1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Qian X, Xu L, Geng B, Li F, Dong N. Navigating the Landscape of Translational Medicine of Calcific Aortic Valve Disease: Bridging Bench to Bedside. JACC. ASIA 2025; 5:503-515. [PMID: 40180541 PMCID: PMC12081278 DOI: 10.1016/j.jacasi.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
Calcific aortic valve disease (CAVD) is a prevalent condition characterized by pathological thickening and calcification of the aortic valve, leading to increased pressure overload and cardiac remodeling, particularly in individuals aged 65 and older. This review synthesizes recent advances in understanding the pathogenesis of CAVD, focusing on key mechanisms including hemodynamic alterations, endothelial dysfunction, lipid deposition, inflammation, and fibrotic calcification. We evaluate emerging therapeutic targets based on pivotal basic research and clinical trials, highlighting the potential for mechanism-oriented interventions. Furthermore, we explore the implications of lipid-lowering therapies, anti-inflammatory strategies, and antifibrocalcific agents, as well as novel bioprosthetic designs aimed at enhancing patient outcomes. Additionally, we discuss the inherent genetic and molecular backgrounds influencing individual susceptibility to CAVD, emphasizing the promise of personalized therapy. By bridging the gap between basic science and clinical application, this review aims to guide future research efforts toward more effective prevention and treatment strategies for CAVD.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. eLife 2025; 13:RP100797. [PMID: 40080060 PMCID: PMC11906159 DOI: 10.7554/elife.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A Bisson
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Ritu Kumar
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | | | - Ellen Yang
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Kelly M Banks
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Wendy K Chung
- Childrens Hospital, Harvard Medical SchoolBostonUnited States
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Todd Evans
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell MedicineNew YorkUnited States
- Center for Genomic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
4
|
Zodanu GKE, Hwang JH, Mudery J, Sisniega C, Kang X, Wang LK, Barsegian A, Biniwale RM, Si MS, Halnon NJ, UCLA Congenital Heart Defects-BioCore Faculty, Grody WW, Satou GM, Van Arsdell GS, Nelson SF, Touma M. Whole-Exome Sequencing Identifies Novel GATA5/6 Variants in Right-Sided Congenital Heart Defects. Int J Mol Sci 2025; 26:2115. [PMID: 40076735 PMCID: PMC11901071 DOI: 10.3390/ijms26052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
One out of every hundred live births present with congenital heart abnormalities caused by the aberrant development of the embryonic cardiovascular system. The conserved zinc finger transcription factor proteins, which include GATA binding protein 5 (GATA5) and GATA binding protein (GATA6) play important roles in embryonic development and their inactivation may result in congenital heart defects (CHDs). In this study, we performed genotypic-phenotypic analyses in two families affected by right-sided CHD diagnosed by echocardiography imaging. Proband A presented with pulmonary valve stenosis, and proband B presented with complex CHD involving the right heart structures. For variant detection, we employed whole-genome single-nucleotide polymorphism (SNP) microarray and family-based whole-exome sequencing (WES) studies. Proband A is a full-term infant who was admitted to the neonatal intensive care unit (NICU) at five days of life for pulmonary valve stenosis (PVS). Genomic studies revealed a normal SNP microarray; however, quad WES analysis identified a novel heterozygous [Chr20:g.61041597C>G (p.Arg237Pro)] variant in the GATA5 gene. Further analysis confirmed that the novel variant was inherited from the mother but was absent in the father and the maternal uncle with a history of heart murmur. Proband B was born prematurely at 35 weeks gestation with a prenatally diagnosed complex CHD. A postnatal evaluation revealed right-sided heart defects including pulmonary atresia with intact ventricular septum (PA/IVS), right ventricular hypoplasia, tricuspid valve hypoplasia, hypoplastic main and bilateral branch pulmonary arteries, and possible coronary sinusoids. Cardiac catheterization yielded anatomy and hemodynamics unfavorable to repair. Hence, heart transplantation was indicated. Upon genomic testing, a normal SNP microarray was observed, while trio WES analysis identified a novel heterozygous [Chr18:c.1757C>T (p.Pro586Leu)] variant in the GATA6 gene. This variant was inherited from the father, who carries a clinical diagnosis of tetralogy of Fallot. These findings provide new insights into novel GATA5/6 variants, elaborate on the genotypic and phenotypic association, and highlight the critical role of GATA5 and GATA6 transcription factors in a wide spectrum of right-sided CHDs.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Jordan Mudery
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Lee-Kai Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Reshma M. Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Nancy J. Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | | | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanly F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Feng W, Hong N, Wu Y, Huang J, Zhang Q, Liu G, Qian Z, Chen Y, Jin L, Ding X, Zhao P, Chen AF, Yu Y. Deficiency of Sox7 leads to congenital aortic stenosis via abnormal valve remodeling. J Mol Cell Cardiol 2025; 199:81-94. [PMID: 39746830 DOI: 10.1016/j.yjmcc.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025]
Abstract
Abnormal valve development is the most common congenital heart malformation. The transcription factor Sox7 plays a critical role in the development of vascular and cardiac septation. However, it remains unclear whether Sox7 is required for heart valve development. In the present study, Sox7 was strongly expressed in the endocardial and mesenchymal cells of the developing aortic valve in mice and humans, and that endocardial cell specific deletion of Sox7 (Nfatc1 Cre;Sox7fl/fl) in mice leads to congenital aortic stenosis basing on our echocardiography data and multiple staining results. Mechanistically, Sox7 influences extracellular matrix (ECM) remodeling of the valve through regulating MMP9. Meanwhile, Sox7 also affects other valvular remodeling processes, including apoptosis and proliferation of valvular cells in Sox7 deficiency mice. Similarly, in valvular interstitial cells (VICs), Sox7 overexpression increased the protein levels of cleaved caspase3 and TUNEL-positive VICs, while Ki67-positive VICs decreased. The reverse trend was observed in VICs with Sox7 deficiency. Significant enhancement of Rbm25 transcriptional levels was observed in the Sox7 overexpression group, and the mRNA and protein levels of calcification markers such as Osterix, Osteopontin and Runx2 were reduced. The reverse trend was observed in VICs with Sox7 deficiency. Von Kossa staining and Alizarin Red staining also demonstrated that sever calcification in Nfatc1 Cre;Sox7fl/fl mice. Moreover, we detected the Sox7 protein expression in human fetal aortic valves in patients with aortic stenosis, in which Sox7 positive mesenchymal cells were decreased. Taken together, these findings identify Sox7 as a potential pathogenic gene responsible for congenital aortic stenosis in human. Our study provides novel strategies for the diagnosis and treatment of congenital valvular malformation.
