1
|
Wan H, Wu H, Wei Y, Wang S, Ji Y. Novel lipid profiles and atherosclerotic cardiovascular disease risk: insights from a latent profile analysis. Lipids Health Dis 2025; 24:71. [PMID: 40001219 PMCID: PMC11854406 DOI: 10.1186/s12944-025-02471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Dyslipidemia is a key contributor to atherosclerotic cardiovascular disease (ASCVD). Despite the well-established correlation between abnormal lipid metabolism and ASCVD, existing diagnostic and predictive models based on lipid indices alone or in combination often exhibit suboptimal sensitivity and specificity. There is an urgent need for improved lipid indicators or novel combinations thereof. METHODS The study included 898 cardiology inpatients who underwent coronary angiography (CAG). A latent profile analysis (LPA) was utilized to delineate lipid profiles on the basis of four routine lipid indices (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TG)) and the triglyceride‒glucose (TyG) index as a proxy for the TG. Logistic regression models were used to assess the correlations between lipid profiles and the occurrence and severity of coronary artery stenosis (CAS and severe CAS), as well as the occurrence of coronary heart disease (CHD). Predictive modeling subsequently validated the predictive power of the lipid profiles for cardiovascular outcomes. RESULTS The LPA delineated four distinct lipid profiles: Profile 1 (relatively high HDL with the lowest TC, LDL and TyG, 41.20%), Profile 2 (relatively high TC, LDL, and TyG with the lowest HDL, 36.42%), Profile 3 (relatively low TC, LDL and TyG with relatively high HDL, 18.93%), and Profile 4 (the highest TC, LDL, and TyG with the highest HDL, 3.45%). Profile 1 was associated with the lowest ASCVD risk, whereas Profile 2 posed the highest risk for all adverse outcomes. The risk associated with Profile 3 and Profile 4 varied depending on the outcome. Profile 4 presented a lower odds ratio (OR) for CAS than did Profile 3, whereas Profile 3 presented a lower OR for severe CAS and CHD. The lipid profile variable substantially outperformed individual lipid indices or their combinations in predicting cardiovascular outcomes. CONCLUSIONS Four distinct lipid profiles were identified among patients, with a particular profile characterized by lower levels of TC, LDL, and TyG, as well as a lower HDL, emerging as the most predictive of adverse cardiovascular outcomes. This underscores the critical need for a thorough lipid profile analysis to pinpoint individuals at heightened risk for adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Hongli Wan
- Department of Central Laboratory, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an No.1 Hospital, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
| | - Haisheng Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Yuxi Wei
- Department of Central Laboratory, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an No.1 Hospital, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an No.1 Hospital, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China.
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an No.1 Hospital, Xi'an City South Street powder Lane No. 30, Xi'an, Shaanxi, 710002, China.
| |
Collapse
|
2
|
Sinha M, Maged R, Tarar P, Bandi VV, Koneru HM, Sarwar H. Efficacy of Traditional Anti-lipidemic Drugs in Lowering Lipoprotein(a) Levels: A Systematic Review. Cureus 2024; 16:e69824. [PMID: 39435209 PMCID: PMC11491766 DOI: 10.7759/cureus.69824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein(a), or Lp(a), was identified in the early 1960. Its role as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD) became widely recognized by the late 20th century, regardless of other traditional risk markers such as low-density lipoproteins and high-density lipoproteins. This study aimed to systematically review available literature and compare the efficacy of different lipid-lowering drugs, both approved for clinical use and currently undergoing trials, in lowering Lp(a) levels. A comprehensive search of medical databases including PubMed, PubMed Central (PMC), Medline, ScienceDirect, Cochrane Library, and Google Scholar was conducted to identify relevant studies. A total of 29 research papers met the inclusion criteria, focusing on the impact of various lipid-lowering drugs on Lp(a) concentration in patients with significantly elevated baseline Lp(a) levels. Plasma Lp(a) levels exceeding 30 mg/dL are associated with a higher risk of ASCVD, including myocardial infarction, stroke, aortic valve stenosis, heart failure, peripheral arterial disease, and increased all-cause mortality. Most commonly used lipid-lowering agents, such as statins, fibrates, ezetimibe, and nutraceuticals like coenzyme Q10 (CoQ10), showed no significant effect on Lp(a) plasma levels. However, Lp(a) apheresis and proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors were found to effectively reduce plasma Lp(a) concentrations. Emerging therapies targeting apolipoprotein(a) RNA, including anti-sense oligonucleotides (ASO) and small interfering RNA (siRNA), significantly reduced Lp(a) levels in Phase 2 trials. While several lipid-lowering agents have minimal impact on Lp(a) levels, therapies like Lp(a) apheresis, PCSK-9 inhibitors, and novel RNA-targeting drugs show promise in effectively reducing Lp(a) concentrations. However, whether these reductions translate into decreased cardiovascular events remains to be determined.
Collapse
Affiliation(s)
- Mohit Sinha
- Internal Medicine, Jawaharlal Nehru Medical College, Belgaum, IND
| | - Rafik Maged
- Internal Medicine, Ain Shams University, Cairo, EGY
| | - Pakeeza Tarar
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | | | - Hema Manvi Koneru
- Internal Medicine, Rajiv Gandhi Institute of Medical Sciences, Adilabad, IND
| | - Hooria Sarwar
- Psychiatry, Inside Out CURE Psychiatry LLC, Princeton, USA
| |
Collapse
|
3
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
4
|
Delgado-Lista J, Mostaza JM, Arrobas-Velilla T, Blanco-Vaca F, Masana L, Pedro-Botet J, Perez-Martinez P, Civeira F, Cuende-Melero JI, Gomez-Barrado JJ, Lahoz C, Pintó X, Suarez-Tembra M, Lopez-Miranda J, Guijarro C. Consensus on lipoprotein(a) of the Spanish Society of Arteriosclerosis. Literature review and recommendations for clinical practice. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:243-266. [PMID: 38599943 DOI: 10.1016/j.arteri.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The irruption of lipoprotein(a) (Lp(a)) in the study of cardiovascular risk factors is perhaps, together with the discovery and use of proprotein convertase subtilisin/kexin type 9 (iPCSK9) inhibitor drugs, the greatest novelty in the field for decades. Lp(a) concentration (especially very high levels) has an undeniable association with certain cardiovascular complications, such as atherosclerotic vascular disease (AVD) and aortic stenosis. However, there are several current limitations to both establishing epidemiological associations and specific pharmacological treatment. Firstly, the measurement of Lp(a) is highly dependent on the test used, mainly because of the characteristics of the molecule. Secondly, Lp(a) concentration is more than 80% genetically determined, so that, unlike other cardiovascular risk factors, it cannot be regulated by lifestyle changes. Finally, although there are many promising clinical trials with specific drugs to reduce Lp(a), currently only iPCSK9 (limited for use because of its cost) significantly reduces Lp(a). However, and in line with other scientific societies, the SEA considers that, with the aim of increasing knowledge about the contribution of Lp(a) to cardiovascular risk, it is relevant to produce a document containing the current status of the subject, recommendations for the control of global cardiovascular risk in people with elevated Lp(a) and recommendations on the therapeutic approach to patients with elevated Lp(a).
Collapse
Affiliation(s)
- Javier Delgado-Lista
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Jose M Mostaza
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, España
| | - Teresa Arrobas-Velilla
- Sociedad Española de Medicina de Laboratorio (SEQCML), Laboratorio de Bioquímica Clínica, Hospital Universitario Virgen Macarena, Sevilla, España
| | - Francisco Blanco-Vaca
- Departamento de Bioquímica Clínica, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, España
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolismo, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, CIBERDEM, Reus, Tarragona, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona; Departamento de Medicina, Universidad Autónoma de Barcelona, Barcelona, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, España
| | - Jose I Cuende-Melero
- Consulta de Riesgo Vascular, Servicio de Medicina Interna, Complejo Asistencial Universitario de Palencia, Palencia; Departamento de Medicina, Dermatología y Toxicología, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Jose J Gomez-Barrado
- Unidad de Cuidados Cardiológicos Agudos y Riesgo Cardiovascular, Servicio de Cardiología, Hospital Universitario San Pedro de Alcántara, Cáceres, España
| | - Carlos Lahoz
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital La Paz-Carlos III, Madrid, España
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-Idibell-Universidad de Barcelona-CiberObn, España
| | - Manuel Suarez-Tembra
- Unidad de Lípidos y RCV, Servicio de Medicina Interna, Hospital San Rafael, A Coruña, España
| | - Jose Lopez-Miranda
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Carlos Guijarro
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| |
Collapse
|
5
|
Volgman AS, Koschinsky ML, Mehta A, Rosenson RS. Genetics and Pathophysiological Mechanisms of Lipoprotein(a)-Associated Cardiovascular Risk. J Am Heart Assoc 2024; 13:e033654. [PMID: 38879448 PMCID: PMC11255763 DOI: 10.1161/jaha.123.033654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including LPA kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the LPA gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes. Genetic loci beyond LPA, such as APOE and APOH, have been shown to impact lipoprotein(a) levels. Lipoprotein(a) concentrations are generally 5% to 10% higher in women than men, and there is up to a 3-fold difference in median lipoprotein(a) concentrations between racial and ethnic populations. Nongenetic factors, including menopause, diet, and renal function, may also impact lipoprotein(a) concentration. Lipoprotein(a) levels are also influenced by inflammation since the LPA promoter contains an interleukin-6 response element; interleukin-6 released during the inflammatory response results in transient increases in plasma lipoprotein(a) levels. Screening can identify elevated lipoprotein(a) levels and facilitate intensive risk factor management. Several investigational, RNA-targeted agents have shown promising lipoprotein(a)-lowering effects in clinical studies, and large-scale lipoprotein(a) testing will be fundamental to identifying eligible patients should these agents become available. Lipoprotein(a) testing requires routine, nonfasting blood draws, making it convenient for patients. Herein, we discuss the genetic determinants of lipoprotein(a) levels, explore the pathophysiological mechanisms underlying the association between lipoprotein(a) and cardiovascular disease, and provide practical guidance for lipoprotein(a) testing.
