenetic effects. Midkine has multiple roles in the organism, with the specific feature of being either beneficial or harmful depending on which tissue it acts on. Even though midkine has been shown to have cardiac protective effects against acute ischemia/reperfusion injury and to inhibit cardiac remodeling, it also promotes intimal hyperplasia and vascular stenosis. As such, different therapeutic strategies are currently being evaluated, consisting of administering either midkine proteins or midkine inhibitors depending on the desired outcome. More data is gathering to suggest that these novel therapies could become an adjunctive to standard cardiovascular therapy. Nonetheless, much is still to be learned about midkine. The encouraging results up till now require further studying in order to fully understand the complete profile of its mechanism of action and the clinical safety and efficacy of novel therapeutic opportunities offered by midkine molecular targeting.
Collapse
Affiliation(s)
- Elisabeta Bădilă
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Clinical Emergency Hospital, Bucharest, Romania.
| | - Ana Maria Daraban
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Clinical Emergency Hospital, Bucharest, Romania.
| | - Emma Ţintea
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Clinical Emergency Hospital, Bucharest, Romania
| | - Daniela Bartoş
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Clinical Emergency Hospital, Bucharest, Romania
| | - Nicoleta Alexandru
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| |
Collapse
|
33
|
Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, Pisano F, Mura M, Kleijn L, de Boer RA, Viarengo G, Rosti V, Spinillo A, Roccio M, Gnecchi M. Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med 2015; 4:448-58. [PMID: 25824141 DOI: 10.5966/sctm.2014-0253] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 01/08/2023] Open
Abstract
The paracrine properties of human amniotic membrane-derived mesenchymal stromal cells (hAMCs) have not been fully elucidated. The goal of the present study was to elucidate whether hAMCs can exert beneficial paracrine effects on infarcted rat hearts, in particular through cardioprotection and angiogenesis. Moreover, we aimed to identify the putative active paracrine mediators. hAMCs were isolated, expanded, and characterized. In vitro, conditioned medium from hAMC (hAMC-CM) exhibited cytoprotective and proangiogenic properties. In vivo, injection of hAMC-CM into infarcted rat hearts limited the infarct size, reduced cardiomyocyte apoptosis and ventricular remodeling, and strongly promoted capillary formation at the infarct border zone. Gene array analysis led to the identification of 32 genes encoding for the secreted factors overexpressed by hAMCs. Among these, midkine and secreted protein acidic and rich in cysteine were also upregulated at the protein level. Furthermore, high amounts of several proangiogenic factors were detected in hAMC-CM by cytokine array. Our results strongly support the concept that the administration of hAMC-CM favors the repair process after acute myocardial infarction.
Collapse
Affiliation(s)
- Patrizia Danieli
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giuseppe Malpasso
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Maria Chiara Ciuffreda
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisabetta Cervio
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Calvillo
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Francesco Copes
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Federica Pisano
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Manuela Mura
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lennaert Kleijn
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gianluca Viarengo
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Vittorio Rosti
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Arsenio Spinillo
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Marianna Roccio
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Division of Clinical Immunology, Immunohematology, and Transfusion Service, Center for the Study and Cure of Myelofibrosis, Biotechnology Research Laboratories, and Division of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy; Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands; Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Luo J, Wang X, Xia Z, Yang L, Ding Z, Chen S, Lai B, Zhang N. Transcriptional factor specificity protein 1 (SP1) promotes the proliferation of glioma cells by up-regulating midkine (MDK). Mol Biol Cell 2015; 26:430-9. [PMID: 25428991 PMCID: PMC4310735 DOI: 10.1091/mbc.e14-10-1443] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Midkine (MDK) expression is associated with the proliferation of many cancers, including glioma. However, the upstream signaling that leads to MDK accumulation remains elusive. This study investigates the molecular mechanism that induces MDK overexpression in human glioma. The Repository for Molecular Brain Neoplasia Data was analyzed to identify potential MDK regulators. Expression of MDK and specificity protein 1 (SP1) was compared in glioma specimens. Chromatin immunoprecipitation assay was used to confirm the transcriptional regulation. MDK-force-expressed, SP1-silenced glioma cells were used to test rescue effects in vitro and in vivo. MDK and SP1 expression in gliomas was significantly higher than in adjacent tissues and was positively correlated in glioma clinical samples and cell lines. The promoter of the human MDK gene has a putative SP1 binding site. SP1 binds to the promoter of the MDK gene and directly regulates MDK expression. MDK or SP1 gene silencing inhibited the proliferation of glioma cells and reduced the tumor volume in nude mice. Overexpression of MDK in SP1-silenced cells could partially rescue the SP1 inhibition effects in vivo and in vitro. SP1 directly up-regulated the expression of MDK, and the SP1-MDK axis cooperated in glioma tumorigenesis.
