1
|
Valentim-Coelho C, Saraiva J, Osório H, Antunes M, Vaz F, Neves S, Pinto P, Bárbara C, Penque D. Red blood cell proteomic profiling in mild and severe obstructive sleep apnea patients before and after positive airway pressure treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167767. [PMID: 40043591 DOI: 10.1016/j.bbadis.2025.167767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/05/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Obstructive Sleep Apnea (OSA) is characterized by recurrent-episodes of apneas/hypopneas during sleep, leading to recurrent intermittent-hypoxia and sleep fragmentation. Non-treated OSA can result in cardiometabolic diseases. In this study, we applied a shotgun-proteomics strategy to deeper investigate the red blood cell-(RBC) homeostasis regulation in the context of OSA-severity and their response to six months of positive airway pressure (PAP)-treatment. RBC-samples from patients with Mild/Severe-OSA before/after-PAP treatment and patients as simple-snoring controls were selected. The mass-spectrometry raw-data was analysed by MaxQuant for protein identification/quantification followed by statistical Linear Models-(LM) and Linear Mixed Models-(LMM) to investigate OSA-severity effect and interaction with PAP, respectively. The functional/biological network analysis were performed by DAVID-platform. The results indicated that key-enzymes of the Embden-Meyerhof-Parnas (EMP)-glycolysis and pentose phosphate pathway-(PPP) were differentially changed in Severe-OSA, suggesting that the O2-dependent metabolic flux through EMP and PPP maybe compromised in these cells due to severe intermittent hypoxia/reoxygenation-induced oxidative-stress events in these patients. The Rapoport-Luebering-glycolytic shunt showed a significant downregulation across OSA-severity maybe to increase hemoglobin-O2 affinity to adapt to O2 low availability in the lung, although EMP-glycolysis showed decreased only in Severe-OSA. Proteins of the immunoproteasome were upregulated in Severe-OSA maybe to respond to severe oxidative-stress. In Mild-OSA, proteins related to the ubiquitination/neddylation-(Ub/Ned)-dependent proteasome system were upregulated. After PAP, proteins of Glycolysis and Ub/Ned-dependent proteasome system showed reactivated in Severe-OSA. In Mild-OSA, PAP induced upregulation of immunoproteasome proteins, suggesting that this treatment may increase oxidative-stress in these patients. Once validated these proteins maybe candidate biomarkers for OSA or OSA-therapy response.
Collapse
Affiliation(s)
- Cristina Valentim-Coelho
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| | - Joana Saraiva
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto - Ipatimup, 4200-135 Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações da Universidade de Lisboa e Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Fátima Vaz
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Neves
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Pinto
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Deborah Penque
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| |
Collapse
|
2
|
Theocharaki K, Anastasiadi AT, Delicou S, Tzounakas VL, Barla I, Rouvela S, Kazolia E, Tzafa G, Mpekoulis G, Gousdovas T, Pavlou E, Kostopoulos IV, Velentzas AD, Simantiris N, Xydaki A, Vassilaki N, Voskaridou E, Aggeli IK, Nomikou E, Tsitsilonis O, Papageorgiou E, Thomaidis N, Gikas E, Politou M, Komninaka V, Antonelou MH. Cellular and biochemical heterogeneity contributes to the phenotypic diversity of transfusion-dependent β-thalassemia. Blood Adv 2025; 9:2091-2107. [PMID: 39928952 PMCID: PMC12051129 DOI: 10.1182/bloodadvances.2024015232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT Transfusion-dependent thalassemia (TDT) is a type of protein aggregation disease. Its clinical heterogeneity imposes challenges in effective management. Red blood cell (RBC) variables may be clinically relevant as mechanistic parts or tellers of TDT pathophysiology. This is a cross-sectional study of RBC and plasma physiology in adult patients with TDT vs healthy control. TDT plasma was characterized by increased protein carbonylation, antioxidants, and larger than normal extracellular vesicles. RBCs were osmotically resistant but prone to oxidative hemolysis. They overexposed phosphatidylserine and exhibited pathologically low proteasome proteolytic activity (PPA), which correlated with metabolic markers of the disease. RBC ultrastructure was distorted, with splenectomy-related membrane pits of 300 to 800 nm. Plasma metabolomics revealed differences in heme metabolism, redox potential, short-chain fatty acids, and nitric oxide bioavailability, but also in catecholamine pathways. According to coefficient of variation assessment, hemolysis, iron homeostasis, PPA, and phosphatidylserine exposure were highly variable among patients, as opposed to RBC fragility and plasma antioxidants, amino acids, and catecholamines. Sex-based differences were detected in hemolysis, redox, and energy variables, whereas splenectomy-related differences referred to thrombotic risk, RBC morphology, and plasma metabolites with neuroendocrine activity. Hepcidin varied according to oxidative hemolysis and metabolic markers of bacterial activity. Patients with higher pretransfusion hemoglobin levels (>10 g/dL) presented mildly distorted profiles and lower membrane-associated PPA, whereas classification by severity of mutations revealed different levels of hemostasis, inflammation, plasma epinephrine, hexosamines, and methyltransferase activity markers. The currently reported heterogeneity of cellular and biochemical features probably contributes to the wide phenotypic diversity of TDT at clinical level.
Collapse
Affiliation(s)
- Konstantina Theocharaki
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Delicou
- Thalassemia and Sickle Cell Unit, Expertise Center of Hemoglobinopathies and their Complications, Hippokration General Hospital of Athens, Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Barla
- Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Stella Rouvela
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Evgenia Kazolia
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Tzafa
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mpekoulis
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Theodore Gousdovas
- Hematology Laboratory-Blood Bank, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymia Pavlou
- Blood Bank and Haemophilia Unit, Hippokration General Hospital of Athens, Athens, Greece
| | - Ioannis V. Kostopoulos
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D. Velentzas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aikaterini Xydaki
- Thalassemia and Sickle Cell Unit, Expertise Center of Hemoglobinopathies and their Complications, Hippokration General Hospital of Athens, Athens, Greece
| | - Niki Vassilaki
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Ersi Voskaridou
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, Athens, Greece
| | - Ioanna-Katerina Aggeli
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrosyni Nomikou
- Blood Bank and Haemophilia Unit, Hippokration General Hospital of Athens, Athens, Greece
| | - Ourania Tsitsilonis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathia Papageorgiou
- Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica, Egaleo, Greece
| | - Nikolaos Thomaidis
- Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Gikas
- Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Veroniki Komninaka
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, Athens, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Yu F, Chen C, Liu W, Zhao Z, Fan Y, Li Z, Huang W, Xie T, Luo C, Yao Z, Guo Q, Yang Z, Liu J, Zhang Y, Kellems RE, Xia J, Li J, Xia Y. Longevity Humans Have Youthful Erythrocyte Function and Metabolic Signatures. Aging Cell 2025; 24:e14482. [PMID: 39924931 PMCID: PMC12074018 DOI: 10.1111/acel.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Longevity individuals have lower susceptibility to chronic hypoxia, inflammation, oxidative stress, and aging-related diseases. It has long been speculated that "rejuvenation molecules" exist in their blood to promote extended lifespan. We unexpectedly discovered that longevity individuals exhibit erythrocyte oxygen release function similar to young individuals, whereas most elderly show reduced oxygen release capacity. Untargeted erythrocyte metabolomics profiling revealed that longevity individuals are characterized by youth-like metabolic reprogramming and these metabolites effectively differentiate the longevity from the elderly. Quantification analyses led us to identify multiple novel longevity-related metabolites within erythrocytes including adenosine, sphingosine-1-phosphate (S1P), and glutathione (GSH) related amino acids. Mechanistically, we revealed that increased bisphosphoglycerate mutase (BPGM) and reduced MFSD2B protein levels in the erythrocytes of longevity individuals collaboratively work together to induce elevation of intracellular S1P, promote the release of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from membrane to the cytosol, and thereby orchestrate glucose metabolic reprogramming toward Rapoport-Luebering Shunt to induce the 2,3-BPG production and trigger oxygen delivery. Furthermore, increased glutamine and glutamate transporter expression coupled with the enhanced intracellular metabolism underlie the elevated GSH production and the higher anti-oxidative stress capacity in the erythrocytes of longevity individuals. As such, longevity individuals displayed less systemic hypoxia-related metabolites and more antioxidative and anti-inflammatory metabolites in the plasma, thereby healthier clinical outcomes including lower inflammation parameters as well as better glucose-lipid metabolism, and liver and kidney function. Overall, we identified that youthful erythrocyte function and metabolism enable longevity individuals to better counteract peripheral tissue hypoxia, inflammation, and oxidative stress, thus maintaining healthspan.
Collapse
|
4
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Zhang X, Sun J, Guo J, Hu X, Zhou J, Xie X, Chen X, Luo H, Liu H, Tian Y. Inhibition of adenosine/A2A receptor signaling suppresses dermal fibrosis by enhancing fatty acid oxidation. Cell Commun Signal 2025; 23:206. [PMID: 40301970 PMCID: PMC12042438 DOI: 10.1186/s12964-025-02210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Skin fibrosis presents a major challenge for clinicians treating conditions like systemic sclerosis (SSc) due to its progressive course and limited treatment options. While the role of metabolism in fibrosis has gained increasing attention, the crucial alterations of metabolic pathway and the underlying signaling of metabolic interconnections in regulating SSc-related skin fibrosis remain largely elusive. METHODS Metabolomic analysis was performed on plasma samples from 35 SSc patients to identify metabolic alterations. In bleomycin (BLM)- and hypochlorous acid (HOCL)-induced skin fibrosis mouse models, we assessed the impact of global A2a receptor knockout on skin fibrosis. Single-cell RNA sequencing of mouse skin was utilized to investigate the role of A2A in fibroblasts during fibrotic challenge. Human dermal fibroblasts were used in in vitro experiments, employing RNA sequencing and Seahorse assays, to assess the relationship between A2A signaling and fatty acid oxidation (FAO). Finally, fibroblast-specific conditional A2a knockout mice were used to test the effects of specifically targeting A2A in dermal fibroblasts. RESULTS Adenosine-centered nucleotide metabolism was elevated in the plasma of SSc patients. Mechanistically, by stimulating dermal fibroblasts with key pathogenic cytokines associated with SSc, we observed significant changes in adenosine receptor A2A expression in response to IL-1β. Immunofluorescence revealed upregulation of A2A expression in dermal fibroblasts of SSc patients. Further, global A2a knockout significantly attenuated skin fibrosis in both BLM- and HOCL-induced skin fibrosis mouse models. Single-cell RNA sequencing of mouse skin revealed significant alterations in fatty acid metabolism in fibroblasts from A2a-deficient mice following fibrotic challenge. RNA sequencing, Seahorse assays and in vitro experiments showed that A2A inhibition promotes FAO by upregulating CPT1A expression via suppressing CREB phosphorylation, alleviating fibrosis in human primary dermal fibroblasts. Furthermore, targeted intervention of A2a specifically in fibroblasts improves outcomes and increases CPT1A expression in BLM-induced skin fibrosis mouse model. CONCLUSION Our study highlights the crucial interplay between adenosine metabolism-A2A receptor axis and FAO in SSc-associated skin fibrosis, suggesting that targeting the adenosine receptor A2A-FAO metabolic axis offers a promising therapeutic strategy for skin fibrosis.
Collapse
Affiliation(s)
- Xiaoye Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
| | - Jinjian Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General &Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyu Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
| | - Xiaoyun Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yuzi Tian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Mikdar M, Serra M, Azouzi S. Adenosine signaling in promoting the balance between erythropoiesis and myelopoiesis. Curr Opin Hematol 2025:00062752-990000000-00110. [PMID: 40314242 DOI: 10.1097/moh.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
PURPOSE OF REVIEW Adenosine signaling is emerging as a key regulator of hematopoietic lineage commitment, influencing both erythropoiesis and myelopoiesis. This review explores the distinct roles of adenosine receptors in balancing these processes, particularly under stress conditions. Since adenosine extracellular levels are increased in multiple hematological disorders, including sickle cell disease, deciphering the mechanisms downstream of adenosine receptor activation is crucial to understand the pathophysiology of these conditions. RECENT FINDINGS Extracellular adenosine levels in the bone marrow microenvironment are tightly regulated by CD39/CD73 activity and ENT1 uptake. Recent studies have shown that ENT1-mediated adenosine transport is crucial for adenosine intracellular metabolism and normal erythropoiesis, while increased extracellular adenosine levels impact hematopoietic differentiation through adenosine receptor activation.. High dose of exogenous adenosine inhibits erythroid proliferation by inducing G1 arrest and p53-mediated apoptosis. Furthermore, A2B and A3 receptor signaling inhibits erythroid differentiation, while adenosine signaling through A3 also favors granulopoiesis. SUMMARY Collectively, these findings highlight adenosine signaling as a critical and multifaceted regulator of hematopoietic balance, offering novel insights into its therapeutic potential for managing disorders characterized by ineffective erythropoiesis and aberrant myelopoiesis.
Collapse
Affiliation(s)
- Mahmoud Mikdar
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Marion Serra
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Slim Azouzi
- Université Paris Cité and Université des Antilles, INSERM, EFS, UMR S1134, Laboratory of Blood Group Antigens, Hematopoiesis and Sickle Cell Disease, Paris, France
| |
Collapse
|
7
|
Zhou X, Bao Q, Cui Y, Li X, Yang C, Yang Y, Gao Y, Chen D, Huang J. Life destiny of erythrocyte in high altitude erythrocytosis: mechanisms underlying the progression from physiological (moderate) to pathological (excessive) high-altitude erythrocytosis. Front Genet 2025; 16:1528935. [PMID: 40242475 PMCID: PMC12000012 DOI: 10.3389/fgene.2025.1528935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
High-altitude polycythemia (HAPC) represents a pathological escalation of the physiological erythrocytosis induced by chronic hypoxia exposure. While moderate erythroid expansion enhances oxygen delivery, HAPC manifests as hematologic disorder characterized by hemoglobin thresholds (≥21 g/dL males; ≥19 g/dL females) and multi-organ complications including microcirculatory thrombosis, right ventricular hypertrophy, and uric acid dysmetabolism. This review critically evaluates the continuum between adaptive and maladaptive polycythemia through multiscale analysis of erythrocyte biology. We integrate genomic predisposition patterns, bone marrow erythroid kinetic studies, and peripheral erythrocyte pathophenotypes revealed by multi-omics profiling (iron-redox proteome, hypoxia-metabolome crosstalk). Current diagnostic limitations are highlighted, particularly the oversimplification of hemoglobin cutoffs that neglect transitional dynamics in erythrocyte turnover. By reconstructing the erythroid life cycle-from hypoxia-sensitive progenitor commitment to senescent cell clearance-we propose a phase transition model where cumulative epigenetic-metabolic derangements overcome homeostatic buffers, triggering pathological erythroid amplification. These insights reframe HAPC as a systems biology failure of erythroid adaptation, informing predictive biomarkers and targeted interventions to preserve hematological homeostasis in hypoxic environments.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
- College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
8
|
Ping J, Liu X, Lu Y, Quan C, Fan P, Lu H, Li Q, Wang C, Zhang Z, Liu M, Chen S, Chang L, Jiang Y, Huang Q, Liu J, Wuren T, Liu H, Hao Y, Kang L, Liu G, Lu H, Wei X, Wang Y, Li Y, Guo H, Cui Y, Zhang H, Zhang Y, Zhai Y, He Y, Zheng W, Qi X, Ouzhuluobu, Ma H, Yang L, Wang X, Jin W, Cui Y, Ge R, Wu S, Wei Y, Su B, He F, Zhang H, Zhou G. A highland-adaptation variant near MCUR1 reduces its transcription and attenuates erythrogenesis in Tibetans. CELL GENOMICS 2025; 5:100782. [PMID: 40043709 PMCID: PMC11960549 DOI: 10.1016/j.xgen.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
To identify genomic regions subject to positive selection that might contain genes involved in high-altitude adaptation (HAA), we performed a genome-wide scan by whole-genome sequencing of Tibetan highlanders and Han lowlanders. We revealed a collection of candidate genes located in 30 genomic loci under positive selection. Among them, MCUR1 at 6p23 was a novel pronounced candidate. By single-cell RNA sequencing and comprehensive functional studies, we demonstrated that MCUR1 depletion leads to impairment of erythropoiesis under hypoxia and normoxia. Mechanistically, MCUR1 knockdown reduced mitochondrial Ca2+ uptake and then concomitantly increased cytosolic Ca2+ levels, which thereby reduced erythropoiesis via the CAMKK2-AMPK-mTOR axis. Further, we revealed rs61644582 at 6p23 as an expression quantitative trait locus for MCUR1 and a functional variant that confers an allele-specific transcriptional regulation of MCUR1. Overall, MCUR1-mediated mitochondrial Ca2+ homeostasis is highlighted as a novel regulator of erythropoiesis, deepening our understanding of the genetic mechanism of HAA.
