1
|
Przywara D, Petniak A, Gil-Kulik P. Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review. Med Sci Monit 2024; 30:e945331. [PMID: 39154207 PMCID: PMC11340262 DOI: 10.12659/msm.945331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.
Collapse
|
2
|
van Rhijn-Brouwer FCCC, Wever KE, Kiffen R, van Rhijn JR, Gremmels H, Fledderus JO, Vernooij RWM, Verhaar MC. Systematic review and meta-analysis of the effect of bone marrow-derived cell therapies on hind limb perfusion. Dis Model Mech 2024; 17:dmm050632. [PMID: 38616715 PMCID: PMC11139036 DOI: 10.1242/dmm.050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Preclinical and clinical studies on the administration of bone marrow-derived cells to restore perfusion show conflicting results. We conducted a systematic review and meta-analysis on preclinical studies to assess the efficacy of bone marrow-derived cells in the hind limb ischemia model and identify possible determinants of therapeutic efficacy. In vivo animal studies were identified using a systematic search in PubMed and EMBASE on 10 January 2022. 85 studies were included for systematic review and meta-analysis. Study characteristics and outcome data on relative perfusion were extracted. The pooled mean difference was estimated using a random effects model. Risk of bias was assessed for all included studies. We found a significant increase in perfusion in the affected limb after administration of bone marrow-derived cells compared to that in the control groups. However, there was a high heterogeneity between studies, which could not be explained. There was a high degree of incomplete reporting across studies. We therefore conclude that the current quality of preclinical research is insufficient (low certainty level as per GRADE assessment) to identify specific factors that might improve human clinical trials.
Collapse
Affiliation(s)
| | - Kimberley Elaine Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Romy Kiffen
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jon-Ruben van Rhijn
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, 3584 CS Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joost Ougust Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robin Wilhelmus Maria Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Marianne Christina Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Xiang P, Jiang M, Chen X, Chen L, Cheng Y, Luo X, Zhou H, Zheng Y. Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305856. [PMID: 38308197 PMCID: PMC11005700 DOI: 10.1002/advs.202305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Indexed: 02/04/2024]
Abstract
Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Meng Jiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xin Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yalun Cheng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xianghang Luo
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yongjun Zheng
- Department of Burn Surgerythe First Affiliated Hospital of Naval Medical UniversityShanghai200433China
| |
Collapse
|
4
|
Liang F, Luo YF, Guo Z, Qian Q, Meng XB, Mo ZH. MicroRNA-139-5p mediates BMSCs impairment in diabetes by targeting HOXA9/c-Fos. FASEB J 2023; 37:e22697. [PMID: 36527387 DOI: 10.1096/fj.202201059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The properties and functions of BMSCs were altered by the diabetic microenvironment, and its mechanism was not very clear. In recent years, the regulation of the function of BMSCs by microRNA has become a research hotspot, meanwhile, HOX genes also have been focused on and involved in multiple functions of stem cells. In this study, we investigated the role of miR-139-5p in diabetes-induced BMSC impairment. Since HOXA9 may be a target gene of miR-139-5p, we speculated that miR-139-5p/HOXA9 might be involved in regulating the biological characteristics and the function of BMSCs in diabetes. We demonstrated that the miR-139-5p expression was increased in BMSCs derived from STZ-induced diabetic rats. MiR-139-5p mimics were able to inhibit cell proliferation, and migration and promoted senescence and apoptosis in vitro. MiR-139-5p induced the down-regulated expression of HOXA9 and c-Fos in BMSCs derived from normal rats. Moreover, miR-139-5p inhibitors reversed the tendency in diabetic-derived BMSCs. Further, gain-and-loss function experiments indicated that miR-139-5p regulated the functions of BMSCs by targeting HOXA9 and c-Fos. In vivo wound model experiments showed that the downregulation of miR-139-5p further promoted the epithelialization and angiogenesis of diabetic BMSC-mediated skin. In conclusion, induction of miR-139-5p upregulation mediated the impairment of BMSCs through the HOXA9/c-Fos pathway in diabetic rats. Therefore, miR-139-5p/HOXA9 might be an important therapeutic target in treating diabetic BMSCs and diabetic complications in the future.