Collapse
Affiliation(s)
- Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Junxin Huang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiang Nan University, Wuxi 214122, China
| | - Ziling Qian
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lihui Jin
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Pengjun Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
6
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602666. [PMID: 39026742 PMCID: PMC11257636 DOI: 10.1101/2024.07.09.602666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hours of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A. Bisson
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- current address: Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ellen Yang
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly M. Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
- current address: College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Wendy K. Chung
- Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Shi W, Yi X, Ruan H, Wang D, Wu D, Jiang P, Luo L, Ma X, Jiang F, Li C, Wu W, Luo L, Li L, Wang G, Qiu J, Huang H. An animal model recapitulates human hepatic diseases associated with GATA6 mutations. Proc Natl Acad Sci U S A 2025; 122:e2317801121. [PMID: 39739787 PMCID: PMC11725858 DOI: 10.1073/pnas.2317801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Heterozygotic GATA6 mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a gata6 knockout zebrafish which recapitulates most of the symptoms in patients with GATA6 mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases. Particularly in the liver, the zebrafish gata6 model exhibits the paucity of intrahepatic bile ducts, disrupted bile canaliculi, cholestasis, resembling the liver diseases associated with GATA6 mutations. Moreover, an unreported phenotype, hepatic cysts, has been also revealed in the model. Mechanistically, Gata6 interacts with Hhex and binds lrh-1 promoter to synergistically activate its expression, thereby enhancing the Lrh-1-mediated β-catenin signaling which is essential for liver development. This transcriptional activation of lrh-1 is tightly controlled by the negative feedback, in which Lrh1 interacts with Gata6 to weaken its transactivation ability. Moreover, Gata6 level is regulated by Hhex-mediated proteasomal degradation. The orchestration by these three transcription factors precisely modulates Gata6 activity, ensuring β-catenin signaling output and proper liver development in zebrafish. Importantly, the molecular mechanism identified in zebrafish is conserved in human cells. GATA6 mutant variants associated with hepatobiliary malformations in humans interact aberrantly with HHEX, resulting in subsequent impairments of LRH-1 activation. Conclusively, the disease model established here provides both phenotypic and mechanism insights into the human hepatic diseases associated with GATA6 mutations.
Collapse
Affiliation(s)
- Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Donglei Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Dan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Pengfei Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Lisha Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xirui Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Faming Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Cairui Li
- Dali Bai Autonomous Prefecture People’s Hospital, The Third Affiliated Hospital of Dali University, Dali671000, China
| | - Weinan Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang524001, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
8
|
Sam J, Torregroza I, Evans T. Gata6 functions in zebrafish endoderm to regulate late differentiating arterial pole cardiogenesis. Development 2024; 151:dev202895. [PMID: 39133135 PMCID: PMC11423812 DOI: 10.1242/dev.202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve. Dis Model Mech 2024; 17:dmm050934. [PMID: 39253784 PMCID: PMC11413932 DOI: 10.1242/dmm.050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
10
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Intricate MIB1-NOTCH-GATA6 Interactions in Cardiac Valvular and Septal Development. J Cardiovasc Dev Dis 2024; 11:223. [PMID: 39057643 PMCID: PMC11277162 DOI: 10.3390/jcdd11070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-wide association studies and experimental mouse models implicate the MIB1 and GATA6 genes in congenital heart disease (CHD). Their close physical proximity and conserved synteny suggest that these two genes might be involved in analogous cardiac developmental processes. Heterozygous Gata6 loss-of-function mutations alone or humanized Mib1 mutations in a NOTCH1-sensitized genetic background cause bicuspid aortic valve (BAV) and a membranous ventricular septal defect (VSD), consistent with MIB1 and NOTCH1 functioning in the same pathway. To determine if MIB1-NOTCH and GATA6 interact in valvular and septal development, we generated compound heterozygote mice carrying different Mib1 missense (Mib1K735R and Mib1V943F) or nonsense (Mib1R530X) mutations with the Gata6STOP/+ heterozygous null mutation. Combining Mib1R530X/+ or Mib1K735R/+ with Gata6STOP/+ does not affect Gata6STOP/+ single mutant phenotypes. In contrast, combining Mib1V943F/+ with Gata6STOP/+ decreases the incidence of BAV and VSD by 50%, suggesting a suppressive effect of Mib1V943F/+ on Gata6STOP/+. Transcriptomic and functional analyses revealed that while the EMT pathway term is depleted in the Gata6STOP/+ mutant, introducing the Mib1V943F variant robustly enriches this term, consistent with the Mib1V943F/+ phenotypic suppression of Gata6STOP/+. Interestingly, combined Notch1 and Gata6 insufficiency led to a nearly fully penetrant VSD but did not affect the BAV phenotype, underscoring the complex functional relationship between MIB1, NOTCH, and GATA6 in valvular and septal development.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
11
|
Waheed‐Ullah Q, Wilsdon A, Abbad A, Rochette S, Bu'Lock F, Hitz M, Dombrowsky G, Cuello F, Brook JD, Loughna S. Effect of deletion of the protein kinase PRKD1 on development of the mouse embryonic heart. J Anat 2024; 245:70-83. [PMID: 38419169 PMCID: PMC11161829 DOI: 10.1111/joa.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly, with an overall incidence of approximately 1% in the United Kingdom. Exome sequencing in large CHD cohorts has been performed to provide insights into the genetic aetiology of CHD. This includes a study of 1891 probands by our group in collaboration with others, which identified three novel genes-CDK13, PRKD1, and CHD4, in patients with syndromic CHD. PRKD1 encodes a serine/threonine protein kinase, which is important in a variety of fundamental cellular functions. Individuals with a heterozygous mutation in PRKD1 may have facial dysmorphism, ectodermal dysplasia and may have CHDs such as pulmonary stenosis, atrioventricular septal defects, coarctation of the aorta and bicuspid aortic valve. To obtain a greater appreciation for the role that this essential protein kinase plays in cardiogenesis and CHD, we have analysed a Prkd1 transgenic mouse model (Prkd1em1) carrying deletion of exon 2, causing loss of function. High-resolution episcopic microscopy affords detailed morphological 3D analysis of the developing heart and provides evidence for an essential role of Prkd1 in both normal cardiac development and CHD. We show that homozygous deletion of Prkd1 is associated with complex forms of CHD such as atrioventricular septal defects, and bicuspid aortic and pulmonary valves, and is lethal. Even in heterozygotes, cardiac differences occur. However, given that 97% of Prkd1 heterozygous mice display normal heart development, it is likely that one normal allele is sufficient, with the defects seen most likely to represent sporadic events. Moreover, mRNA and protein expression levels were investigated by RT-qPCR and western immunoblotting, respectively. A significant reduction in Prkd1 mRNA levels was seen in homozygotes, but not heterozygotes, compared to WT littermates. While a trend towards lower PRKD1 protein expression was seen in the heterozygotes, the difference was only significant in the homozygotes. There was no compensation by the related Prkd2 and Prkd3 at transcript level, as evidenced by RT-qPCR. Overall, we demonstrate a vital role of Prkd1 in heart development and the aetiology of CHD.
