1
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
2
|
Li X, Luo M, Zeng Y, Zhang R, Lin X, Du Y, Zhao W, Feng Q, Wu M, Zhang J, Guo L, Wu P, Yang C, Cai F, Wang Y, Hu Y, Wang H, Liu N, Xu L, Guan M. MicroRNA-24-3p targeting Top1 in perirenal fat is involved in circulating inflammation and high cardiovascular disease risk in patients with primary aldosteronism. J Transl Med 2025; 23:345. [PMID: 40102901 PMCID: PMC11916988 DOI: 10.1186/s12967-025-06329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/01/2025] [Indexed: 03/20/2025] Open
Abstract
CONTEXT Patients with primary aldosteronism (PA) are at a high risk of cardiovascular diseases (CVD) and metabolic syndrome. Notable inflammatory and fibrotic changes and differential microRNA (miRNA) expression profiles in the perirenal fat observed in PA may contribute to this increased risk, however, which has not been fully elucidated. OBJECTIVE This study aimed to explore the role of high expression of miR-24-3p in perirenal fat in circulating inflammation and its correlation with a high risk of CVD in patients with PA. METHODS Perirenal fat thickness (PRFT) measured by computed tomography (CT), miR-24-3p expression in perirenal fat, circulating inflammatory factors from adrenal veins and peripheral blood in patients with PA were analyzed. In vitro, white and brown adipocytes with miR-24-3p overexpression or inhibition respectively were stimulated with aldosterone and a unidirectional co-culture model of adipocytes and HUVEC was established. The target genes of miR-24-3p were identified. RESULTS Patients with PA and CVD have significantly higher PRFT than those without CVD. The expression level of miR-24-3p in perirenal fat was significantly positively correlated with PRFT. MiR-24-3p was significantly upregulated in the perirenal fat of PA and was associated with increased adipogenesis, inflammation, and oxidative stress, correlating with plasma aldosterone concentration (PAC), PRFT, cardiac remodeling, and weight gain. The IL-6 level in the peripheral blood was elevated in patients with PA and CVD, and the affected adrenal vein had the highest IL-6 level. Targeting Top1, miR-24-3p modulated aldosterone-induced effects in adipocytes and influenced IL-6 secretion, thereby affecting HUVEC. CONCLUSION The upregulation of miR-24-3p in the perirenal fat induced inflammation and oxidative stress by targeting Top1, which may contribute to a high risk of CVD in patients with PA.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanmei Zeng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Renyi Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuejun Du
- Division of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijian Feng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghai Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peili Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuyi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feifei Cai
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxuan Hu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyun Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nannan Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lingling Xu
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Yuan YE, Haas AV, Rosner B, Williams GH, McDonnell ME, Adler GK. The renin-angiotensin-aldosterone system and salt sensitivity of blood pressure offer new insights in obesity phenotypes. Obesity (Silver Spring) 2025; 33:321-330. [PMID: 39828424 PMCID: PMC11774662 DOI: 10.1002/oby.24218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Individuals who have metabolically healthy overweight/obesity (MHOO) do not have cardiometabolic complications despite an elevated BMI. Renin-angiotensin-aldosterone system (RAAS) activation and salt sensitivity of blood pressure (SSBP) are cardiovascular disease (CVD) risks, which are increased in individuals with higher BMI values. Little is known about the differences in RAAS activation and SSBP between MHOO and metabolically unhealthy overweight/obesity (MUOO) phenotypes. METHODS We studied 1430 adults on controlled dietary sodium. Individuals in the MHOO group had BMI ≥ 25 kg/m2 without comorbidities (e.g., diabetes, dyslipidemia, hypertension, CVD), whereas individuals in the MUOO group had BMI ≥ 25 kg/m2 and at least one comorbidity. The control group included healthy individuals (BMI 18.5-24.9 kg/m2). RESULTS BMI was similar between the MHOO (28.9 kg/m2) and MUOO groups (29.3 kg/m2; p = 0.317). On liberal sodium, the MUOO group had activated RAAS compared with the MHOO group, including higher plasma aldosterone concentration (mean [SD], 1.11 [0.48] ng/dL; p = 0.020), plasma angiotensin II levels (4.11 [2.0] pg/mL; p = 0.040), and percentage of individuals with plasma renin activity ≥ 1.0 ng/mL/h (+3.6%; p = 0.017). The MUOO group had higher SSBP than the MHOO group (6.0 [1.9] mm Hg; p = 0.002). Applying a zero-to-six-point metabolic health score found that a worse score was associated with higher measurements of RAAS activity and SSBP (p < 0.001). CONCLUSIONS Compared to the MHOO group, the MUOO group was characterized by an increase in the following two CVD risk factors: higher RAAS activity and SSBP on controlled sodium diets. Therapeutic interventions targeting the effects of angiotensin II and/or aldosterone may offer cardiometabolic protection for individuals with the MUOO phenotype.
Collapse
Affiliation(s)
- Yan Emily Yuan
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea V. Haas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie E. McDonnell
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Oo WJ, Lim CL, Goh MH, Koh RY. Serum Cortisol and Cardiovascular Disease Risk - A Potential Biomarker. Curr Cardiol Rev 2025; 21:e1573403X328499. [PMID: 39754772 DOI: 10.2174/011573403x328499241106064553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 01/06/2025] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, poses a significant burden on the healthcare sector. Its association with stress and Cushing's Syndrome has driven cortisol, the 'stress hormone,' to be a potential candidate in determining CVD risk. Cortisol synthesis and release through the hypothalamic-pituitary-adrenal (HPA) axis are regulated by several hormones and receptors involved in the pathological cascade towards CVD. Evidence suggests that metabolic syndrome plays a major role in cortisol-mediated CVD risk. On the other hand, non-metabolic features are also implicated when the association between cortisol and CVD risk remains significant upon normalisation of metabolic parameters. Correspondingly, the treatment for hypercortisolism is often found effective in lowering CVD risk. Despite available evidence, several factors continue to hinder the clinical use of cortisol as a risk biomarker for CVD. This review provides an insight into the role of serum cortisol in CVD progression and risk, with emphasis on the mechanistic features and parameters.
Collapse
Affiliation(s)
- Wei Jet Oo
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Mun Hon Goh
- Laboratory and Blood Services Department, National Heart Institute, 145, Jalan Tun Razak, 50400, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Rajeswari JJ, Faught E, Santos H, Vijayan MM. Mineralocorticoid receptor activates postnatal adiposity in zebrafish lacking proopiomelanocortin. J Cell Physiol 2024; 239:e31428. [PMID: 39238189 PMCID: PMC11649959 DOI: 10.1002/jcp.31428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The proopiomelanocortin (Pomc)-derived peptides, including adrenocorticotropic hormone and α-melanocyte stimulating hormone (α-Msh), play both a central and a peripheral role in modulating the stress response. The central role is predominantly associated with nutrient homeostasis, while peripherally they play an important role in the synthesis of glucocorticoids (GCs) in response to stress. Pomc mutations are a major risk factor in the development of early-onset childhood obesity in humans. This is attributed primarily to their central effects on melanocortin receptor dysfunction leading to hyperphagia and reduced energy expenditure, while the peripheral mechanism contributing to obesity has largely been unexplored. Here, we tested the hypothesis that Pomc mutation-mediated adrenal insufficiency and the associated changes in GC signaling contribute to postnatal adiposity using zebrafish as a model. We generated a ubiquitous Pomc knockout zebrafish that mimicked the mammalian mutant phenotype of adrenal insufficiency and enhanced adiposity. The loss of Pomc inhibited stress-induced cortisol production and reprogrammed GC signaling by reducing glucocorticoid receptor responsiveness, whereas the mineralocorticoid receptor (Mr) signaling was enhanced. Larval feeding led to enhanced growth and adipogenesis in the Pomc mutants, and this was inhibited by eplerenone, an Mr antagonist. Altogether, our results underscore a key role for Mr signaling in early developmental adipogenesis and a possible target for therapeutic intervention for early-onset childhood obesity due to Pomc dysfunction.