Collapse
Affiliation(s)
- Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Yu-Fang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Zi Guo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Qiang Qian
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xu-Biao Meng
- Department of Endocrinology, Haikou People's Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Zhao-Hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| |
Collapse
|
5
|
Pagano F, Picchio V, Bordin A, Cavarretta E, Nocella C, Cozzolino C, Floris E, Angelini F, Sordano A, Peruzzi M, Miraldi F, Biondi‐Zoccai G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Progressive stages of dysmetabolism are associated with impaired biological features of human cardiac stromal cells mediated by the oxidative state and autophagy. J Pathol 2022; 258:136-148. [PMID: 35751644 PMCID: PMC9542980 DOI: 10.1002/path.5985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome-MetS, and type 2 diabetes mellitus-DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow-cytometry and real-time quantitative polymerase chain reaction (RT-qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS-CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS- and DM2-CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme-linked immunoassay (ELISA). DM2-CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2 O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3-II proteins) was also detectable in DM2-CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2- and MetS-CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2-CSCs, and VEGF and endoglin release by both MetS- and DM2-CSCs, also recovering the angiogenic support to endothelial cells by DM2-CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2-CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Francesca Pagano
- Institute of Biochemistry and Cell BiologyNational Council of Research (IBBC‐CNR)MonterotondoItaly
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| | - Antonella Bordin
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Mediterranea CardiocentroNapoliItaly
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular SciencesSapienza UniversityRomeItaly
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| | - Erica Floris
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| | - Francesco Angelini
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Present address:
Donawa Lifescience ConsultingRomeItaly
| | - Alessia Sordano
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| | - Mariangela Peruzzi
- Mediterranea CardiocentroNapoliItaly
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular SciencesSapienza UniversityRomeItaly
| | - Fabio Miraldi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular SciencesSapienza UniversityRomeItaly
| | - Giuseppe Biondi‐Zoccai
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Mediterranea CardiocentroNapoliItaly
| | - Elena De Falco
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Mediterranea CardiocentroNapoliItaly
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Mediterranea CardiocentroNapoliItaly
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Department of AngioCardioNeurologyIRCCS NeuromedPozzilliItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Department of AngioCardioNeurologyIRCCS NeuromedPozzilliItaly
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
- Mediterranea CardiocentroNapoliItaly
| |
Collapse
|
6
|
Photobiomodulation isolated or associated with adipose-derived stem cells allograft improves inflammatory and oxidative parameters in the delayed-healing wound in streptozotocin-induced diabetic rats. Lasers Med Sci 2022; 37:3297-3308. [PMID: 36006574 DOI: 10.1007/s10103-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 12/06/2022]
Abstract
The single and associated impressions of photobiomodulation (PBM) and adipose-derived stem cells (ADS) on stereological parameters (SP), and gene expression (GE) of some antioxidant and oxidative stressors of repairing injured skin at inflammation and proliferation steps (days 4 and 8) of a delayed healing, ischemic, and infected wound model (DHIIWM) were examined in type one diabetic (DM1) rats. DM1 was induced by administration of streptozotocin (40 mg/kg) in 48 rats. The DHIIWM was infected by methicillin-resistant Staphylococcus aureus (MRSA). The study comprised 4 groups (each, n = 6): Group 1 was the control group (CG). Group 2 received allograft human (h) ADSs transplanted into the wound. In group 3, PBM (890 nm, 80 Hz, 0.2 J/cm2) was emitted, and in group 4, a combination of PBM+ADS was used. At both studied time points, PBM+ADS, PBM, and ADS significantly decreased inflammatory cell count (p < 0.05) and increased granulation tissue formation compared to CG (p < 0.05). Similarly, there were lower inflammatory cells, as well as higher granulation tissue in the PBM+ADS compared to those of alone PBM and ADS (all, p < 0.001). At both studied time points, the GE of catalase (CAT) and superoxide dismutase (SOD) was remarkably higher in all treatment groups than in CG (p < 0.05). Concomitantly, the outcomes of the PBM+ADS group were higher than the single effects of PBM and ADS (p < 0.05). On day 8, the GE of NADPH oxidase (NOX) 1 and NOX4 was substantially less in the PBM+ADS than in the other groups (p < 0.05). PBM+ADS, PBM, and ADS treatments significantly accelerated the inflammatory and proliferative stages of wound healing in a DIIWHM with MRSA in DM1 rats by decreasing the inflammatory response, and NOX1 and 4 as well; and also increasing granulation tissue formation and SOD and CAT. The associated treatment of PBM+ADS was more effective than the individual impacts of alone PBM and ADS because of the additive anti-inflammatory and proliferative effects of PBM plus ADS treatments.