Collapse
Affiliation(s)
- Qazi Waheed‐Ullah
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Anna Wilsdon
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Aseel Abbad
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Sophie Rochette
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Frances Bu'Lock
- East Midlands Congenital Heart CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Marc‐Phillip Hitz
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Gregor Dombrowsky
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research CenterUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/LübeckUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - J. David Brook
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
12
|
da Silva AR, Gunawan F, Boezio GLM, Faure E, Théron A, Avierinos JF, Lim S, Jha SG, Ramadass R, Guenther S, Looso M, Zaffran S, Juan T, Stainier DYR. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. SCIENCE ADVANCES 2024; 10:eadl0633. [PMID: 38748804 PMCID: PMC11095463 DOI: 10.1126/sciadv.adl0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Giulia L. M. Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Emilie Faure
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Alexis Théron
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Shivam Govind Jha
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Radhan Ramadass
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Stefan Guenther
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stéphane Zaffran
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
13
|
Yu M, Bouatia-Naji N. Insights into the Inherited Basis of Valvular Heart Disease. Curr Cardiol Rep 2024; 26:381-392. [PMID: 38581562 DOI: 10.1007/s11886-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE OF REVIEW: Increases in the availability of genetic data and advances in the tools and methods for their analyses have enabled well-powered genetic association studies that have significantly enhanced our understanding of the genetic factors underlying both rare and common valve diseases. Valvular heart diseases, such as congenital valve malformations and degenerative valve lesions, increase the risk of heart failure, arrhythmias, and sudden death. In this review, we provide an updated overview of our current understanding of the genetic mechanisms underlying valvular heart diseases. With a focus on discoveries from the past 5 years, we describe recent insights into genetic risk and underlying biological pathways. RECENT FINDINGS: Recently acquired knowledge around valvular heart disease genetics has provided important insights into novel mechanisms related to disease pathogenesis. Newly identified risk loci associated valvular heart disease mainly regulate the composition of the extracellular matrix, accelerate the endothelial-to-mesenchymal transition, contribute to cilia formation processes, and play roles in lipid metabolism. Large-scale genomic analyses have identified numerous risk loci, genes, and biological pathways associated with degenerative valve disease and congenital valve malformations. Shared risk genes suggest common mechanistic pathways for various valve pathologies. More recent studies have combined cardiac magnetic resonance imaging and machine learning to offer a novel approach for exploring genotype-phenotype relationships regarding valve disease. Progress in the field holds promise for targeted prevention, particularly through the application of polygenic risk scores, and innovative therapies based on the biological mechanisms for predominant forms of valvular heart diseases.
Collapse
Affiliation(s)
- Mengyao Yu
- Shanghai Pudong Hospital, Human Phenome Institute, Fudan University Pudong Medical Center, Zhangjiang Fudan International Innovation Center, Fundan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | | |
Collapse
|
14
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Lin Y, Yang Q, Lin X, Liu X, Qian Y, Xu D, Cao N, Han X, Zhu Y, Hu W, He X, Yu Z, Kong X, Zhu L, Zhong Z, Liu K, Zhou B, Wang Y, Peng J, Zhu W, Wang J. Extracellular Matrix Disorganization Caused by ADAMTS16 Deficiency Leads to Bicuspid Aortic Valve With Raphe Formation. Circulation 2024; 149:605-626. [PMID: 38018454 DOI: 10.1161/circulationaha.123.065458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Qifan Yang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaoping Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xianbao Liu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Yi Qian
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Dilin Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Naifang Cao
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (X.H.)
| | - Yanqing Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaopeng He
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhengyang Yu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiangmin Kong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Lianlian Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhiwei Zhong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Kai Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences (B.Z.)
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, China (Y.W.)