Collapse
Affiliation(s)
| | - Erin Faught
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Helio Santos
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Laboratório de Processamento de TecidosUniversidade Federal de São João Del Rei, Avenida Sebastião Gonçalves CoelhoDivinópolisBrazil
| | | |
Collapse
|
6
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Xiao Q, Tang L, Chen S, Mei Y, Wang C, Yang J, Shang J, Li S, Wang W. Two-Pronged Attack: Dual Activation of Fat Reduction Using Near-Infrared-Responsive Nanosandwich for Targeted Anti-Obesity Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406985. [PMID: 39324577 DOI: 10.1002/advs.202406985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Excessive fat accumulation and chronic inflammation are two typical characteristics of obesity. AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, is involved in adipogenesis, lipogenesis, and inflammation modulation in adipose tissue (AT). Thus, effective lipid reduction and anti-inflammation through AMPK regulation play vital roles in treating obesity. Herein, an anti-obesity nanosandwich is fabricated through attaching polymetformin (PolyMet) onto photothermal agent black phosphorus nanosheets (BP). PolyMet activates AMPK to inhibit adipogenesis, promote browning, and mitigate AT inflammation by decreasing macrophage infiltration, repolarizing macrophage phenotype, and downregulating pro-inflammatory cytokines. Additionally, BP induces lipolysis and apoptosis of adipocytes and macrophages through a photothermal effect. By further functionalization using hyaluronic acid (HA) and MMP2 substrate-linking P3 peptide-modified HA (P3-HA), an enhanced anti-obesity effect is obtained by dual-targeting of P3 and HA, and HA-mediated CD44 poly-clustering after MMP2 cleavage. Upon laser irradiation, the designed nanosandwich (P3-HA/PM@BP) effectively inhibits obesity development in obese mice, increases M2/M1 ratio in AT, reduces the serum levels of cholesterol/triglyceride and improves insulin sensitivity, exhibiting promising research potential to facilitate the clinical development of modern anti-obesity therapies.
Collapse
Affiliation(s)
- Qiaqia Xiao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Siying Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chuying Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Yang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Shang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
8
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
9
|
Vali A, Beaupère C, Loubaresse A, Dalle H, Fève B, Grosfeld A, Moldes M. Effects of glucocorticoids on adipose tissue plasticity. ANNALES D'ENDOCRINOLOGIE 2024; 85:259-262. [PMID: 38871499 DOI: 10.1016/j.ando.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Glucocorticoids (GCs) play an important role in metabolic adaptation, regulating carbohydrate-lipid homeostasis and the immune system. Because they also have anti-inflammatory and immunosuppressive properties, synthetic analogues of GCs have been developed and are widely used in the treatment of chronic inflammatory conditions and in organ transplantation. GCs are among the most commonly prescribed drugs in the world. However, long term and high GC doses can cause side effects such as GC-induced diabetes and lipodystrophy. In recent years, a large number of independent studies have reported the effects of constitutive and adipocyte-specific deletion of the GC receptor (GR) in mice under different diets and treatments, resulting in contrasting phenotypes. To avoid potential compensatory mechanisms associated with the constitutive adipocyte GR silencing during adipose tissue development, our team has generated an inducible mouse model of GR deletion specifically in the adipocyte (AdipoGR-KO). Using this mouse model, we were able to demonstrate the critical role of the adipocyte GR in GC-induced metabolic changes. Indeed, under conditions of hypercorticism, AdipoGR-KO mice showed an improvement in glucose tolerance and insulin sensitivity, as well as in lipid profile, despite a massive increase in adiposity. This result is explained by a densification of adipose tissue vascularization, highlighting the repressive role of adipocyte GR in the healthy expansion of this tissue. Our work has largely contributed to the demonstration of the important role of the adipocyte GR in the physiology and pathophysiology of the adipose tissue and its impact on energy homeostasis.
Collapse
Affiliation(s)
- Anna Vali
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Carine Beaupère
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Alya Loubaresse
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Héloïse Dalle
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Bruno Fève
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France; Service endocrinologie, CRMR PRISIS, centre de recherche Saint-Antoine (CRSA), hôpital Saint-Antoine, AP-HP, Sorbonne université, Inserm, 75012 Paris, France
| | - Alexandra Grosfeld
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Marthe Moldes
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France.
| |
Collapse
|
10
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Alvarez Quintero GS, Lima A, Roig P, Meyer M, de Kloet ER, De Nicola AF, Garay LI. Effects of the mineralocorticoid receptor antagonist eplerenone in experimental autoimmune encephalomyelitis. J Steroid Biochem Mol Biol 2024; 238:106461. [PMID: 38219844 DOI: 10.1016/j.jsbmb.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-β-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1β, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-β mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1β was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.
Collapse
Affiliation(s)
- Guido S Alvarez Quintero
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - E R de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
12
|
Marzano L, Ronco C. Clinical and biochemical outcomes after adrenalectomy for primary aldosteronism in tertiary and quaternary referral centers: data from SOPRANO study. Hypertens Res 2024; 47:721-734. [PMID: 38182902 DOI: 10.1038/s41440-023-01554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
Hypertension cure following adrenalectomy in unilateral primary aldosteronism (PA) remains uncertain. Previous meta-analyses have shown highly variable surgical outcomes. Our study aimed to determine the unknown proportion of complete clinical and biochemical success in tertiary and quaternary referral centers. We conducted a systematic review and meta-analysis of studies reporting surgical outcomes of unilateral PA patients within the Surgical Outcome of PRimary Aldosteronism progNostic mOdels (SOPRANO) study. From 27 publications we identified 32 eligible studies, of which 22 were judged to be at low risk of bias. Eighteen were single-center studies, while fourteen were multi-center studies, with patients recruited from 132 referral centers worldwide. Adrenalectomy was performed on 5887 patients, with 4861 (83%) included in the final analysis. The pooled estimates of complete clinical and biochemical success for all studies were 39% (95% CI: 34-44%) and 99% (95% CI: 96-99%), respectively, similar to that found for studies at low risk of bias. Multivariate meta-regression analyses for all studies and low-bias risk studies revealed that BMI (P < 0.01), recruitment time period (P < 0.01), and hypertension duration (P < 0.05) inversely correlated with complete clinical success, while BMI (P < 0.05) and the number of enrolled centers (P < 0.05) inversely correlated with complete biochemical success. In summary, our findings offer robust estimates of complete clinical and biochemical success rates following adrenalectomy for unilateral PA in tertiary and quaternary referral centers and identify new potential effect modifiers that can help clinicians to inform and counsel patients about post-surgery expectations, guaranteeing effective treatment and ultimately enhancing outcomes.
Collapse
Affiliation(s)
- Luigi Marzano
- Centro per lo Studio e la Cura dell'Ipertensione Arteriosa, Internal Medicine Unit, San Bortolo Hospital, U.L.S.S. 8 Berica, Vicenza, Italy.
- Internal Medicine Unit, San Bortolo Hospital, U.L.S.S. 8 Berica, 36100, Vicenza, Italy.
| | - Claudio Ronco
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, 36100, Vicenza, Italy
| |
Collapse
|
13
|
Bayne S, LeFevre J, Olstinske K, Ravindran S, Munusamy S. Renoprotective Effects of Mineralocorticoid Receptor Antagonists Against Diabetic Kidney Disease. Adv Biol (Weinh) 2024; 8:e2300496. [PMID: 38065929 DOI: 10.1002/adbi.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Indexed: 03/16/2024]
Abstract
Diabetic kidney disease (DKD) is a growing epidemic worldwide and a leading cause of end-stage kidney disease. Mineralocorticoid receptor (MR) blockade using Finerenone is a recently approved therapeutic approach to slow down the progression of DKD in patients with type 2 diabetes in addition to other therapies such as angiotensin-II converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), sodium-glucose co-transporter 2 (SGLT2) inhibitors, and glucagon-like peptide 1 (GLP-1) analogs. This review elaborates on the pathophysiologic pathways activated by aldosterone (the human mineralocorticoid) in DKD, the pharmacology of three different generations of mineralocorticoid receptor antagonists (MRAs), specifically, spironolactone, eplerenone, and finerenone, and the mechanisms by which these MRAs elicit their protective effects on the kidney under diabetic settings.
Collapse
Affiliation(s)
- Sarah Bayne
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | - James LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | - Kayla Olstinske
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | | | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| |
Collapse
|
14
|
Savarese G, Lindberg F, Filippatos G, Butler J, Anker SD. Mineralocorticoid receptor overactivation: targeting systemic impact with non-steroidal mineralocorticoid receptor antagonists. Diabetologia 2024; 67:246-262. [PMID: 38127122 PMCID: PMC10789668 DOI: 10.1007/s00125-023-06031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physiological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.
Collapse
Affiliation(s)
- Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Felix Lindberg
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerasimos Filippatos
- Department of Cardiology, University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Internal Medicine, University of Mississippi, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
15
|
Agabiti-Rosei C, Saxton SN, De Ciuceis C, Lorenza Muiesan M, Rizzoni D, Agabiti Rosei E, Heagerty AM. Influence of Perivascular Adipose Tissue on Microcirculation: A Link Between Hypertension and Obesity. Hypertension 2024; 81:24-33. [PMID: 37937425 DOI: 10.1161/hypertensionaha.123.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Sophie N Saxton
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| | - Carolina De Ciuceis
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Maria Lorenza Muiesan
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Damiano Rizzoni
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Enrico Agabiti Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| |
Collapse
|
16
|
Arvunescu AM, Ionescu RF, Cretoiu SM, Dumitrescu SI, Zaharia O, Nanea IT. Inflammation in Heart Failure-Future Perspectives. J Clin Med 2023; 12:7738. [PMID: 38137807 PMCID: PMC10743797 DOI: 10.3390/jcm12247738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic heart failure is a terminal point of a vast majority of cardiac or extracardiac causes affecting around 1-2% of the global population and more than 10% of the people above the age of 65. Inflammation is persistently associated with chronic diseases, contributing in many cases to the progression of disease. Even in a low inflammatory state, past studies raised the question of whether inflammation is a constant condition, or if it is, rather, triggered in different amounts, according to the phenotype of heart failure. By evaluating the results of clinical studies which focused on proinflammatory cytokines, this review aims to identify the ones that are independent risk factors for heart failure decompensation or cardiovascular death. This review assessed the current evidence concerning the inflammatory activation cascade, but also future possible targets for inflammatory response modulation, which can further impact the course of heart failure.