Collapse
|
7
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Adipose-Derived Stem Cells from Type 2 Diabetic Rats Retain Positive Effects in a Rat Model of Erectile Dysfunction. Int J Mol Sci 2022; 23:ijms23031692. [PMID: 35163613 PMCID: PMC8836282 DOI: 10.3390/ijms23031692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Erectile dysfunction is a common complication associated with type 2 diabetes mellitus (T2DM) and after prostatectomy in relation to cancer. The regenerative effect of cultured adipose-derived stem cells (ASCs) for ED therapy has been documented in multiple preclinical trials as well as in recent Pase 1 trials in humans. However, some studies indicate that diabetes negatively affects the mesenchymal stem cell pool, implying that ASCs from T2DM patients could have impaired regenerative capacity. Here, we directly compared ASCs from age-matched diabetic Goto–Kakizaki (ASCGK) and non-diabetic wild type rats (ASCWT) with regard to their phenotypes, proteomes and ability to rescue ED in normal rats. Despite ASCGK exhibiting a slightly lower proliferation rate, ASCGK and ASCWT proteomes were more or less identical, and after injections to corpus cavernosum they were equally efficient in restoring erectile function in a rat ED model entailing bilateral nerve crush injury. Moreover, molecular analysis of the corpus cavernosum tissue revealed that both ASCGK and ASCWT treated rats had increased induction of genes involved in recovering endothelial function. Thus, our finding argues that T2DM does not appear to be a limiting factor for autologous adipose stem cell therapy when correcting for ED.
Collapse
|
9
|
Quiroz HJ, Valencia SF, Shao H, Li Y, Ortiz YY, Parikh PP, Lassance-Soares RM, Vazquez-Padron RI, Liu ZJ, Velazquez OC. E-Selectin-Overexpressing Mesenchymal Stem Cell Therapy Confers Improved Reperfusion, Repair, and Regeneration in a Murine Critical Limb Ischemia Model. Front Cardiovasc Med 2022; 8:826687. [PMID: 35174227 PMCID: PMC8841646 DOI: 10.3389/fcvm.2021.826687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
AIMS Novel cell-based therapeutic angiogenic treatments for patients with critical limb ischemia may afford limb salvage. Mesenchymal stem cells (MSCs) do not overexpress E-selectin; however, we have previously demonstrated the cell-adhesion molecule's vital role in angiogenesis and wound healing. Thus, we created a viral vector to overexpress E-selectin on MSCs to increase their therapeutic profile. METHODS AND RESULTS Femoral artery ligation induced hind limb ischemia in mice and intramuscular injections were administered of vehicle or syngeneic donor MSCs, transduced ex vivo with an adeno-associated viral vector to express either GFP+ (MSCGFP) or E-selectin-GFP+ (MSCE-selectin-GFP). Laser Doppler Imaging demonstrated significantly restored reperfusion in MSCE-selectin-GFP-treated mice vs. controls. After 3 weeks, the ischemic limbs in mice treated with MSCE-selectin-GFP had increased footpad blood vessel density, hematoxylin and eosin stain (H&E) ischemic calf muscle sections revealed mitigated muscular atrophy with restored muscle fiber size, and mice were able to run further before exhaustion. PCR array-based gene profiling analysis identified nine upregulated pro-angiogenic/pro-repair genes and downregulated Tumor necrosis factor (TNF) gene in MSCE-selectin-GFP-treated limb tissues, indicating that the therapeutic effect is likely achieved via upregulation of pro-angiogenic cytokines and downregulation of inflammation. CONCLUSION This innovative cell therapy confers increased limb reperfusion, neovascularization, improved functional recovery, decreased muscle atrophy, and thus offers a potential therapeutic method for future clinical studies.