Collapse
Affiliation(s)
- Jie Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pengcheng Fan
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hao Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lingle Chang
- Medical College of Guizhou University, Guiyang City 550025, P.R. China
| | - Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Qilin Huang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Jie Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Ying Hao
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High-Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China; Key Laboratory of High-Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China
| | - Guanjun Liu
- Henan Provincial People's Hospital, Zhengzhou City 450000, P.R. China; Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Hui Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaojun Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hao Guo
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Yongquan Cui
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Haoxiang Zhang
- No. 954 Hospital of Joint Logistic Support Force of Chinese PLA, Shannan City 856000, P.R. China
| | - Yang Zhang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yujia Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Huiping Ma
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Linpeng Yang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Xin Wang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Wanjun Jin
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Rili Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Shizheng Wu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China; Medical College of Guizhou University, Guiyang City 550025, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China.
| |
Collapse
|
9
|
Li Y, Liu F, Chen D, Tian Y, Liu C, Li F. MICU1 alleviates hypobaric hypoxia-induced myocardial injury through regulating Ca 2+ uptake to inhibit mitochondria-dependent apoptosis. Cell Signal 2024; 125:111524. [PMID: 39586522 DOI: 10.1016/j.cellsig.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
AIM High-altitude cardiac injury is a prevalent form of tissue damage resulting from hypobaric hypoxia (HH). MICU1 is a critical modulator of mitochondrial calcium uptake, with significant implications for the regulation of mitochondrial redox homeostasis. This study sought to examine the impact of MICU1 and elucidate the underlying mechanism in myocardial exposed to HH. METHODS Loss-and gain-of-function approaches were used to investigate the role of MICU1 in cardiac response to HH. In vitro, the function of MICU1 in the primary neonatal rat cardiomyocytes under hypoxia was examined. RESULTS We observed that MICU1 was downregulated in hearts exposed to HH, contributing to myocardial apoptosis. In vitro experiments demonstrated that MICU1 knockdown exacerbated hypoxic cardiomyocyte injury, as evidenced by an increase in apoptotic cells and a decrease in mitochondrial membrane potential. Conversely, overexpression of MICU1 in mice significantly mitigated myocardial injury, leading to enhanced cardiac function and reduced myocardial hypertrophy and fibrosis in hypobaric hypoxic mice, consistent with the in vitro findings. Further investigations revealed that overexpression of MICU1 inhibited apoptosis by augmenting mitochondrial Ca2+ uptake and subsequently enhancing the activity of tricarboxylic acid cycle (TCA) related enzymes. Lastly, our results suggest that hypoxia-induced downregulation of MICU1 is mediated by the reduction of MAZ expression in primary neonatal rat cardiomyocytes. CONCLUSION Our results suggest that MICU1 plays an important role in myocardial protection subjected to HH, suggesting that enhancing the expression or activity of MICU1 may be a potential pharmacological target to ameliorate myocardial injury at high altitude.
Collapse
Affiliation(s)
- Yao Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengzhou Liu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongbo Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiyuan Tian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Ni J, Zhao J, Chen H, Liu W, Le M, Guo X, Dong X. 2,3-Diphosphoglyceric Acid Alleviating Hypoxic-Ischemic Brain Damage through p38 MAPK Modulation. Int J Mol Sci 2024; 25:8877. [PMID: 39201562 PMCID: PMC11354455 DOI: 10.3390/ijms25168877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| |
Collapse
|
11
|
Gao J, Guo Z, Zhao M, Cheng X, Jiang X, Liu Y, Zhang W, Yue X, Fei X, Jiang Y, Chen L, Zhang S, Zhao T, Zhu L. Lipidomics and mass spectrometry imaging unveil alterations in mice hippocampus lipid composition exposed to hypoxia. J Lipid Res 2024; 65:100575. [PMID: 38866327 PMCID: PMC11333011 DOI: 10.1016/j.jlr.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Lipids are components of cytomembranes that are involved in various biochemical processes. High-altitude hypoxic environments not only affect the body's energy metabolism, but these environments can also cause abnormal lipid metabolism involved in the hypoxia-induced cognitive impairment. Thus, comprehensive lipidomic profiling of the brain tissue is an essential step toward understanding the mechanism of cognitive impairment induced by hypoxic exposure. In the present study, mice showed reduced new-object recognition and spatial memory when exposed to hypobaric hypoxia for 1 day. Histomorphological staining revealed significant morphological and structural damage to the hippocampal tissue, along with prolonged exposure to hypobaric hypoxia. Dynamic lipidomics of the mouse hippocampus showed a significant shift in both the type and distribution of phospholipids, as verified by spatial lipid mapping. Collectively, a diverse and dynamic lipid composition in mice hippocampus was uncovered, which deepens our understanding of biochemical changes during sustained hypoxic exposure and could provide new insights into the cognitive decline induced by high-altitude hypoxia exposure.
Collapse
Affiliation(s)
- Jiayue Gao
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiying Guo
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ming Zhao
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiang Cheng
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiufang Jiang
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Xiangpei Yue
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xuechao Fei
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaqun Jiang
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lu Chen
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shaojie Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tong Zhao
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
12
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
13
|
Wang Y, Yin Y, Liu Y, Pei C, Shen Z, Zhao S, Jia N, Huang D, Wang X, Wu Y, Shi S, He Y, Wang Z. Notoginsenoside R1 treatment facilitated Nrf2 nuclear translocation to suppress ferroptosis via Keap1/Nrf2 signaling pathway to alleviated high-altitude myocardial injury. Biomed Pharmacother 2024; 175:116793. [PMID: 38776674 DOI: 10.1016/j.biopha.2024.116793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50 mg/Kg and 100 mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.