Collapse
Affiliation(s)
- Jingyan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhibo Xia
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixuan Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiming Ding
- Department of Neurosurgery, Huang Pu Division, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Shiyuan Chen
- Department of Neurology and Northwestern Brain Tumor Institute, Center of Genetic Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Bingquan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
35
|
Jones DR. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br J Pharmacol 2015; 171:2925-39. [PMID: 24460734 DOI: 10.1111/bph.12601] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 01/05/2023] Open
Abstract
Midkine (MK) is a pleiotropic growth factor prominently expressed during embryogenesis but down-regulated to neglible levels in healthy adults. Many published studies have demonstrated striking MK overexpression compared with healthy controls in various pathologies, including ischaemia, inflammation, autoimmunity and, most notably, in many cancers. MK expression is detectable in biopsies of diseased, but not healthy, tissues. Significantly, because it is a soluble cytokine, elevated MK is readily apparent in the blood and other body fluids such as urine and CSF, making MK a relatively convenient, accessible, non-invasive and inexpensive biomarker for population screening and early disease detection. The first diagnostic tests that quantify MK are just now receiving regulatory clearance and entering the clinic. This review examines the current state of knowledge pertaining to MK as a biomarker and highlights promising indications and clinical settings where measuring MK could make a difference to patient treatment. I also raise outstanding questions about reported variants of MK as well as MK's bio-distribution in vivo. Answering these questions in future studies will enhance our understanding of the significance of measured MK levels in both patients and healthy subjects, and may reveal further opportunities for measuring MK to diagnose disease. MK has already proven to be a biomarker that can significantly improve detection, management and treatment of cancer, and there is significant promise for developing further MK-based diagnostics in the future.
Collapse
Affiliation(s)
- D R Jones
- Cellmid Ltd., Sydney, NSW, Australia
| |
Collapse
|
36
|
Yoshida Y, Sakakima H, Matsuda F, Ikutomo M. Midkine in repair of the injured nervous system. Br J Pharmacol 2014; 171:924-30. [PMID: 24460674 PMCID: PMC3925031 DOI: 10.1111/bph.12497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/09/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022] Open
Abstract
Midkine (MK) is a growth factor with neurotrophic and neurite outgrowth activities. It was expressed in the peri-ischaemic area in the acute phase of cerebral infarction in rat brains. Astrocytes were the origin of MK in this occasion. MK has been assessed in terms of its effects on neural injury. The administration of MK into the lateral ventricle immediately prior to ischaemia prevented cell death in the hippocampal CA1 neurons degenerated by transient forebrain ischaemia in gerbils. MK administration was also beneficial in rats with neural injury, especially after kainic acid-induced seizures. Gene therapy with mouse MK cDNA using an adenovirus was effective in reducing the cerebral infarction volume and in increasing the number of neuronal precursor cells in the subventricular zone of the rat brain. MK mRNA and MK protein were found in spinal cord motor neurons of the anterior horn in both the acute phase of sciatic nerve injury and 3 weeks later. MK immunoreactivity was also found in the proximal side of a sciatic nerve-injured site in sciatic nerve axons. MK receptors were expressed in Schwann cells after injury, suggesting crosstalk between axons and Schwann cells. MK was also present in nerve terminals and influenced ACh receptor clustering during neuromuscular development in Xenopus. Thus, MK may also be involved in reinforcing and maintaining the synapse. All these findings indicate the therapeutic potential of MK for promoting repair of the nervous system after injury.