Collapse
Affiliation(s)
- Hallie J. Quiroz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samantha F. Valencia
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yan Li
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Punam P. Parikh
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberta M. Lassance-Soares
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Central Lab, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
11
|
Xu J, Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front Mol Biosci 2021; 8:745035. [PMID: 34796200 PMCID: PMC8592901 DOI: 10.3389/fmolb.2021.745035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is becoming a growing risk factor for public health worldwide. It is a very common disease and is widely known for its susceptibility to multiple complications which do great harm to the life and health of patients, some even lead to death. To date, there are many mechanisms for the complications of diabetes, including the generation of reactive oxygen species (ROS) and the abnormal changes of gas transmitters, which ultimately lead to injuries of cells, tissues and organs. Normally, even if injured, the body can quickly repair and maintain its homeostasis. This is closely associated with the repair and regeneration ability of stem cells. However, many studies have demonstrated that stem cells happen to be damaged under DM, which may be a nonnegligible factor in the occurrence and progression of diabetic complications. Therefore, this review summarizes how diabetes causes the corresponding complications by affecting stem cells from two aspects: stem cells dysfunctions and stem cells quantity alteration. In addition, since mesenchymal stem cells (MSCs), especially bone marrow mesenchymal stem cells (BMMSCs), have the advantages of strong differentiation ability, large quantity and wide application, we mainly focus on the impact of diabetes on them. The review also puts forward the basis of using exogenous stem cells to treat diabetic complications. It is hoped that through this review, researchers can have a clearer understanding of the roles of stem cells in diabetic complications, thus promoting the process of using stem cells to treat diabetic complications.
Collapse
Affiliation(s)
- Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Abu-Shahba N, Mahmoud M, El-Erian AM, Husseiny MI, Nour-Eldeen G, Helwa I, Amr K, ElHefnawi M, Othman AI, Ibrahim SA, Azmy O. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells. Int J Biochem Cell Biol 2021; 140:106072. [PMID: 34455058 DOI: 10.1016/j.biocel.2021.106072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with several complications. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) represent an emerging type of MSCs with high plasticity and immunoregulatory capabilities and are useful for treating inflammation-related disorders such as T2DM. However, the pathogenic microenvironment of T2DM may affect their therapeutic potential. We aimed to examine the impact of the diabetic milieu on the immunomodulatory/anti-inflammatory potential of AT-MSCs. METHODS We assessed the proliferation potential, cell surface expression of MSC-characteristic markers and immunomodulatory markers, along with the gene expression and protein secretion of pro-inflammatory and anti-inflammatory cytokines and adipokines in AT-MSCs derived from T2DM patients (dAT-MSCs) vs. those derived from non-diabetic volunteers (ndAT-MSCs). Furthermore, we evaluated the IFN-γ priming effect on both groups. RESULTS Our data revealed comparable proliferative activities in both groups. Flow cytometric analysis results showed a lower expression of CD200 and CD276 on dAT-MSCs vs. ndAT-MSCs. qPCR demonstrated upregulation of IL-1β associated with a downregulation of IL-1RN in dAT-MSCs vs. ndAT-MSCs. IFN-γ priming induced an elevation in CD274 expression associated with IDO1 and ILRN overexpression and IL-1β downregulation in both groups. ELISA analysis uncovered elevated levels of secreted IL-1β, TNF, and visfatin/NAMPT in dAT-MSCs, whereas IL-1RA and IDO levels were reduced. ELISA results were also evident in the secretome of dAT-MSCs upon IFN-γ priming. CONCLUSIONS This study suggests that the T2DM milieu alters the immunomodulatory characteristics of AT-MSCs with a shift towards a proinflammatory phenotype which may restrain their autologous therapeutic use. Furthermore, our findings indicate that IFN-γ priming could be a useful strategy for enhancing dAT-MSC anti-inflammatory potential.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Alaa Mohammed El-Erian
- Department of Endocrine Surgery, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Mohamed Ibrahim Husseiny
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs DMRI, Beckman Research Institute, City of Hope, National Medical Center, Durate, CA, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ghada Nour-Eldeen