Collapse
Affiliation(s)
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and DentistryWestern UniversityLondonONCanada
| | | | - Robert S. Rosenson
- Metabolism and Lipids Program, Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
6
|
Dagli-Hernandez C, Ferreira GM, Freitas RCCD, Borges JB, Oliveira VFD, Gonçalves RM, Faludi AA, Marçal EDSR, Bastos GM, Bortolin RH, Hirata MH, Hirata RDC. Predicted deleterious variants in ABCA1, LPL, LPA and KIF6 are associated with statin response and adverse events in patients with familial hypercholesterolemia and disturb protein structure and stability. Pharmacogenet Genomics 2024; 34:91-104. [PMID: 38682317 DOI: 10.1097/fpc.0000000000000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
OBJECTIVES This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Fang Z, Jia S, Mou X, Li Z, Hu T, Tu Y, Zhao J, Zhang T, Lin W, Lu Y, Feng C, Xia S. Shared genetic architecture and causal relationship between liver and heart disease. iScience 2024; 27:109431. [PMID: 38523778 PMCID: PMC10959668 DOI: 10.1016/j.isci.2024.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
This study investigates the relationship and genetic mechanisms of liver and heart diseases, focusing on the liver-heart axis (LHA) as a fundamental biological basis. Through genome-wide association study analysis, we explore shared genes and pathways related to LHA. Shared genetic factors are found in 8 out of 20 pairs, indicating genetic correlations. The analysis reveals 53 loci with pleiotropic effects, including 8 loci exhibiting shared causality across multiple traits. Based on SNP-p level tissue-specific multi-marker analysis of genomic annotation (MAGMA) analysis demonstrates significant enrichment of pleiotropy in liver and heart diseases within different cardiovascular tissues and female reproductive appendages. Gene-specific MAGMA analysis identifies 343 pleiotropic genes associated with various traits; these genes show tissue-specific enrichment primarily in the liver, cardiovascular system, and other tissues. Shared risk loci between immune cells and both liver and cardiovascular diseases are also discovered. Mendelian randomization analyses provide support for causal relationships among the investigated trait pairs.
Collapse
Affiliation(s)
- Ziyi Fang
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xuanting Mou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Zhe Li
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Tianli Hu
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yiting Tu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Wenting Lin
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yile Lu
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| |
Collapse
|
8
|
Wei WQ, Rowley R, Wood A, MacArthur J, Embi PJ, Denaxas S. Improving reporting standards for phenotyping algorithm in biomedical research: 5 fundamental dimensions. J Am Med Inform Assoc 2024; 31:1036-1041. [PMID: 38269642 PMCID: PMC10990558 DOI: 10.1093/jamia/ocae005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Phenotyping algorithms enable the interpretation of complex health data and definition of clinically relevant phenotypes; they have become crucial in biomedical research. However, the lack of standardization and transparency inhibits the cross-comparison of findings among different studies, limits large scale meta-analyses, confuses the research community, and prevents the reuse of algorithms, which results in duplication of efforts and the waste of valuable resources. RECOMMENDATIONS Here, we propose five independent fundamental dimensions of phenotyping algorithms-complexity, performance, efficiency, implementability, and maintenance-through which researchers can describe, measure, and deploy any algorithms efficiently and effectively. These dimensions must be considered in the context of explicit use cases and transparent methods to ensure that they do not reflect unexpected biases or exacerbate inequities.
Collapse
Affiliation(s)
- Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Robb Rowley
- National Human Genome Research Institute, Bethesda, MD 20892, United States
| | - Angela Wood
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 1TN, United Kingdom
| | - Jacqueline MacArthur
- British Heart Foundation Data Science Center, Health Data Research, London, NW1 2BE, United Kingdom
| | - Peter J Embi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Spiros Denaxas
- British Heart Foundation Data Science Center, Health Data Research, London, NW1 2BE, United Kingdom
- Institute of Health Informatics, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Ugovšek S, Rehberger Likozar A, Levstek T, Trebušak Podkrajšek K, Zupan J, Šebeštjen M. Haplotype of the Lipoprotein(a) Gene Variants rs10455872 and rs3798220 Is Associated with Parameters of Coagulation, Fibrinolysis, and Inflammation in Patients after Myocardial Infarction and Highly Elevated Lipoprotein(a) Values. Int J Mol Sci 2024; 25:736. [PMID: 38255810 PMCID: PMC10815733 DOI: 10.3390/ijms25020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lipoprotein(a) (Lp(a)) is an independent risk factor for future coronary events. Variants rs10455872 and rs3798220 in the gene encoding Lp(a) are associated with an increased Lp(a) concentration and risk of coronary artery disease. We aimed to determine whether in high-risk coronary artery disease patients these two genetic variants and the kringle IV type 2 (KIV-2) repeats are associated with impairment of inflammatory and hemostatic parameters. Patients after myocardial infarction with elevated Lp(a) levels were included. Blood samples underwent biochemical and genetic analyses. In carriers of the AC haplotype, the concentrations of tumor necrosis factor (TNF)-α (4.46 vs. 3.91 ng/L, p = 0.046) and plasminogen activator inhibitor-1 (PAI-1) (p = 0.026) were significantly higher compared to non-carriers. The number of KIV-2 repeats was significantly associated with the concentration of high-sensitivity C-reactive protein (ρ = 0.251, p = 0.038) and overall fibrinolytic potential (r = -0.253, p = 0.038). In our patients, a direct association between the AC haplotype and both TNF-α and PAI-1 levels was observed. Our study shows that the number of KIV-2 repeats not only affects proatherosclerotic and proinflammatory effects of Lp(a) but is also associated with its antifibrinolytic properties.
Collapse
Affiliation(s)
- Sabina Ugovšek
- Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia;
| | - Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (K.T.P.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (K.T.P.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Janja Zupan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| | - Miran Šebeštjen
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia;
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Mukherjee D, Nissen SE. Lipoprotein (a) as a Biomarker for Cardiovascular Diseases and Potential New Therapies to Mitigate Risk. Curr Vasc Pharmacol 2024; 22:171-179. [PMID: 38141196 DOI: 10.2174/0115701611267835231210054909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a molecule that induces inflammation of the blood vessels, atherogenesis, valvular calcification, and thrombosis. METHODS We review the available evidence that suggests that high Lp(a) levels are associated with a persisting risk for atherosclerotic cardiovascular diseases despite optimization of established risk factors, including low-density lipoprotein cholesterol (LDL-C) levels. OBSERVATIONS Approximately a quarter of the world population have Lp(a) levels of >50 mg/dL (125 nmol/L), a level associated with elevated cardiovascular risk. Lifestyle modification, statins, and ezetimibe do not effectively lower Lp(a) levels, while proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors and niacin only lower Lp(a) levels modestly. We describe clinical studies suggesting that gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting Lp(a), offer a targeted approach with the potential for safe and robust Lp(a)- lowering with only a few doses (3-4) per year. Prospective randomized phase 3 studies are ongoing to validate safety, effectiveness in improving hard clinical outcomes, and tolerability to assess these therapies. CONCLUSION Several emerging treatments with robust Lp(a)-lowering effects may significantly lower atherosclerotic cardiovascular risk.
Collapse
Affiliation(s)
- Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, USA
| | - Steven E Nissen
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Fogacci F, Di Micoli V, Avagimyan A, Giovannini M, Imbalzano E, Cicero AFG. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int J Mol Sci 2023; 24:13886. [PMID: 37762189 PMCID: PMC10531419 DOI: 10.3390/ijms241813886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Ashot Avagimyan
- Pathological Anatomy Department, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
12
|
Park JS, Cho KH, Hong YJ, Kim MC, Sim DS, Kim JH, Ahn Y, Jeong MH. Baseline Lipoprotein(a) Levels and Long-Term Cardiovascular Outcomes After Acute Myocardial Infarction. J Korean Med Sci 2023; 38:e102. [PMID: 37012687 PMCID: PMC10070047 DOI: 10.3346/jkms.2023.38.e102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/27/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Lipoprotein(a) is a known independent risk factor for atherosclerotic cardiovascular disease. However, the prognostic impact of the baseline lipoprotein(a) levels on long-term clinical outcomes among patients with acute myocardial infarction remain unclear. METHODS We analyzed 1,908 patients with acute myocardial infarction from November 2011 to October 2015 from a single center in Korea. They were divided into 3 groups according to their baseline lipoprotein(a) levels: groups I (< 30 mg/dL, n = 1,388), II (30-49 mg/dL, n = 263), and III (≥50 mg/dL, n = 257). Three-point major adverse cardiovascular events (a composite of nonfatal myocardial infarction, nonfatal stroke, and cardiac death) at 3 years were compared among the 3 groups. RESULTS The patients were followed for 1094.0 (interquartile range, 1,033.8-1,095.0) days, during which a total of 326 (17.1%) three-point major adverse cardiovascular events occurred. Group III had higher rates of three-point major adverse cardiovascular events compared with Group I (23.0% vs. 15.7%; log-rank P = 0.009). In the subgroup analysis, group III had higher rates of three-point major adverse cardiovascular events compared with group I in patients with non-ST-segment elevation myocardial infarction (27.0% vs. 17.1%; log-rank P = 0.006), but not in patients with ST-segment elevation myocardial infarction (14.4% vs. 13.3%; log-rank P = 0.597). However, in multivariable Cox time-to-event models, baseline lipoprotein(a) levels were not associated with an increased incidence of three-point major adverse cardiovascular events, regardless of the type of acute myocardial infarction. Sensitivity analyses in diverse subgroups showed similar findings to those of the main analysis. CONCLUSION Baseline lipoprotein(a) levels in Korean patients with acute myocardial infarction were not independently associated with increased major adverse cardiovascular events at 3 years.
Collapse
Affiliation(s)
- Joon Sung Park
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung Hoon Cho
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Doo Sun Sim
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
13
|
Fang JX, Almarzooq ZI. Elevated lipoprotein (a) levels in East Asia: bridging the ethnicity data gap. Eur J Prev Cardiol 2023; 30:305-307. [PMID: 36529903 DOI: 10.1093/eurjpc/zwac300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Jonathan X Fang
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, Pok Fu Lam Rd, Pok Fu Lam, Hong Kong
| | - Zaid I Almarzooq
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
14
|
Yu B, Wu Y, Li W, Zhou L, Lin Y, Wang W, Li G, Zhou Y, Hu X, Li X. Predictive effect of different blood lipid parameters combined with carotid intima-media thickness on coronary artery disease. Front Cardiovasc Med 2023; 9:1105413. [PMID: 36712246 PMCID: PMC9879006 DOI: 10.3389/fcvm.2022.1105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Background Blood lipids disorder and atherosclerosis are closely related to coronary artery disease (CAD). This study aims to compare different blood lipid parameters combined with carotid intima-media thickness (cIMT) in predicting CAD. Methods This was a retrospective study including patients who underwent coronary angiography for highly suspected CAD. Blood samples were taken for lipid profile analysis and cIMT was evaluated by carotid ultrasound. Logistic analysis was used to establish different models of different lipid parameters in predicting CAD. The area under the receiver operating characteristic curve (AUC) was used to examine the predictive value. The optimal lipid parameter was also used to explore the relationship with multi-vessel CAD. Results Patients were classified into two groups based on whether CAD existed. Compared with non-CAD patients, the CAD group had higher lipoprotein (a) [Lp (a)], apolipoprotein B/apolipoprotein A, total cholesterol/high-density lipoprotein cholesterol (HDL-C), triglyceride/HDL-C and LDL-C/HDL-C. According to the AUCs, Lp (a) combined with cIMT (AUC: 0.713, P < 0.001) had the best performance in predicting CAD compared to other lipid parameters. High level of Lp (a) was also associated with multi-vessel CAD (odds ratio: 1.41, 95% confidence interval: 1.02-1.95, P = 0.036). Conclusion For patients with highly suspected CAD, Lp (a) better improved the predictive value of CAD rather than most of blood lipid indices, especially in the absence of high levels of LDL-C. Lp (a) also can be used to predict the multi-vessel CAD.
Collapse
Affiliation(s)
- Bingyan Yu
- School of Medicine, South China University of Technology, Guangzhou, China,Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Wu
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Cardiology, Guangdong Provincial People’s Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Langping Zhou
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan Lin
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guang Li
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China,Xiangming Hu,
| | - Xiaohong Li
- Medical Research Center, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China,*Correspondence: Xiaohong Li,
| |
Collapse
|
15
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Atherogenic Lipoproteins for the Statin Residual Cardiovascular Disease Risk. Int J Mol Sci 2022; 23:ijms232113499. [PMID: 36362288 PMCID: PMC9657259 DOI: 10.3390/ijms232113499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Randomized controlled trials (RCTs) show that decreases in low-density lipoprotein cholesterol (LDL-C) by the use of statins cause a significant reduction in the development of cardiovascular disease (CVD). However, one of our previous studies showed that, among eight RCTs that investigated the effect of statins vs. a placebo on CVD development, 56–79% of patients had residual CVD risk after the trials. In three RCTs that investigated the effect of a high dose vs. a usual dose of statins on CVD development, 78–87% of patients in the high-dose statin arms still had residual CVD risk. The risk of CVD development remains even when statins are used to strongly reduce LDL-C, and this type of risk is now regarded as statin residual CVD risk. Our study shows that elevated triglyceride (TG) levels, reduced high-density lipoprotein cholesterol (HDL-C), and the existence of obesity/insulin resistance and diabetes may be important metabolic factors that determine statin residual CVD risk. Here, we discuss atherogenic lipoproteins that were not investigated in such RCTs, such as lipoprotein (a) (Lp(a)), remnant lipoproteins, malondialdehyde-modified LDL (MDA-LDL), and small-dense LDL (Sd-LDL). Lp(a) is under strong genetic control by apolipoprotein (a), which is an LPA gene locus. Variations in the LPA gene account for 91% of the variability in the plasma concentration of Lp(a). A meta-analysis showed that genetic variations at the LPA locus are associated with CVD events during statin therapy, independent of the extent of LDL lowering, providing support for exploring strategies targeting circulating concentrations of Lp(a) to reduce CVD events in patients receiving statins. Remnant lipoproteins and small-dense LDL are highly associated with high TG levels, low HDL-C, and obesity/insulin resistance. MDA-LDL is a representative form of oxidized LDL and plays important roles in the formation and development of the primary lesions of atherosclerosis. MDA-LDL levels were higher in CVD patients and diabetic patients than in the control subjects. Furthermore, we demonstrated the atherogenic properties of such lipoproteins and their association with CVD as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Correspondence: ; Tel.: +81-473-72-3501; Fax: +81-473-72-1858
| | | | | | | |
Collapse
|
16
|
Safarova MS, Kullo IJ. Lipoprotein(a) lowering and cardiovascular risk reduction by PCSK9 inhibitors. Atherosclerosis 2022; 361:30-31. [PMID: 36344291 DOI: 10.1016/j.atherosclerosis.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Maya S Safarova
- Department of Cardiovascular Medicine, University of Kansas Hospital and Medical Center, 3901 Rainbow Blvd Kansas City, Kansas, 66160, USA.
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, Orringer CE. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol 2022; 16:e77-e95. [PMID: 36068139 DOI: 10.1016/j.jacl.2022.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipoprotein(a) [Lp(a)] is a well-recognized, independent risk factor for atherosclerotic cardiovascular disease, with elevated levels estimated to be prevalent in 20% of the population. Observational and genetic evidence strongly support a causal relationship between high plasma concentrations of Lp(a) and increased risk of atherosclerotic cardiovascular disease-related events, such as myocardial infarction and stroke, and valvular aortic stenosis. In this scientific statement, we review an array of evidence-based considerations for testing of Lp(a) in clinical practice and the utilization of Lp(a) levels to inform treatment strategies in primary and secondary prevention.
Collapse
Affiliation(s)
- Don P Wilson
- Department of Pediatric Endocrinology and Diabetes, Cook Children''s Medical Center, Fort Worth, TX, USA.
| | - Terry A Jacobson
- Department of Medicine, Lipid Clinic and Cardiovascular Risk Reduction Program, Emory University, Atlanta, GA, USA
| | - Peter H Jones
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Carl E Orringer
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Cui K, Yin D, Zhu C, Yuan S, Wu S, Feng L, Dou K. Impact of Lipoprotein(a) concentrations on long-term cardiovascular outcomes in patients undergoing percutaneous coronary intervention: A large cohort study. Nutr Metab Cardiovasc Dis 2022; 32:1670-1680. [PMID: 35525680 DOI: 10.1016/j.numecd.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Till now, the prognostic value of lipoprotein(a) [Lp(a)] in patients with coronary artery disease (CAD) who underwent percutaneous coronary intervention (PCI) remains controversial. We therefore conducted this study to evaluate the effect of Lp(a) levels on clinical outcomes in this population. METHODS AND RESULTS A total of 10,059 CAD patients who underwent PCI were prospectively enrolled in this cohort study, of which 6564 patients had Lp(a) ≤30 mg/dl and 3495 patients had Lp(a) > 30 mg/dl. The primary endpoint was major adverse cardiovascular and cerebrovascular event (MACCE), defined as a composite of all-cause death, myocardial infarction, stroke or unplanned revascularization. Multivariate Cox regression analysis and propensity-score matching analysis were performed. After propensity-score matching, 3449 pairs of patients were identified, and post-matching absolute standardized differences were <10% for all the covariates. At 2.4 years, the risk of MACCE was significantly higher in patients with elevated Lp(a) levels than those with normal Lp(a) levels in both overall population (13.0% vs. 11.4%; adjusted hazard ratio [HR] 1.142, 95% confidence interval [CI] 1.009-1.293; P = 0.040) and propensity-matched cohorts (13.0% vs. 11.2%; HR 1.167, 95%CI 1.019-1.337; P = 0.026). Of note, the predictive value of Lp(a) levels on MACCE tended to be more evident in individuals >65 years or those with left main and/or three-vessel disease. On the contrary, elevated Lp(a) levels had almost no effect on clinical outcomes in patients ≤65 years (P interaction = 0.021) as well as those who had one- or two-vessel coronary artery disease (P interaction = 0.086). CONCLUSION In CAD patients who underwent PCI, elevated Lp(a) levels were positively related to higher risk of MACCE at 2.4-year follow-up, especially in patients >65 years and those with left main and/or three-vessel disease. REGISTRATION NUMBER not applicable.
Collapse
Affiliation(s)
- Kongyong Cui
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Dong Yin
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Chenggang Zhu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Shaoyu Wu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lei Feng
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
20
|
Arsenault BJ, Kamstrup PR. Lipoprotein(a) and cardiovascular and valvular diseases: A genetic epidemiological perspective. Atherosclerosis 2022; 349:7-16. [PMID: 35606078 DOI: 10.1016/j.atherosclerosis.2022.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Rates of atherosclerotic cardiovascular diseases (CVD) in the Western world have spectacularly decreased over the past 50 years. However, a substantial proportion of high-risk patients still develop heart attacks, strokes and valvular heart diseases despite benefiting from state-of-the-art treatments including lipid-lowering therapies. Over the past 10-15 years, it has become increasingly clear that Lipoprotein(a) (Lp[a]) is a critical component of this so-called residual risk. Genetic association studies revealed that Lp(a) is robustly, independently and causally associated with a broad range of cardiovascular and valvular heart diseases. Up to 1 billion people around the globe may have an Lp(a) level that places them in a high-risk category. Lp(a) is strongly associated with calcific aortic valve stenosis (CAVS), coronary artery disease (CAD), peripheral arterial disease (PAD) and to a lesser extent with ischemic stroke (IS) and heart failure (HF). Because of this strong association with cardiovascular and valvular heart diseases, Lp(a) even emerged as one of the most important genetic determinants of human lifespan and healthspan. Here, we review the evidence from the largest and most informative genetic association studies and prospective studies that have investigated the association between Lp(a) and human lifespan, healthspan, CVD, CAVS and non-cardiovascular diseases. We present Lp(a) threshold values that may be clinically relevant and identify other cardiovascular risk factors that may modulate the absolute risk of CVD in individuals with high Lp(a) levels. Finally, we identify key clinical and research questions that require further investigation to eventually and optimally reduce CVD risk in patients with high Lp(a) levels.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| | - Pia R Kamstrup
- Department of Clinical Biochemistry and, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 73, DK-2730, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 73, DK-2730, Herlev, Denmark.
| |
Collapse
|
21
|
Cui K, Yin D, Zhu C, Song W, Wang H, Jia L, Zhang R, Wang H, Cai Z, Feng L, Dou K. How Do Lipoprotein(a) Concentrations Affect Clinical Outcomes for Patients With Stable Coronary Artery Disease Who Underwent Different Dual Antiplatelet Therapy After Percutaneous Coronary Intervention? J Am Heart Assoc 2022; 11:e023578. [PMID: 35475627 PMCID: PMC9238589 DOI: 10.1161/jaha.121.023578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Background Lp(a) (lipoprotein[a]) plays an important role in predicting cardiovascular events in patients with coronary artery disease through its proatherogenic and prothrombotic effects. We hypothesized that prolonged dual antiplatelet therapy (DAPT) might be beneficial for patients undergoing percutaneous coronary intervention who had elevated Lp(a) levels. This study aimed to evaluate the effect of Lp(a) on the efficacy and safety of prolonged DAPT versus shortened DAPT in stable patients with coronary artery disease who were treated with a drug-eluting stent. Methods and Results We selected 3201 stable patients with CAD from the prospective Fuwai Percutaneous Coronary Intervention Registry, of which 2124 patients had Lp(a) ≤30 mg/dL, and 1077 patients had Lp(a) >30 mg/dL. Patients were divided into 4 groups according to Lp(a) levels and the duration of DAPT therapy (≤1 year versus >1 year). The primary end point was major adverse cardiovascular and cerebrovascular event, defined as a composite of all-cause death, myocardial infarction, or stroke. The median follow-up time was 2.5 years. Among patients with elevated Lp(a) levels, DAPT >1 year presented lower risk of major adverse cardiovascular and cerebrovascular event and definite/probable stent thrombosis compared with DAPT ≤1 year. In contrast, in patients with normal Lp(a) levels, the risks of major adverse cardiovascular and cerebrovascular event and definite/probable stent thrombosis were not significantly different between the DAPT >1 year and DAPT ≤1 year groups. Prolonged DAPT had 2.4-times higher risk of clinically relevant bleeding than shortened DAPT in patients with normal Lp(a) levels, although without statistical difference. Conclusions In stable patients with coronary artery disease, who underwent percutaneous coronary intervention with a drug-eluting stent, prolonged DAPT was associated with reduced risk of cardiovascular events among those with elevated Lp(a) levels, whereas it did not show statistically significant evidence of benefit for reducing ischemic events and tended to increase clinically relevant bleeding among those with normal Lp(a) levels.
Collapse
Affiliation(s)
- Kongyong Cui
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Yin
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chenggang Zhu
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weihua Song
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hongjian Wang
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lei Jia
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Rui Zhang
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haoyu Wang
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongxing Cai
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lei Feng
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kefei Dou
- Cardiometabolic Medicine CenterDepartment of CardiologyFuwai HospitalNational Center for Cardiovascular DiseasesState Key Laboratory of Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
22
|
Yu F, Liu F, Li XM, Zhao Q, Luo JY, Zhang JY, Yang YN. GLUT4 gene rs5418 polymorphism is associated with increased coronary heart disease risk in a Uygur Chinese population. BMC Cardiovasc Disord 2022; 22:191. [PMID: 35468725 PMCID: PMC9036804 DOI: 10.1186/s12872-022-02630-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Background To explore possible associations between glucose transporter 4 (GLUT4) genetic polymorphisms in the patients with coronary heart disease (CHD) in Han and Uygur Chinese populations in Xinjiang, China. Methods Two GLUT4 polymorphisms (rs5418 and rs5435) were genotyped in 1262 Han (628 CHD patients and 634 healthy controls) and 896 Uyghur (397 CHD patients and 499 healthy controls) Chinese populations. Results In the Han Chinese population, there were no significant differences in allelic or genotypic distribution of rs5418 and rs5435 between the CHD and control groups (all P > 0.05). However, in the Uygur population, there were significant differences in genotype and allele distributions for rs5418 between CHD and the control group (all P < 0.05). Binary Logistic regression analysis showed that carriers with the rs5418 A allele had a higher risk of CHD compared to carriers of the rs5418 G allele (OR = 1.33, 95% CI: 1.069–1.649, P = 0.01), after adjustment for gender, age, drinking and smoking behavior, hypertension and diabetes. Furthermore, haploid association analysis of the two SNP loci of the GLUT4 gene showed that the AC haplotype was associated with CHD in the Uygur population (P = 0.001598; OR = 1.36, 95% CI = 1.1228–1.6406). Conclusions rs5418 GLUT4 gene variants are associated with CHD in the Uygur Chinese population. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02630-9.
Collapse
Affiliation(s)
- Fei Yu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Qian Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Jun-Yi Luo
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Jin-Yu Zhang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Rehabilitation Medicine Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
23
|
Lanjanian H, Najd Hassan Bonab L, Akbarzadeh M, Moazzam-Jazi M, Zahedi AS, Masjoudi S, Daneshpour MS. Sex, age, and ethnic dependency of lipoprotein variants as the risk factors of ischemic heart disease: a detailed study on the different age-classes and genders in Tehran Cardiometabolic Genetic Study (TCGS). Biol Sex Differ 2022; 13:4. [PMID: 35090557 PMCID: PMC8796330 DOI: 10.1186/s13293-022-00413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Biological processes involving environmental and genetic factors drive the interplay between age- and sex-regulating lipid profile. The relation between variations in the LPA gene with increasing the risk of coronary heart disease is dependent on population differences, sex, and age. The present study tried to do a gene candidate association analysis in people with myocardial infarction (MI) in a 22 year cohort family-based longitudinal cohort study, Tehran Cardiometabolic Genetic Study (TCGS). After adjusting p value by the FDR method, only the association of rs6415084 with the MI probability and the age-of-CHD-onset was significant in males in their middle age (p < 0.005). Surprisingly, a lack of association was observed for the rest of the markers (16 SNPs). These results revealed the moderator effects of age and sex on the association between the genetic variants (SNPs) of LPA and heart disease risk. Our observations may provide new insights into the biology that underlies lipid profile with age or the sexual dimorphism of Lp(a) metabolism. Finally, Lp(a) appears to be an independent risk factor; however, the role of sex and ethnicity is important.
Collapse
|
24
|
Trompet S, Postmus I, Warren HR, Noordam R, Smit RAJ, Theusch E, Li X, Arsenault B, Chasman DI, Hitman GA, Munroe PB, Rotter JI, Psaty BM, Caulfield MJ, Krauss RM, Cupples AL, Jukema WJ. The Pharmacogenetics of Statin Therapy on Clinical Events: No Evidence that Genetic Variation Affects Statin Response on Myocardial Infarction. Front Pharmacol 2022; 12:679857. [PMID: 35069183 PMCID: PMC8769168 DOI: 10.3389/fphar.2021.679857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Background: The pharmacogenetic effect on cardiovascular disease reduction in response to statin treatment has only been assessed in small studies. In a pharmacogenetic genome wide association study (GWAS) analysis within the Genomic Investigation of Statin Therapy (GIST) consortium, we investigated whether genetic variation was associated with the response of statins on cardiovascular disease risk reduction. Methods: The investigated endpoint was incident myocardial infarction (MI) defined as coronary heart disease death and definite and suspect non-fatal MI. For imputed single nucleotide polymorphisms (SNPs), regression analysis was performed on expected allelic dosage and meta-analysed with a fixed-effects model, inverse variance weighted meta-analysis. All SNPs with p-values <5.0 × 10−4 in stage 1 GWAS meta-analysis were selected for further investigation in stage-2. As a secondary analysis, we extracted SNPs from the Stage-1 GWAS meta-analysis results based on predefined hypotheses to possibly modifying the effect of statin therapy on MI. Results: In stage-1 meta-analysis (eight studies, n = 10,769, 4,212 cases), we observed no genome-wide significant results (p < 5.0 × 10−8). A total of 144 genetic variants were followed-up in the second stage (three studies, n = 1,525, 180 cases). In the combined meta-analysis, no genome-wide significant hits were identified. Moreover, none of the look-ups of SNPs known to be associated with either CHD or with statin response to cholesterol levels reached Bonferroni level of significance within our stage-1 meta-analysis. Conclusion: This GWAS analysis did not provide evidence that genetic variation affects statin response on cardiovascular risk reduction. It does not appear likely that genetic testing for predicting effects of statins on clinical events will become a useful tool in clinical practice.
Collapse
Affiliation(s)
- Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Iris Postmus
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roelof A J Smit
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Benoit Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Graham A Hitman
- Blizard institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States.,Department of Epidemiology, University of Washington, Seattle, WA, United States.,Department of Health Services University of Washington, Seattle, WA, United States
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Ron M Krauss
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Adrienne L Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States.,NHLBI Framingham Heart Study, Framingham, MA, United States
| | - Wouter J Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
25
|
Cui K, Wang HY, Yin D, Zhu C, Song W, Wang H, Jia L, Zhang D, Song C, Feng L, Dou K. Benefit and Risk of Prolonged Dual Antiplatelet Therapy After Percutaneous Coronary Intervention With Drug-Eluting Stents in Patients With Elevated Lipoprotein(a) Concentrations. Front Cardiovasc Med 2021; 8:807925. [PMID: 34988134 PMCID: PMC8720964 DOI: 10.3389/fcvm.2021.807925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Lipoprotein(a) is positively related to cardiovascular events in patients with coronary artery disease (CAD). Given that lipoprotein(a) has a prothrombotic effect, prolonged dual antiplatelet therapy (DAPT) might have a beneficial effect on reducing ischemic events in patients with elevated lipoprotein(a) levels after percutaneous coronary intervention (PCI). We performed this study to assess the efficacy and safety of prolonged DAPT (>1 year) in this population. Methods: We evaluated a total of 3,025 CAD patients with elevated lipoprotein(a) levels who were event-free at 1 year after PCI from the prospective Fuwai PCI Registry, of which 913 received DAPT ≤ 1 year and 2,112 received DAPT>1 year. The primary endpoint was major adverse cardiovascular and cerebrovascular event (MACCE), defined as a composite of all-cause death, myocardial infarction or stroke. Results: After a median follow-up of 2.4 years, patients who received DAPT>1 year were associated with lower risks of MACCE compared with DAPT ≤ 1 year (1.6 vs. 3.8%; hazard ratio [HR] 0.383, 95% confidence interval [CI] 0.238-0.616), which was primarily driven by the lower all-cause mortality (0.2 vs. 2.3%; HR 0.078, 95% CI 0.027-0.227). In addition, DAPT>1 year was also associated with lower risks of cardiac death, and definite/probable stent thrombosis than those who received DAPT ≤ 1 year (P < 0.05). Conversely, no difference was found between the two groups in terms of clinically relevant bleeding. Similar results were observed in multivariate Cox regression analysis and inverse probability of treatment weighting analysis. Conclusions: In patients with elevated lipoprotein(a) concentrations after PCI, prolonged DAPT (>1 year) reduced ischemic cardiovascular events, including MACCE, all-cause mortality, cardiac mortality, and definite/probable stent thrombosis, without increase in clinically relevant bleeding risk compared with ≤ 1-year DAPT. Lipoprotein(a) levels might be a new important consideration when deciding the duration of DAPT after PCI.
Collapse
Affiliation(s)
- Kongyong Cui
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hao-Yu Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Dong Yin
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chenggang Zhu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Weihua Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hongjian Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Lei Jia
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Dong Zhang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chenxi Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Lei Feng
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
26
|
Ruscica M, Sirtori CR, Corsini A, Watts GF, Sahebkar A. Lipoprotein(a): Knowns, unknowns and uncertainties. Pharmacol Res 2021; 173:105812. [PMID: 34450317 DOI: 10.1016/j.phrs.2021.105812] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Over the last 10 years, there have been advances on several aspects of lipoprotein(a) which are reviewed in the present article. Since the standard immunoassays for measuring lipoprotein(a) are not fully apo(a) isoform-insensitive, the application of an LC-MS/MS method for assaying molar concentrations of lipoprotein(a) has been advocated. Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) as a causal risk factor for atherosclerotic cardiovascular diseases (ASCVD). However, the relative importance of molar concentration, apo(a) isoform size or variants within the LPA gene is still controversial. Lipoprotein(a)-raising single nucleotide polymorphisms has not been shown to add on value in predicting ASCVD beyond lipoprotein(a) concentrations. Although hyperlipoproteinemia(a) represents an important confounder in the diagnosis of familial hypercholesterolemia (FH), it enhances the risk of ASCVD in these patients. Thus, identification of new cases of hyperlipoproteinemia(a) during cascade testing can increase the identification of high-risk individuals. However, it remains unclear whether FH itself increases lipoprotein(a). The ASCVD risk associated with lipoprotein(a) seems to follow a linear gradient across the distribution, regardless of racial subgroups and other risk factors. The inverse association with the risk of developing type 2 diabetes needs consideration as effective lipoprotein(a) lowering therapies are progressing towards the market. Considering that Mendelian randomization analyses have identified the degree of lipoprotein(a)-lowering that is required to achieve ASCVD benefit, the findings of the ongoing outcome trial with pelacarsen will clarify whether dramatically lowering lipoprotein(a) levels can reduce the risk of ASCVD.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia
| | - Amirhossein Sahebkar
- School of Medicine, University of Western Australia, Perth, Australia; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Lipoprotein (a) and Cardiovascular Disease: A Missing Link for Premature Atherosclerotic Heart Disease and/or Residual Risk. J Cardiovasc Pharmacol 2021; 79:e18-e35. [PMID: 34694242 DOI: 10.1097/fjc.0000000000001160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lipoprotein(a) or lipoprotein "little a" is an under-recognized causal risk factor for cardiovascular (CV) disease (CVD), including coronary atherosclerosis, aortic valvular stenosis, ischemic stroke, heart failure and peripheral arterial disease. Elevated plasma Lp(a) (≥50 mg/dL or ≥100 nmol/L) is commonly encountered in almost 1 in 5 individuals and confers a higher CV risk compared to those with normal Lp(a) levels, although such normal levels have not been generally agreed upon. Elevated Lp(a) is considered a cause of premature and accelerated atherosclerotic CVD. Thus, in patients with a positive family or personal history of premature coronary artery disease (CAD), Lp(a) should be measured. However, elevated Lp(a) may confer increased risk for incident CAD even in the absence of a family history of CAD, and even in those who have guideline-lowered LDL-cholesterol (<70 mg/dl) and continue to have a persisting CV residual risk. Thus, measurement of Lp(a) will have a significant clinical impact on the assessment of atherosclerotic CVD risk, and will assume a more important role in managing patients with CVD with the advent and clinical application of specific Lp(a)-lowering therapies. Conventional therapeutic approaches like lifestyle modification and statin therapy remain ineffective at lowering Lp(a). Newer treatment modalities, such as gene silencing via RNA interference with use of antisense oligonucleotide(s) or small interfering RNA molecules targeting Lp(a) seem very promising. These issues are herein reviewed, accumulated data are scrutinized, meta-analyses and current guidelines are tabulated and Lp(a)-related CVDs and newer therapeutic modalities are pictorially illustrated.
Collapse
|
28
|
Muhammad A, Aka IT, Birdwell KA, Gordon AS, Roden DM, Wei WQ, Mosley JD, Van Driest SL. Genome-Wide Approach to Measure Variant-Based Heritability of Drug Outcome Phenotypes. Clin Pharmacol Ther 2021; 110:714-722. [PMID: 34151428 PMCID: PMC8376753 DOI: 10.1002/cpt.2323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
Pharmacogenomic studies have successfully identified variants-typically with large effect sizes in drug target and metabolism enzymes-that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome-wide common variation, we measured the narrow-sense heritability ( h SNP 2 ) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome-wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse h SNP 2 into bins representing contributions of no-effect, small-effect, moderate-effect, and large-effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235-6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427-1,514,275) variants were included in our analyses. The number of variants contributing to h SNP 2 ranged from 2,791 to 5,356 (median 3,347). Estimates for h SNP 2 ranged from 0.05 (angiotensin-converting enzyme inhibitor-induced cough) to 0.59 (gentamicin concentration). Small-effect and moderate-effect variants contributed a majority to h SNP 2 for every phenotype (range 61-95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome-wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome-wide approaches may improve clinical prediction of drug outcomes.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ida T. Aka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly A. Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam S. Gordon
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Satterfield BA, Dikilitas O, Safarova MS, Clarke SL, Tcheandjieu C, Zhu X, Bastarache L, Larson EB, Justice AE, Shang N, Rosenthal EA, Shah AS, Namjou-Khales B, Urbina EM, Wei WQ, Feng Q, Jarvik GP, Hebbring SJ, de Andrade M, Manolio TA, Assimes TL, Kullo IJ. Associations of Genetically Predicted Lp(a) (Lipoprotein [a]) Levels With Cardiovascular Traits in Individuals of European and African Ancestry. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003354. [PMID: 34282949 PMCID: PMC8634549 DOI: 10.1161/circgen.120.003354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lp(a) (lipoprotein [a]) levels are higher in individuals of African ancestry (AA) than in individuals of European ancestry (EA). We examined associations of genetically predicted Lp(a) levels with (1) atherosclerotic cardiovascular disease subtypes: coronary heart disease, cerebrovascular disease, peripheral artery disease, and abdominal aortic aneurysm and (2) nonatherosclerotic cardiovascular disease phenotypes, stratified by ancestry. METHODS We performed (1) Mendelian randomization analyses for previously reported cardiovascular associations and (2) Mendelian randomization-phenome-wide association analyses for novel associations. Analyses were stratified by ancestry in electronic Medical Records and Genomics, United Kingdom Biobank, and Million Veteran Program cohorts separately and in a combined cohort of 804 507 EA and 103 580 AA participants. RESULTS In Mendelian randomization analyses using the combined cohort, a 1-SD genetic increase in Lp(a) level was associated with atherosclerotic cardiovascular disease subtypes in EA-odds ratio and 95% CI for coronary heart disease 1.28 (1.16-1.41); cerebrovascular disease 1.14 (1.07-1.21); peripheral artery disease 1.22 (1.11-1.34); abdominal aortic aneurysm 1.28 (1.17-1.40); in AA, the effect estimate was lower than in EA and nonsignificant for coronary heart disease 1.11 (0.99-1.24) and cerebrovascular disease 1.06 (0.99-1.14) but similar for peripheral artery disease 1.16 (1.01-1.33) and abdominal aortic aneurysm 1.34 (1.11-1.62). In EA, a 1-SD genetic increase in Lp(a) level was associated with aortic valve disorders 1.34 (1.10-1.62), mitral valve disorders 1.18 (1.09-1.27), congestive heart failure 1.12 (1.05-1.19), and chronic kidney disease 1.07 (1.01-1.14). In AA, no significant associations were noted for aortic valve disorders 1.08 (0.94-1.25), mitral valve disorders 1.02 (0.89-1.16), congestive heart failure 1.02 (0.95-1.10), or chronic kidney disease 1.05 (0.99-1.12). Mendelian randomization-phenome-wide association analyses identified novel associations in EA with arterial thromboembolic disease, nonaortic aneurysmal disease, atrial fibrillation, cardiac conduction disorders, and hypertension. CONCLUSIONS Many cardiovascular associations of genetically increased Lp(a) that were significant in EA were not significant in AA. Lp(a) was associated with atherosclerotic cardiovascular disease in four major arterial beds in EA but only with peripheral artery disease and abdominal aortic aneurysm in AA. Additionally, novel cardiovascular associations were detected in EA.
Collapse
Affiliation(s)
| | - Ozan Dikilitas
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Shoa L. Clarke
- VA Palo Alto Health Care System, Palo Alto
- Division of Cardiovascular Medicine, Dept of Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto
- Division of Cardiovascular Medicine, Dept of Medicine, Stanford Univ School of Medicine, Stanford, CA
- Dept of Pediatric Cardiology, Stanford Univ School of Medicine, Stanford, CA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto
- Dept of Statistics, The Pennsylvania State Univ, University Park, PA
- Huck Institutes of the Life Sciences, The Pennsylvania State Univ, University Park, PA
- Dept of Statistics, Stanford Univ, Stanford, CA
| | - Lisa Bastarache
- Dept of Biomedical Informatics, Vanderbilt Univ, Nashville, TN
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institutes, Seattle, WA
| | | | - Ning Shang
- Dept of Biomedical Informatics, Columbia Univ, New York, NY
| | | | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & Univ of Cincinnati
| | - Bahram Namjou-Khales
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center & Dept of Pediatrics, Univ of Cincinnati, College of Medicine, Cincinnati, OH
| | - Elaine M. Urbina
- Division of Endocrinology, Heart Institute, Cincinnati Children’s Hospital Medical Center & Univ of Cincinnati
| | - Wei-Qi Wei
- Dept of Biomedical Informatics, Vanderbilt Univ, Nashville, TN
| | - QiPing Feng
- Division of Clinical Pharmacology, Dept of Medicine, Vanderbilt Univ Medical Center, Nashville, TN
| | - Gail P. Jarvik
- Division of Medical Genetics, Dept of Medicine, Univ of Washington, Seattle, WA
| | - Scott J. Hebbring
- Center for Precision Medicine, Marshfield Clinic Research Institute, WI
| | - Mariza de Andrade
- Dept of Cardiovascular Medicine, Dept of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Teri A. Manolio
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD
| | | | - Iftikhar J. Kullo
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Dept of Cardiovascular Medicine, Gonda Vascular Center, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Rhainds D, Brodeur MR, Tardif JC. Lipoprotein (a): When to Measure and How to Treat? Curr Atheroscler Rep 2021; 23:51. [PMID: 34235598 DOI: 10.1007/s11883-021-00951-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review current evidence for lipoprotein (a) (Lp(a)) as a risk factor for multiple cardiovascular (CV) disease phenotypes, provide a rationale for Lp(a) lowering to reduce CV risk, identify therapies that lower Lp(a) levels that are available clinically and under investigation, and discuss future directions. RECENT FINDINGS Mendelian randomization and epidemiological studies have shown that elevated Lp(a) is an independent and causal risk factor for atherosclerosis and major CV events. Lp(a) is also associated with non-atherosclerotic endpoints such as venous thromboembolism and calcific aortic valve disease. It contributes to residual CV risk in patients receiving standard-of-care LDL-lowering therapy. Plasma Lp(a) levels present a skewed distribution towards higher values and vary widely between individuals and according to ethnic background due to genetic variants in the LPA gene, but remain relatively constant throughout a person's life. Thus, elevated Lp(a) (≥50 mg/dL) is a prevalent condition affecting >20% of the population but is still underdiagnosed. Treatment guidelines have begun to advocate measurement of Lp(a) to identify patients with very high levels that have a family history of premature CVD or elevated Lp(a). Lipoprotein apheresis (LA) efficiently lowers Lp(a) and was recently associated with a reduction of incident CV events. Statins have neutral or detrimental effects on Lp(a), while PCSK9 inhibitors significantly reduce its level by up to 30%. Specific lowering of Lp(a) with antisense oligonucleotides (ASO) shows good safety and strong efficacy with up to 90% reductions. The ongoing CV outcomes study Lp(a)HORIZON will provide a first answer as to whether selective Lp(a) lowering with ASO reduces the risk of major CV events. Given the recently established association between Lp(a) level and CV risk, guidelines now recommend Lp(a) measurement in specific clinical conditions. Accordingly, Lp(a) is a current target for drug development to reduce CV risk in patients with elevated levels, and lowering Lp(a) with ASO represents a promising avenue.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada. .,Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
31
|
Said MA, Yeung MW, van de Vegte YJ, Benjamins JW, Dullaart RPF, Ruotsalainen S, Ripatti S, Natarajan P, Juarez-Orozco LE, Verweij N, van der Harst P. Genome-Wide Association Study and Identification of a Protective Missense Variant on Lipoprotein(a) Concentration: Protective Missense Variant on Lipoprotein(a) Concentration-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:1792-1800. [PMID: 33730874 DOI: 10.1161/atvbaha.120.315300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- M Abdullah Said
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Ming Wai Yeung
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology (R.P.F.D.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland HiLIFE (S. Ruotsalainen, S. Ripatti), University of Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland HiLIFE (S. Ruotsalainen, S. Ripatti), University of Helsinki, Finland.,Department of Public Health (S. Ripatti), University of Helsinki, Finland.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S. Ripatti, P.N.)
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S. Ripatti, P.N.).,Department of Medicine, Harvard Medical School, Boston, MA (P.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Boston (P.N.)
| | - Luis Eduardo Juarez-Orozco
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, the Netherlands (L.E.J.-O., P.v.d.H.)
| | - Niek Verweij
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - P van der Harst
- Department of Cardiology (M.A.S., M.W.Y., Y.J.v.d.V., J.W.B., L.E.J.-O., N.V., P.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, the Netherlands (L.E.J.-O., P.v.d.H.)
| |
Collapse
|
32
|
Wilson DP, Koschinsky ML, Moriarty PM. Expert position statements: comparison of recommendations for the care of adults and youth with elevated lipoprotein(a). Curr Opin Endocrinol Diabetes Obes 2021; 28:159-173. [PMID: 33534258 DOI: 10.1097/med.0000000000000624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Summarize recent recommendations on clinical management of adults and youth with elevated lipoprotein(a) [Lp(a)] who are at-risk of or affected by cardiovascular disease (CVD). RECENT FINDINGS There is ample evidence to support elevated Lp(a) levels, present in approximately 20% of the general population, as a causal, independent risk factor for CVD and its role as a significant risk enhancer. Several guidelines and position statements have been published to assist in the identification, treatment and follow-up of adults with elevated levels of Lp(a). There is growing interest in Lp(a) screening and strategies to improve health behaviors starting in youth, although published recommendations for this population are limited. In addition to the well established increased risk of myocardial infarction, stroke and valvular aortic stenosis, data from the coronavirus pandemic suggest adults with elevated Lp(a) may have a particularly high-risk of cardiovascular complications. Lp(a)-specific-lowering therapies are currently in development. Despite their inability to lower Lp(a), use of statins have been shown to improve outcomes in primary and secondary prevention. SUMMARY Considerable differences exist amongst published guidelines for adults on the use of Lp(a) in clinical practice, and recommendations for youth are limited. With increasing knowledge of Lp(a)'s role in CVD, including recent observations of COVID-19-related risk of cardiovascular complications, more harmonized and comprehensive guidelines for Lp(a) in clinical practice are required. This will facilitate clinical decision-making and help define best practices for identification and management of elevated Lp(a) in adults and youth.
Collapse
Affiliation(s)
- Don P Wilson
- Department of Pediatric Endocrinology, Fort Worth, Texas, USA
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick M Moriarty
- The Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
33
|
Swerdlow DI, Rider DA, Yavari A, Lindholm MW, Campion GV, Nissen SE. Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: the emerging potential of RNA interference therapeutics. Cardiovasc Res 2021; 118:1218-1231. [PMID: 33769464 PMCID: PMC8953457 DOI: 10.1093/cvr/cvab100] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid- and lipoprotein-modifying therapies have expanded substantially in the last 25 years, resulting in reduction in the incidence of major adverse cardiovascular events. However, no specific lipoprotein(a) [Lp(a)]-targeting therapy has yet been shown to reduce cardiovascular disease risk. Many epidemiological and genetic studies have demonstrated that Lp(a) is an important genetically determined causal risk factor for coronary heart disease, aortic valve disease, stroke, heart failure, and peripheral vascular disease. Accordingly, the need for specific Lp(a)-lowering therapy has become a major public health priority. Approximately 20% of the global population (1.4 billion people) have elevated levels of Lp(a) associated with higher cardiovascular risk, though the threshold for determining ‘high risk’ is debated. Traditional lifestyle approaches to cardiovascular risk reduction are ineffective at lowering Lp(a). To address a lifelong risk factor unmodifiable by non-pharmacological means, Lp(a)-lowering therapy needs to be safe, highly effective, and tolerable for a patient population who will likely require several decades of treatment. N-acetylgalactosamine-conjugated gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting LPA, are ideally suited for this application, offering a highly tissue- and target transcript-specific approach with the potential for safe and durable Lp(a) lowering with as few as three or four doses per year. In this review, we evaluate the causal role of Lp(a) across the cardiovascular disease spectrum, examine the role of established lipid-modifying therapies in lowering Lp(a), and focus on the anticipated role for siRNA therapeutics in treating and preventing Lp(a)-related disease.
Collapse
Affiliation(s)
| | | | - Arash Yavari
- Experimental Therapeutics, Radcliffe, Department of Medicine, University of Oxford, UK
| | | | | | - Steven E Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Increased cardiovascular risk associated with hyperlipoproteinemia (a) and the challenges of current and future therapeutic possibilities. Anatol J Cardiol 2020; 23:60-69. [PMID: 32011323 PMCID: PMC7040869 DOI: 10.14744/anatoljcardiol.2019.56068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Population, genetic, and clinical studies demonstrated a causative and continuous, from other plasma lipoproteins independent relationship between elevated plasma lipoprotein (a) [Lp(a)] concentration and the development of cardiovascular disease (CVD), mainly those related to athe-rosclerotic CVD, and calcific aortic stenosis. Currently, a strong international consensus is still lacking regarding the single value which would be commonly used to define hyperlipoproteinemia (a). Its prevalence in the general population is estimated to be in the range of 10%–35% in accordance with the most commonly used threshold levels (>30 or >50 mg/dL). Since elevated Lp(a) can be of special importance in patients with some genetic disorders, as well as in individuals with otherwise controlled major risk factors, the identification and establishment of the proper therapeutic interventions that would lower Lp(a) levels and lead to CVD risk reduction could be very important. The majority of the classical lipid-lowering agents (statins, ezetimibe, and fibrates), as well as nutraceuticals (CoQ10 and garlic), appear to have no significant effect on its plasma levels, whereas for the drugs with the demonstrated Lp(a)-lowering effects (aspirin, niacin, and estrogens), their clinical efficacy in reducing cardiovascular (CV) events has not been unequivocally proven yet. Both Lp(a) apheresis and proprotein convertase subtilisin/kexin type 9 inhibitors can reduce the plasma Lp(a) by approximately 20%–30% on average, in parallel with much larger reduction of low-density lipoprotein cholesterol (up to 70%), what puts us in a difficulty to conclude about the true contribution of lowered Lp(a) to the reduction of CV events. The most recent advancement in the field is the introduction of the novel apolipoprotein (a) [apo(a)] antisense oligonucleotide therapy targeting apo(a), which has already proven itself as being very effective in decreasing plasma Lp(a) (by even >90%), but should be further tested in clinical trials. The aim of this review was to present some of the most important accessible scientific data, as well as dilemmas related to the currently and potentially in the near future more widely available therapeutic options for the management of hyperlipoproteinemia (a).
Collapse
|
35
|
Katsanos AH, Hart RG. New Horizons in Pharmacologic Therapy for Secondary Stroke Prevention. JAMA Neurol 2020; 77:1308-1317. [DOI: 10.1001/jamaneurol.2020.2494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aristeidis H. Katsanos
- Division of Neurology, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert G. Hart
- Division of Neurology, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Palmer MR, Kim DS, Crosslin DR, Stanaway IB, Rosenthal EA, Carrell DS, Cronkite DJ, Gordon A, Du X, Li YK, Williams MS, Weng C, Feng Q, Li R, Pendergrass SA, Hakonarson H, Fasel D, Sohn S, Sleiman P, Handelman SK, Speliotes E, Kullo IJ, Larson EB, Jarvik GP. Loci identified by a genome-wide association study of carotid artery stenosis in the eMERGE network. Genet Epidemiol 2020; 45:4-15. [PMID: 32964493 PMCID: PMC7891640 DOI: 10.1002/gepi.22360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.
Collapse
Affiliation(s)
- Melody R Palmer
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel S Kim
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ian B Stanaway
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - David S Carrell
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - David J Cronkite
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Adam Gordon
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaomeng Du
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yatong K Li
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Qiping Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rongling Li
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | - Hakon Hakonarson
- Department of Pediatrics, The Center for Applied Genomics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Fasel
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | | | - Patrick Sleiman
- Department of Pediatrics, The Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Speliotes
- Division of Gastroenterology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | -
- The electronic Medical Records and GEnomics Network, NHGRI, NIH, Bethesda, Maryland, USA
| | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
37
|
Teng RL, Wang H, Sun BC, Cai DP, He YM. Interaction between lipoprotein (a) levels and body mass index in first incident acute myocardial infarction. BMC Cardiovasc Disord 2020; 20:350. [PMID: 32723301 PMCID: PMC7389650 DOI: 10.1186/s12872-020-01626-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Possible interaction between Lipoprotein (a) (Lp(a)) and body mass index (BMI) was investigated with regard to the risk of first incident acute myocardial infarction (AMI). METHODS Cross-sectional study of 1522 cases with initial AMI and 1691 controls without coronary artery disease (CAD) were retrospectively analyzed using logistic regression model. Subjects were categorized based on Lp(a) and BMI and compared with regard to occurrence of AMI by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A potential interaction between Lp(a) and BMI was evaluated by the measures of effect modification on both additive (Relative excess risk due to interaction, RERI) and multiplicative scales. RESULTS Compared with reference group (BMI < 24 kg/m2 and in the first quintile of Lp(a)), multivariable-adjusted analysis revealed that ORs(95%CI) of AMI were 2.27(1.46-3.52) for higher BMI alone; 1.79(1.11-2.90), 1.65(1.05-2.60), 1.96(1.20-3.20) and 2.34(1.47-3.71) for higher Lp(a) alone across its quintiles; and 2.86(1.85-4.40), 3.30(2.14-5.11), 4.43(2.76-7.09) and 5.98(3.72-9.60) for both higher BMI and higher Lp(a), greater than the sum of the both risks each. Prominent interaction was found between Lp(a) and BMI on additive scale (RERI = 2.45 (0.36-4.54) at the fifth quintile of Lp(a)) but not on multiplicative scale. CONCLUSIONS This study demonstrates that BMI and Lp(a) levels are important factors affecting the risk of AMI. Significant interaction is found between Lp(a) and BMI in initial AMI on additive scale, indicating that Lp(a) confers greater risk for initial AMI when BMI is elevated. For those whose BMIs are inadequately controlled, Lp(a) lowering may be an option. TRIAL REGISTRATION This clinical study was not registered in a publicly available registry because this study was a retrospective study first started in 2015. Data are available via the correspondent.
Collapse
Affiliation(s)
- Ruo-Ling Teng
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Heng Wang
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Bei-Chen Sun
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Dong-Ping Cai
- Healthcare Center for Shishan Street Community of Suzhou New District, Suzhou, Jiangsu Province, 215011, P.R. China
| | - Yong-Ming He
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China.
| |
Collapse
|
38
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
39
|
Lamina C, Kronenberg F. Estimation of the Required Lipoprotein(a)-Lowering Therapeutic Effect Size for Reduction in Coronary Heart Disease Outcomes: A Mendelian Randomization Analysis. JAMA Cardiol 2020; 4:575-579. [PMID: 31017618 DOI: 10.1001/jamacardio.2019.1041] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Genetic and epidemiologic data suggest that lipoprotein(a) (Lp[a]) is one of the strongest genetically determined risk factors for coronary heart disease (CHD). Specific therapies to lower Lp(a) are on the horizon, but the required reduction of Lp(a) to translate into clinically relevant lowering of CHD outcomes is a matter of debate. Objective To estimate the required Lp(a)-lowering effect size that may be associated with a reduction of CHD outcomes compared with the effect size of low-density lipoprotein cholesterol (LDL-C)-lowering therapies. Design, Setting, and Participants Genetic epidemiologic study using a mendelian randomization analysis to estimate the required Lp(a)-lowering effect size for a clinically meaningful effect on outcomes. We used the effect estimates for Lp(a) from a genome-wide association study (GWAS) and meta-analysis on Lp(a) published in 2017 of 5 different primarily population-based studies of European ancestry. All Lp(a) measurements were performed in 1 laboratory. Genetic estimates for 27 single-nucleotide polymorphisms on Lp(a) concentrations were used. Odds ratios for these 27 single-nucleotide polymorphisms associated with CHD risk were retrieved from a subsample of the CHD Exome+ consortium. Exposures Genetic LPA score, plasma Lp(a) concentrations, and observations of statin therapies on CHD outcomes. Main Outcomes and Measures Coronary heart disease. Results The study included 13 781 individuals from the Lp(a)-GWAS-Consortium from 5 primarily population-based studies and 20 793 CHD cases and 27 540 controls from a subsample of the CHD Exome+ consortium. Four of the studies were similar in age distribution (means between 51 and 59 years), and 1 cohort was younger; mean age, 32 years. The frequency of women was similar between 51% and 55%. We estimated that the required reduction in Lp(a) effect size would be 65.7 mg/dL (95% CI, 46.3-88.3) to reach the same potential effect on clinical outcomes that can be reached by lowering LDL-C by 38.67 mg/dL (to convert to millimoles per liter, multiply by 0.0259). Conclusions and Relevance This mendelian randomization analysis estimated a required Lp(a)-lowering effect size of 65.7 mg/dL to reach the same effect as a 38.67-mg/dL lowering of LDL-C. However, this estimate is determined by the observed effect estimates of single-nucleotide polymorphisms on Lp(a) concentrations and is therefore influenced by the standardization of the Lp(a) assay used. As a consequence, calculations of the required Lp(a)-lowering potential of a drug to be clinically effective might have been overestimated in the past.
Collapse
Affiliation(s)
- Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
40
|
Klingel R, Heigl F, Schettler V, Roeseler E, Grützmacher P, Hohenstein B, Vogt A, Fassbender C, Heibges A, Julius U. Lipoprotein(a) - Marker for cardiovascular risk and target for lipoprotein apheresis. ATHEROSCLEROSIS SUPP 2020; 40:17-22. [PMID: 31818445 DOI: 10.1016/j.atherosclerosissup.2019.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipoprotein(a) (Lp(a)) consists of an LDL particle whose apolipoprotein B (apoB) is covalently bound to apolipoprotein(a) (apo[a]). An increased Lp(a) concentration is a causal, independent risk factor for atherosclerotic cardiovascular disease (ASCVD) and a predictor of incident or recurrent cardiovascular events. Although Lp(a) was first described as early as 1963, only the more recent results of epidemiological, molecular, and genetic studies have led to this unequivocal conclusion. More than 20% of Western populations have elevated Lp(a) values. Lp(a) concentrations should be always part of the lipid profile when ASCVD risk is assessed. However, presence of other risk factors, laboratory findings, medical history and family history must be considered to conclude on its clinical relevance in an individual patient. Early or progressive ASCVD or a familial predisposition are key findings which can be associated with elevated Lp(a). The cholesterol portion contained in Lp(a) is also included in the various methods of LDL-C measurement. To assess proximity to the cardiovascular risk related target value for LDL-C, appropriate correction should be applied when high Lp(a) values are obtained to estimate the LDL-C that can actually be treated by lipid lowering drugs. Initial study data show that antisense oligonucleotides, which selectively decrease apolipoprotein(a), are promising as future treatment options. Currently, lipoprotein apheresis, which has a reimbursement guideline in Germany, is the therapy of choice for patients with Lp(a)-associated progressive ASCVD, with the aim of sustained prevention of further cardiovascular events.
Collapse
Affiliation(s)
- Reinhard Klingel
- Apheresis Research Institute, Cologne, Germany; First Department of Internal Medicine, University of Mainz, Mainz, Germany.
| | - Franz Heigl
- Medical Care Center Kempten-Allgäu, Kempten, Germany
| | | | - Eberhard Roeseler
- Center of Nephrology, Hypertension and Metabolic Diseases, Hannover, Germany
| | | | - Bernd Hohenstein
- Nephrological Center Villingen-Schwenningen, Villingen-Schwenningen, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Anja Vogt
- Medizinische Klinik IV, Klinikum der Universität München, Germany
| | | | | | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight our emerging understanding of lipoprotein(a) [Lp(a)]'s role in atherosclerotic cardiovascular disease (ASCVD), its structure-function relationship, and promising developments within the therapeutic pipeline. RECENT FINDINGS Elevated levels of Lp(a) are strongly associated with an increased risk of coronary heart disease, calcific aortic valve stenosis, and ischemic stroke. With circulating levels almost exclusively genetically mediated, increased levels of Lp(a) contribute significantly to the residual cardiovascular disease risk in individuals with otherwise well controlled risk factors. The unique structure of Lp(a) - comprised of a genetically heterogeneous apolipoprotein(a) molecule bound to an LDL-like moiety - provides insight into its pathogenic role in cardiovascular disease and also complicates its accurate measurement. Emerging therapies targeting the apolipoprotein(a) component of Lp(a) have the potential to revolutionize the management of individuals with elevated Lp(a). SUMMARY With promising therapies on the horizon, there has been a renewed focus on the role of Lp(a) in ASCVD. Given Lp(a)'s strong and independent association with key cardiovascular outcomes, it is hopeful that these promising targeted therapies will add another therapeutic option for the prevention of cardiovascular disease.
Collapse
|
42
|
Genkel VV, Shaposhnik II. Conceptualization of Heterogeneity of Chronic Diseases and Atherosclerosis as a Pathway to Precision Medicine: Endophenotype, Endotype, and Residual Cardiovascular Risk. Int J Chronic Dis 2020; 2020:5950813. [PMID: 32099839 PMCID: PMC7038435 DOI: 10.1155/2020/5950813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The article discusses modern approaches to the conceptualization of pathogenetic heterogeneity in various branches of medical science. The concepts of endophenotype, endotype, and residual cardiovascular risk and the scope of their application in internal medicine and cardiology are considered. Based on the latest results of studies of the genetic architecture of atherosclerosis, five endotypes of atherosclerosis have been proposed. Each of the presented endotypes represents one or another pathophysiological mechanism of atherogenesis, having an established genetic substrate, a characteristic panel of biomarkers, and a number of clinical features. Clinical implications and perspectives for the study of endotypes of atherosclerosis are briefly reviewed.