Collapse
Affiliation(s)
- Yoshihiro Yoshida
- School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | |
Collapse
|
37
|
Kadomatsu K, Bencsik P, Görbe A, Csonka C, Sakamoto K, Kishida S, Ferdinandy P. Therapeutic potential of midkine in cardiovascular disease. Br J Pharmacol 2014; 171:936-44. [PMID: 24286213 DOI: 10.1111/bph.12537] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Ischaemic heart disease, stroke and their pathological consequences are life-threatening conditions that account for about half of deaths in developed countries. Pathology of these diseases includes cell death due to ischaemia/reperfusion injury, vascular stenosis and cardiac remodelling. The growth factor midkine plays a pivotal role in these events. Midkine shows an acute cytoprotective effect in ischaemia/reperfusion injury at least in part via its anti-apoptotic effect. Moreover, while midkine promotes endothelial cell proliferation, it also recruits inflammatory cells to lesions. These activities eventually enhance angiogenesis, thereby preventing cardiac tissue remodelling. However, midkine's activity in recruiting inflammatory cells into the vascular wall also triggers neointima formation, and consequently, vascular stenosis. Moreover, midkine is induced in cancer tissues where it enhances angiogenesis. Therefore, midkine may promote tumour formation through its angiogenic and anti-apoptotic activity. This review focuses on the roles of midkine in ischaemic cardiovascular disease and their pathological consequences, that is angiogenesis, vascular stenosis, and cardiac remodelling, and discusses the possible therapeutic potential of modulation of midkine in these diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits. Heart Vessels 2014; 31:96-104. [DOI: 10.1007/s00380-014-0569-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/15/2014] [Indexed: 01/06/2023]
|
39
|
Zhao SL, Zhang YJ, Li MH, Zhang XL, Chen SL. Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction. Stem Cell Res Ther 2014; 5:37. [PMID: 24635859 PMCID: PMC4055147 DOI: 10.1186/scrt425] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/11/2014] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Elevated midkine (MK) expression may contribute to ventricular remodeling and ameliorate cardiac dysfunction after myocardial infarction (MI). Ex vivo modification of signaling mechanisms in mesenchymal stem cells (MSCs) with MK overexpression may improve the efficacy of cell-based therapy. This study sought to assess the safety and efficacy of MSCs with MK overexpression transplantation in a rat model of MI. METHODS A pLenO-DCE vector lentivirus encoding MK was constructed and infected in MSCs. MSC migration activity and cytoprotection was examined in hypoxia-induced H9C2 cells using transwell insert in vitro. Rats were randomized into five groups: sham, MI plus injection of phosphate buffered saline (PBS), MSCs, MSCs-green fluorescent protein (MSCs-GFP) and MSCs-MK, respectively. Survival rates were compared among groups using log-rank test and left ventricular function was measured by echocardiography at baseline, 4, 8 and 12 weeks. RESULTS Overexpression of MK partially prevented hypoxia-induced MSC apoptosis and exerted MSC cytoprotection to anoxia induced H9C2 cells. The underlying mechanisms may be associated with the increased mRNA and protein levels of vascular endothelial growth factor (VEGF), transformation growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and stromal cell-derived factor 1 (SDF-1a) in MSCs-MK compared with isolated MSCs and MSCs-GFP. Consistent with the qPCR results, the culture supernatant of MSCs-MK had more SDF-1a (9.23 ng/ml), VEGF (8.34 ng/ml) and TGF-β1 (17.88 ng/ml) expression. In vivo, a greater proportion of cell survival was observed in the MSCs-MK group than in the MSCs-GFP group. Moreover, MSCs-MK administration was related to a significant improvement of cardiac function compared with other control groups at 12 weeks. CONCLUSIONS Therapies employing MSCs with MK overexpression may represent an effective treatment for improving cardiac dysfunction and survival rate after MI.