Collapse
Affiliation(s)
- Alexandru Mircea Arvunescu
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Ionel Dumitrescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Cardiology, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Ondin Zaharia
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ioan Tiberiu Nanea
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| |
Collapse
|
17
|
Schena E, Mattioli E, Peres C, Zanotti L, Morselli P, Iozzo P, Guzzardi MA, Bernardini C, Forni M, Nesci S, Caprio M, Cecchetti C, Pagotto U, Gabusi E, Cattini L, Lisignoli G, Blalock W, Gambineri A, Lattanzi G. Mineralocorticoid Receptor Antagonism Prevents Type 2 Familial Partial Lipodystrophy Brown Adipocyte Dysfunction. Cells 2023; 12:2586. [PMID: 37998321 PMCID: PMC10670260 DOI: 10.3390/cells12222586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.
Collapse
Affiliation(s)
- Elisa Schena
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisabetta Mattioli
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Peres
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Laura Zanotti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Paolo Morselli
- Plastic Surgery Unit, Department of Specialised, Experimental and Diagnostic Medicine, Alma Mater Studiorum University of Bologna, S. Orsola-Malpighi Hospital, 40126 Bologna, Italy;
| | - Patricia Iozzo
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Monica Forni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00163 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carolina Cecchetti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Uberto Pagotto
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Elena Gabusi
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Luca Cattini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - William Blalock
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alessandra Gambineri
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
18
|
Rivera A, Vega C, Ramos-Rivera A, Maldonado ER, Prado GN, Karnes HE, Fesko YA, Snyder LM, Alper SL, Romero JR. Blockade of the mineralocorticoid receptor improves markers of human endothelial cell dysfunction and hematological indices in a mouse model of sickle cell disease. FASEB J 2023; 37:e23092. [PMID: 37482902 PMCID: PMC10372847 DOI: 10.1096/fj.202300671r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 μM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.
Collapse
Affiliation(s)
- Alicia Rivera
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christopher Vega
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Arelys Ramos-Rivera
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Enrique R. Maldonado
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory N. Prado
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Seth L. Alper
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Lee G, Kluwe B, Zhao S, Kline D, Nedungadi D, Brock GN, Odei JB, Kesireddy V, Pohlman N, Sims M, Effoe VS, Wu WC, Kalyani RR, Wand GS, Echouffo-Tcheugui J, Golden SH, Joseph JJ. Adiposity, aldosterone and plasma renin activity among African Americans: The Jackson Heart Study. ENDOCRINE AND METABOLIC SCIENCE 2023; 11:100126. [PMID: 37475849 PMCID: PMC10358448 DOI: 10.1016/j.endmts.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Objective To analyze associations between adiposity and the renin-angiotensin-aldosterone system (RAAS) in a large African American (AA) cohort. Methods Cross-sectional associations of adiposity (body mass index [BMI], waist circumference [WC], waist:height ratio, waist:hip ratio, leptin, adiponectin, leptin:adiponectin ratio [LAR], subcutaneous [SAT] and visceral adipose tissue [VAT], and liver attenuation [LA]) with aldosterone, plasma renin activity (renin), and aldosterone:renin ratio (ARR) were assessed in the Jackson Heart Study using adjusted linear regression models. Results A 1-SD higher BMI was associated with a 4.8 % higher aldosterone, 9.4 % higher renin, and 5.0 % lower ARR (all p < 0.05). Log-leptin had the largest magnitude of association with renin (30.2 % higher) and ARR (9.6 % lower), while the strongest association of aldosterone existed for log-LAR (15.3 % higher) (all 1-SD, p < 0.05). SAT was only associated with renin. VAT was associated with higher aldosterone, renin, and ARR. Liver fat was associated with aldosterone and renin, but not ARR. Associations of WC, BMI, and SAT with aldosterone were greater in men while the association with VAT was greater in women (p-interactions < 0.05). Conclusion Multiple measures of adiposity are associated with the RAAS in AAs. Further studies should examine the role of RAAS in obesity-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Grace Lee
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Bjorn Kluwe
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Songzhu Zhao
- Department of Biomedical Informatics, Center for
Biostatistics, The Ohio State University, Columbus, OH, USA
| | - David Kline
- Department of Biomedical Informatics, Center for
Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Divya Nedungadi
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Guy N. Brock
- Department of Biomedical Informatics, Center for
Biostatistics, The Ohio State University, Columbus, OH, USA
| | - James B. Odei
- Division of Biostatistics, The Ohio State University
College of Public Health, Columbus, OH, USA
| | - Veena Kesireddy
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Neal Pohlman
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical
Center, Jackson, MS, USA
| | - Valery S. Effoe
- Department of Medicine, Morehouse School of Medicine,
Atlanta, GA, USA
| | - Wen-Chih Wu
- Department of Medicine, Warren Alpert Medical School of
Brown University, Providence, RI, USA
| | - Rita R. Kalyani
- Department of Medicine, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Gary S. Wand
- Department of Medicine, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | | | - Sherita H. Golden
- Department of Medicine, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Joshua J. Joseph
- Division of Endocrinology, Diabetes and Metabolism,
Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| |
Collapse
|
20
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
21
|
Hu Y, Gu Z, Xu M, He W, Wu L, Xu Z, Guo L. Body mass index and clinical outcomes in patients with heart failure with preserved ejection fraction mediated by diastolic blood pressure status? Heliyon 2023; 9:e16515. [PMID: 37274719 PMCID: PMC10238725 DOI: 10.1016/j.heliyon.2023.e16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Background The "obesity paradox" has been elucidated in patients with heart failure (HF). Current guidelines introduce a target diastolic blood pressure (DBP) < 80 mmHg but >70 mmHg in HF patients. Due to reduced coronary perfusion, low DBP has a deleterious impact on cardiovascular outcomes. This present study aimed to assess the relationship between BMI and adjudicated clinical outcomes in HFpEF patients according to the status of DBP. Methods We analyzed the data in 1749 HFpEF patients from the Americas of the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) Trial. The population was stratified by DBP (<70 mmHg, and ≥70 mmHg) and BMI strata (normal weight, overweight, and obesity). Cox proportional hazards models and competing-risks regression analysis were performed. Results At baseline, the median BMI and DBP were 32.9 kg/m2 (interquartile range 28.0-38.5 kg/m2) and 70 mmHg (interquartile range 62-80 mmHg), respectively. In the multivariable analysis, obesity was associated with better survival rates in the total HFpEF population (all-cause death: HR = 0.439, 95% CI 0.256-0.750; and cardiovascular death: HR = 0.378, 95% CI 0.182-0.787). In patients with DBP<70 mmHg, obesity was not significantly associated with reduced risks for all-cause death (HR = 0.531, 95% CI: 0.263-1.704) and cardiovascular death (HR = 0.680, 95% CI: 0.254-1.819). However, multivariate analyses for cardiovascular death (HR = 0.339, 95% CI: 0.117-0.983) and all-cause death (HR = 0.389, 95% CI: 0.156-0.969) were significant in patients with DBP≥70 mmHg. Nevertheless, there were no interactions between DBP and BMI. Conclusions The obesity paradox was observed in patients with HFpEF, regardless of DBP strata (<70 mmHg, and ≥70 mmHg).
Collapse
Affiliation(s)
- YingQiu Hu
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - ZhenBang Gu
- Medical School of Nanchang University, Nanchang, Jiangxi, China
| | - MeiLing Xu
- Urology Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - WenFeng He
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - LiDong Wu
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - ZhiCheng Xu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - LinJuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Dona MSI, Hsu I, Meuth AI, Brown SM, Bailey CA, Aragonez CG, Russell JJ, Krstevski C, Aroor AR, Chandrasekar B, Martinez-Lemus LA, DeMarco VG, Grisanti LA, Jaffe IZ, Pinto AR, Bender SB. Multi-omic analysis of the cardiac cellulome defines a vascular contribution to cardiac diastolic dysfunction in obese female mice. Basic Res Cardiol 2023; 118:11. [PMID: 36988733 PMCID: PMC10060343 DOI: 10.1007/s00395-023-00983-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.
Collapse
Affiliation(s)
- Malathi S I Dona
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Ian Hsu
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Alex I Meuth
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Christian G Aragonez
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Crisdion Krstevski
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Annayya R Aroor
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Vincent G DeMarco
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia.
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
23
|
Kesireddy V, Kluwe B, Pohlman N, Zhao S, Tan Y, Kline D, Brock G, Odei JB, Effoe VS, Echouffo-Tcheugui JB, Kalyani RR, Sims M, Taylor HA, Mongraw-Chaffin M, Akhabue E, Joseph JJ. The role of aldosterone and ideal cardiovascular health in incident diabetes: The Jackson Heart Study. Am J Prev Cardiol 2023; 13:100466. [PMID: 36798725 PMCID: PMC9926093 DOI: 10.1016/j.ajpc.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/10/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Background Greater attainment of ideal cardiovascular health (ICH) and lower serum aldosterone are associated with lower diabetes risk. Higher levels of ICH are associated with lower aldosterone. The mediational role of aldosterone in the association of ICH with incident diabetes remains unexplored. Thus, we examined the mediational role of aldosterone in the association of 5 ICH components (smoking, diet, physical activity, body mass index [BMI], and cholesterol) with incident diabetes. Additionally, we investigated the mediational role of glucose and blood pressure (BP) in the association of aldosterone with incident diabetes in an African American (AA) cohort. Methods We conducted a prospective cohort analysis among AA adults, aged 21-94 years, in the Jackson Heart Study. Data on ICH, aldosterone, and cardiometabolic risk factors were collected at exam 1 (2000-2004). Diabetes (fasting glucose ≥ 126 mg/dL, physician diagnosis, use of diabetes drugs, or glycated hemoglobin ≥ 6.5%) was assessed at exams 1 through 3 (2009-2012). ICH metrics were defined by American Heart Association 2020 goals for smoking, dietary intake, physical activity, BMI, total cholesterol, BP and glucose. The number of ICH metrics attained at exam 1, excluding BP and fasting glucose, were summed (0-2, vs. 3+). R Package Mediation was used to examine: 1) The mediational role of aldosterone in the association of ICH with incident diabetes; and 2) the mediational role of BP and glucose in the association of aldosterone with incident diabetes. Results Among 2,791 participants (mean age: 53±12, 65% female) over a median of 7.5 years, there were 497 incident diabetes cases. Risk of incident diabetes was 37% (HR: 0.63, 95%CI: 0.47, 0.84) lower in 3+ ICH category compared to 0-2 ICH category. Aldosterone mediated 6.98% (95% CI: 1.8%, 18.0%) of the direct effect of ICH on incident diabetes. A 1-unit increase in log-aldosterone was associated with a 44% higher risk of diabetes (HR 1.44, 95%CI 1.25-1.64). BP and glucose mediated 16.3% (95% CI: 7.0%, 31.0%) and 19.7% (95% CI: 6.5%, 34.0%) of the association of aldosterone with incident diabetes, respectively. Conclusion Aldosterone is a mediator of the association of ICH with incident diabetes, whereas BP and glucose are mediators of the association of aldosterone with incident diabetes, emphasizing the importance of the renin-angiotensin-aldosterone system and ICH in lowering risk of diabetes in AA populations.
Collapse
Affiliation(s)
- Veena Kesireddy
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States of America
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bjorn Kluwe
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States of America
| | - Neal Pohlman
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States of America
| | - Songzhu Zhao
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yubo Tan
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David Kline
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | - Guy Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James B. Odei
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Valery S. Effoe
- Division of Cardiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Justin B. Echouffo-Tcheugui
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rita R. Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Herman A. Taylor
- Division of Cardiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Morgana Mongraw-Chaffin
- Department of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ehimare Akhabue
- Division of Cardiovascular Diseases and Hypertension, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Joshua J. Joseph
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States of America
| |
Collapse
|
24
|
Haze T, Ozawa M, Kawano R, Haruna A, Ohki Y, Suzuki S, Kobayashi Y, Fujiwara A, Saka S, Tamura K, Hirawa N. Effect of the interaction between the visceral-to-subcutaneous fat ratio and aldosterone on cardiac function in patients with primary aldosteronism. Hypertens Res 2023; 46:1132-1144. [PMID: 36754972 DOI: 10.1038/s41440-023-01170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Primary aldosteronism is the most frequent secondary hypertensive disease and is characterized by an elevated risk for cardiovascular disease. The current standard treatments are adrenalectomy and/or administration of mineralocorticoid receptor blockers, both of which are effective at ameliorating hypertension via intervention for hyperaldosteronism. However, both of these approaches have side effects and contraindications, and mineralocorticoid receptor blockers also have limited preventive efficacy against cardiovascular events. Recently, in vitro experiments have shown that aldosterone regulation is closely related to abdominal fat accumulation and that there is crosstalk between aldosterone and visceral fat tissue accumulation. We previously reported that this interaction was clinically significant in renal dysfunction; however, its effects on the heart remain unclear. Here, we analyzed data from 49 patients with primary aldosteronism and 29 patients with essential hypertension to examine the potential effect of the interaction between the ratio of visceral-to-subcutaneous fat tissue volume and the plasma aldosterone concentration on echocardiographic indices, including the tissue Doppler-derived E/e' ratio. A significant interaction was found in patients with primary aldosteronism (p < 0.05), indicating that patients with the combination of a high plasma aldosterone concentration and high visceral-to-subcutaneous fat ratio show an increased E/e' ratio, which is a well-known risk factor for future cardiovascular events. Our results confirm the clinical importance of the interaction between aldosterone and abdominal fat tissue, suggesting that an improvement in the visceral-to-subcutaneous fat ratio may be synergistically and complementarily effective in reducing the elevated risk of cardiovascular disease in patients with primary aldosteronism when combined with conventional therapies for reducing aldosterone activity. A significant effect of the interaction between plasma aldosterone concentration and the visceral-to-subcutaneous fat ratio on the tissue Doppler-derived E/e' ratio in patients with primary aldosteronism.
Collapse
Affiliation(s)
- Tatsuya Haze
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan. .,YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan.
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Rina Kawano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Aiko Haruna
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuki Ohki
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Shota Suzuki
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Yusuke Kobayashi
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Akira Fujiwara
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Sanae Saka
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhito Hirawa
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
25
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Moustaki M, Paschou SA, Vakali EC, Vryonidou A. Secondary diabetes mellitus due to primary aldosteronism. Endocrine 2023; 79:17-30. [PMID: 36001240 DOI: 10.1007/s12020-022-03168-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/07/2022] [Indexed: 01/07/2023]
Abstract
Primary aldosteronism (PA) and diabetes mellitus (DM) are clinical conditions that increase cardiovascular risk. Approximately one in five patients with PA have DM. Nevertheless, the pathophysiology linking these two entities is not entirely understood. In addition, the majority of patients with PA have glucocorticoid co-secretion, which is associated with increased risk of impaired glucose homeostasis. In the present review, we aim to comprehensively discuss all the available research data concerning the interplay between mineralocorticoid excess and glucose metabolism, with separate analysis of the sequalae in muscle, adipose tissue, liver and pancreas. Aldosterone binds both mineralocorticoid and glucocorticoid receptors and amplifies tissue glucocorticoid activity, via 11-β-hydroxysteroid dehydrogenase type 1 stimulation. A clear classification of the molecular events as per specific receptor in insulin-sensitive tissues is impossible, while their synergistic interaction is plausible. Furthermore, aldosterone induces oxidative stress and inflammation, perturbs adipokine expression, thermogenesis and lipogenesis in adipose tissue, and increases hepatic steatosis. In pancreas, enhanced oxidative stress and inflammation of beta cells, predominantly upon glucocorticoid receptor activation, impair insulin secretion. No causality between hypokalemia and impaired insulin response is yet proven; in contrast, hypokalemia appears to be implicated with insulin resistance and hepatic steatosis. The superior efficacy of adrenalectomy in ameliorating glucose metabolism vs. mineralocorticoid receptor antagonists in clinical studies highlights the contribution of non-mineralocorticoid receptor-mediated mechanisms in the pathophysiologic process. The exact role of hypokalemia, the mechanisms linking mineralocorticoid excess with hepatic steatosis, and possible disease-modifying role of pioglitazone warrant further studies.