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Jian'an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute (J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| |
Collapse
|
16
|
Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M, Yamagishi H, McBride KL, White P, Garg V. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res 2024; 95:146-155. [PMID: 37700164 PMCID: PMC11800323 DOI: 10.1038/s41390-023-02811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Pathogenic GATA6 variants have been associated with congenital heart disease (CHD) and a spectrum of extracardiac abnormalities, including pancreatic agenesis, congenital diaphragmatic hernia, and developmental delay. However, the comprehensive genotype-phenotype correlation of pathogenic GATA6 variation in humans remains to be fully understood. METHODS Exome sequencing was performed in a family where four members had CHD. In vitro functional analysis of the GATA6 variant was performed using immunofluorescence, western blot, and dual-luciferase reporter assay. RESULTS A novel, heterozygous missense variant in GATA6 (c.1403 G > A; p.Cys468Tyr) segregated with affected members in a family with CHD, including three with persistent truncus arteriosus. In addition, one member had childhood onset diabetes mellitus (DM), and another had necrotizing enterocolitis (NEC) with intestinal perforation. The p.Cys468Tyr variant was located in the c-terminal zinc finger domain encoded by exon 4. The mutant protein demonstrated an abnormal nuclear localization pattern with protein aggregation and decreased transcriptional activity. CONCLUSIONS We report a novel, familial GATA6 likely pathogenic variant associated with CHD, DM, and NEC with intestinal perforation. These findings expand the phenotypic spectrum of pathologic GATA6 variation to include intestinal abnormalities. IMPACT Exome sequencing identified a novel heterozygous GATA6 variant (p.Cys468Tyr) that segregated in a family with CHD including persistent truncus arteriosus, atrial septal defects and bicuspid aortic valve. Additionally, affected members displayed extracardiac findings including childhood-onset diabetes mellitus, and uniquely, necrotizing enterocolitis with intestinal perforation in the first four days of life. In vitro functional assays demonstrated that GATA6 p.Cys468Tyr variant leads to cellular localization defects and decreased transactivation activity. This work supports the importance of GATA6 as a causative gene for CHD and expands the phenotypic spectrum of pathogenic GATA6 variation, highlighting neonatal intestinal perforation as a novel extracardiac phenotype.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sathiya N Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - David M Gordon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Patrick J Lawrence
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mona Aljuhani
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Stiver
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amee M Bigelow
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kim L McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Geng Z, Li W, Yang P, Zhang S, Wu S, Xiong J, Sun K, Zhu D, Chen S, Zhang B. Whole exome sequencing reveals genetic landscape associated with left ventricular outflow tract obstruction in Chinese Han population. Front Genet 2023; 14:1267368. [PMID: 38164514 PMCID: PMC10757952 DOI: 10.3389/fgene.2023.1267368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Left ventricular outflow tract obstruction (LVOTO), a major form of outflow tract malformation, accounts for a substantial portion of congenital heart defects (CHDs). Unlike its prevalence, the genetic architecture of LVOTO remains largely unknown. To unveil the genetic mutations and risk genes potentially associated with LVOTO, we enrolled a cohort of 106 LVOTO patients and 100 healthy controls and performed a whole-exome sequencing (WES). 71,430 rare deleterious mutations were found in LVOTO patients. By using gene-based burden testing, we further found 32 candidate genes enriched in LVOTO patient including known pathological genes such as GATA5 and GATA6. Most variants of 32 risk genes occur simultaneously rather exclusively suggesting polygenic inherence of LVOTO and 14 genes out of 32 risk genes interact with previously discovered CHD genes. Single cell RNA-seq further revealed dynamic expressions of GATA5, GATA6, FOXD3 and MYO6 in endocardium and neural crest lineage indicating the mutations of these genes lead to LVOTO possibly through different lineages. These findings uncover the genetic architecture of LVOTO which advances the current understanding of LVOTO genetics.
Collapse
Affiliation(s)
- Zilong Geng
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Yang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Luna-Zurita L, Flores-Garza BG, Grivas D, Siguero-Álvarez M, de la Pompa JL. Cooperative Response to Endocardial Notch Reveals Interaction With Hippo Pathway. Circ Res 2023; 133:1022-1039. [PMID: 37961886 PMCID: PMC10699509 DOI: 10.1161/circresaha.123.323474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The endocardium is a crucial signaling center for cardiac valve development and maturation. Genetic analysis has identified several human endocardial genes whose inactivation leads to bicuspid aortic valve formation and calcific aortic valve disease, but knowledge is very limited about the role played in valve development and disease by noncoding endocardial regulatory regions and upstream factors. METHODS We manipulated Notch signaling in mouse embryonic endocardial cells by short-term and long-term coculture with OP9 stromal cells expressing Notch ligands and inhibition of Notch activity. We examined the transcriptional profile and chromatin accessibility landscape for each condition, integrated transcriptomic, transcription factor occupancy, chromatin accessibility, and proteomic datasets. We generated in vitro and in vivo models with CRISPR-Cas9-edited deletions of various noncoding regulatory elements and validated their regulatory potential. RESULTS We identified primary and secondary transcriptional responses to Notch ligands in the mouse embryonic endocardium, and a NOTCH-dependent transcriptional signature in valve development and disease. By defining the changes in the chromatin accessibility landscape and integrating with the landscape in developing mouse endocardium and adult human valves, we identify potential noncoding regulatory elements, validated selected candidates, propose interacting cofactors, and define the timeframe of their regulatory activity. Additionally, we found cooperative transcriptional repression with Hippo pathway by inhibiting nuclear Yap (Yes-associated protein) activity in the endocardium during cardiac valve development. CONCLUSIONS Sequential Notch-dependent transcriptional regulation in the embryonic endocardium involves multiple factors. Notch activates certain noncoding elements through these factors and simultaneously suppresses elements that could hinder cardiac valve development and homeostasis. Biorxviv: https://www.biorxiv.org/content/10.1101/2023.03.23.533882v1.full.
Collapse
Affiliation(s)
- Luis Luna-Zurita
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Brenda Giselle Flores-Garza
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Dimitrios Grivas
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece (D.G.)
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| |
Collapse
|
19
|
Queen R, Crosier M, Eley L, Kerwin J, Turner JE, Yu J, Alqahtani A, Dhanaseelan T, Overman L, Soetjoadi H, Baldock R, Coxhead J, Boczonadi V, Laude A, Cockell SJ, Kane MA, Lisgo S, Henderson DJ. Spatial transcriptomics reveals novel genes during the remodelling of the embryonic human arterial valves. PLoS Genet 2023; 19:e1010777. [PMID: 38011284 PMCID: PMC10703419 DOI: 10.1371/journal.pgen.1010777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/07/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.