Collapse
Affiliation(s)
- Vadim V. Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| | - Igor I. Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| |
Collapse
|
43
|
Camacho-Mejorado R, Gómez R, Torres-Sánchez LE, Alhelí Hernández-Tobías E, Noris G, Santana C, Magaña JJ, Orozco L, de la Peña-Díaz A, de la Luz Arenas-Sordo M, Meraz-Ríos MA, Majluf-Cruz A. ALOX5, LPA, MMP9 and TPO gene polymorphisms increase atherothrombosis susceptibility in middle-aged Mexicans. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190775. [PMID: 32218930 PMCID: PMC7029922 DOI: 10.1098/rsos.190775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Atherothrombosis is the cornerstone of cardiovascular diseases and the primary cause of death worldwide. Genetic contribution to disturbances in lipid metabolism, coagulation, inflammation and oxidative stress increase the susceptibility to its development and progression. Given its multifactorial nature, the multiloci studies have been proposed as potential predictors of susceptibility. A cross-sectional study was conducted to explore the contribution of nine genes involved in oxidative stress, inflammatory and thrombotic processes in 204 subjects with atherothrombosis matched by age and gender with a healthy group (n = 204). To evaluate the possibility of spurious associations owing to the Mexican population genetic heterogeneity as well as its ancestral origins, 300 unrelated mestizo individuals and 329 Native Americans were also included. ALOX5, LPA, MMP9 and TPO gene polymorphisms, as well as their multiallelic combinations, were twice to four times more frequent in those individuals with clinical manifestations of atherothrombosis than in the healthy group. Once adjusting for population stratification was done, these differences remained. Our results add further evidence on the contribution of ALOX5, LPA, MMP9 and TPO polymorphisms to atherothrombosis development in the middle-aged group, emphasizing the multiethnic studies in search of gene risk polymorphisms.
Collapse
Affiliation(s)
| | - Rocío Gómez
- Departamento de Toxicología, Cinvestav-IPN, Mexico City 07360, Mexico
| | - Luisa E. Torres-Sánchez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Gino Noris
- Laboratorio Biología Molecular Diagnóstica, Querétaro, Qro, Mexico
| | - Carla Santana
- Laboratorio Biología Molecular Diagnóstica, Querétaro, Qro, Mexico
| | | | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, INMEGEN, Mexico City, Mexico
| | - Aurora de la Peña-Díaz
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, Mexico
- Departamento de Biología Molecular, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, IMSS, Mexico City, Mexico
| |
Collapse
|
44
|
Arsenault BJ. Exposure to Low Lipoprotein(a) Levels: Key to Healthy Aging? J Am Coll Cardiol 2019; 74:2995-2997. [PMID: 31865967 DOI: 10.1016/j.jacc.2019.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Benoit J Arsenault
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
45
|
HEART UK consensus statement on Lipoprotein(a): A call to action. Atherosclerosis 2019; 291:62-70. [DOI: 10.1016/j.atherosclerosis.2019.10.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
|
46
|
Wu P, Gifford A, Meng X, Li X, Campbell H, Varley T, Zhao J, Carroll R, Bastarache L, Denny JC, Theodoratou E, Wei WQ. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation. JMIR Med Inform 2019; 7:e14325. [PMID: 31553307 PMCID: PMC6911227 DOI: 10.2196/14325] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/03/2019] [Accepted: 09/24/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). OBJECTIVE The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes. METHODS We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS. RESULTS We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]). CONCLUSIONS This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.
Collapse
Affiliation(s)
- Patrick Wu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aliya Gifford
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiangrui Meng
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Varley
- Public Health and Intelligence Strategic Business Unit, National Services Scotland, Edinburgh, United Kingdom
| | - Juan Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
47
|
Abstract
See Article by Shapiro et al
Collapse
Affiliation(s)
- Paul Nestel
- 1 Baker Heart & Diabetes Institute Melbourne Australia
| |
Collapse
|
48
|
Roden DM, Van Driest SL, Wells QS, Mosley JD, Denny JC, Peterson JF. Opportunities and Challenges in Cardiovascular Pharmacogenomics: From Discovery to Implementation. Circ Res 2019; 122:1176-1190. [PMID: 29700066 DOI: 10.1161/circresaha.117.310965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review will provide an overview of the principles of pharmacogenomics from basic discovery to implementation, encompassing application of tools of contemporary genome science to the field (including areas of apparent divergence from disease-based genomics), a summary of lessons learned from the extensively studied drugs clopidogrel and warfarin, the current status of implementing pharmacogenetic testing in practice, the role of genomics and related tools in the drug development process, and a summary of future opportunities and challenges.
Collapse
Affiliation(s)
- Dan M Roden
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.) .,Department of Pharmacology (D.M.R., Q.S.W.).,Department of Biomedical Informatics (D.M.R., J.C.D., J.F.P.)
| | - Sara L Van Driest
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.).,Department of Pediatrics (S.L.V.D.), Vanderbilt University Medical Center, Nashville, TN
| | - Quinn S Wells
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.).,Department of Pharmacology (D.M.R., Q.S.W.)
| | - Jonathan D Mosley
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.)
| | - Joshua C Denny
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.).,Department of Biomedical Informatics (D.M.R., J.C.D., J.F.P.)
| | - Josh F Peterson
- From the Department of Medicine (D.M.R., S.L.V.D., Q.S.W., J.D.M., J.C.D., J.F.P.).,Department of Biomedical Informatics (D.M.R., J.C.D., J.F.P.)
| |
Collapse
|
49
|
Guan ZW, Wu KR, Li R, Yin Y, Li XL, Zhang SF, Li Y. Pharmacogenetics of statins treatment: Efficacy and safety. J Clin Pharm Ther 2019; 44:858-867. [PMID: 31436349 DOI: 10.1111/jcpt.13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Statins are widely used worldwide in the prevention and treatment of coronary atherosclerotic heart disease and ischaemic stroke. However, in clinical application, statins have shown great individual differences in terms of the efficacy and safety, some of which are related to genetic factors. The purpose of this article was to summarize the recent advances about the correlation between gene polymorphisms and the efficacy/safety of statins. METHODS We searched the databases including PharmGKB and PubMed (published before June 2019) using the keywords such as 'statin', 'gene polymorphism' and 'SNP' and obtained more than 100 articles. In this review, we described the clinical studies of genetic variants associated with both the efficacy and adverse reactions of statins. We also clarified the importance of taking pharmacogenetic variation into account to improve the clinical application of statins. RESULTS AND DISCUSSION The available data were collected and analysed to present the polymorphisms of candidate genes encoding the most promising proteins including SLCO1B1 (encoding uptake transporters); ABCB1, ABCC2, ABCG2 (encoding effluent transporter); APOE, APOA5 (encoding apolipoprotein); genes encoding cytochrome P450 enzyme system; KIF6, HMGCR, LDLR, LPA, PCSK9, COQ2, CETP, etc These genes were proved to be related to the pharmacodynamics and pharmacokinetics of statins, thus affecting the efficacy and safety. WHAT IS NEW AND CONCLUSION In this paper, the correlation between gene polymorphisms and the efficacy/safety of statins was summarized. The authors reached a consensus that the variants of the genes encoding uptake and effluent transporters have the most effect on the efficacy/safety of statins. It pointed out that it is desirable to do genetic testing of these transporter genes to reduce the incidence of myopathy or to achieve better outcomes before patients use statins, especially in the regions with high frequency of risk allele.
Collapse
Affiliation(s)
- Zi-Wan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Kun-Rong Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Rui Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Yin
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Xiao-Li Li
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Shu-Fang Zhang
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Yan Li
- Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
50
|
Berman AN, Blankstein R. Optimizing Dyslipidemia Management for the Prevention of Cardiovascular Disease: a Focus on Risk Assessment and Therapeutic Options. Curr Cardiol Rep 2019; 21:110. [PMID: 31378838 DOI: 10.1007/s11886-019-1175-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary prevention of incident atherosclerotic cardiovascular disease (ASCVD) as well as decreasing the risk of future events in those with established atherosclerosis is critical from a public health perspective. Management of dyslipidemias constitutes a key target in decreasing the risk of developing ASCVD events. While there have been great strides in the treatment of dyslipidemia over the last three decades, there are important recent developments and ongoing research that will expand the available therapeutic options and enable further cardiovascular risk reduction. PURPOSE OF REVIEW: The purpose of this paper is to review new developments relating to the primary prevention and management of ASCVD with a specific focus on optimizing the treatment of dyslipidemias. RECENT FINDINGS: In the realm of ASCVD risk prediction, mounting evidence over the last decade has demonstrated that coronary artery calcium testing is superior to any serum biomarker in the prediction of future ASCVD events and in discriminating future cardiovascular risk. As such, it has been incorporated into the most recent ACC/AHA primary prevention guideline to help guide management decisions in select patients. In terms of the management of dyslipidemias, PCSK9 inhibitors lower LDL-C by 50-70% and provide an additional 15% reduction in key cardiovascular events in high-risk patients with known ASCVD, as demonstrated in the ODYSSEY and FOURIER trials. Cholesteryl ester transfer protein (CETP) inhibitors, which significantly increase HDL-C levels, demonstrated mixed results in large clinical trials and have helped reframe HDL-C as a risk marker rather than a modifiable risk factor. In regard to the management of triglycerides, the REDUCE-IT trial demonstrated a nearly 5% absolute reduction in key cardiovascular events with a highly purified fish-oil derivative named icosapent ethyl in high-risk patients already on statin therapy. Finally, in regard to lipoprotein(a)-which is a strong risk factor for ASCVD-there are exciting developments in the therapeutic pipeline which reduce circulating lipoprotein(a) levels by nearly 90%. The management of dyslipidemias continues to be an exciting field with several ongoing cardiovascular outcomes trials, improvement in risk prediction models, and new therapeutic agents in the pipeline that will further mitigate residual cardiovascular risk in both primary and secondary prevention patients.
Collapse
Affiliation(s)
- Adam N Berman
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ron Blankstein
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|