Collapse
Affiliation(s)
- Melpomeni Moustaki
- Department of Endocrinology and Diabetes Centre, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Eleni C Vakali
- Department of Endocrinology and Diabetes Centre, Hellenic Red Cross Hospital, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Centre, Hellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
27
|
Cai X, Li N. Association between Use of Spironolactone and Risk of Stroke in Hypertensive Patients: A Cohort Study. Pharmaceuticals (Basel) 2022; 16:ph16010057. [PMID: 36678555 PMCID: PMC9861555 DOI: 10.3390/ph16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Objective: to investigate the relationship between the use of spironolactone and the risk of stroke in hypertensive patients. Methods: a total of 2464 spironolactone users and 12,928 non-users were identified (unmatched original cohort), and 1:1 matched pairs of 2461 spironolactone users and 2461 non-users based on propensity scores were created (propensity-score-matched cohort). Results: In the unmatched original cohort, the unadjusted analysis showed that the use of spironolactone was associated with a lower risk of total stroke (HR, 0.71; 95% CI, 0.61−0.84; p < 0.001), which was sustained in the adjusted analysis. According to stroke type, the association was with ischemic strokes (propensity-score-adjusted HR, 0.71; 95% CI, 0.59−0.85; p < 0.001) and hemorrhagic ones (propensity-score-adjusted HR, 0.63; 95% CI, 0.45−0.88; p = 0.008). Similar results were shown in the propensity-score-matched cohort. The results of the subgroup and sensitivity analyses were consistent with those of the primary analysis. The dose−response analysis demonstrated a dose-dependent association of spironolactone with a lower risk of stroke in hypertensive patients. Conclusions: The use of spironolactone was associated with a significantly lower risk of stroke events in hypertensive patients. Further research, including prospective randomized clinical trials, is needed to validate our findings.
Collapse
|
28
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
29
|
Liu W, Yu S. Nonsteroidal Mineralocorticoid Receptor Antagonist Eliciting Cardiorenal Protection Is a New Option for Patients with Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 9:12-25. [PMID: 36756081 PMCID: PMC9900468 DOI: 10.1159/000528066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Background Mineralocorticoid receptor antagonists (MRAs) protect cardiorenal function by robust anti-inflammatory and antifibrotic functions beyond classical functions of maintaining fluid and electrolyte homeostasis. The application of traditional steroidal MRAs to chronic kidney disease (CKD) has been limited by adverse events, especially when combined with renin-angiotensin system inhibitors, guideline-recommend drugs for CKD patients. Recently, the development of nonsteroidal MRAs gives patients with CKD a promising option. Summary The discovery of nonsteroidal MRAs is based on the molecular structure of the mineralocorticoid receptor (MR) and differs in structure from spironolactone, a progesterone derivative. The structure of nonsteroidal MRAs determines their more effective and selective inhibition of MR providing patients more benefits with fewer adverse effects than MRAs. Recently, two types of nonsteroidal MRAs, finerenone and esaxerenone, have been authorized for clinical use. We elaborate on the physiological and pathophysiological mechanisms of MR, review the history of MRAs, compare two generations of MRAs, and introduce the forward clinical trials of finerenone and esaxerenone. Key Messages Finerenone reduces the cardiovascular and kidney composite outcomes in diabetic patients with CKD eliciting a cardiorenal protection effect. Esaxerenone can effectively reduce blood pressure in hypertensive patients and albuminuria in diabetic patients with CKD. The risk of hyperkalemia is controllable and acceptable through the serum potassium-based dose titrate. Combination therapy with sodium-glucose cotransport-2 inhibition or a new potassium binder may be a safer and more efficient approach.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Nephrology, Beidaihe Rehabilitation and Recuperation Center of PLA, Qinhuangdao, China
| | - Shengqiang Yu
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Shengqiang Yu,
| |
Collapse
|
30
|
Adipose Tissue Dysfunction in Obesity: Role of Mineralocorticoid Receptor. Nutrients 2022; 14:nu14224735. [PMID: 36432422 PMCID: PMC9699173 DOI: 10.3390/nu14224735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) acts as an essential regulator of blood pressure, volume status, and electrolyte balance. However, in recent decades, a growing body of evidence has suggested that MR may also have a role in mediating pro-inflammatory, pro-oxidative, and pro-fibrotic changes in several target organs, including the adipose tissue. The finding that MR is overexpressed in the adipose tissue of patients with obesity has led to the hypothesis that this receptor can contribute to adipokine dysregulation and low-grade chronic inflammation, alterations that are linked to the development of obesity-related metabolic and cardiovascular complications. Moreover, several studies in animal models have investigated the role of MR antagonists (MRAs) in preventing the metabolic alterations observed in obesity. In the present review we will focus on the potential mechanisms by which MR activation can contribute to adipose tissue dysfunction in obesity and on the possible beneficial effects of MRAs in this setting.
Collapse
|
31
|
Ding X, Neumann DM, Zhu L. Host factors associated with either VP16 or VP16-induced complex differentially affect HSV-1 lytic infection. Rev Med Virol 2022; 32:e2394. [PMID: 36069169 PMCID: PMC9786836 DOI: 10.1002/rmv.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen with neurotropism. Following lytic infection in mucosal or skin epithelium, life-long latency is established mainly in sensory neurons, which can periodically reactivate by stress, leading to recurrent disease and virus transmission. During the virus's productive infection, the tegument protein VP16, a component of HSV-1 virion, is physically associated with two cellular factors, host cell factor-1 (HCF-1), and POU domain protein Oct-1, to construct the VP16-induced complex, which is essential to stimulate immediate early (IE)-gene transcription as well as initiate the lytic programme. Apart from HCF-1 and Oct-1, VP16 also associates with a series of other host factors, making a VP16-induced regulatory switch to either activate or inactivate virus gene transcription. In addition, VP16 has effects on distinct signalling pathways via binding to various host molecules that are essentially related to innate immune responses, RNA polymerases, molecular chaperones, and virus infection-induced host shutoff. VP16 also functionally compensates for given host factors, such as PPAR-γ and ß-catenin. In this review, we provide an overview of the updated insights on the interplay between VP16 and the host factors that coordinate virus infection.
Collapse
Affiliation(s)
- Xiuyan Ding
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina
| | - Donna M. Neumann
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Liqian Zhu
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina,College of Veterinary MedicineYangzhou UniversityYangzhouChina,Key Laboratory of Microbial Diversity Research and Application of Hebei ProvinceCollege of Life ScienceHebei UniversityBaodingChina
| |
Collapse
|
32
|
Zhou H, Zhan R, Chen X, Lin Y, Zhang S, Zheng H, Wang X, Huang M, Xu C, Liao X, Tian T, Zhuang X. Targeting efficacy of spironolactone in patients with heart failure with preserved ejection fraction: the TOPCAT study. ESC Heart Fail 2022; 10:322-333. [PMID: 36221795 PMCID: PMC9871668 DOI: 10.1002/ehf2.14068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/29/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS We aimed to explore the heterogeneous treatment effects (HTEs) for spironolactone treatment in patients with Heart failure with preserved ejection fraction (HFpEF) and examine the efficacy and safety of spironolactone medication, ensuring a better individualized therapy. METHODS AND RESULTS We used the causal forest algorithm to discover the heterogeneous treatment effects (HTEs) from patients in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. Cox regressions were performed to assess the hazard ratios (HRs) of spironolactone medication for cardiovascular death and drug discontinuation in each group. The causal forest model revealed three representative covariates and participants were partitioned into four subgroups which were Group 1 (baseline BMI ≤ 31.71 kg/m2 and baseline ALP ≤ 80 U/L, n = 759); Group 2 (BMI ≤ 31.71 kg/m2 and ALP > 80 U/L, n = 1088); Group 3 (BMI > 31.71 kg/m2 , and WBC ≤ 6.6 cells/μL, n = 633); Group 4 (BMI > 31.71 kg/m2 and WBC > 6.6 cells/μL, n = 832), respectively. In the four subgroups, spironolactone therapy reduced the risk of cardiovascular death in high-risk group (Group 4) with both high BMI and WBC count (HR: 0.76; 95% CI 0.58 to 0.99; P = 0.045) but increased the risk in low-risk group (Group 1) with both low BMI and ALP (HR: 1.45; 95% CI 1.02 to 2.07; P = 0.041; P for interaction = 0.020) but showed similar risk of drug discontinuation (P for interaction = 0.498). CONCLUSION Our study manifested the HTEs of spironolactone in patients with HFpEF. Spironolactone treatment in HFpEF patients is feasible and effective in patients with high BMI and WBC while harmful in patients with low BMI and ALP. Machine learning model could be meaningful for improved categorization of patients with HFpEF, ensuring a better individualized therapy in the clinical setting.