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Molecular Genetics and Enzymology, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Iman Helwa
- Department of Immunogenetics, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Khalda Amr
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Amel Ibrahim Othman
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | | - Osama Azmy
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Reproductive Health Research, Medical Research Division, National Research Centre, Cairo, Egypt; Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| |
Collapse
|
13
|
Maartens M, Kruger MJ, van de Vyver M. The Effect of N-Acetylcysteine and Ascorbic Acid-2-Phosphate Supplementation on Mesenchymal Stem Cell Function in B6.C-Lep ob/J Type 2 Diabetic Mice. Stem Cells Dev 2021; 30:1179-1189. [PMID: 34544266 DOI: 10.1089/scd.2021.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diabetes is a complex multifactorial disorder associated with hyperglycemia, oxidative stress, and inflammation. The pathological microenvironment impairs mesenchymal stem cell (MSC) viability and dysregulates their proregenerative and immune-modulatory function causing maladaptive tissue damage. Targeting stem cells to protect them against impairment could thus delay the onset of complications and enhance the quality of life in diabetes mellitus patients. The aim of this study was to investigate the efficacy of N-acetylcysteine (NAC) and ascorbic-acid-2-phosphate (AAP) oral supplementation as preventative measure against MSC impairment. Healthy wild-type control (C57BL/6J) (male, n = 24) and obese diabetic (B6.C-Lepob/J) (ob/ob) (male, n = 24) mice received either placebo or antioxidant (NAC/AAP) supplementation for a period of 6 weeks. Metabolic parameters (weight and blood glucose) and the oxidative status (serum total serum antioxidant capacity, malondialdehyde) of animals were assessed. At the end of the 6-week supplementation period, bone marrow MSCs were isolated and their functionality (growth rate, viability, adipogenesis, and osteogenesis) assessed ex vivo. Real time quantitative polymerase chain reaction microarray analysis was also performed to assess the expression of 84 genes related to oxidative stress in MSCs. Despite no change in the metabolic profile, NAC/AAP supplementation improved the antioxidant status of diabetic animals and reduced lipid peroxidation, which is indicative of cellular damage. NAC/AAP also improved the population doubling time of MSCs (first 6-days postisolation) and significantly downregulated the expression of two genes (Nox1 and Rag2) associated with oxidative stress compared to placebo treatment. Taken together, this study has shown reduced oxidative stress and improvements in MSC function following in vivo antioxidant supplementation in healthy control and type 2 diabetic mice.
Collapse
Affiliation(s)
- Michelle Maartens
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maria Jacoba Kruger
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Boreak N, Khayrat NMA, Shami AO, Zaylaee HJM, Hanbashi AA, Souri SA, Otayf HM, Bakri RE, Ajeely MEM, Bakri AEH, Jafer MA, Raj AT, Baeshen HA, Patil S. Metformin pre-conditioning enhances the angiogenic ability of the secretome of dental pulp stem cells. Saudi Pharm J 2021; 29:908-913. [PMID: 34408549 PMCID: PMC8363104 DOI: 10.1016/j.jsps.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the influence of metformin on the angiogenic ability of secretomes from dental pulp stem cells. The stem cells were obtained from the dental pulp (DPSCs) (n = 3) using the explant culture method. We treated the DPSCs with different concentrations of metformin and assessed the expression of the angiogenesis-related genes. We also tested the angiogenic effect of the secretomes on the yolk sac membrane of the chick embryos by counting the quaternary blood vessel formations on the yolk sac membrane. We found that metformin treatment enhanced the angiogenic potential of the stem cell secretome in a dose-dependent manner. This was evidenced by the increase in the quaternary blood vessel formations in the yolk sac membrane with lower to higher concentrations of metformin. Pre-treatment with metformin modulates the angiogenic potential of the stem cell-conditioned media in a dose-dependent manner. The augmentation of the angiogenic potential of the DPSCs can aid regeneration, especially in scenarios requiring the regeneration of vacuoles.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Mohammed Abdurabu Jafer
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Saudi Arabia
- Department of Health Promotion, Maastricht University/CAPHRI, The Netherlands
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Corresponding author.