Collapse
Affiliation(s)
- Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Janet Kerwin
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jasmin E. Turner
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Ahlam Alqahtani
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Tamilvendhan Dhanaseelan
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lynne Overman
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Hannah Soetjoadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Richard Baldock
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh University, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Veronika Boczonadi
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Alex Laude
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Simon J. Cockell
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven Lisgo
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
20
|
Yang X, Zong Y, Zhang Z, Zhao Y, Gao X, Zhang J, Hou Q, Li R, Xiao B. Identification of Potential Abnormal Methylation-Modified Genes in Coronary Artery Ectasia. Int J Genomics 2023; 2023:4969605. [PMID: 37662558 PMCID: PMC10474963 DOI: 10.1155/2023/4969605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background Coronary artery ectasia (CAE) is an easily recognized abnormality of coronary artery anatomy and morphology. However, its pathogenesis remains unclear. Objectives This study aimed to identify abnormal methylation-modified genes in patients with CAE, which could provide a research basis for CAE. Methods Peripheral venous blood samples from patients with CAE were collected for RNA sequencing to identify differentially expressed genes (DEGs), followed by functional enrichment. Then, the DNA methylation profile of CAE was downloaded from GSE87016 (HumanMethylation450 BeadChip data, involving 11 cases and 12 normal controls) to identify differentially methylated genes (DMGs). Finally, after taking interaction genes between DEGs and DMGs, abnormal methylation-modified genes were identified, followed by protein-protein interaction analysis and expression validation using reverse transcriptase polymerase chain reaction. Results A total of 152 DEGs and 4318 DMGs were obtained from RNA sequencing and the GSE87016 dataset, respectively. After taking interaction genes, 9 down-regulated DEGs due to hypermethylation and 11 up-regulated DEGs due to hypomethylation were identified in CAE. A total of 10 core abnormal methylation-modified genes were identified, including six down-regulated DEGs due to hypermethylation (netrin G1, ADAM metallopeptidase domain 12, immunoglobulin superfamily member 10, sarcoglycan dela, Dickkopf WNT signaling pathway inhibitor 3, and GATA binding protein 6), and four up-regulated DEGs due to hypomethylation (adrenomedullin, ubiquitin specific peptidase 18, lymphocyte antigen 6 family member E, and MX dynamin-like GTPase 1). Some signaling pathways were identified in patients with CAE, including cell adhesion molecule, O-glycan biosynthesis, and the renin-angiotensin system. Conclusions Abnormal methylation-modified DEGs involved in signaling pathways may be involved in CAE development.
Collapse
Affiliation(s)
- Xiuchun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Zong
- School of Nursing, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhentian Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Gao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Renyi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Tessler I, Albuisson J, Piñeiro-Sabarís R, Verstraeten A, Kamber Kaya HE, Siguero-Álvarez M, Goudot G, MacGrogan D, Luyckx I, Shpitzen S, Levin G, Kelman G, Reshef N, Mananet H, Holdcraft J, Muehlschlegel JD, Peloso GM, Oppenheim O, Cheng C, Mazzella JM, Andelfinger G, Mital S, Eriksson P, Billon C, Heydarpour M, Dietz HC, Jeunemaitre X, Leitersdorf E, Sprinzak D, Blacklow SC, Body SC, Carmi S, Loeys B, de la Pompa JL, Gilon D, Messas E, Durst R. Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve. JAMA Cardiol 2023; 8:721-731. [PMID: 37405741 PMCID: PMC10323766 DOI: 10.1001/jamacardio.2023.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/21/2023] [Indexed: 07/06/2023]
Abstract
Importance Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective To identify a new gene for nsBAV. Design, Setting, and Participants This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Idit Tessler
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juliette Albuisson
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hatem Elif Kamber Kaya
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillaume Goudot
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Ilse Luyckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shoshana Shpitzen
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galina Levin
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Kelman
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Noga Reshef
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Hugo Mananet
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Jake Holdcraft
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Olya Oppenheim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Charles Cheng
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Jean-Michael Mazzella
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, Montreal, Quebec, Canada
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Clarisse Billon
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
| | - Mahyar Heydarpour
- Department of Medicine, Division of Endocrinology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xavier Jeunemaitre
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eran Leitersdorf
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Simon C. Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Dan Gilon
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Emmanuel Messas
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Ronen Durst
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Jabagi H, Levine D, Gharibeh L, Camillo C, Castillero E, Ferrari G, Takayama H, Grau JB. Implications of Bicuspid Aortic Valve Disease and Aortic Stenosis/Insufficiency as Risk Factors for Thoracic Aortic Aneurysm. Rev Cardiovasc Med 2023; 24:178. [PMID: 39077527 PMCID: PMC11264121 DOI: 10.31083/j.rcm2406178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 07/31/2024] Open
Abstract
Bicuspid Aortic Valves (BAV) are associated with an increased incidence of thoracic aortic aneurysms (TAA). TAA are a common aortic pathology characterized by enlargement of the aortic root and/or ascending aorta, and may become life threatening when left untreated. Typically occurring as the sole pathology in a patient, TAA are largely asymptomatic. However, in some instances, they are accompanied by aortic valve (AV) diseases: either congenital BAV or acquired in the form of Aortic Insufficiency (AI) or aortic stenosis (AS). When TAA are associated with aortic valve disease, determining an accurate and predictable prognosis becomes especially challenging. Patients with AV disease and concomitant TAA lack a widely accepted diagnostic approach, one that integrates our knowledge on aortic valve pathophysiology and encompasses multi-modality imaging approaches. This review summarizes the most recent scientific knowledge regarding the association between AV diseases (BAV, AI, AS) and ascending aortopathies (dilatation, aneurysm, and dissection). We aimed to pinpoint the gaps in monitoring practices and prediction of disease progression in TAA patients with concomitant AV disease. We propose that a morphological and functional analysis of the AV with multi-modality imaging should be included in aortic surveillance programs. This strategy would allow for improved risk stratification of these patients, and possibly new AV phenotypic-specific guidelines with more vigilant surveillance and earlier prophylactic surgery to improve patient outcomes.
Collapse
Affiliation(s)
- Habib Jabagi
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Department of Cardiovascular Surgery, Mt. Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Dov Levine
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Lara Gharibeh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Chiara Camillo
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | | | - Giovanni Ferrari
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Hiroo Takayama
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Juan B. Grau
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
25
|
Sun BJ, Song JK. Bicuspid aortic valve: evolving knowledge and new questions. Heart 2022; 109:10-17. [PMID: 35264416 DOI: 10.1136/heartjnl-2021-320008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Bicuspid aortic valve (BAV), a common congenital anomaly with various morphological phenotypes, is also characterised by marked heterogeneity in clinical presentations including clinically silent condition with mild valvulo-aortopathy, progressive valvulopathy and complex valvulo-aortopathy with shorter life expectancy. The clinical importance of using a general and unified nosology for BAV is well-accepted by opinion leaders and an international consensus statement has been recently published, which will serve as an important scientific platform for BAV. This review describes the current knowledge of BAV based on clinical studies, addresses several unresolved issues requiring investigators' attention and highlights the necessity of prospective studies with a very long follow-up duration for better appreciation of BAV-associated valvulo-aortopathy. In addition, the progression of valvular calcification in patients with BAV and its potential contribution to development of valvulopathy will be discussed.