Collapse
Affiliation(s)
- Hui‐min Zhou
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Rong‐jian Zhan
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xuanyu Chen
- School of MathematicsSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐fen Lin
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Shao‐zhao Zhang
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Huigan Zheng
- School of MathematicsSun Yat‐sen UniversityGuangzhouChina
| | - Xueqin Wang
- School of ManagementUniversity of Science and Technology of ChinaHefeiChina
| | - Meng‐ting Huang
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Chao‐guang Xu
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Xin‐xue Liao
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| | - Ting Tian
- School of MathematicsSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐dong Zhuang
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina,NHC Key Laboratory of Assisted Circulation (Sun Yat‐Sen University)GuangzhouChina
| |
Collapse
|
33
|
Cardiorenal benefits of mineralocorticoid antagonists in CKD and type 2 diabetes : Lessons from the FIGARO-DKD trial. Herz 2022; 47:401-409. [PMID: 36094559 DOI: 10.1007/s00059-022-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
Diabetic kidney disease (DKD) develops in almost half of all patients with diabetes and is the most common cause of chronic kidney disease (CKD) worldwide. Despite the high risk of chronic renal failure in these patients, only few therapeutic strategies are available. The use of renin-angiotensin system blockers to reduce the incidence of kidney failure in patients with DKD was established years ago and remains the hallmark of therapy. The past 2 years have seen a dramatic change in our therapeutic arsenal for CKD. Sodium-glucose co-transporter‑2 inhibitors (SGLT2s) have been successfully introduced for the treatment of CKD. A further addition is a novel compound antagonizing the activation of the mineralocorticoid receptor: finerenone. Finerenone reduces albuminuria and surrogate markers of cardiovascular disease in patients who are already on optimal therapy. In the past, treatment with other mineralocorticoid receptor antagonists was hampered by a significantly increased risk of hyperkalemia. Finerenone had a much smaller effect on hyperkalemia. Together with a reduced effect on blood pressure and no signs of gynecomastia, this therapeutic strategy had a more specific anti-inflammatory effect and a smaller effect on the volume/electrolyte axis. In the FIDELIO-DKD study comparing the actions of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo, finerenone reduced the progression of DKD and the incidence of cardiovascular events, with a relatively safe adverse event profile. In this article, we summarize the available evidence on the cardioprotective and nephroprotective effects of finerenone and analyze the molecular mechanisms involved. In addition, we discuss the potential future role of mineralocorticoid receptor inhibition in the treatment of patients with diabetic CKD.
Collapse
|
34
|
Bavuu O, Fukuda D, Ganbaatar B, Matsuura T, Ise T, Kusunose K, Yamaguchi K, Yagi S, Yamada H, Soeki T, Wakatsuki T, Sata M. Esaxerenone, a selective mineralocorticoid receptor blocker, improves insulin sensitivity in mice consuming high-fat diet. Eur J Pharmacol 2022; 931:175190. [PMID: 35961594 DOI: 10.1016/j.ejphar.2022.175190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Esaxerenone is a novel, non-steroidal selective mineralocorticoid receptor (MR) blocker. MR activation plays a crucial role in the development of cardiovascular and metabolic diseases. In this study, we investigated the effects of esaxerenone on various metabolic parameters in mice. MATERIALS AND METHODS Esaxerenone (3 mg/kg/day) was orally administered to high-fat diet (HFD)-fed male C57BL/6 mice. Mice fed a normal diet (ND) served as controls. Glucose and insulin tolerance, plasma lipid levels, and transaminase levels were assessed as metabolic parameters. Macrophage accumulation in the adipose tissue was evaluated using histological analysis. 3T3-L1 adipocytes, HepG2 cells, and C2C12 myotubes were used for in vitro experiments. Gene expression and insulin signaling were examined using quantitative RT-PCR and western blotting, respectively. RESULTS HFD successfully induced insulin resistance compared with that in ND. Esaxerenone ameliorated insulin resistance (P < 0.05) without altering other metabolic parameters, such as the lipid profile. Esaxerenone administration tended to decrease plasma transaminase levels compared with those in the non-treated group. In the adipose tissue, esaxerenone decreased macrophage accumulation (P < 0.05) and increased the expression levels of adiponectin and PPARγ. Aldosterone significantly decreased the expression levels of PPARγ and adiponectin in 3T3-L1 adipocytes. Furthermore, aldosterone attenuated insulin-induced Akt phosphorylation in 3T3-L1 adipocytes, HepG2 cells, and C2C12 myotubes in a dose-dependent manner (P < 0.01). These effects were ameliorated by pretreatment with esaxerenone. CONCLUSION Esaxerenone ameliorated insulin resistance in HFD-fed mice. Reduction of inflammation and improvement in insulin signaling may underlie the beneficial effects of esaxerenone.
Collapse
Affiliation(s)
- Oyunbileg Bavuu
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8585, Japan.
| | - Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Tomomi Matsuura
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| |
Collapse
|
35
|
Bioletto F, Bollati M, Lopez C, Arata S, Procopio M, Ponzetto F, Ghigo E, Maccario M, Parasiliti-Caprino M. Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight. Int J Mol Sci 2022; 23:ijms23094803. [PMID: 35563192 PMCID: PMC9100181 DOI: 10.3390/ijms23094803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Primary aldosteronism (PA) is a pathological condition characterized by an excessive aldosterone secretion; once thought to be rare, PA is now recognized as the most common cause of secondary hypertension. Its prevalence increases with the severity of hypertension, reaching up to 29.1% in patients with resistant hypertension (RH). Both PA and RH are "high-risk phenotypes", associated with increased cardiovascular morbidity and mortality compared to non-PA and non-RH patients. Aldosterone excess, as occurs in PA, can contribute to the development of a RH phenotype through several mechanisms. First, inappropriate aldosterone levels with respect to the hydro-electrolytic status of the individual can cause salt retention and volume expansion by inducing sodium and water reabsorption in the kidney. Moreover, a growing body of evidence has highlighted the detrimental consequences of "non-classical" effects of aldosterone in several target tissues. Aldosterone-induced vascular remodeling, sympathetic overactivity, insulin resistance, and adipose tissue dysfunction can further contribute to the worsening of arterial hypertension and to the development of drug-resistance. In addition, the pro-oxidative, pro-fibrotic, and pro-inflammatory effects of aldosterone may aggravate end-organ damage, thereby perpetuating a vicious cycle that eventually leads to a more severe hypertensive phenotype. Finally, neither the pathophysiological mechanisms mediating aldosterone-driven blood pressure rise, nor those mediating aldosterone-driven end-organ damage, are specifically blocked by standard first-line anti-hypertensive drugs, which might further account for the drug-resistant phenotype that frequently characterizes PA patients.
Collapse
|
36
|
Ferreira A, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Alper SL, Romero JR. Dysregulated Erythroid Mg2+ Efflux in Type 2 Diabetes. Front Cell Dev Biol 2022; 10:861644. [PMID: 35445032 PMCID: PMC9013827 DOI: 10.3389/fcell.2022.861644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is associated with decreased Mg2+ content in red blood cells (RBC), but mechanisms remain unclear. We characterized the regulation of Mg2+ efflux by glucose in ex vivo human RBC. We observed that hemoglobin A1C (HbA1C) values correlated with Na+-dependent Mg2+ efflux (Na+/Mg2+ exchange) and inversely correlated with cellular Mg content. Treatment of cells with 50 mM D-glucose, but not with sorbitol, lowered total cellular Mg (2.2 ± 0.1 to 2.0 ± 0.1 mM, p < 0.01) and enhanced Na+/Mg2+ exchange activity [0.60 ± 0.09 to 1.12 ± 0.09 mmol/1013 cell × h (flux units, FU), p < 0.05]. In contrast, incubation with selective Src family kinase inhibitors PP2 or SU6656 reduced glucose-stimulated exchange activation (p < 0.01). Na+/Mg2+ exchange activity was also higher in RBC from individuals with type 2 diabetes (T2D, 1.19 ± 0.13 FU) than from non-diabetic individuals (0.58 ± 0.05 FU, p < 0.01). Increased Na+/Mg2+ exchange activity in RBC from T2D subjects was associated with lower intracellular Mg content. Similarly increased exchange activity was evident in RBC from the diabetic db/db mouse model as compared to its non-diabetic control (p < 0.03). Extracellular exposure of intact RBC from T2D subjects to recombinant peptidyl-N-glycosidase F (PNGase F) reduced Na+/Mg2+ exchange activity from 0.98 ± 0.14 to 0.59 ± 0.13 FU (p < 0.05) and increased baseline intracellular Mg content (1.8 ± 0.1 mM) to normal values (2.1 ± 0.1 mM, p < 0.05). These data suggest that the reduced RBC Mg content of T2D RBC reflects enhanced RBC Na+/Mg2+ exchange subject to regulation by Src family kinases and by the N-glycosylation state of one or more membrane proteins. The data extend our understanding of dysregulated RBC Mg2+ homeostasis in T2D.