| |
Collapse
|
15
|
Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell Tissue Res 2021; 385:497-518. [PMID: 34050823 DOI: 10.1007/s00441-021-03461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
The umbilical cord has been proved to be an easy-access, reliable, and useful source of mesenchymal stem cells (MSC) for clinical applications due to its primitive, immunomodulatory, non-immunogenic, secretory and paracrine, migratory, proliferative, and multipotent properties. This set of characteristics has recently attracted great research interest in the fields of nanotechnology and regenerative medicine and cellular therapy. Accumulating evidence supports a pronounced therapeutic potential of MSC in many different pathologies, from hematology to immunology, wound-healing, tissue regeneration, and oncology. Diabetes mellitus, branded the epidemic of the century, is considered a chronic metabolic disorder, representing a major burden for health system sustainability and an important public health challenge to modern societies. The available treatments for type 2 diabetes mellitus (T2DM) still rely mainly on combinations of oral antidiabetic agents with lifestyle and nutritional adjustments. Despite the continuous development of novel and better hypoglycemic drugs, their efficacy is limited in the installment and progression of silent T2DM complications. T2DM comorbidities and mortality rates still make it a serious, common, costly, and long-term manageable disease. Recently, experimental models, preclinical observations, and clinical studies have provided some insights and preliminary promising results using umbilical cord MSCs to treat and manage diabetes. This review focuses on the latest research and applications of human-derived umbilical cord MSC in the treatment and management of T2DM, exploring and systematizing the key effects of both umbilical cord MSC and its factor-rich secretome accordingly with the major complications associated to T2DM.
Collapse
|
16
|
van de Vyver M, Powrie YSL, Smith C. Targeting Stem Cells in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:163-181. [PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.
Collapse
Affiliation(s)
- Mari van de Vyver
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Yigael S L Powrie
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Ribot J, Denoeud C, Frescaline G, Landon R, Petite H, Pavon-Djavid G, Bensidhoum M, Anagnostou F. Experimental Type 2 Diabetes Differently Impacts on the Select Functions of Bone Marrow-Derived Multipotent Stromal Cells. Cells 2021; 10:268. [PMID: 33572905 PMCID: PMC7912056 DOI: 10.3390/cells10020268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.
Collapse
Affiliation(s)
- Jonathan Ribot
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Cyprien Denoeud
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Guilhem Frescaline
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Rebecca Landon
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Hervé Petite
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 93430 Villetaneuse, France;
| | - Morad Bensidhoum
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
| | - Fani Anagnostou
- Université de Paris, CNRS, INSERM, B3OA, 75010 Paris, France; (J.R.); (C.D.); (G.F.); (R.L.); (H.P.); (M.B.)
- Department of Periodontology, Service of Odontology–Pitié Salpêtrière Hospital, AP-HP et U.F.R. of Odontology, 75013 Paris, France
| |
Collapse
|
18
|
Wang L, Shi S, Bai R, Wang Y, Guo Z, Li D. Biological properties of bone marrow stem cells and adipose-derived stem cells derived from T2DM rats: a comparative study. Cell Biosci 2020; 10:102. [PMID: 32939244 PMCID: PMC7487578 DOI: 10.1186/s13578-020-00465-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/27/2020] [Indexed: 01/11/2023] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM), especially those with poor glycemic control, are characterized by low bone mass and destruction of bone microstructure. Nowadays, autologous mesenchymal stem cells (auto-MSCs) have been used to repair defects and promote tissue regeneration due to handy source, low immunogenicity and self-renewing and multi-differentiating potential. However, T2DM changed the biological properties of auto-MSCs, and investigating the most suitable auto-MSCs for T2DM patients becomes a focus in tissue engineering. Results In this research, we compared the biological characteristics of adipose-derived stem cells (ASCs) and bone marrow stem cells (BMSCs) derived from T2DM rats. These results demonstrated that ASCs had a higher proliferation rate, colony-formation and cell-sheet forming ability, while BMSCs got better osteogenesis-related staining, expression of osteogenesis-related genes and proteins, and osteogenic capacity in vitro. Conclusions As it turned out, ASCs from T2DM had a higher proliferation, while BMSCs had significantly higher osteogenetic ability no matter in vitro and in vivo. Therefore, we should take into account the specific and dominated properties of MSC according to different needs to optimize the protocols and improve clinical outcomes for tissue regeneration of T2DM patients.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004 Shaanxi People's Republic of China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi People's Republic of China