Collapse
Affiliation(s)
- Byung Joo Sun
- Division of Cardiology, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jae-Kwan Song
- Valvular Heart Disease Center, Asan Medical Center Heart Institute, Seoul, South Korea .,Research Institute for Valvular Heart Disease, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Clift CL, Saunders J, Drake RR, Angel PM. Perspectives on pediatric congenital aortic valve stenosis: Extracellular matrix proteins, post translational modifications, and proteomic strategies. Front Cardiovasc Med 2022; 9:1024049. [PMID: 36439995 PMCID: PMC9685993 DOI: 10.3389/fcvm.2022.1024049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
In heart valve biology, organization of the extracellular matrix structure is directly correlated to valve function. This is especially true in cases of pediatric congenital aortic valve stenosis (pCAVS), in which extracellular matrix (ECM) dysregulation is a hallmark of the disease, eventually leading to left ventricular hypertrophy and heart failure. Therapeutic strategies are limited, especially in pediatric cases in which mechanical and tissue engineered valve replacements may not be a suitable option. By identifying mechanisms of translational and post-translational dysregulation of ECM in CAVS, potential drug targets can be identified, and better bioengineered solutions can be developed. In this review, we summarize current knowledge regarding ECM proteins and their post translational modifications (PTMs) during aortic valve development and disease and contributing factors to ECM dysregulation in CAVS. Additionally, we aim to draw parallels between other fibrotic disease and contributions to ECM post-translational modifications. Finally, we explore the current treatment options in pediatrics and identify how the field of proteomics has advanced in recent years, highlighting novel characterization methods of ECM and PTMs that may be used to identify potential therapeutic strategies relevant to pCAVS.
Collapse
Affiliation(s)
- Cassandra L. Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Saunders
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Peggi M. Angel,
| |
Collapse
|
27
|
Ito S, Lu HS, Daugherty A, Sawada H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes (Basel) 2022; 13:genes13091618. [PMID: 36140786 PMCID: PMC9498804 DOI: 10.3390/genes13091618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner with the proximal region being a common location. In this region, SMCs are derived embryonically from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the proximal thoracic aorta and their functions in TAAs.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-(859)-218-1705
| |
Collapse
|
28
|
Khazamipour A, Gholampour-Faroji N, Zeraati T, Vakilian F, Haddad-Mashadrizeh A, Ghayour Mobarhan M, Pasdar A. A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis. Sci Rep 2022; 12:13752. [PMID: 35962153 PMCID: PMC9374661 DOI: 10.1038/s41598-022-13993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM), one of the most common types of cardiomyopathies has a heterogeneous nature and can be seen in Mendelian forms. Next Generation Sequencing is a powerful tool for identifying novel variants in monogenic disorders. We used whole-exome sequencing (WES) and Sanger sequencing techniques to identify the causative mutation of DCM in an Iranian pedigree. We found a novel variant in the GATA6 gene, leading to substituting Histidine by Tyrosine at position 329, observed in all affected family members in the pedigree, whereas it was not established in any of the unaffected ones. We hypothesized that the H329Y mutation may be causative for the familial pattern of DCM in this family. The predicted models of GATA6 and H329Y showed the high quality according to PROCHECK and ERRAT. Nonetheless, simulation results revealed that the protein stability decreased after mutation, while the flexibility may have been increased. Hence, the mutation led to the increased compactness of GATA6. Overall, these data indicated that the mutation could affect the protein structure, which may be related to the functional impairment of GATA6 upon H329Y mutation, likewise their involvement in pathologies. Further functional investigations would help elucidating the exact mechanism.
Collapse
Affiliation(s)
- Afrouz Khazamipour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Tina Zeraati
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
- Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Lu P, Wang P, Wu B, Wang Y, Liu Y, Cheng W, Feng X, Yuan X, Atteya MM, Ferro H, Sugi Y, Rydquist G, Esmaily M, Butcher JT, Chang CP, Lenz J, Zheng D, Zhou B. A SOX17-PDGFB signaling axis regulates aortic root development. Nat Commun 2022; 13:4065. [PMID: 35831318 PMCID: PMC9279414 DOI: 10.1038/s41467-022-31815-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an, Shanxi, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Cheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuhui Feng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xinchun Yuan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Miriam M Atteya
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Haleigh Ferro
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Grant Rydquist
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Mahdi Esmaily
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ching-Pin Chang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jack Lenz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
Guo S, Zhang E, Zhang B, Liu Q, Meng Z, Li Z, Wang C, Gong Z, Wu Y. Identification of Key Non-coding RNAs and Transcription Factors in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:826744. [PMID: 35845040 PMCID: PMC9276990 DOI: 10.3389/fcvm.2022.826744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is one of the most frequently occurring valvular heart diseases among the aging population. Currently, there is no known pharmacological treatment available to delay or reverse CAVD progression. The regulation of gene expression could contribute to the initiation, progression, and treatment of CAVD. Non-coding RNAs (ncRNAs) and transcription factors play essential regulatory roles in gene expression in CAVD; thus, further research is urgently needed. Materials and Methods The gene-expression profiles of GSE51472 and GSE12644 were obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified in each dataset. A protein-protein-interaction (PPI) network of DEGs was then constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and functional modules were analyzed with ClusterOne plugin in Cytoscape. Furthermore, Gene Ontology-functional annotation and Kyoto Encyclopedia of Genes and Genomes-pathway analysis were conducted for each functional module. Most crucially, ncRNAs and transcription factors acting on each functional module were separately identified using the RNAInter and TRRUST databases. The expression of predicted transcription factors and key genes was validated using GSE51472 and GSE12644. Furthermore, quantitative real-time PCR (qRT-PCR) experiments were performed to validate the differential expression of most promising candidates in human CAVD and control samples. Results Among 552 DEGs, 383 were upregulated and 169 were downregulated. In the PPI network, 15 functional modules involving 182 genes and proteins were identified. After hypergeometric testing, 45 ncRNAs and 33 transcription factors were obtained. Among the predicted transcription factors, CIITA, HIF1A, JUN, POU2F2, and STAT6 were differentially expressed in both the training and validation sets. In addition, we found that key genes, namely, CD2, CD86, CXCL8, FCGR3B, GZMB, ITGB2, LY86, MMP9, PPBP, and TYROBP were also differentially expressed in both the training and validation sets. Among the most promising candidates, differential expressions of ETS1, JUN, NFKB1, RELA, SP1, STAT1, ANCR, and LOC101927497 were identified via qRT-PCR experiments. Conclusion In this study, we identified functional modules with ncRNAs and transcription factors involved in CAVD pathogenesis. The current results suggest candidate molecules for further research on CAVD.
Collapse
|
31
|
Rao KS, Kameswaran V, Bruneau BG. Modeling congenital heart disease: lessons from mice, hPSC-based models, and organoids. Genes Dev 2022; 36:652-663. [PMID: 35835508 PMCID: PMC9296004 DOI: 10.1101/gad.349678.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.
Collapse
Affiliation(s)
- Kavitha S Rao
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
- Department of Pediatrics and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
32
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
33
|
Williams SG, Byrne DJF, Keavney BD. Rare GATA6 variants associated with risk of congenital heart disease phenotypes in 200,000 UK Biobank exomes. J Hum Genet 2022; 67:123-125. [PMID: 34493817 PMCID: PMC8786659 DOI: 10.1038/s10038-021-00976-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Congenital heart disease (CHD) has a complex and largely uncharacterised genetic etiology. Using 200,000 UK Biobank (UKB) exomes, we assess the burden of ultra-rare, potentially pathogenic variants in the largest case/control cohort of predominantly mild CHD to date. We find an association with GATA6, a member of the GATA family of transcription factors that play an important role during heart development and has been linked with several CHD phenotypes previously. Several identified GATA6 variants are previously unreported and their roles in conferring risk to CHD warrants further study. We demonstrate that despite limitations regarding detailed familial phenotype information in large-scale biobank projects, through careful consideration of case and control cohorts it is possible to derive important associations.
Collapse
Affiliation(s)
- Simon G Williams
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dominic J F Byrne
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
34
|
Henderson DJ, Eley L, Turner JE, Chaudhry B. Development of the Human Arterial Valves: Understanding Bicuspid Aortic Valve. Front Cardiovasc Med 2022; 8:802930. [PMID: 35155611 PMCID: PMC8829322 DOI: 10.3389/fcvm.2021.802930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormalities in the arterial valves are some of the commonest congenital malformations, with bicuspid aortic valve (BAV) occurring in as many as 2% of the population. Despite this, most of what we understand about the development of the arterial (semilunar; aortic and pulmonary) valves is extrapolated from investigations of the atrioventricular valves in animal models, with surprisingly little specifically known about how the arterial valves develop in mouse, and even less in human. In this review, we summarise what is known about the development of the human arterial valve leaflets, comparing this to the mouse where appropriate.
Collapse
Affiliation(s)
- Deborah J. Henderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
A large portion of thoracic aortic aneurysms and dissections (TAAD) have a genetic etiology. In recent decades, numerous genes have been identified as associated with heritable thoracic aortic aneurysms and dissections (HTAAD), providing important insights into the underlying molecular mechanisms of both conditions. Today's sequencing technology has allowed us to screen people with high risk of HTAAD, and provide gene‑tailored treatment and management. This review aims to provide an overview of the genetic basis of HTAAD, its underlying molecular mechanism, and practical recommendations for genetic and clinical evaluation as well as patient management.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, North Campus Research Complex, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Bo Yang
- Department of Cardiac Surgery, North Campus Research Complex, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
36
|
Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021; 10:2366-2386. [PMID: 34733677 PMCID: PMC8506053 DOI: 10.21037/tp-21-297] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
38
|
Abstract
Bicuspid aortic valve (BAV) is the most common valvular congenital heart disease, with a prevalence of 0.5 to 2% in the general population. Patients with BAV are at risk for developing cardiovascular complications, some of which are life-threatening. BAV has a wide spectrum of clinical presentations, ranging from silent malformation to severe and even fatal cardiac events. Despite the significant burden on both the patients and the health systems, data are limited regarding pathophysiology, risk factors, and genetics. Family studies indicate that BAV is highly heritable, with autosomal dominant inheritance, incomplete penetrance, variable expressivity, and male predominance. Owing to its complex genetic model, including high genetic heterogenicity, only a few genes were identified in association with BAV, while the majority of BAV genetics remains obscure. Here, we review the different forms of BAV and the current data regarding its genetics. Given the clear heritably of BAV with the potential high impact on clinical outcome, the clinical value and cost effectiveness of cascade screening are discussed.
Collapse
|
39
|
Jiang X, Li T, Liu S, Fu Q, Li F, Chen S, Sun K, Xu R, Xu Y. Variants in a cis-regulatory element of TBX1 in conotruncal heart defect patients impair GATA6-mediated transactivation. Orphanet J Rare Dis 2021; 16:334. [PMID: 34332615 PMCID: PMC8325851 DOI: 10.1186/s13023-021-01981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background TBX1 (T-box transcription factor 1) is a major candidate gene that likely contributes to the etiology of velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Although the haploinsufficiency of TBX1 in both mice and humans results in congenital cardiac malformations, little has been elucidated about its upstream regulation. We aimed to explore the transcriptional regulation and dysregulation of TBX1. Methods Different TBX1 promoter reporters were constructed. Luciferase assays and electrophoretic mobility shift assays (EMSAs) were used to identify a cis-regulatory element within the TBX1 promoter region and its trans-acting factor. The expression of proteins was identified by immunohistochemistry and immunofluorescence. Variants in the cis-regulatory element were screened in conotruncal defect (CTD) patients. In vitro functional assays were performed to show the effects of the variants found in CTD patients on the transactivation of TBX1. Results We identified a cis-regulatory element within intron 1 of TBX1 that was found to be responsive to GATA6 (GATA binding protein 6), a transcription factor crucial for cardiogenesis. The expression patterns of GATA6 and TBX1 overlapped in the pharyngeal arches of human embryos. Transfection experiments and EMSA indicated that GATA6 could activate the transcription of TBX1 by directly binding with its GATA cis-regulatory element in vitro. Furthermore, sequencing analyses of 195 sporadic CTD patients without the 22q11.2 deletion or duplication identified 3 variants (NC_000022.11:g.19756832C > G, NC_000022.11:g.19756845C > T, and NC_000022.11:g. 19756902G > T) in the non-coding cis-regulatory element of TBX1. Luciferase assays showed that all 3 variants led to reduced transcription of TBX1 when incubated with GATA6. Conclusions Our findings showed that TBX1 might be a direct transcriptional target of GATA6, and variants in the non-coding cis-regulatory element of TBX1 disrupted GATA6-mediated transactivation. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01981-4.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tingting Li
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
40
|
Wang Y, Fang Y, Lu P, Wu B, Zhou B. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:682298. [PMID: 34239905 PMCID: PMC8259786 DOI: 10.3389/fcvm.2021.682298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/14/2021] [Indexed: 01/05/2023] Open