Collapse
|
40
|
Muramatsu T. Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol 2014; 171:814-26. [PMID: 23992440 PMCID: PMC3925020 DOI: 10.1111/bph.12353] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Midkine (MK) is a heparin-binding growth factor or cytokine and forms a small protein family, the other member of which is pleiotrophin. MK enhances survival, migration, cytokine expression, differentiation and other activities of target cells. MK is involved in various physiological processes, such as development, reproduction and repair, and also plays important roles in the pathogenesis of inflammatory and malignant diseases. MK is largely composed of two domains, namely a more N-terminally located N-domain and a more C-terminally located C-domain. Both domains are basically composed of three antiparallel β-sheets. In addition, there are short tails in the N-terminal and C-terminal sides and a hinge connecting the two domains. Several membrane proteins have been identified as MK receptors: receptor protein tyrosine phosphatase Z1 (PTPζ), low-density lipoprotein receptor-related protein, integrins, neuroglycan C, anaplastic lymphoma kinase and Notch-2. Among them, the most established one is PTPζ. It is a transmembrane tyrosine phophatase with chondroitin sulfate, which is essential for high-affinity binding with MK. PI3K and MAPK play important roles in the downstream signalling system of MK, while transcription factors affected by MK signalling include NF-κB, Hes-1 and STATs. Because of the involvement of MK in various physiological and pathological processes, MK itself as well as pharmaceuticals targeting MK and its signalling system are expected to be valuable for the treatment of numerous diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- T Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasakicho, Nisshinn, Aichi, 470-0195, Japan. ,
| |
Collapse
|
41
|
Netsu S, Shishido T, Kitahara T, Honda Y, Funayama A, Narumi T, Kadowaki S, Takahashi H, Miyamoto T, Arimoto T, Nishiyama S, Watanabe T, Woo CH, Takeishi Y, Kubota I. Midkine exacerbates pressure overload-induced cardiac remodeling. Biochem Biophys Res Commun 2013; 443:205-10. [PMID: 24291499 DOI: 10.1016/j.bbrc.2013.11.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023]
Abstract
Midkine is a multifunctional growth factor, and its serum levels are increased with the functional severity of heart failure. This study aimed to examine the role of midkine in heart failure pathogenesis. Midkine expression levels were increased in the kidney and lung after transverse aortic constriction (TAC) surgery, but not sufficiently increased in the heart. After TAC, phosphorylation of extracellular signal-regulated kinase1/2 and AKT, and the expression levels of foetal genes in the heart were considerably increased in transgenic mice with cardiac-specific overexpression of midkine (MK-Tg) compared with wild-type (WT) mice. MK-Tg mice showed more severe cardiac hypertrophy and dysfunction, and showed lower survival rate after TAC than WT mice. We conclude that midkine plays a critical role in cardiac hypertrophy and remodelling.
Collapse
Affiliation(s)
- Shunsuke Netsu
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Tatsuro Kitahara
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yuki Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinpei Kadowaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
42
|
Kadomatsu K, Kishida S, Tsubota S. The heparin-binding growth factor midkine: the biological activities and candidate receptors. J Biochem 2013; 153:511-21. [PMID: 23625998 DOI: 10.1093/jb/mvt035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heparin-binding growth factor midkine (MK) comprises a family with pleiotrophin/heparin-binding growth-associated molecule. The biological phenomena in which MK is involved can be categorized into five areas: (i) cancer, (ii) inflammation/immunity, (iii) blood pressure, (iv) development and (v) tissue protection. The phenotypes are clear in vivo, but the mechanisms by which MK exerts these actions are not fully understood. Candidate receptors for MK include anaplastic lymphoma kinase, protein tyrosine phosphatase ζ, Notch2, LDL receptor-related protein 1, integrins and proteoglycans. Some physical associations between these candidate receptors are also known. Because of the striking in vivo phenotypes after manipulation of MK, MK could be an important molecular target for the treatment of various diseases. To this end, it will be important to pursue studies to fully understand the mechanisms of MK action.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
43
|
Kerzerho J, Schneider A, Favry E, Castelli FA, Maillère B. The signal peptide of the tumor-shared antigen midkine hosts CD4+ T cell epitopes. J Biol Chem 2013; 288:13370-7. [PMID: 23553629 DOI: 10.1074/jbc.m112.427302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The CD4 T cell response to the tumor antigen Midkine was unknown. RESULTS Most of the T cell response to Midkine relies on T cell epitopes contained in its signal peptide. CONCLUSION The signal peptide of Midkine is accessible to HLA class II pathway for CD4 T cell presentation. SIGNIFICANCE It is a new function for signal peptides to contribute to tumor-specific CD4 T cell response. Because of the key role of CD4 T cell response in immunity to tumors, we investigated the CD4(+) T cell response to the recently identified tumor antigen Midkine (MDK). By weekly stimulations of T lymphocytes harvested from seven HLA-DR-typed healthy donors, we derived CD4(+) T cell lines specific for eight MDK peptides. Most of the T cell lines reacted with the peptides 9-23 and 14-28, located in and overlapping the MDK signal peptide, respectively. Accordingly, the MDK signal peptide appeared to be rich in good binders to common HLA-DR molecules. The peptide 9-23-specific T cell lines were specifically stimulated by autologous dendritic cells loaded with lysates of MDK-transfected cells or with lysates of tumor cells naturally expressing the MDK protein. One T cell line was stimulated by HLA-compatible MDK-transfected tumor cells. By contrast, the peptide 14-28-specific T cell lines were not stimulated in any of these conditions. Our data demonstrate that CD4(+) T cell epitopes present in the signal peptide can be accessible to recognition by CD4(+) T cells and may therefore contribute to tumor immunity, whereas a peptide overlapping the junction between the signal peptide and the mature protein is not.