| | - Shaojie Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi People's Republic of China
| | - Ruiping Bai
- Department of Math and Physics, School of Basic Medicine, Air Force Medical University, Xi'an, 710032 Shaanxi People's Republic of China
| | - Yue Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004 Shaanxi People's Republic of China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi People's Republic of China
| | - Zhao Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004 Shaanxi People's Republic of China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi People's Republic of China
| | - Doudou Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi People's Republic of China
| |
Collapse
|
19
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
20
|
Cassidy FC, Shortiss C, Murphy CG, Kearns SR, Curtin W, De Buitléir C, O’Brien T, Coleman CM. Impact of Type 2 Diabetes Mellitus on Human Bone Marrow Stromal Cell Number and Phenotypic Characteristics. Int J Mol Sci 2020; 21:ijms21072476. [PMID: 32252490 PMCID: PMC7177361 DOI: 10.3390/ijms21072476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) have been investigated in numerous disease settings involving impaired regeneration because of the crucial role they play in tissue maintenance and repair. Considering the number of comorbidities associated with type 2 diabetes mellitus (T2DM), the hypothesis that MSCs mediate these comorbidities via a reduction in their native maintenance and repair activities is an intriguing line of inquiry. Here, it is demonstrated that the number of bone marrow-derived MSCs in people with T2DM was reduced compared to that of age-matched control (AMC) donors and that this was due to a specific decrease in the number of MSCs with osteogenic capacity. There were no differences in MSC cell surface phenotype or in MSC expansion, differentiation, or angiogenic or migratory capacity from donors living with T2DM as compared to AMCs. These findings elucidate the basic biology of MSCs and their potential as mediators of diabetic comorbidities, especially osteopathies, and provide insight into donor choice for MSC-based clinical trials. This study suggests that any role of bone marrow MSCs as a mediator of T2DM comorbidity is likely due to a reduction in the osteoprogenitor population size and not due to a permanent alteration to the MSCs' capacity to maintain tissue homeostasis through expansion and differentiation.
Collapse
Affiliation(s)
- Féaron C. Cassidy
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Correspondence:
| | - Ciara Shortiss
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| | - Colin G. Murphy
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Stephen R. Kearns
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - William Curtin
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Ciara De Buitléir
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
| | - Timothy O’Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, College of Medicine, Nursing and Health Sciences, School of Medicine, NUI Galway, H91 FD82 Galway, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| |
Collapse
|
21
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
22
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
23
|
|
24
|
Biscetti F, Bonadia N, Nardella E, Cecchini AL, Landolfi R, Flex A. The Role of the Stem Cells Therapy in the Peripheral Artery Disease. Int J Mol Sci 2019; 20:E2233. [PMID: 31067647 PMCID: PMC6539394 DOI: 10.3390/ijms20092233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023] Open
Abstract
Vascular complications of diabetes mellitus are an important issue for all clinicians involved in the management of this complex pathology. Although many therapeutic advances have been reached, peripheral arterial disease is still an unsolved problem that each year compromises the quality of life and life span of affected patients. Oftentimes, patients, after ineffective attempts of revascularization, undergo greater amputations. At the moment, there is no effective and definitive treatment available. In this scenario, the therapeutic use of stem cells could be an interesting option. The aim of the present review is to gather all the best available evidence in this regard and to define a new role of the stem cells therapy in this field, from biomarker to possible therapeutic target.
Collapse
Affiliation(s)
- Federico Biscetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Nicola Bonadia
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Medicina d’Urgenza e Pronto Soccorso, 00168 Roma, Italy
| | - Elisabetta Nardella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Andrea Leonardo Cecchini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Raffaele Landolfi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
25
|
Rabbani PS, Soares MA, Hameedi SG, