1
|
Darawsha A, Trachtenberg A, Sharoni Y. ARE/Nrf2 Transcription System Involved in Carotenoid, Polyphenol, and Estradiol Protection from Rotenone-Induced Mitochondrial Oxidative Stress in Dermal Fibroblasts. Antioxidants (Basel) 2024; 13:1019. [PMID: 39199263 PMCID: PMC11351643 DOI: 10.3390/antiox13081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Skin aging is associated with the increased production of mitochondrial reactive oxygen species (mtROS) due to mitochondrial dysfunction, and various phytonutrients and estrogens have been shown to improve skin health. Thus, the aim of the current study was to examine damage to dermal fibroblasts by chemically induced mitochondrial dysfunction and to study the mechanism of the protective effects of carotenoids, polyphenols, and estradiol. Rotenone, a Complex I inhibitor, caused mitochondrial dysfunction in human dermal fibroblasts, substantially reducing respiration and ATP levels, followed by increased mitochondrial and cytosolic ROS, which resulted in apoptotic cell death, an increased number of senescent cells, increased matrix metalloproteinase-1 (MMP1) secretion, and decreased collagen secretion. Pre-treatment with carotenoid-rich tomato extracts, rosemary extract, and estradiol reversed these effects. These protective effects can be partially explained by a cooperative activation of antioxidant response element (ARE/Nrf2) transcriptional activity by the protective compounds and rotenone, which led to the upregulation of antioxidant proteins such as NQO1. To determine if ARE/Nrf2 activity is crucial for cell protection, we inhibited it using the Nrf2 inhibitors ML385 and ochratoxin A. This inhibition markedly reduced the protective effects of the test compounds by diminishing their effect to reduce cytosolic ROS. Our study results indicate that phytonutrients and estradiol protect skin cells from damage caused by mtROS, and thus may delay skin cell senescence and improve skin health.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel; (A.D.); (A.T.)
| |
Collapse
|
2
|
Curtis LM. Sex and Gender Differences in AKI. KIDNEY360 2024; 5:160-167. [PMID: 37990360 PMCID: PMC10833607 DOI: 10.34067/kid.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Sex differences in AKI continue to be identified. Generally, women are protected from AKI when compared to men. Much of the protection exhibited in women is diminished after menopause. These sex and age effects have also been noted in animal models of AKI. Gonadal hormones, as modifiers of incidence, severity, and progression of AKI, have been offered as likely contributors to this sex and age effect. In animal models of AKI, estrogen and testosterone seem to modulate susceptibility. Questions remain however regarding cellular and molecular changes that are initiated by modulation of these hormones because both estrogen and testosterone have effects across cell types that play a role in AKI. Although findings have largely been informed by studies in males, molecular pathways that are involved in the initiation and progression of AKI may be modulated by gonadal hormones. Compounding the hormone-receptor effects are developmental effects of sex chromosomal complement and epigenetic influences that may confer sex-based baseline differences in gene and protein expression, and gene dosage effects of X inactivation and escape on molecular pathways. Elucidation of sex-based protection may afford a more complete view of AKI and potential therapeutic interventions. Furthermore, the effect on susceptibility to AKI in transgender patients, who receive life-altering and essential gender-affirming hormone therapy, requires greater attention. In this review, several potential contributors to the sex differences observed in humans and animal models are discussed.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Gohar EY, Almutlaq RN, Fan C, Balkawade RS, Butt MK, Curtis LM. Does G Protein-Coupled Estrogen Receptor 1 Contribute to Cisplatin-Induced Acute Kidney Injury in Male Mice? Int J Mol Sci 2022; 23:ijms23158284. [PMID: 35955435 PMCID: PMC9368456 DOI: 10.3390/ijms23158284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Nephrotoxicity is the dose-limiting side-effect of the chemotherapeutic agent cisplatin (Cp). Recent evidence points to renal protective actions of G protein-coupled estrogen receptor 1 (GPER1). In addition, it has been shown that GPER1 signaling elicits protective actions against acute ischemic injuries that involve multiple organ systems; however, the involvement of GPER1 signaling in Cp-induced acute kidney injury (AKI) remains unclear. This study tested whether genetic deletion of GPER1 exacerbates Cp-induced AKI in male mice. We subjected male mice, homozygous (homo) and heterozygous (het) knockout for the GPER1 gene, and wild-type (WT) littermates to Cp or saline injections and assessed markers for renal injury on the third day after injections. We also determined serum levels of proinflammatory markers in saline and Cp-treated mice. Given the protective role of heme oxygenase-1 (HO-1) in Cp-mediated apoptosis, we also investigated genotypic differences in renal HO-1 abundance, cell death, and proliferation by Western blotting, the TUNEL assay, and Ki67 immunostaining, respectively. Cp increased serum creatinine, urea, and neutrophil gelatinase-associated lipocalin (NGAL) levels, the renal abundance of kidney injury molecule-1, and NGAL in all groups. Cp-induced AKI resulted in comparable histological evidence of injury in all genotypes. WT and homo mice showed greater renal HO-1 abundance in response to Cp. Renal HO-1 abundance was lower in Cp-treated homo, compared to Cp-treated WT mice. Of note, GPER1 deletion elicited a remarkable increase in renal apoptosis; however, no genotypic differences in cell proliferation were observed. Cp augmented kidney Ki67-positive counts, regardless of the genotype. Overall, our data do not support a role for GPER1 in mediating Cp-induced renal injury. GPER1 deletion promotes renal apoptosis and diminishes HO-1 induction in response to Cp, suggesting that GPER1 may play cytoprotective and anti-apoptotic actions in AKI. GPER1-induced regulation of HO-1 and apoptosis may offer novel therapeutic targets for the treatment of AKI.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-0623
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Chunlan Fan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Rohan S. Balkawade
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Lisa M. Curtis
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| |
Collapse
|
4
|
Yadav GD, Verma S, Varshney A, Deb A. Clinical Profile of Paediatric Hemangiomas, Response to Oral Propranolol, and Comparison of Intralesional Bleomycin and Triamcinolone in Propranolol Non Responders at a Tertiary Care Center in North India. J Indian Assoc Pediatr Surg 2022; 27:402-409. [PMID: 36238342 PMCID: PMC9552649 DOI: 10.4103/jiaps.jiaps_105_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 11/04/2022] Open
Abstract
Background A paradigm shift has occurred regarding the treatment of cutaneous hemangiomas over the last few years, from an open surgical approach to a conservative or minimally invasive approach. There are various treatment modalities described, and response to them is variable and unpredictable. This study was conducted to study the clinical profile of children with uncomplicated cutaneous hemangiomas, their response to oral propranolol, and compare intralesional bleomycin and intralesional triamcinolone among nonresponders to propranolol. Materials and Methods A trial was conducted among 158 children <12 years with cutaneous hemangiomas from January 2019 to October 2020 in Kanpur, Uttar Pradesh. Based on the response to propranolol, partial/nonresponders were later assigned randomly to either receive intralesional bleomycin (n = 30) or intralesional triamcinolone (n = 29). Response to treatment and complications were assessed in two groups. All children were followed up for 6 months. Results Of 158 children, complete response to propranolol was found in 99 (62.7% [95% confidence interval (CI): 54.6%-70.1%]) children. Partial and no response was found in 33 (20.9% [95% CI: 15.0%-28.2%]) and 26 (95% CI: 16.5% [11.2%-23.4%]) children, respectively. In the bleomycin group, 66.7%, 23.3%, and 10.0% of patients showed excellent, good, and poor response, respectively, and in the triamcinolone group, 27.6%, 24.1%, and 48.3% showed excellent, good, and poor response, respectively (P = 0.002). However, there was no significant difference between them in terms of complications. Conclusion Intralesional bleomycin was found to be a better drug in terms of response compared to triamcinolone. There are no significant differences in complications between them. Further studies are needed to further evaluate the combined efficacy of bleomycin with triamcinolone and other treatment modalities.
Collapse
Affiliation(s)
- Gulab Dhar Yadav
- Department of General Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Shraddha Verma
- Department of General Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Ashish Varshney
- Department of General Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Adiveeth Deb
- Department of General Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India,Address for correspondence: Dr. Adiveeth Deb, Department of General Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India. E-mail:
| |
Collapse
|
5
|
Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z. Gynura procumbens ethanol extract improves vascular dysfunction by suppressing inflammation in postmenopausal rats fed a high-fat diet. PHARMACEUTICAL BIOLOGY 2021; 59:1203-1215. [PMID: 34493166 PMCID: PMC8428271 DOI: 10.1080/13880209.2021.1970199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/29/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects. OBJECTIVE This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet. MATERIALS AND METHODS Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months. RESULTS In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p < 0.05), intima-media thickness (101.28 ± 3.4, 93.91 ± 2.93 vs. 143.78 ± 3.31 µM), vasoconstriction percentage induced by phenylephrine (102.5%, 88.3%, vs. 51.8%), sICAM-1 (0.49, 0.26 vs. 0.56 pg/mL) and sVCAM-1 (0.39, 0.25 vs. 0.45 pg/mL). GP extract supplementation increased vasorelaxation percentage induced by acetylcholine (78.4% vs. 47.3%) and sodium nitroprusside (84.2% vs. 53.7%), increased changes in plasma nitric oxide level (1.25%, 1.31% vs. 1.9%), and suppressed the elevation of TNF-α (0.39 vs. 1.02 pg/mL), IL-6 (0.43 vs. 0.77 pg/mL) and CRP (0.29 vs. 0.69 ng/mL) in the PM groups. CONCLUSIONS GP extract might improve vascular dysfunction by suppressing the inflammatory response, consequently preventing blood pressure elevation.