Collapse
Affiliation(s)
- Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yongjun Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Ying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
14
|
Song K, Ling H, Wang L, Tian P, Jin X, Zhao J, Chen W, Wang G, Bi Y. Lactobacillus delbrueckii subsp. bulgaricus Alleviates Acute Injury in Hypoxic Mice. Nutrients 2024; 16:1465. [PMID: 38794703 PMCID: PMC11124140 DOI: 10.3390/nu16101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Ke Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| |
Collapse
|
15
|
Jin X, Zhang Y, Wang D, Zhang X, Li Y, Wang D, Liang Y, Wang J, Zheng L, Song H, Zhu X, Liang J, Ma J, Gao J, Tong J, Shi L. Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience 2024; 27:109315. [PMID: 38487547 PMCID: PMC10937114 DOI: 10.1016/j.isci.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
16
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
17
|
Yu S, Ye Y, Wuren T, Yi H. Alteration in the number, morphology, function, and metabolism of erythrocytes in high-altitude polycythemia. Front Physiol 2024; 15:1359357. [PMID: 38426208 PMCID: PMC10902074 DOI: 10.3389/fphys.2024.1359357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model. Methods: Twelve Sprague-Dawley rats were divided into control and HAPC groups. The HAPC group was exposed to hypobaric hypoxia. This HAPC model was assessed using routine blood tests and blood gas analyses. Bone marrow, peripheral blood reticulocytes (RETs), and peripheral blood erythrocyte apoptosis were measured using flow cytometry. Erythrocyte osmotic fragility (EOF) tests were conducted. Abnormal erythrocytes were counted using electron microscopy. Plasma-free hemoglobin, 5'-nucleotidase (CD73), adenosine, erythrocyte cytosolic adenosine, sphingosine-1-phosphate (S1P), and 2,3-bisphosphoglycerate (BPG) levels were measured using enzyme-linked immunosorbent assays. Erythrocyte metabolic pathway-related protein [adenosine A2B receptor (ADORA2B), erythrocyte equilibrative nucleoside transporter 1 (eENT1), sphingosine kinase 1 (SPHK1), phospho-SPHK1, bisphosphoglycerate mutase (BPGM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] levels were assessed by Western blotting. Results: The HAPC rat model was successfully established (Hb > 210 g/L). Indices of bone marrow and peripheral blood RET proportions were significantly higher in the HAPC than the control group (p = 0.04 and p < 0.001, respectively). The proportion of peripheral blood erythrocytes in early apoptosis was significantly lower in the HAPC than the control group (p < 0.001). Vesicular erythrocyte and acanthocyte proportions were significantly higher in the HAPC than the control group (p < 0.001 and p = 0.019, respectively). The EOF tests revealed that 50% erythrocyte hemolysis occurred at 4.0-4.5 and 4.5-5.0 g/L NaCl in the control and HAPC groups, respectively. Plasma-free hemoglobin, CD73, adenosine, erythrocyte cytosolic adenosine, S1P, and 2,3-BPG levels and ADORA2B, eENT1, phospho-SPHK1, S1P, BPGM, and GAPDH erythrocyte expression levels (all p ≤ 0.02) were significantly higher in the HAPC than the control group. Conclusion: In model rats, an HAPC-related erythrocyte increase was associated with enhanced bone marrow hematopoietic function and reduced erythrocyte apoptosis, whereas numerous abnormal erythrocytes, increased EOF, and reduced hemolysis resistance were associated with erythrocyte metabolism. CD73/adenosine/S1P/2,3-BPG and eENT1/adenosine/BPGM/2,3-BPG metabolic pathways in erythrocytes were activated in HAPC rats, facilitating oxygen release. These findings further reveal the intrinsic HAPC mechanism and forms a basis for future development of preventive and therapeutic strategies for HAPC.
Collapse
Affiliation(s)
- Song Yu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Hematology, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| | - Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Hai Yi
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Hematology, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
18
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
19
|
Ren XW, Chen K, Wu J, Yang ZL, Ji T, Zhang QH. Distinctive biochemistry profiles associated with hyperuricemia between Tibetans and Hans in China. Front Endocrinol (Lausanne) 2023; 14:1229659. [PMID: 38089618 PMCID: PMC10715267 DOI: 10.3389/fendo.2023.1229659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose We sought to identify distinct risk factors for hyperuricemia in native Tibetan and immigrant Han populations in Tibet, China. Methods Three cohorts of male participants aged between 20 and 40 years were enrolled in this study. Biochemical parameters including serum uric acid (UA), fasting plasma glucose, insulin, lactate dehydrogenase (LDH), thyroxin, blood cell count, aminotransferase, and lipid profiles were analyzed. The association of risk factors with UA levels was evaluated using a multivariable line regression model. The effect of UA level on the biochemical parameters between the Hans and Tibetans was evaluated by two-way ANOVA. Results The prevalence of hyperuricemia (≥420 μmol/L) was 24.8% (62/250) in the Hans, similar to 23.8% (29/136) in the Tibetans. In the regression analysis, the risk factors that were significantly associated with UA in Hans did not apply to Tibetans. Tibetans had higher fasting insulin (P<0.05) and LDH (P<0.01) levels, in contrast with lower levels of triglycerides (P<0.05), total cholesterol (P<0.01), and low-density lipoprotein-cholesterol (P<0.01) than Hans in normal UA populations. Biochemistry analysis revealed lower albumin levels (P<0.001) and higher levels of all aminotransaminase and especially alkaline phosphatase (P<0.01) in Tibetans than in Hans in both populations. Compared with Hans, Tibetans had lower serum levels of urea, creatinine, and electrolytes in the normal UA population, which were further exacerbated in the high UA population. Tibetans had comparable white blood cell counts as Hans in both normal and high UA populations. In contrast, the red blood cell count and hemoglobin concentration were much lower in Tibetans than in Hans under high UA conditions. Conclusions The distinctive biochemistry between Tibetans and Hans may underlie the different etiologies of hyperuricemia in Tibet, China.
Collapse
Affiliation(s)
- Xue-Wen Ren
- Department of Emergency Medicine, First Medical Center of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Kang Chen
- Department of Endocrinology, First Medical Center of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Jue Wu
- Translational Medicine Research Center, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Zhang-Lin Yang
- Department of Emergency Medicine, First Medical Center of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Tao Ji
- Department of Emergency Medicine, First Medical Center of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Qing-Hong Zhang
- Trauma Repair and Tissue Regeneration Center, Department of Medical Innovation Study, General Hospital of Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
20
|
Chen C, Xie T, Zhang Y, Wang Y, Yu F, Lin L, Zhang W, Brown BC, Zhang X, Kellems RE, D'Alessandro A, Xia Y. Erythrocyte ENT1-AMPD3 Axis is an Essential Purinergic Hypoxia Sensor and Energy Regulator Combating CKD in a Mouse Model. J Am Soc Nephrol 2023; 34:1647-1671. [PMID: 37725437 PMCID: PMC10561773 DOI: 10.1681/asn.0000000000000195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/05/2023] [Indexed: 09/21/2023] Open
Abstract
SIGNIFICANCE STATEMENT Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. In this study, we demonstrated in a mouse model that erythrocyte ENT1-AMPD3 is a master energy regulator of the intracellular purinergic hypoxic compensatory response that promotes rapid energy supply from extracellular adenosine, eAMPK-dependent metabolic reprogramming, and O 2 delivery, which combat renal hypoxia and progression of CKD. ENT1-AMPD3-AMPK-BPGM comprise a group of circulating erythroid-specific biomarkers, providing early diagnostic and novel therapeutic targets for CKD. BACKGROUND Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. METHODS Mice with an erythrocyte-specific deficiency in equilibrative nucleoside transporter 1 ( eEnt1-/- ) and a global deficiency in AMP deaminase 3 ( Ampd3-/- ) were generated to define their function in two independent CKD models, including angiotensin II (Ang II) infusion and unilateral ureteral obstruction (UUO). Unbiased metabolomics, isotopic adenosine flux, and various biochemical and cell culture analyses coupled with genetic studies were performed. Translational studies in patients with CKD and cultured human erythrocytes examined the role of ENT1 and AMPD3 in erythrocyte function and metabolism. RESULTS eEnt1-/- mice display severe renal hypoxia, kidney damage, and fibrosis in both CKD models. The loss of eENT1-mediated adenosine uptake reduces intracellular AMP and thus abolishes the activation of AMPK α and bisphosphoglycerate mutase (BPGM). This results in reduced 2,3-bisphosphoglycerate and glutathione, leading to overwhelming oxidative stress in eEnt1-/- mice. Excess reactive oxygen species (ROS) activates AMPD3, resulting in metabolic reprogramming and reduced O 2 delivery, leading to severe renal hypoxia in eEnt1-/- mice. By contrast, genetic ablation of AMPD3 preserves the erythrocyte adenine nucleotide pool, inducing AMPK-BPGM activation, O 2 delivery, and antioxidative stress capacity, which protect against Ang II-induced renal hypoxia, damage, and CKD progression. Translational studies recapitulated the findings in mice. CONCLUSION eENT1-AMPD3, two highly enriched erythrocyte purinergic components that sense hypoxia, promote eAMPK-BPGM-dependent metabolic reprogramming, O 2 delivery, energy supply, and antioxidative stress capacity, which mitigates renal hypoxia and CKD progression.
Collapse
Affiliation(s)
- Changhan Chen
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - TingTing Xie
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyan Wang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yu
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiru Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C. Brown
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Lima G, Shurlock J, Wang G, Karanikolou A, Sutehall S, Pitsiladis YP, D'Alessandro A. Metabolomic Profiling of Recombinant Erythropoietin (rHuEpo) in Trained Caucasian Athletes. Clin J Sport Med 2023; 33:e123-e134. [PMID: 36731031 DOI: 10.1097/jsm.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Recombinant human erythropoietin (rHuEpo) is prohibited by the World Anti-Doping Agency but remains the drug of choice for many cheating athletes wishing to evade detection using current methods. The aim of this study was to identify a robust metabolomics signature of rHuEpo using an untargeted approach in blood (plasma and serum) and urine. DESIGN Longitudinal study. SETTING University of Glasgow. PARTICIPANTS Eighteen male participants regularly engaged in predominantly endurance-based activities, such as running, cycling, swimming, triathlon, and team sports, were recruited. INTERVENTIONS Each participant received 50 IU·kg -1 body mass of rHuEpo subcutaneously every 2 days for 4 weeks. Samples were collected at baseline, during rHuEpo administration (over 4 weeks) and after rHuEpo administration (week 7-10). The samples were analyzed using hydrophilic interaction liquid chromatography mass spectrometry. MAIN OUTCOME MEASURES Significant metabolic signatures of rHuEpo administration were identified in all biofluids tested in this study. RESULTS Regarding metabolomics data, 488 plasma metabolites, 694 serum metabolites, and 1628 urinary metabolites were identified. Reproducible signatures of rHuEpo administration across all biofluids included alterations of pyrimidine metabolism (orotate and dihydroorotate) and acyl-carnitines (palmitoyl-carnitine and elaidic carnitine), metabolic pathways that are associated with erythropoiesis or erythrocyte membrane function, respectively. CONCLUSIONS Preliminary metabolic signatures of rHuEpo administration were identified. Future studies will be required to validate these encouraging results in independent cohorts and with orthogonal techniques, such as integration of our data with signatures derived from other "omics" analyses of rHuEpo administration (eg, transcriptomics).
Collapse
Affiliation(s)
- Giscard Lima
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- University of Rome "Foro Italico," Rome, Italy
| | - Jonathan Shurlock
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - Guan Wang
- Sport and Exercise Science and Sports Medicine Research and Enterprise Group, University of Brighton, Brighton, United Kingdom
| | - Antonia Karanikolou
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland; and
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
D’Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. Am J Hematol 2023; 98:1017-1028. [PMID: 36971592 PMCID: PMC10272107 DOI: 10.1002/ajh.26923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo. The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and transfusion therapy on sickle RBC metabolism. Results show that RBCs from patients with Hb SS genotypes-compared to AA RBCs from recent transfusion events or SC RBCs-are characterized by significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Metabolomics, clinical and hematological data were collated in a novel online portal. In conclusion, we identified metabolic signatures of HbS RBCs that correlate with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyle W. Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T Gladwin
- University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
23
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
24
|
Ruan W, Li J, Choi S, Ma X, Liang Y, Nair R, Yuan X, Mills TW, Eltzschig HK. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 2023; 8:e166011. [PMID: 37288658 PMCID: PMC10393224 DOI: 10.1172/jci.insight.166011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiwen Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Seungwon Choi
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xinxin Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Ragini Nair
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
25
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Qile M, Xu Q, Ye Y, Liu H, Gomchok D, Liu J, Wuren T, Ge RL. Erythrocytes Display Metabolic Changes in High-Altitude Polycythemia. High Alt Med Biol 2023; 24:104-109. [PMID: 37195723 DOI: 10.1089/ham.2022.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Qile, Muge, Qiying Xu, Yi Ye, Huifang Liu, Drolma Gomchok, Juanli Liu, Tana Wuren, and Ri-Li Ge. Erythrocytes display metabolic changes in high-altitude polycythemia. High Alt Med Biol. 24:104-109, 2023. Background: Sphingosine-1-phosphate (S1P) levels are increased after acute exposure to high altitude; however, whether this effect is observed in chronic high-altitude hypoxia is unknown. Methods: We studied erythrocyte S1P levels in 13 subjects with high-altitude polycythemia (HAPC) and 13 control subjects and also used a mouse model of HAPC. HAPC subjects lived in Maduo (4,300 m altitude) for 10 years, whereas control subjects lived permanently in Xining (2,260 m). The mouse model of HAPC was established by stimulating an altitude of 5,000 m in a hypobaric chamber for 30 days. Hematology and S1P, CD73, 2,3-bisphosphoglycerate (2,3-BPG), and reticulocyte levels were measured. Results: The hemoglobin concentration and number of red blood cells were significantly elevated in human and mouse HAPC groups. Blood S1P levels in HAPC subjects and mice were higher than those in control groups (p < 0.05 and p < 0.001, respectively). 2,3-BPG and CD73 levels in HAPC subjects were significantly higher than those in control subjects (p < 0.05). No significant changes in reticulocyte levels were observed. Conclusions: The critical altitude-induced metabolic changes such as S1P retained high levels even after prolonged exposure, and it may inspire future research into therapeutic strategies for hypoxia-associated illnesses.
Collapse
Affiliation(s)
- Muge Qile
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Qiying Xu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Yi Ye
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Drolma Gomchok
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Juanli Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| |
Collapse
|
27
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
28
|
Cendali FI, Nemkov T, Lisk C, Lacroix IS, Nouraie SM, Zhang Y, Gordeuk VR, Buehler PW, Irwin D, D’Alessandro A. Metabolic correlates to critical speed in murine models of sickle cell disease. Front Physiol 2023; 14:1151268. [PMID: 37007990 PMCID: PMC10053510 DOI: 10.3389/fphys.2023.1151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.
Collapse
Affiliation(s)
- Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Christina Lisk
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Seyed-Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul W. Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Center for Blood Oxygen Transport, Department of Pediatrics, Baltimore, MD, United States
| | - David Irwin
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
29
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528368. [PMID: 36824724 PMCID: PMC9948995 DOI: 10.1101/2023.02.13.528368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo . The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events, and HbF related to hydroxyurea therapy. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and hydroxyurea and transfusion therapy on sickle RBC metabolism. Data - collated in an online portal - show that the Hb SS genotype is associated with significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Increasing in vivo concentrations of HbA improved glycolytic flux and normalized the HbS erythrocyte metabolome. An unexpectedly limited metabolic effect of hydroxyurea and HbF was observed, possibly related to the modest induction of HbF in this cohort. The metabolic signature of HbS RBCs correlated with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality. Key points In vivo dysregulation of RBC metabolism by HbS is evaluated by metabolic profiling of 587 patients with variable HbA, HbC and HbF levels;RBC acyl-carnitines, urate, pyruvate metabolism, S1P, kynurenine relate to hemolysis and cardiorenal dysfunction, respond to transfusion.
Collapse
|
30
|
E G, Sun B, Liu B, Xu G, He S, Wang Y, Feng L, Wei H, Zhang J, Chen J, Gao Y, Zhang E. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2. Brain Res Bull 2023; 192:36-46. [PMID: 36334804 DOI: 10.1016/j.brainresbull.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.
Collapse
Affiliation(s)
- Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yu Wang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Hannan Wei
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jianyang Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
31
|
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:50-61. [PMID: 36346885 PMCID: PMC9918384 DOI: 10.2450/2022.0172-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.
Collapse
|
32
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
33
|
Fenk S, Melnikova EV, Anashkina AA, Poluektov YM, Zaripov PI, Mitkevich VA, Tkachev YV, Kaestner L, Minetti G, Mairbäurl H, Goede JS, Makarov AA, Petrushanko IY, Bogdanova A. Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biol 2022; 58:102535. [PMID: 36413919 PMCID: PMC9679038 DOI: 10.1016/j.redox.2022.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fast changes in environmental oxygen availability translate into shifts in mitochondrial free radical production. An increase in intraerythrocytic reduced glutathione (GSH) during deoxygenation would support the detoxification of exogenous oxidants released into the circulation from hypoxic peripheral tissues. Although reported, the mechanism behind this acute oxygen-dependent regulation of GSH in red blood cells remains unknown. This study explores the role of hemoglobin (Hb) in the oxygen-dependent modulation of GSH levels in red blood cells. We have demonstrated that a decrease in Hb O2 saturation to 50% or less observed in healthy humans while at high altitude, or in red blood cell suspensions results in rising of the intraerythrocytic GSH level that is proportional to the reduction in Hb O2 saturation. This effect was not caused by the stimulation of GSH de novo synthesis or its release during deglutathionylation of Hb's cysteines. Using isothermal titration calorimetry and in silico modeling, we observed the non-covalent binding of four molecules of GSH to oxy-Hb and the release of two of them upon deoxygenation. Localization of the GSH binding sites within the Hb molecule was identified. Oxygen-dependent binding of GSH to oxy-Hb and its release upon deoxygenation occurred reciprocally to the binding and release of 2,3-bisphosphoglycerate. Furthermore, noncovalent binding of GSH to Hb moderately increased Hb oxygen affinity. Taken together, our findings have identified an adaptive mechanism by which red blood cells may provide an advanced antioxidant defense to respond to oxidative challenges immediately upon deoxygenation.
Collapse
Affiliation(s)
- Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elizaveta V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri M Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel I Zaripov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lars Kaestner
- Theoretical Medicine and Biosciences and Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarland and Homburg, Germany
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L Spallanzani", Laboratories of Biochemistry, University of Pavia, Italy
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jeroen S Goede
- Department of Internal Medicine, Division of Oncology and Hematology, Cantonal Hospital Winterthur, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland.
| |
Collapse
|
34
|
Contribution of Adenosine in the Physiological Changes and Injuries Secondary to Exposure to Extreme Oxygen Pressure in Healthy Subjects. Biomedicines 2022; 10:biomedicines10092059. [PMID: 36140160 PMCID: PMC9495509 DOI: 10.3390/biomedicines10092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Climbers and aviators are exposed to severe hypoxia at high altitudes, whereas divers are exposed to hyperoxia at depth. The aim of this study was to report changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures. At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.
Collapse
|
35
|
Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022; 10:1939. [PMID: 36009485 PMCID: PMC9405579 DOI: 10.3390/biomedicines10081939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinxin Ma
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - In Hyuk Bang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jochen Daniel Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
36
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
39
|
Nemkov T, Skinner S, Diaw M, Diop S, Samb A, Connes P, D’Alessandro A. Plasma Levels of Acyl-Carnitines and Carboxylic Acids Correlate With Cardiovascular and Kidney Function in Subjects With Sickle Cell Trait. Front Physiol 2022; 13:916197. [PMID: 35910560 PMCID: PMC9326174 DOI: 10.3389/fphys.2022.916197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Subjects with sickle cell trait (SCT) carry one copy of mutated β-globin gene at position E6V at the origin of the production of sickle hemoglobin (HbS). Indeed, individuals with SCT have both normal hemoglobin and HbS, in contrast to patients with sickle cell disease who inherited of two copies of the mutated gene. Although SCT is generally benign/asymptomatic, carriers may develop certain adverse outcomes such as renal complications, venous thromboembolism, exercise-induced rhabdomyolysis … However, little is known about whether similar metabolic pathways are affected in individuals with SCT and whether these metabolic derangements, if present, correlate to clinically relevant parameters. In this study, we performed metabolomics analysis of plasma from individuals with sickle cell trait (n = 34) compared to healthy controls (n = 30). Results indicated a significant increase in basal circulating levels of hemolysis markers, mono- (pyruvate, lactate), di- and tri-carboxylates (including all Krebs cycle intermediates), suggestive of systems-wide mitochondrial dysfunction in individuals with SCT. Elevated levels of kynurenines and indoles were observed in SCT samples, along with increases in the levels of oxidative stress markers (advanced glycation and protein-oxidation end-products, malondialdehyde, oxylipins, eicosanoids). Increases in circulating levels of acyl-carnitines and fatty acids were observed, consistent with increased membrane lipid damage in individuals with sickle cell trait. Finally, correlation analyses to clinical co-variates showed that alterations in the aforementioned pathways strongly correlated with clinical measurements of blood viscosity, renal (glomerular filtration rate, microalbuminuria, uremia) and cardiovascular function (carotid-femoral pulse wave velocity, blood pressure).
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Sarah Skinner
- Inter-university Laboratory of Biology of Motor Function EA7424, Vascular Biology and the Red Blood Cell Team, Claude Bernard University Lyon 1, Lyon, France
| | - Mor Diaw
- Laboratory of Physiology and Functional Exploration, FMPO, UCAD, Dakar, Senegal
- IRL3189 Environnement, Santé, Sociétés CNRS/UCAD Dakar/ UGB Saint-Louis/ USTT Bamako/ CNRST Ouagadougou, Dakar, Senegal
| | - Saliou Diop
- Laboratory of Hemato-immunology, FMPO, UCAD, Dakar, Senegal
| | - Abdoulaye Samb
- Laboratory of Physiology and Functional Exploration, FMPO, UCAD, Dakar, Senegal
- IRL3189 Environnement, Santé, Sociétés CNRS/UCAD Dakar/ UGB Saint-Louis/ USTT Bamako/ CNRST Ouagadougou, Dakar, Senegal
| | - Philippe Connes
- Inter-university Laboratory of Biology of Motor Function EA7424, Vascular Biology and the Red Blood Cell Team, Claude Bernard University Lyon 1, Lyon, France
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
40
|
Zhang G, Zhou Y, Cao Z, Cheng X, Yue X, Zhao T, Zhao M, Zhao Y, Fan M, Zhu L. Preliminary Intermittent Hypoxia Training Alleviates the Damage of Sustained Normobaric Hypoxia on Human Hematological Indexes and Cerebral White Matter. High Alt Med Biol 2022; 23:273-283. [PMID: 35486840 DOI: 10.1089/ham.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zhang, Guangbo, Yanzhao Zhou, Zhengtao Cao, Xiang Cheng, Xiangpei Yue, Tong Zhao, Ming Zhao, Yongqi Zhao, Ming Fan, and Lingling Zhu. Preliminary intermittent hypoxia training alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral white matter. High Alt Med Biol. 00:000-000, 2022. Study Objectives: We aimed to examine the effects of preliminary intermittent hypoxia training (IHT) on human hematological indexes and cerebral white matter (WM) after exposure to a simulated altitude of 4,300 m. Methods: We recruited 20 young healthy volunteers. Participants were then randomized to either the IHT group (n = 10) or the control group (n = 10). We measured the physiological function of the control group at sea level and after exposure to a simulated altitude of 4,300 m, respectively. The IHT group performed the above tests at three time points: before and after hypoxia training, and after exposure to a simulated altitude of 4,300 m, respectively. Results: We found that mean SpO2 during day 10 of hypoxia training showed a significant increase compared with mean SpO2 on day 1 (88.3% ± 1.5% vs. 90.0% ± 1.6%, p < 0.05), and erythrocyte P50 of post-training was significantly increased compared with pretraining (37.8 ± 2.9 mmHg vs. 45.9 ± 6.4 mmHg, p < 0.05). Mean SpO2 measures after acute exposure to high altitude exhibited a significant difference, with the IHT group showing significantly greater SpO2 than the control group (73.8% ± 3.7% vs. 77.4% ± 3.2%, p < 0.05), and the Lake Louise Score was also lower than the control group (2.55 ± 2.1 vs. 6.67 ± 2.5, p < 0.05). After daily IHT, brain-derived neurotrophic factor plasma levels of participants in the IHT group did not change but significantly increased in response to high-altitude hypoxia (103.5% ± 70.4% vs. 29.7% ± 73.2%, p < 0.05). Interleukin-10 (IL-10) plasma level did not change before and after IHT in the IHT group, whereas the IL-10 plasma level of the control group after high-altitude exposure was significantly higher. Furthermore, we found that fractional anisotropy values in the left corticospinal tract and splenium of the corpus callosum in the IHT group were significantly higher than those in the control group after high-altitude hypoxia. Conclusions: These results demonstrate that IHT alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral WM.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Neurology, Kangjixintu Hospital, Renqiu, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhengtao Cao
- Department of Biomedical Engineering, Air Force Medical Center, PLA, Beijing, China
| | - Xiang Cheng
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiangpei Yue
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Nemkov T, Yoshida T, Nikulina M, D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022; 13:833242. [PMID: 35360223 PMCID: PMC8964052 DOI: 10.3389/fphys.2022.833242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity to make ~110 million units available for transfusion every year worldwide. However, storage in the blood bank is associated with a progressive metabolic decline, which correlates with the accumulation of morphological lesions, increased intra- and extra-vascular hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to storage, red blood cells are suspended in nutrient formulations known as additive solutions to prolong cellular viability. Despite a thorough expansion of knowledge regarding red blood cell biology over the past few decades, only a single new additive solution has been approved by the Food and Drug Administration this century, owing in part to the limited capacity for development of novel formulations. As a proof of principle, we leveraged a novel high-throughput metabolomics technology as a platform for rapid data-driven development and screening of novel additive solutions for blood storage under both normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates (containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations comparable to full size storage units) in the presence of an additive solution supplemented with six different compounds. To inform this data-driven strategy, we relied on previously identified metabolic markers of the RBC storage lesion that associates with measures of hemolysis and post-transfusion recovery, which are the FDA gold standards to predict stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading parameters. Direct quantitation of these predictors of RBC storage quality were used here-along with detailed pathway analysis of central energy and redox metabolism-as a decision-making tool to screen novel additive formulations in a multiplexed fashion. Candidate supplements are shown here that boost-specific pathways. These metabolic effects are only in part dependent on the SO2 storage conditions. Through this platform, we anticipate testing thousands of novel additives and combinations thereof in the upcoming months.
Collapse
Affiliation(s)
- Travis Nemkov
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angelo D’Alessandro
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
42
|
Hakovirta H, Jalkanen J, Saimanen E, Kukkonen T, Romsi P, Suominen V, Vikatmaa L, Valtonen M, Karvonen MK, Venermo M. Induction of CD73 prevents death after emergency open aortic surgery for a ruptured abdominal aortic aneurysm: a randomized, double-blind, placebo-controlled study. Sci Rep 2022; 12:1839. [PMID: 35115574 PMCID: PMC8813993 DOI: 10.1038/s41598-022-05771-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Mortality remains high after emergency open surgery for a ruptured abdominal aortic aneurysm (RAAA). The aim of the present study was to assess, if intravenous (IV) Interferon (IFN) beta-1a improve survival after surgery by up-regulating Cluster of differentiation (CD73). This is a multi-center phase II double-blind, 2:1 randomized, parallel group comparison of the efficacy and safety of IV IFN beta-1a vs. placebo for the prevention of death after open surgery for an infra-renal RAAA. All study patients presented a confirmed infra-renal RAAA, survived the primary emergency surgery and were treated with IFN beta-1a (10 μg) or matching placebo for 6 days after surgery. Major exclusion criteria included fatal hemorrhagic shock, chronic renal replacement therapy, diagnosed liver cirrhosis, severe congestive heart failure, advanced malignant disease, primary attempt of endovascular aortic repair (EVAR), and per-operative suprarenal clamping over 30 min. Main outcome measure was all-cause mortality at day 30 (D30) from initial emergency aortic reconstruction. The study was pre-maturely stopped due to a reported drug-drug interaction and was left under-powered. Out of 40 randomized patients 38 were included in the outcome analyses (27 IFN beta-1a and 11 placebo). There was no statistically significant difference between treatment groups at baseline except more open-abdomen and intestinal ischemia was present in the IFN beta-1a arm. D30 all-cause mortality was 22.2% (6/27) in the IFN beta-1a arm and 18.2% (2/11) in the placebo arm (OR 1.30; 95% CI 0.21-8.19). The most common adverse event relating to the IFN beta-1a was pyrexia (20.7% in the IFN beta-1a arm vs. 9.1% in the placebo arm). Patients with high level of serum CD73 associated with survival (P = 0.001) whereas the use of glucocorticoids and the presence of IFN beta-1a neutralizing antibodies associated with a poor CD73 response and survival. The initial aim of the trial, if postoperative INF beta-1a treatment results on better RAAA survival, could not be demonstrated. Nonetheless the anticipated target mechanism up-regulation of CD73 was associated with 100% survival. According to present results the INF beta-1a induced up-regulation of serum CD73 was blocked with both use of glucocorticoids and serum IFN beta-1a neutralizing antibodies. The study was pre-maturely stopped due to interim analysis after a study concerning the use if IV IFN beta-1a in ARDS suggested that the concomitant use of glucocorticoids and IFN beta-1a block the CD73 induction. Trial registration: ClinicalTrials.gov NCT03119701. Registered 19/04/2017 (retrospectively registered).
Collapse
Affiliation(s)
- Harri Hakovirta
- Turku University, Kiinanmyllynkatu 4-8, 20520, Turku, Finland. .,Satasairaala, Pori, Finland. .,Department of Vascular Surgery, Turku University Hospital, Turku, Finland.
| | | | - Eija Saimanen
- Department of Surgery, South Karelia Central Hospital, Lappeenranta, Finland
| | - Tiia Kukkonen
- Department of Vascular Surgery, Hospital Nova of Central Finland, Jyvaskyla, Finland
| | - Pekka Romsi
- Department of Vascular Surgery, Oulu University Hospital, Oulu, Finland
| | - Velipekka Suominen
- Department of Vascular Surgery, Tampere University Hospital, Tampere, Finland
| | - Leena Vikatmaa
- Department of Anesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Mika Valtonen
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, Turku, Finland
| | | | - Maarit Venermo
- Department of Vascular Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
43
|
Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. Cell Metab 2022; 34:299-316.e6. [PMID: 35108516 PMCID: PMC9380699 DOI: 10.1016/j.cmet.2021.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.
Collapse
|
44
|
Misiti F, Carelli-Alinovi C, Rodio A. ATP release from erythrocytes: A role of adenosine1. Clin Hemorheol Microcirc 2022; 80:61-71. [DOI: 10.3233/ch-221379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The oxygen required to meet metabolic needs of all tissues is delivered by the red blood cell, a small, flexible cell which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this cell has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When red blood cells enter in hypoxic area, a signalling pathway is activated within the cell, resulting in the release of ATP in amounts adequate to activate purinergic receptors on vascular endothelium, which trigger secretion of nitric oxide and other factors resulting in vasodilatation. OBJECTIVE: The present study investigates the effect of adenosine exposure on this molecular mechanism. METHODS AND RESULTS: We report that RBC in the presence of adenosine in low oxygen conditions, ATP release increase after 24 h exposure. Adenosine induced-ATP release in deoxygenated red blood cell show data similar to that of RBC in high oxygen conditions: (1) RBC after band 3 modification by 4,4′- diisothio-cyanatostilbene- 2,2′-disulphonic acid; (2) CO-treated RBC. In the presence of Sphingosine kinase (SphK1) inhibitor, adenosine mediated effects on ATP release were abolished. Activity of adenylate cyclase increase following to adenosine exposure, on the contrary red cell phosphofructokinase is not modified within the RBC in the presence of adenosine. CONCLUSION: Our data support involvement of band 3/deoxyHb binding and adenylate cyclase in the pathway responsible for ATP release from RBC following exposure to adenosine.
Collapse
Affiliation(s)
- Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| | - Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L. go F. Rome, Italy
| | - Angelo Rodio
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| |
Collapse
|
45
|
Fan F, Xu N, Sun Y, Li X, Gao X, Yi X, Zhang Y, Meng X, Lin JM. Uncovering the Metabolic Mechanism of Salidroside Alleviating Microglial Hypoxia Inflammation Based on Microfluidic Chip-Mass Spectrometry. J Proteome Res 2021; 21:921-929. [PMID: 34851127 DOI: 10.1021/acs.jproteome.1c00647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microglia are the main immune cells in the brain playing a critical role in neuroinflammation, and numerous pieces of evidence have proved that energy metabolism is closely associated with inflammation in activated microglia. Salidroside (Sal) isolated from Tibetan medicine Rhodiola crenulate can inhibit microglial hypoxia inflammation (HI). However, whether the inhibition is due to the intervening energy metabolic process in microglia is not clear. In this work, the hypoxic microenvironment of BV2 microglial cells was simulated using deferoxamine (DFO) in vitro and the change of cell metabolites (lactate, succinate, malate, and fumarate) was real-time online investigated based on a cell microfluidic chip-mass spectrometry (CM-MS) system. Meanwhile, for confirming the metabolic mechanism of BV2 cells under hypoxia, the level of HI-related factors (LDH, ROS, HIF-1α, NF-κB p65, TNF-α, IL-1β, and IL-6) was detected by molecular biotechnology. Integration of the detected results revealed that DFO-induced BV2 cell HI was associated with the process of energy metabolism, in which cell energy metabolism changed from oxidative phosphorylation to glycolysis. Furthermore, administration of Sal treatment could effectively invert this change, and two metabolites of Sal were identified: tyrosol and 4-hydroxyphenylacetic acid. In general, we illustrated a new mechanism of Sal for reducing BV2 cell HI injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for HI-related brain disease treatment.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yucheng Sun
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinchang Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Tsui M, Min W, Ng S, Dobbs K, Notarangelo LD, Dror Y, Grunebaum E. The Use of Induced Pluripotent Stem Cells to Study the Effects of Adenosine Deaminase Deficiency on Human Neutrophil Development. Front Immunol 2021; 12:748519. [PMID: 34777360 PMCID: PMC8582638 DOI: 10.3389/fimmu.2021.748519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Inherited defects that abrogate the function of the adenosine deaminase (ADA) enzyme and consequently lead to the accumulation of toxic purine metabolites cause profound lymphopenia and severe combined immune deficiency. Additionally, neutropenia and impaired neutrophil function have been reported among ADA-deficient patients. However, due to the rarity of the disorder, the neutrophil developmental abnormalities and the mechanisms contributing to them have not been characterized. Induced pluripotent stem cells (iPSC) generated from two unrelated ADA-deficient patients and from healthy controls were differentiated through embryoid bodies into neutrophils. ADA deficiency led to a significant reduction in the number of all early multipotent hematopoietic progenitors. At later stages of differentiation, ADA deficiency impeded the formation of granulocyte colonies in methylcellulose cultures, leading to a significant decrease in the number of neutrophils generated from ADA-deficient iPSCs. The viability and apoptosis of ADA-deficient neutrophils isolated from methylcellulose cultures were unaffected, suggesting that the abnormal purine homeostasis in this condition interferes with differentiation or proliferation. Additionally, there was a significant increase in the percentage of hyperlobular ADA-deficient neutrophils, and these neutrophils demonstrated significantly reduced ability to phagocytize fluorescent microspheres. Supplementing iPSCs and methylcellulose cultures with exogenous ADA, which can correct adenosine metabolism, reversed all abnormalities, cementing the critical role of ADA in neutrophil development. Moreover, chemical inhibition of the ribonucleotide reductase (RNR) enzyme, using hydroxyurea or a combination of nicotinamide and trichostatin A in iPSCs from healthy controls, led to abnormal neutrophil differentiation similar to that observed in ADA deficiency, implicating RNR inhibition as a potential mechanism for the neutrophil abnormalities. In conclusion, the findings presented here demonstrate the important role of ADA in the development and function of neutrophils while clarifying the mechanisms responsible for the neutrophil abnormalities in ADA-deficient patients.
Collapse
Affiliation(s)
- Michael Tsui
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,The Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| | - Weixian Min
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Ng
- The Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yigal Dror
- The Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,The Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada.,Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
47
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Iriyama T, Sayama S, Osuga Y. Role of adenosine signaling in preeclampsia. J Obstet Gynaecol Res 2021; 48:49-57. [PMID: 34657345 DOI: 10.1111/jog.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Placenta-specific molecular basis that is responsible for the pathophysiology of preeclampsia (PE) remains to be fully understood. Adenosine, an endogenous nucleoside, is a signaling molecule that is induced under pathological conditions such as hypoxia and is involved in various diseases. Recent evidence on humans and animal models has demonstrated that enhanced placental adenosine signaling contributes to the development of PE. This review is to summarize current progress and discuss the significance of adenosine signaling in the pathophysiology of PE and future perspectives of therapeutic possibilities targeting adenosine signaling.
Collapse
Affiliation(s)
- Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol 2021; 10:314-326. [PMID: 34604421 DOI: 10.52547/rbmb.10.2.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Background Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether angiotensin II modulates resistance to hemolysis and the signaling pathway involved. Methods Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done. Results Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of p38 as well as PI3K/Akt pathways in this system. Conclusion Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering intracellular pathways.
Collapse
|
50
|
Larrick JW, Larrick JW, Mendelsohn AR. Response to Hypoxia in Cognitive Decline. Rejuvenation Res 2021; 24:319-324. [PMID: 34314252 DOI: 10.1089/rej.2021.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammaging, the increase of proinflammatory processes with increasing age, has multiple mechanisms from increasing numbers of senescent cells secreting cytokines to changes in metabolic processes. Alterations of oxygen metabolism with aging, especially decreased levels of O2 with age resulting from endocrine and cardiovascular dysfunction as well as desensitization of cellular response to hypoxia, may exacerbate inflammaging, which in turn creates further oxygen metabolic dysfunction. During aging, decline in levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), BPG mutase, and adenosine A2B receptor, a key adenosine signaling receptor that can augment 2,3-BPG expression, may fail to protect sensitive brain tissue from subtly reduced O2 levels, in turn resulting in increased numbers of activated microglia and secretion of proinflammatory cytokines, ultimately promoting inflammaging and senescence of endothelial cells. Interventions to restore O2 levels directly or via increasing 2,3-BPG may help promote cognitive health in old age, but significant work to quantify the degree of reduced O2 during aging in mammals, and especially humans, needs to be pursued.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Jasmine W Larrick
- Division of Pulmonary, Critical Care and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|