Abstract
NOTCH intercellular signaling mediates the communications between adjacent cells involved in multiple biological processes essential for tissue morphogenesis and homeostasis. The NOTCH1 mutations are the first identified human genetic variants that cause congenital bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). Genetic variants affecting other genes in the NOTCH signaling pathway may also contribute to the development of BAV and the pathogenesis of CAVD. While CAVD occurs commonly in the elderly population with tri-leaflet aortic valve, patients with BAV have a high risk of developing CAVD at a young age. This observation indicates an important role of NOTCH signaling in the postnatal homeostasis of the aortic valve, in addition to its prenatal functions during aortic valve development. Over the last decade, animal studies, especially with the mouse models, have revealed detailed information in the developmental etiology of congenital aortic valve defects. In this review, we will discuss the molecular and cellular aspects of aortic valve development and examine the embryonic pathogenesis of BAV. We will focus our discussions on the NOTCH signaling during the endocardial-to-mesenchymal transformation (EMT) and the post-EMT remodeling of the aortic valve. We will further examine the involvement of the NOTCH mutations in the postnatal development of CAVD. We will emphasize the deleterious impact of the embryonic valve defects on the homeostatic mechanisms of the adult aortic valve for the purpose of identifying the potential therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bin Zhou
- Departments of Genetics, Pediatrics (Pediatric Genetic Medicine), and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
- The Einstein Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
41
|
The impact of genetic factors and testing on operative indications and extent of surgery for aortopathy. JTCVS OPEN 2021; 6:15-23. [PMID: 36003569 PMCID: PMC9390368 DOI: 10.1016/j.xjon.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
|
42
|
Junco-Vicente A, del Río-García Á, Martín M, Rodríguez I. Update in Biomolecular and Genetic Bases of Bicuspid Aortopathy. Int J Mol Sci 2021; 22:ijms22115694. [PMID: 34071740 PMCID: PMC8198265 DOI: 10.3390/ijms22115694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) associated with aortopathy is the most common congenital heart disease in the general population. Far from being a simple harmless valve malformation, it can be a complex and heterogeneous disease and a source of chronic and acute pathology (early valvular disease, aneurysm, dissection). In the previous years, intense research has been carried out to find out and understand its mechanisms, but the pathophysiology of the disease is still not fully understood and many questions remain open. Recent studies have discovered several genetic mutations involved in the development of valvular and aortic malformations, but still cannot explain more than 5–10% of cases. Other studies have also focused on molecular alterations and cellular processes (TGF-β pathway, microRNAs, degradation of the extracellular matrix, metalloproteinases, etc.), being a field in constant search and development, looking for a therapeutic target to prevent the development of the disease. Increased knowledge about this multifaceted disorder, derived from both basic and clinical research, may influence the diagnosis, follow-up, prognosis, and therapies of affected patients in the near future. This review focuses on the latest and outstanding developments on the molecular and genetic investigations of the bicuspid aortopathy.
Collapse
Affiliation(s)
- Alejandro Junco-Vicente
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
| | - Álvaro del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - María Martín
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| |
Collapse
|
43
|
Büttner P, Feistner L, Lurz P, Thiele H, Hutcheson JD, Schlotter F. Dissecting Calcific Aortic Valve Disease-The Role, Etiology, and Drivers of Valvular Fibrosis. Front Cardiovasc Med 2021; 8:660797. [PMID: 34041283 PMCID: PMC8143377 DOI: 10.3389/fcvm.2021.660797] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder that ultimately causes gradual narrowing of the left ventricular outflow orifice with ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation is the hallmark pathology defining this process; however, fibrotic extracellular matrix (ECM) remodeling that leads to extensive deposition of fibrous connective tissue and distortion of the valvular microarchitecture similarly has major biomechanical and functional consequences for heart valve function. Significant advances have been made to unravel the complex mechanisms that govern these active, cell-mediated processes, yet the interplay between fibrosis and calcification and the individual contribution to progressive extracellular matrix stiffening require further clarification. Specifically, we discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3) imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5) molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse remodeling. This review explores our current understanding of the cellular and molecular drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Lukas Feistner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Florian Schlotter
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Abstract
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
46
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
47
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
48
|
Abstract
The sinus node (SAN) is the primary pacemaker of the human heart, and abnormalities in its structure or function cause sick sinus syndrome, the most common reason for electronic pacemaker implantation. Here we report that transcription factor GATA6, whose mutations in humans are linked to arrhythmia, is highly expressed in the SAN and its haploinsufficiency in mice results in hypoplastic SANs and rhythm abnormalities. Cell-specific deletion reveals a requirement for GATA6 in various SAN lineages. Mechanistically, GATA6 directly activates key regulators of the SAN genetic program in conduction and nonconduction cells, such as TBX3 and EDN1, respectively. The data identify GATA6 as an important regulator of the SAN and provide a molecular basis for understanding the conduction abnormalities associated with GATA6 mutations in humans. They also suggest that GATA6 may be a potential modifier of the cardiac pacemaker.
Collapse
|
49
|
Ahluwalia N, Gelb BD. A de novo pathogenic BMP2 variant-related phenotype with the novel finding of bicuspid aortic valve. Am J Med Genet A 2020; 185:575-578. [PMID: 33247540 DOI: 10.1002/ajmg.a.61992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022]
Abstract
A rare autosomal dominant syndrome with craniofacial dysmorphisms, skeletal abnormalities, short stature, and congenital heart defects has recently been described, associated with monoallelic truncating and frameshift bone morphogenetic protein 2 (BMP2) variants and deletions. We describe a patient harboring a novel de novo BMP2 nonsense variant, who exhibited craniofacial and skeletal features previously described for this trait and the novel findings of bicuspid aortic valve (BAV) and aortic root and ascending aortic aneurysm. This first instance of aortic valve involvement provides another potential cause of BAV and confirms the role of BMP2 in left ventricular outflow development.
Collapse
Affiliation(s)
- Neha Ahluwalia
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
50
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|