Collapse
Affiliation(s)
- Ana Ferreira
- Interdisciplinary Centre of Social Sciences (CICS.NOVA), Faculty of Social Sciences and Humanities (NOVA FCSH), Lisbon, Portugal
| | - Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- *Correspondence: Alicia Rivera,
| | | | | | | | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
38
|
Ishikawa T, Morimoto S, Ichihara A. Effects of mineralocorticoid receptor antagonists on sex hormones and body composition in patients with primary aldosteronism. Hypertens Res 2021; 45:496-506. [PMID: 34961793 DOI: 10.1038/s41440-021-00836-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022]
Abstract
Mineralocorticoid receptor antagonists are frequently used for the treatment of primary aldosteronism. Steroidal mineralocorticoid receptor antagonists may have antagonistic actions on androgen receptors, agonistic actions on progesterone receptors, and antagonistic actions on mineralocorticoid receptors. Because anti-androgen effects may cause body fat accumulation and skeletal muscle atrophy, there are concerns that this drug may have adverse effects on body composition. Therefore, in this randomized prospective study, we compared the adverse effects of spironolactone, a steroidal mineralocorticoid receptor antagonist, and esaxerenone, a nonsteroidal mineralocorticoid receptor antagonist, on sex hormone levels and body composition in patients with primary aldosteronism without severe renal dysfunction. The serum concentration of free testosterone was significantly higher in the spironolactone group than in the esaxerenone group in both males and females. However, the levels of estradiol, progesterone, luteinizing hormone, and follicle stimulating hormone did not significantly increase. Changes in body fat percentage and muscle mass rate were not significantly different between the two groups. No patient showed a serum potassium level ≥6.0 mEq/L; however, serum potassium levels were significantly higher in the spironolactone group than in the esaxerenone group. These data indicate that spironolactone may have antagonistic effects on androgen receptors. Esaxerenone did not show any apparent adverse effects, suggesting that it can be safely used in patients with primary aldosteronism.
Collapse
Affiliation(s)
- Toru Ishikawa
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
39
|
Schreier B, Zipprich A, Uhlenhaut H, Gekle M. Mineralocorticoid receptor in non-alcoholic fatty liver disease. Br J Pharmacol 2021; 179:3165-3177. [PMID: 34935140 DOI: 10.1111/bph.15784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Liver diseases are the fourth common death in Europe responsible for about 2 million death per year worldwide. Among the known detrimental causes for liver dysfunction are virus infections, intoxications and obesity. The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor activated by aldosterone or glucocorticoids but also by pathological milieu factors. Canonical actions of the MR take place in epithelial cells of kidney, colon and sweat glands and contribute to sodium reabsorption, potassium secretion and extracellular volume homeostasis. The non-canonical functions can be initiated by inflammation or an altered micro milieu leading to fibrosis, hypertrophy and remodeling in various tissues. This narrative review summarizes the evidence regarding the role of MR in portal hypertension, non-alcoholic fatty liver disease, liver fibrosis and cirrhosis, demonstrating that inhibition of the MR in vivo seems to be beneficial for liver function and not just for volume regulation. Unfortunately, the underlying molecular mechanisms are still not completely understood.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uhlenhaut
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
40
|
Srinivasa S, Thomas TS, Feldpausch MN, Adler GK, Grinspoon SK. Coronary Vasculature and Myocardial Structure in HIV: Physiologic Insights From the Renin-Angiotensin-Aldosterone System. J Clin Endocrinol Metab 2021; 106:3398-3412. [PMID: 33624807 PMCID: PMC8864747 DOI: 10.1210/clinem/dgab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/19/2022]
Abstract
The landscape of HIV medicine dramatically changed with the advent of contemporary antiretroviral therapies, which has allowed persons with HIV (PWH) to achieve good virologic control, essentially eliminating HIV-related complications and increasing life expectancy. As PWH are living longer, noncommunicable diseases, such as cardiovascular disease (CVD), have become a leading cause of morbidity and mortality in PWH with rates that are 50% to 100% higher than in well-matched persons without HIV. In this review, we focus on disease of the coronary microvasculature and myocardium in HIV. We highlight a key hormonal system important to cardiovascular endocrinology, the renin-angiotensin-aldosterone system (RAAS), as a potential mediator of inflammatory driven-vascular and myocardial injury and consider RAAS blockade as a physiologically targeted strategy to reduce CVD in HIV.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Steven K. Grinspoon, MD, Metabolism Unit, Massachusetts General Hospital, 55 Fruit Street, 5LON207, Boston, MA 02114, USA. E-mail:
| |
Collapse
|
41
|
Frieler RA, Vigil TM, Song J, Leung C, Lumeng CN, Mortensen RM. High-fat and high-sodium diet induces metabolic dysfunction in the absence of obesity. Obesity (Silver Spring) 2021; 29:1868-1881. [PMID: 34549547 PMCID: PMC8571049 DOI: 10.1002/oby.23264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Excess dietary fat and sodium (NaCl) are both associated with obesity and metabolic dysfunction. In mice, high NaCl has been shown to block high-fat (HF) diet-induced weight gain. Here, the impact of an HF/NaCl diet on metabolic function in the absence of obesity was investigated. METHODS Wild-type mice were administered chow, NaCl (4%), HF, and HF/NaCl diets. Metabolic analysis was performed by measuring fasted blood glucose and insulin levels and by glucose tolerance test and insulin tolerance test. RESULTS After 10 weeks on diets, male and female mice on the HF diet gained weight, and HF/NaCl mice had significantly reduced weight gain similar to chow-fed mice. In the absence of obesity, HF/NaCl mice had significantly elevated fasting blood glucose and impaired glucose control during glucose tolerance tests. Both NaCl and HF/NaCl mice had decreased pancreas and β-cell mass. Administration of NaCl in drinking water did not protect mice from HF-diet-induced weight gain and obesity. Further analysis revealed that longer administration of HF/NaCl diets for 20 weeks resulted in significant weight gain and insulin resistance. CONCLUSIONS The data demonstrate that despite early inhibitory effects on fat deposition and weight gain, an HF/NaCl diet does not prevent the metabolic consequences of HF diet consumption.
Collapse
Affiliation(s)
- Ryan A. Frieler
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Thomas M. Vigil
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Christy Leung
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI
| | - Richard M. Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
42
|
Tromp J, Packer M, Lam CS. The diverging role of epicardial adipose tissue in heart failure with reduced and preserved ejection fraction: not all fat is created equal. Eur J Heart Fail 2021; 23:1872-1874. [PMID: 34655137 DOI: 10.1002/ejhf.2363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jasper Tromp
- Saw Swee Hock School of Public Health, National University of Singapore & National University Health System, Singapore.,Duke-NUS Medical School, Singapore
| | - Milton Packer
- Baylor University Medical Center, Dallas, TX, USA.,Imperial College, London, UK
| | - Carolyn S Lam
- Duke-NUS Medical School, Singapore.,National Heart Centre Singapore, Singapore.,University Medical Centre Groningen, Department of Cardiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Eley VA, Thuzar M, Navarro S, Dodd BR, Zundert AAV. Obesity, metabolic syndrome, and inflammation: an update for anaesthetists caring for patients with obesity. Anaesth Crit Care Pain Med 2021; 40:100947. [PMID: 34534700 DOI: 10.1016/j.accpm.2021.100947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022]
Abstract
Our understanding of chronic inflammation in obesity is evolving. Suggested mechanisms include hypoxia of adipose tissue and a subsequent increase in circulating cytokines. It is now known that adipose tissue, far from being an inert tissue, produces and secretes multiple peptides that influence inflammation and metabolism, including substrates of the renin-angiotensin-aldosterone system (RAAS). RAAS blocking antihypertensive medication and cholesterol-lowering agents are now being evaluated for their metabolic and inflammation-modulating effects. Surgery also has pro-inflammatory effects, which may be exacerbated in patients with obesity. This narrative review will summarise the recent literature surrounding obesity, metabolic syndrome, inflammation, and interplay with the RAAS, with evidence-based recommendations for the optimisation of patients with obesity, prior to surgery and anaesthesia.
Collapse
Affiliation(s)
- Victoria A Eley
- Department of Anaesthesia and Perioperative Medicine, The Royal Brisbane and Women's Hospital, Butterfield St, Herston, 4006 Queensland, Australia; Faculty of Medicine, The University of Queensland, St Lucia, 4067 Queensland, Australia.
| | - Moe Thuzar
- Faculty of Medicine, The University of Queensland, St Lucia, 4067 Queensland, Australia; Department of Endocrinology and Diabetes, Princess Alexandra Hospital, Ipswich Road Woolloongabba, 4102 Queensland, Australia; Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Ipswich Road Woolloongabba, 4102 Queensland, Australia
| | - Séverine Navarro
- Department of Immunology, QIMR Berghofer Medical Research Institute Herston Rd, Herston, 4006 Queensland, Australia; Woolworths Centre for Childhood Nutrition Research, Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, 4059 Queensland, Australia
| | - Benjamin R Dodd
- Faculty of Medicine, The University of Queensland, St Lucia, 4067 Queensland, Australia; Department of Upper GI and Bariatric Surgery, The Royal Brisbane and Women's Hospital, Butterfield St, Herston, 4006 Queensland, Australia
| | - André A Van Zundert
- Department of Anaesthesia and Perioperative Medicine, The Royal Brisbane and Women's Hospital, Butterfield St, Herston, 4006 Queensland, Australia; Faculty of Medicine, The University of Queensland, St Lucia, 4067 Queensland, Australia
| |
Collapse
|
44
|
Greco EA, Feraco A, Marzolla V, Mirabelli M, Cimino L, Armani A, Brunetti A, Caprio M. Nonsteroidal mineralcorticoid receptor antagonists: Novel therapeutic implication in the management of patients with type 2 diabetes. Curr Opin Pharmacol 2021; 60:216-225. [PMID: 34474209 DOI: 10.1016/j.coph.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Growing evidencehas described a correlation between aldosterone, obesity, and insulin resistance, suggesting that adipocyte-related factors and mineralocorticoid receptor (MR) overactivation may alter aldosterone secretion, potentially leading to obesity and glucose intolerance. Preclinical studies showed that pharmacological antagonism of MR prevents white adipose tissue dysfunction(s) and expansion, activates brown adipose tissue, and improves glucose tolerance. The clinical use of nonsteroidal MR antagonists has been shown to reduce the risk of diabetic kidney disease progression and cardiovascular events in patients with diabetes. This review aims to summarize the effects of pharmacological MR blockade on obesity and its associated metabolic comorbidities, with a particular focus on the therapeutic implications of nonsteroidal MR antagonists in the management of patients with diabetes.
Collapse
Affiliation(s)
- E A Greco
- Department of Health Science, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; Departemtent of Movement, Human and Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy.
| | - A Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
| | - V Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
| | - M Mirabelli
- Department of Health Science, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - L Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - A Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - A Brunetti
- Department of Health Science, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - M Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
45
|
Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol 2021; 12:695047. [PMID: 34276413 PMCID: PMC8281681 DOI: 10.3389/fphys.2021.695047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res 2021; 82:341-363. [PMID: 33179798 DOI: 10.1002/ddr.21760] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists, for example, spironolactone and eplerenone, are in clinical use to treat hypertension. Increasing evidence suggests that mineralocorticoid receptor activation causes the pathogenesis and progression of chronic kidney disease. Aldosterone-induced MR activation increases inflammation, fibrosis, and oxidative stress in the kidney. MR antagonists (MRAs) have demonstrated therapeutic actions in chronic kidney disease (CKD), diabetic nephropathy (DN), renal fibrosis, and drug-induced renal injury in preclinical and clinical studies. We have summarized and discussed these studies in this review. The nonsteroidal MRA, esaxerenone, recently received approval for the treatment of hypertension. It has also shown a positive therapeutic effect in phase 3 clinical trials in patients with DN. Other nonsteroidal MRA such as apararenone, finerenone, AZD9977, and LY2623091 are in different clinical trials in patients with hypertension suffering from renal or hepatic fibrotic diseases. Hyperkalemia associated with MRA therapy has frequently led to the discontinuation of the treatment. The new generation nonsteroidal MRAs like esaxerenone are less likely to cause hyperkalemia at therapeutic doses. It appears that the nonsteroidal MRAs can provide optimum therapeutic benefit for patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Vishal Patel
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | | | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| |
Collapse
|
47
|
Elkholey K, Papadimitriou L, Butler J, Thadani U, Stavrakis S. Effect of Obesity on Response to Spironolactone in Patients With Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2021; 146:36-47. [PMID: 33529620 DOI: 10.1016/j.amjcard.2021.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Obesity is common in heart failure with preserved ejection fraction (HFpEF). Whether obesity modifies the response to spironolactone in patients with HFpEF remains unclear. We aimed to investigate the effect of obesity, defined by body mass index (BMI) and waist circumference (WC), on response to spironolactone in patients with HFpEF enrolled in Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. This was a post-hoc, exploratory analysis of the Americas cohort of Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. BMI≥30 kg/m2 was used to define the obese group and WC≥102 cm in men and ≥88 cm in women were defined as high WC. In separate analyses, BMI and WC were treated as continuous variables. The effect of spironolactone versus placebo on outcomes was calculated by BMI and WC using Cox proportional hazard models. Obese patients were younger and had more co-morbidities. In multivariate analysis, spironolactone use was associated with a significant reduction in the primary end point, compared with placebo in obese [hazard ratio (HR = 0.618, 95% CI 0.460 to 0.831, p = 0.001), but not in nonobese subjects (HR = 0.946, 95% CI 0.623 to 1.437, p = 0.796; p for interaction = 0.056). There was a linear association between continuous BMI and the effect of spironolactone, with the effect becoming significant at 33kg/m2. Similar results were obtained for the WC-based analysis. In conclusion, use of spironolactone in obese patients with HFpEF was associated with a decreased risk of the primary end point, cardiovascular death and HF hospitalizations, compared with placebo. Further prospective randomized studies in obese subjects are required.
Collapse
Affiliation(s)
- Khaled Elkholey
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi
| | - Udho Thadani
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
48
|
Adipocyte-Mineralocorticoid Receptor Alters Mitochondrial Quality Control Leading to Mitochondrial Dysfunction and Senescence of Visceral Adipose Tissue. Int J Mol Sci 2021; 22:ijms22062881. [PMID: 33809055 PMCID: PMC8001019 DOI: 10.3390/ijms22062881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfunction and cellular senescence in the visceral AT of obese db/db mice. Our hypothesis is that adipocyte-MR overactivation triggers mitochondrial dysfunction and cellular senescence, through increased mitochondrial oxidative stress (OS). Using the Adipo-MROE mice with conditional adipocyte-MR expression, we evaluated the specific effects of adipocyte-MR on global and mitochondrial OS, as well as on OS-induced damage. Mitochondrial function was assessed by high throughput respirometry. Molecular mechanisms were probed in AT focusing on mitochondrial quality control and senescence markers. Adipo-MROE mice exhibited increased mitochondrial OS and altered mitochondrial respiration, associated with reduced biogenesis and increased fission. This was associated with OS-induced DNA-damage and AT premature senescence. In conclusion, targeted adipocyte-MR overexpression leads to an imbalance in mitochondrial dynamics and regeneration, to mitochondrial dysfunction and to ageing in visceral AT. These data bring new insights into the MR-dependent AT dysfunction in obesity.
Collapse
|
49
|
Jia G, Lockette W, Sowers JR. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: from basic studies to clinical disease. Am J Physiol Regul Integr Comp Physiol 2021; 320:R276-R286. [PMID: 33438511 DOI: 10.1152/ajpregu.00280.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldosterone is a steroid hormone that regulates blood pressure and cardiovascular function by acting on renal and vascular mineralocorticoid receptors (MRs) to promote sodium retention and modulate endothelial function. Indeed, MRs are expressed in endothelial cells, vascular smooth muscle cells, adipocytes, immune cells, skeletal muscle cells, and cardiomyocytes. Excessive aldosterone and associated MR activation impair insulin secretion, insulin metabolic signaling to promote development of diabetes, and the related cardiometabolic syndrome. These adverse effects of aldosterone are mediated, in part, via increased inflammation, oxidative stress, dyslipidemia, and ectopic fat deposition. Therefore, inhibition of MR activation may have a beneficial effect in prevention of impaired insulin metabolic signaling, type 2 diabetes, and cardiometabolic disorders. This review highlights findings from the recent surge in research regarding MR-related cardiometabolic disorders as well as our contemporary understanding of the detrimental effects of excess MR activation on insulin metabolic signaling.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Service, Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Warren Lockette
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medicine and Physiology, Wayne State University, Detroit, Michigan
| | - James R Sowers
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
50
|
Thuzar M, Stowasser M. The mineralocorticoid receptor-an emerging player in metabolic syndrome? J Hum Hypertens 2021; 35:117-123. [PMID: 33526798 DOI: 10.1038/s41371-020-00467-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Metabolic syndrome is a cluster of conditions that increase the risk of cardiovascular diseases, and comprises obesity, hypertension, impaired glucose metabolism and dyslipidaemia. It is well recognised that the mineralocorticoid receptor (MR) plays an important role in blood pressure regulation via its effect on salt and water retention in renal tubules, with hypertension being a key feature in primary aldosteronism patients with excess adrenal production of aldosterone, the primary ligand for MRs in the epithelial tissues. MRs are also expressed in a number of non-epithelial tissues including adipose tissue; in these tissues, glucocorticoids or cortisol can also activate MRs due to low levels of 11-beta-hydroxysteroid-dehydrogenase type 2 (11-βHSD2), the enzyme which inactivates cortisol. There is increasing evidence suggesting that over-activation of MRs plays a role in the pathophysiology of the other components of metabolic syndrome, promoting adiposity, inflammation and glucose intolerance, and that MR antagonists may confer beneficial effects on energy and substrate homeostasis and cardiometabolic diseases. This review discusses the advances in the literature shedding light on the MR as an emerging player in metabolic syndrome.
Collapse
Affiliation(s)
- Moe Thuzar
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute & Princess Alexandra Hospital, Brisbane, QLD, 4102, Australia. .,Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, QLD, 4102, Australia.
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute & Princess Alexandra Hospital, Brisbane, QLD, 4102, Australia
| |
Collapse
|