Collapse
Affiliation(s)
- Khuzaidatul Azidah Ahmad Nazri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Qodriyah Haji Mohd Saad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Proteomic Analysis of Estrogen-Mediated Enhancement of Mesenchymal Stem Cell-Induced Angiogenesis In Vivo. Cells 2021; 10:cells10092181. [PMID: 34571830 PMCID: PMC8468955 DOI: 10.3390/cells10092181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Therapeutic use of mesenchymal stem cells (MSCs) for tissue repair has great potential. MSCs from multiple sources, including those derived from human umbilical matrix, namely Wharton’s jelly, may serve as a resource for obtaining MSCs. However, low in vivo engraftment efficacy of MSCs remains a challenging limitation. To improve clinical outcomes using MSCs, an in-depth understanding of the mechanisms and factors involved in successful engraftment is required. We recently demonstrated that 17β-estradiol (E2) improves MSCs in vitro proliferation, directed migration and engraftment in murine heart slices. Here, using a proteomics approach, we investigated the angiogenic potential of MSCs in vivo and the modulatory actions of E2 on mechanisms involved in tissue repair. Specifically, using a Matrigel® plug assay, we evaluated the effects of E2 on MSCs-induced angiogenesis in ovariectomized (OVX) mice. Moreover, using proteomics we investigated the potential pro-repair processes, pathways, and co-mechanisms possibly modified by the treatment of MSCs with E2. Using RT-qPCR, we evaluated mRNA expression of pro-angiogenic molecules, including endoglin, Tie-2, ANG, and VEGF. Hemoglobin levels, a marker for blood vessel formation, were increased in plugs treated with E2 + MSCs, suggesting increased capillary formation. This conclusion was confirmed by the histological analysis of capillary numbers in the Matrigel® plugs treated with E2 + MSC. The LC-MS screening of proteins obtained from the excised Matrigel® plugs revealed 71 proteins that were significantly altered following E2 exposure, 57 up-regulated proteins and 14 down-regulated proteins. A major result was the association of over 100 microRNA molecules (miRNAs) involved in cellular communication, vesicle transport, and metabolic and energy processes, and the high percentage of approximately 25% of genes involved in unknown biological processes. Together, these data provide evidence for increased angiogenesis by MSCs treated with the sex hormone E2. In conclusion, E2 treatment may increase the engraftment and repair potential of MSCs into tissue, and may promote MSC-induced angiogenesis after tissue injury.
Collapse
|
7
|
Haller PM, Gyöngyösi M, Chacon-Alberty L, Hochman-Mendez C, Sampaio LC, Taylor DA. Sex-Based Differences in Autologous Cell Therapy Trials in Patients With Acute Myocardial Infarction: Subanalysis of the ACCRUE Database. Front Cardiovasc Med 2021; 8:664277. [PMID: 34124198 PMCID: PMC8187782 DOI: 10.3389/fcvm.2021.664277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sex-based differences are under-studied in cardiovascular trials as women are commonly underrepresented in dual sex studies, even though major sex-based differences in epidemiology, pathophysiology, and outcomes of cardiovascular disease have been reported. We examined sex-based differences in patient characteristics, outcome, and BM-CD34+ frequency of the ACCRUE (Meta-Analysis of Cell-based CaRdiac studies) database involving patients with acute myocardial infarction (AMI) randomized to autologous cell-based or control treatment. Methods: We compared baseline characteristics and 1-year follow-up clinical data: composite major adverse cardiac and cerebrovascular events (primary endpoint), and changes in left ventricular ejection fraction (LVEF), end-diastolic (EDV), and end-systolic volumes (ESV) (secondary efficacy endpoint) in women and men (N = 1,252; 81.4% men). Secondary safety endpoints included freedom from hard clinical endpoints. Results: In cell-treated groups, women but not men had a lower frequency of stroke, AMI, and mortality than controls. The frequency of BM-CD34+ cells was significantly correlated with baseline EDV and ESV and negatively correlated with baseline LVEF in both sexes; a left shift in regression curve in women indicated a smaller EDV and ESV was associated with higher BM-CD34+ cells in women. Conclusions: Sex differences were found in baseline cardiovascular risk factors and cardiac function and in outcome responses to cell therapy.
Collapse
Affiliation(s)
- Paul M Haller
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | | | - Luiz C Sampaio
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas (UT) Health Science Center, Houston, TX, United States
| | - Doris A Taylor
- Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
8
|
Budbazar E, Rodriguez F, Sanchez JM, Seta F. The Role of Sirtuin-1 in the Vasculature: Focus on Aortic Aneurysm. Front Physiol 2020; 11:1047. [PMID: 32982786 PMCID: PMC7477329 DOI: 10.3389/fphys.2020.01047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide-dependent deacetylase and the best characterized member of the sirtuins family in mammalians. Sirtuin-1 shuttles between the cytoplasm and the nucleus, where it deacetylates histones and non-histone proteins involved in a plethora of cellular processes, including survival, growth, metabolism, senescence, and stress resistance. In this brief review, we summarize the current knowledge on the anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-senescence effects of SirT1 with an emphasis on vascular diseases. Specifically, we describe recent research advances on SirT1-mediated molecular mechanisms in aortic aneurysm (AA), and how these processes relate to oxidant stress and the heme-oxygenase (HO) system. HO-1 and HO-2 catalyze the rate-limiting step of cellular heme degradation and, similar to SirT1, HO-1 exerts beneficial effects in the vasculature through the activation of anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative signaling pathways. SirT1 and HO-1 are part of an integrated system for cellular stress tolerance, and may positively interact to regulate vascular function. We further discuss sex differences in HO-1 and SirT1 activity or expression, and the potential interactions between the two proteins, in relation to the progression and severity of AA, as well as the ongoing efforts for translational applications of SirT1 activation and HO-1 induction in the treatment of cardiovascular diseases including AA.
Collapse
Affiliation(s)
- Enkhjargal Budbazar
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| | - Francisca Rodriguez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - José M Sanchez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - Francesca Seta
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Dubey RK, Baruscotti I, Stiller R, Fingerle J, Gillespie DG, Mi Z, Leeners B, Imthurn B, Rosselli M, Jackson EK. Adenosine, Via A 2B Receptors, Inhibits Human (P-SMC) Progenitor Smooth Muscle Cell Growth. Hypertension 2019; 75:109-118. [PMID: 31786976 DOI: 10.1161/hypertensionaha.119.13698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.).,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.).,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Isabella Baruscotti
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Ruth Stiller
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Juergen Fingerle
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen, Germany (J.F.)
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Brigitte Leeners
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Bruno Imthurn
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Marinella Rosselli
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| |
Collapse
|
10
|
Effectiveness of Cardiometabolic Therapy in the Treatment of Acute Coronary Syndrome without ST-segment Elevation in Perimenopausal Women. Fam Med 2019. [DOI: 10.30841/2307-5112.2.2019.175140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
12
|
Oliver-Williams C, Glisic M, Shahzad S, Brown E, Pellegrino Baena C, Chadni M, Chowdhury R, Franco OH, Muka T. The route of administration, timing, duration and dose of postmenopausal hormone therapy and cardiovascular outcomes in women: a systematic review. Hum Reprod Update 2018; 25:257-271. [DOI: 10.1093/humupd/dmy039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Clare Oliver-Williams
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marija Glisic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sara Shahzad
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Mahmuda Chadni
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Taulant Muka
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Deputy Minister of Education, Sports and Youth, Ministry of Education, Sports and Youth, Tirana, Albania
| |
Collapse
|
13
|
Topel ML, Hayek SS, Ko YA, Sandesara PB, Samman Tahhan A, Hesaroieh I, Mahar E, Martin GS, Waller EK, Quyyumi AA. Sex Differences in Circulating Progenitor Cells. J Am Heart Assoc 2017; 6:e006245. [PMID: 28974500 PMCID: PMC5721840 DOI: 10.1161/jaha.117.006245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lower levels of circulating progenitor cells (PCs) reflect impaired endogenous regenerative capacity and are associated with aging, vascular disease, and poor outcomes. Whether biologic sex and sex hormones influence PC numbers remains a subject of controversy. We sought to determine sex differences in circulating PCs in both healthy persons and patients with coronary artery disease, and to determine their association with sex hormone levels. METHODS AND RESULTS In 642 participants (mean age 48 years, 69% women, 23% black) free from cardiovascular disease, we measured circulating PC counts as CD45med+ mononuclear cells coexpressing CD34 and its subsets expressing CD133, chemokine (C-X-C motif) receptor 4, and vascular endothelial growth factor receptor 2 epitopes using flow cytometry. Testosterone and estradiol levels were measured. After adjustment for age, cardiovascular risk factors, and body mass, CD34+ (β=-23%, P<0.001), CD34+/CD133+ (β=-20%, P=0.001), CD34+/chemokine (C-X-C motif) receptor 4-positive (β=-24%, P<0.001), and CD34+/chemokine (C-X-C motif) receptor 4-positive/CD133+ (β=-21%, P=0.001) PC counts, but not vascular endothelial growth factor receptor 2-positive PC counts were lower in women compared with men. Estradiol levels positively correlated with hematopoietic, but not vascular endothelial growth factor receptor 2- positive PC counts in women (P<0.05). Testosterone levels and PC counts were not correlated in men. These findings were replicated in an independent cohort with prevalent coronary artery disease. CONCLUSIONS Women have lower circulating hematopoietic PC levels compared with men. Estrogen levels are modestly associated with PC levels in women. Since PCs are reflective of endogenous regenerative capacity, these findings may at least partly explain the rise in adverse cardiovascular events in women with aging and menopause.
Collapse
Affiliation(s)
- Matthew L Topel
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Salim S Hayek
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Pratik B Sandesara
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | | | - Iraj Hesaroieh
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ernestine Mahar
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Greg S Martin
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
14
|
Siqueira R, Colombo R, Conzatti A, de Castro AL, Carraro CC, Tavares AMV, Fernandes TRG, Araujo ASDR, Belló-Klein A. Effects of ovariectomy on antioxidant defence systems in the right ventricle of female rats with pulmonary arterial hypertension induced by monocrotaline. Can J Physiol Pharmacol 2017; 96:295-303. [PMID: 28854338 DOI: 10.1139/cjpp-2016-0445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg-1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.
Collapse
Affiliation(s)
- Rafaela Siqueira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Conzatti
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Maria Vicente Tavares
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tânia Regina Gattelli Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Zhang L, Wu HW, Yuan W, Zheng JW. Estrogen-mediated hemangioma-derived stem cells through estrogen receptor-α for infantile hemangioma. Cancer Manag Res 2017; 9:279-286. [PMID: 28744158 PMCID: PMC5511019 DOI: 10.2147/cmar.s138687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Infantile hemangiomas (IHs) are the most common benign vascular tumor of infancy. They occur more frequently in female infants. The cause of hemangioma is currently unknown; however, current studies suggested the importance of estrogen (E2) signaling in hemangioma proliferation. Methods Hemangioma-derived stem cells (HemSCs) were cultured with estrogen for 48–72 h; the cell viability and proliferation were evaluated with the messenger RNA (mRNA) and protein expression levels of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor-A (VEGF-A) and estrogen receptor-α (ER-α), by application of several in vitro assays, such as methyl thiazolyl tetrazolium (MTT), reverse transcriptase–polymerase chain reaction (RT-PCR), real-time PCR, enzyme-linked immunosorbent assay (ELISA) and Western blotting. Also, the cell population’s response to external estrogen was investigated by in vivo experiments. HemSCs and human umbilical vein endothelial cells (HUVECs) were mixed and injected subcutaneously into 20 flank of BALB/c-nu mice, which were randomly divided into 5 groups based on different E2 treatment doses (0, 0.01, 0.1 and 1 mg, respectively), 0.1 mg dimethyl sulfoxide (DMSO) as control. Each group of mice were treated intramuscularly every week, then 2 and 4 weeks later, the subcutaneous implants were harvested and evaluated the tumor tissues with microvessel density (MVD) assay and immunohistochemistry. Results The study demonstrated that application of E2 increased the expression of FGF2, VEGF-A, and ER-α in HemSCs with the optimal concentration from 10−9 to 10−5 M. Two-week treatment of E2 promoted expression of VEGF-A and FGF2 in HemSCs culture. Morphological, histological and immunohistological improvements were observed in vivo using murine IH model in which HemSCs and HUVECs were implanted into BALB/c-nu mice that were post-injected with E2. In the grafts, mean MVD was markedly increased. Conclusion The results suggested that E2 promotes angiogenesis via combination with ER-α to up-regulate the expression of VEGF-A in HemSCs, promoting proliferation of IHs. These findings provide critical insight into the potential mechanisms of E2 action on IHs.
Collapse
Affiliation(s)
- Ling Zhang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| | - Hai Wei Wu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jia Wei Zheng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| |
Collapse
|
16
|
Su Q, Wang Y, Yang X, Li XD, Qi YF, He XJ, Wang YJ. Inhibition of Endoplasmic Reticulum Stress Apoptosis by Estrogen Protects Human Umbilical Vein Endothelial Cells Through the PI3 Kinase-Akt Signaling Pathway. J Cell Biochem 2017; 118:4568-4574. [PMID: 28485890 DOI: 10.1002/jcb.26120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
We aimed to investigate whether the cardioprotective effect of estrogen is mediated by inhibiting the apoptosis induced by endoplasmic reticulum stress (ERS) and to explore the underlying signaling pathway responsible for this effect. The effect of estrogen on ERS apoptosis, the mechanism responsible for that effect, and the ERS signaling pathways were examined in human umbilical vein endothelial cells (HUVECs) and measured using Western blot, Hoechst stains and caspase-3 activity assay. In vitro, 10-8 mol/l estrogen directly inhibited the up-regulation of the ERS marker glucose-regulated protein 78 (GRP78) and ERS apoptosis marker C/EBP homologous protein (CHOP). ERS was induced using the ERS inducer tunicamycin (TM, 10 µmol/l) or dithiothreitol (DTT, 2 mmol/l) in HUVECs. Estrogen can also decrease the apoptosis cells mediated by ERS, based on the results of Hoechst stains. Protein expression in the three main ERS signaling pathways was upregulated in TM- or DTT-induced HUVEC ERS. Increases in p-PERK/PERK were the most obvious, and estrogen significantly inhibited the upregulation of p-PERK/PERK, p-IRE1/IRE1, and ATF6. These inhibitory effects were abolished by specific estrogen receptor antagonists (ICI182, 780, and G15) and inhibitors of the E2 post-receptor signaling pathway, including phosphoinositide 3-kinase (PI3K) inhibitor LY294002, p38-mitogen activated protein kinase (p38-MAPK) inhibitor SB203580, c-Jun N-terminal kinase (JNK) inhibitor SP600125 and extracellular signal-regulated kinases1/2 (ERK1/2) inhibitor U0126; of these inhibitors, LY294002 was the most effective. Further experiments showed that when the PI3K pathway was blocked, the inhibitory effect of estrogen on ERS apoptosis was reduced. Estrogen can prevent HUVEC apoptosis by inhibiting the ERS apoptosis triggered by the PERK pathway, which may protect vascular endothelial cells and the cardiovascular system. The main mechanism responsible for ERS inhibition is the activation of the PI3K-Akt pathway for the activated estrogen receptor. J. Cell. Biochem. 118: 4568-4574, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qing Su
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Dong Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao-Jing He
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Jie Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100000, China
| |
Collapse
|
17
|
Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3831750. [PMID: 28555162 PMCID: PMC5438855 DOI: 10.1155/2017/3831750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 12/22/2022]
Abstract
The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs), also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice) reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1). We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM) PAC senescence and the development of reactive oxygen species (ROS) in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.
Collapse
|
18
|
Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2129-2142. [PMID: 27315780 DOI: 10.1016/j.ajpath.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
Abstract
The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis.
Collapse
|
19
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Wang X, Mamillapalli R, Mutlu L, Du H, Taylor HS. Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res 2015. [PMID: 25957946 DOI: 10.1016/j.scr.2015.04.004.chemoattraction] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Bone marrow derived cells engraft to the uterine endometrium and contribute to endometriosis. The mechanism by which these cells are mobilized and directed to the endometrium has not been previously characterized. We demonstrate that human endometrial stromal cells (hESCs) produce the chemokine CXCL12 and that bone marrow cells (BMCs) express the CXCL12 receptor, CXCR4. Treatment with physiological levels of estradiol (E2) induced both CXCL12 and CXCR4 expression in hESCs and BMCs, respectively. BMCs migrated towards hESCs conditioned media; a CXCR4 antagonist blocked migration indicating that CXCL12 acting through its receptor, CXCR4, is necessary for chemoattraction of BM cells to human endometrial cells. E2 increased both CXCL12 expression in endometrial cells and CXCR4 expression in BM cells, further enhancing chemoattraction. E2 induced CXCL12/CXCR4 expression in endometrium and BM, respectively, drives migration of stem cells to the endometrium. The E2-CXCL12/CXCR4 signaling pathway may be useful in determining treatments for endometrial disorders, and may be antagonized to block stem cell migration to endometriosis.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hongling Du
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Wang X, Mamillapalli R, Mutlu L, Du H, Taylor HS. Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res 2015; 15:14-22. [PMID: 25957946 PMCID: PMC5001152 DOI: 10.1016/j.scr.2015.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/04/2015] [Accepted: 04/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bone marrow derived cells engraft to the uterine endometrium and contribute to endometriosis. The mechanism by which these cells are mobilized and directed to the endometrium has not been previously characterized. We demonstrate that human endometrial stromal cells (hESCs) produce the chemokine CXCL12 and that bone marrow cells (BMCs) express the CXCL12 receptor, CXCR4. Treatment with physiological levels of estradiol (E2) induced both CXCL12 and CXCR4 expression in hESCs and BMCs, respectively. BMCs migrated towards hESCs conditioned media; a CXCR4 antagonist blocked migration indicating that CXCL12 acting through its receptor, CXCR4, is necessary for chemoattraction of BM cells to human endometrial cells. E2 increased both CXCL12 expression in endometrial cells and CXCR4 expression in BM cells, further enhancing chemoattraction. E2 induced CXCL12/CXCR4 expression in endometrium and BM, respectively, drives migration of stem cells to the endometrium. The E2-CXCL12/CXCR4 signaling pathway may be useful in determining treatments for endometrial disorders, and may be antagonized to block stem cell migration to endometriosis.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hongling Du
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Barnabas O, Wang H, Gao XM. Role of estrogen in angiogenesis in cardiovascular diseases. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 10:377-82. [PMID: 24454332 PMCID: PMC3888921 DOI: 10.3969/j.issn.1671-5411.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022]
Abstract
The formation of new blood vessels from existing ones is a major process of angiogenesis and it is most effective in the vascular systems. The physiological process like hypoxia inducible factors involved in the regeneration of damaged tissues varies within the vascular systems in the endothelium and could be limited due to some major angiogenic growth factors like vascular endothelial growth factor, fibroblast growth factors and epidermal growth factor among others which bring about this cellular vascular regrowth. These physiological processes leading to cellular vascular regrowth could be a major function for the treatment of cardiovascular diseases such as ischemia and atherosclerosis. Estrogens are one of the known factors within the cellular mechanisms that could initiate repairs to the damaged vascular tissues, since estrogens are known inducers of angiogenesis leading to this cellular regrowth. Research has also shown that this cellular regrowth is induced by vascular angiogenic growth factors via the estrogen receptors. In this review we will attempt to summarize the main angiogenic growth factors involved in these physiological processes leading to angiogenesis and possible new mechanisms that could lead to this vascular regrowth. And also we will try to summarize some reports on the effect of estrogen on these physiological processes leading to angiogenesis in cardiovascular diseases.
Collapse
Affiliation(s)
- Oche Barnabas
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Wang
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-Mei Gao
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
24
|
Wistedt A, Ridderstråle Y, Wall H, Holm L. Effects of phytoestrogen supplementation in the feed on the shell gland of laying hens at the end of the laying period. Anim Reprod Sci 2012; 133:205-13. [DOI: 10.1016/j.anireprosci.2012.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022]
|
25
|
Estrogen receptor alpha as a key target of organochlorines to promote angiogenesis. Angiogenesis 2012; 15:745-60. [DOI: 10.1007/s10456-012-9288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
26
|
Urbieta-Caceres VH, Syed FA, Lin J, Zhu XY, Jordan KL, Bell CC, Bentley MD, Lerman A, Khosla S, Lerman LO. Age-dependent renal cortical microvascular loss in female mice. Am J Physiol Endocrinol Metab 2012; 302:E979-86. [PMID: 22318944 PMCID: PMC3330723 DOI: 10.1152/ajpendo.00411.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal function and blood flow decline during aging in association with a decrease in the number of intrarenal vessels, but if loss of estrogen contributes to this microvascular, rarefaction remains unclear. We tested the hypothesis that the decreased renal microvascular density with age is aggravated by loss of estrogen. Six-month-old female C57/BL6 mice underwent ovariectomy (Ovx) or sham operation and then were allowed to age to 18-22 mo. Another comparable group was replenished with estrogen after Ovx (Ovx+E), while a 6-mo-old group served as young controls. Kidneys were then dissected for evaluation of microvascular density (by micro-computed tomography) and angiogenic and fibrogenic factors. Cortical density of small microvessels (20-200 μm) was decreased in all aged groups compared with young controls (30.3 ± 5.8 vessels/mm², P < 0.05), but tended to be lower in sham compared with Ovx and Ovx+E (9.9 ± 1.7 vs. 17.2 ± 4.2 and 18 ± 3.0 vessels/mm², P = 0.08 and P = 0.02, respectively). Cortical density of larger microvessels (200-500 μm) decreased only in aged sham (P = 0.04 vs. young control), and proangiogenic signaling was attenuated. On the other hand, renal fibrogenic mechanisms were aggravated in aged Ovx compared with aged sham, but blunted in Ovx+E, in association with downregulated transforming growth factor-β signaling and decreased oxidative stress in the kidney. Therefore, aging induced in female mice renal cortical microvascular loss, which was likely not mediated by loss of endogenous estrogen. However, estrogen may play a role in protecting the kidney by decreasing oxidative stress and attenuating mechanisms linked to renal interstitial fibrosis.
Collapse
|
27
|
VEGF increases the proliferative capacity and eNOS/NO levels of endothelial progenitor cells through the calcineurin/NFAT signalling pathway. Cell Biol Int 2012; 36:21-7. [PMID: 21895605 DOI: 10.1042/cbi20100670] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.
Collapse
|
28
|
Izumiyama K, Osanai T, Sagara S, Yamamoto Y, Itoh T, Sukekawa T, Nishizaki F, Magota K, Okumura K. Estrogen attenuates coupling factor 6-induced salt-sensitive hypertension and cardiac systolic dysfunction in mice. Hypertens Res 2012; 35:539-46. [PMID: 22258022 DOI: 10.1038/hr.2011.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In male coupling factor 6 (CF6)-overexpressing transgenic (TG) mice, a high-salt diet induces hypertension and cardiac systolic dysfunction with excessive reactive oxygen species generation. However, the role of gender in CF6-mediated pathophysiology is unknown. We investigated the effects of ovariectomy and estrogen replacement on hypertension, cardiac dysfunction and Rac1 activity, which activates radical generation and the mineralocorticoid receptor, in female TG mice. Fifteen-week-old male and female TG and wild-type (WT) mice were fed a normal- or high-salt diet for 60 weeks. Systolic and diastolic blood pressures were higher in the TG mice fed a high-salt diet than in those fed a normal-salt diet at 20-60 weeks in males but only at 60 weeks in females. The blood pressure elevation under high-salt diet conditions was concomitant with a decrease in left ventricular fractional shortening. In the WT mice, neither blood pressure nor cardiac systolic function was influenced by a high-salt diet. In the female TG mice, bilateral ovariectomy induced hypertension with cardiac systolic dysfunction 8 weeks after the initiation of a high-salt diet. The ratios of Rac1 bound to guanosine triphosphate (Rac1-GTP) to total Rac1 in the heart and kidneys were increased in the ovariectomized TG mice, and estrogen replacement abolished the CF6-mediated pathophysiology induced under the high-salt diet conditions. The overexpression of CF6 induced salt-sensitive hypertension, complicated by systolic cardiac dysfunction, but its onset was delayed in females. Estrogen has an important role in the regulation of CF6-mediated pathophysiology, presumably via the downregulation of Rac1.
Collapse
Affiliation(s)
- Kei Izumiyama
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Premenopausal women have a lower risk and incidence of hypertension and cardiovascular disease (CVD) compared to age-matched men and this sex advantage for women gradually disappears after menopause, suggesting that sexual hormones play a cardioprotective role in women. However, randomized prospective primary or secondary prevention trials failed to confirm that hormone replacement therapy (HRT) affords cardioprotection. This review highlights the factors that may contribute to this divergent outcome and could reveal why young or premenopausal women are protected from CVD and yet postmenopausal women do not benefit from HRT. RECENT FINDINGS In addition to the two classical estrogen receptors, ERα and ERβ, a third, G-protein-coupled estrogen receptor GPR30, has been identified. New intracellular signaling pathways and actions for the cardiovascular protective properties of estrogen have been proposed. In addition, recent Women's Health Initiative (WHI) studies restricted to younger postmenopausal women showed that initiation of HRT closer to menopause reduced the risk of CVD. Moreover, dosage, duration, the type of estrogen and route of administration all merit consideration when determining the outcome of HRT. SUMMARY HRT has become one of the most controversial topics related to women's health. Future studies are necessary if we are to understand the divergent published findings regarding HRT and develop new therapeutic strategies to improve the quality of life for women.
Collapse
|