Collapse
Affiliation(s)
- Jerome Kerzerho
- Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Labex LERMIT, Labex VRI, Gif Sur Yvette F-91191, France
| | | | | | | | | |
Collapse
|
44
|
Şalaru DL, Mertens PR, Bartsch P. Loss of heparin-binding protein prevents necrotizing glomerulonephritis: first clues hint at plasminogen activator inhibitor-1. Int Urol Nephrol 2013; 45:1483-7. [PMID: 23543126 DOI: 10.1007/s11255-013-0415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
Abstract
The orchestration of acute inflammatory kidney injury is subject to widespread influences and involves cytokines as well as chemokines released by resident as well as infiltrating cells. Although intense research efforts have been made in the field, it still unravels yet novel key molecules involved in the pathogenesis of this kidney disease. A heparin-binding growth factor denoted midkine is expressed by various cell types following stress of tissue damage. Specific functions relate to orchestration of reparative and inflammatory processes by promoting migration of leucocytes and release of chemokines with ensuing angiogenesis. Midkine appears as a double-edged sword with beneficial or harmful effects in injured tissues. Here, we discuss a recent publication that provides evidence for the beneficial role of midkine in progressive glomerulonephritis, most likely due to blockade of plasminogen activator inhibitor-1 release.
Collapse
Affiliation(s)
- Delia Lidia Şalaru
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | | | | |
Collapse
|
45
|
Lessons from the heart and ischemic limbs: midkine as anti-inflammatory mediator for kidney diseases? Int Urol Nephrol 2012. [PMID: 23208536 DOI: 10.1007/s11255-012-0344-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammatory responses ensuing ischemia involve the release of numerous mediators. Among these the heparin-binding growth factor midkine has been recognized as a potent inducer of neoangiogenesis. In a recent publication, the release of midkine has been studied in different in vitro models, and effects of abrogated midkine expression by means of genetic knockout has been analyzed in ischemia models of the limbs. The observed effects indicate a profound effect exerted by midkine under ischemia in the coordination of the inflammatory response and neoangiogenesis.
Collapse
|
46
|
Weckbach LT, Groesser L, Borgolte J, Pagel JI, Pogoda F, Schymeinsky J, Müller-Höcker J, Shakibaei M, Muramatsu T, Deindl E, Walzog B. Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. Am J Physiol Heart Circ Physiol 2012; 303:H429-38. [PMID: 22707563 DOI: 10.1152/ajpheart.00934.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cytokine midkine (MK) promotes tumor growth mainly by inducing angiogenesis. Here, we identified the source of MK in the vascular system under hypoxic conditions and demonstrated the relevance of MK during ischemia of normal tissue. Hypoxia increased MK protein expression in human polymorphonuclear neutrophils (PMN), monocytes, and human umbilical vein endothelial cells (HUVEC) compared with normoxia. Immunoelectron microscopy showed elevated cell surface expression of MK in PMN and monocytes during hypoxia. However, only HUVEC released significant amounts of soluble MK during hypoxia compared with normoxia (301 ± 81 pg/ml vs. 158 ± 45 pg/ml; P < 0.05). Exogenous MK induced neovascularization in a chorioallantoic membrane (CAM) assay compared with negative control as measured by counting the number of branching points per visual field (1,074 ± 54 vs. 211 ± 70; P < 0.05). In a hind limb ischemia model, the angiogenic response was almost completely absent in MK-deficient mice, whereas control animals showed a profound angiogenic response measured as proliferating endothelial cells per visual field (45 ± 30 vs. 169 ± 34; P < 0.01). These unanticipated results identified endothelial cells as the source of soluble MK in the vascular system during hypoxia and defined MK as a pivotal player of angiogenesis during ischemia in nonmalignant tissue.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Midkine (MK) is a heparin-binding growth factor involved in various cellular processes such as cellular proliferation, survival, and migration. In addition to these typical growth factor activities, MK exhibits several other activities related to fibrinolysis, blood pressure, host defense and other processes. Many cell-surface receptors have been identified to account for the multiple biological activities of MK. The expression of MK is frequently upregulated in many types of human carcinoma. Moreover, blood MK levels are closely correlated with patient outcome. Knockdown and blockade of MK suppress tumorigenesis and tumor development. Thus, MK serves as a tumor marker and a molecular target for cancer therapy. Furthermore, there is growing evidence that MK plays pivotal roles in neural and inflammatory diseases. Understanding of the mechanisms of action of MK is expected to create new therapeutic options for several human diseases.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
48
|
Lee SH, Suh HN, Lee YJ, Seo BN, Ha JW, Han HJ. Midkine prevented hypoxic injury of mouse embryonic stem cells through activation of Akt and HIF-1α via low-density lipoprotein receptor-related protein-1. J Cell Physiol 2012; 227:1731-9. [PMID: 21688265 DOI: 10.1002/jcp.22897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem cell functions are dramatically altered by oxygen in tissue culture, which means the antioxidant/oxidant balance is critical for protection as well as toxicity. This study examined the effect of the heparin-binding growth factor midkine (MK) on hypoxia-induced apoptosis and related signal pathways in mouse embryonic stem cells (mESCs). Hypoxia (60 h) increased lactate dehydrogenase release and apoptosis, and reduced cell viability and proliferation. These effects were reversed by MK (100 ng/ml). MK also reversed hypoxia-induced increases of intracellular reactive oxygen species, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Blockage of JNK and p38 MAPK using small interference (si)RNAs produced a decrease in apoptosis. A loss of mitochondrial membrane potential, increases of cytochrome c release from mitochondria to cytosol, and cleaved caspase-3 expression, as well as decreases in cIAP-2 and Bcl-2 were also reversed by MK. Hypoxia alone and hypoxia with MK increased low-density lipoprotein receptor-related protein-1 (LRP-1) mRNA and protein expression. Hypoxia with MK rapidly increased serine/threonine protein kinase (Akt) phosphorylation which reversed by LRP-1 Ab (0.1 µg/ml) and prolonged heme oxygenase-1 (HO-1) expression. In addition, hypoxia with MK increased the expression of hypoxia-inducible factor-1α (HIF-1α). Moreover, inhibition of Akt, HO-1, and HIF-1α signaling pathways abolished the MK-induced blockage of apoptosis. In conclusion, MK partially prevented hypoxic injury of mESCs through activation of Akt, HO-1, and HIF-1α via LRP-1.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M, Hazan-Halevy I, Herishanu Y, Shvidel L, Haran M, Leng L, Bucala R, Harroch S, Shachar I. The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:259-69. [PMID: 22140262 PMCID: PMC3244541 DOI: 10.4049/jimmunol.1101468] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lasting B cell persistence depends on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase ζ (RPTPζ). We demonstrate that MK initiates a signaling cascade leading to B cell survival by binding to RPTPζ. In mice lacking PTPRZ, the proportion and number of the mature B cell population are reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74-induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and chronic lymphocytic leukemia cells. Our results indicate that MK and RPTPζ are important regulators of the B cell repertoire. These findings could pave the way toward understanding the mechanisms shaping B cell survival and suggest novel therapeutic strategies based on the blockade of the MK/RPTPζ-dependent survival pathway.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Midkine
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
- Proto-Oncogene Proteins c-met/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/immunology
- Receptors, Growth Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu C, Zhang Z, Wu M, Zhu S, Gao J, Zhang J, Yuan Y, Zhang K, Yu Y, Han W. Recombinant human midkine stimulates proliferation and decreases dedifferentiation of auricular chondrocytes in vitro. Exp Biol Med (Maywood) 2011; 236:1254-62. [DOI: 10.1258/ebm.2011.011022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is widely used for the repair of cartilage defects. However, due to the lack of chondrocyte growth factor and dedifferentiation of the cultured primary chondrocytes, cell source has limited the clinical potential of ACI. Auricular cartilage is an attractive potential source of cells for cartilage tissue engineering. Here we demonstrated that recombinant human midkine (rhMK) significantly promoted proliferation of rat primary auricular chondrocytes cultured and passaged in monolayer, which was mediated by the activation of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Furthermore, rhMK attenuated the dedifferentiation of cultured chondrocytes by maintaining the expression of chondrocyte-specific matrix proteins during culture expansion and passage. Importantly, rhMK-expanded chondrocytes reserved their full chondrogenic potential and redifferentiated into elastic chondrocytes after being cultured in high density. The results suggest that rhMK may be used for the preparation of chondrocytes in cartilage tissue engineering.
Collapse
Affiliation(s)
- Chuanying Xu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Zhonghui Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Mingyuan Wu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Jin Gao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Jing Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Yunsheng Yuan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Kejian Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| |
Collapse
|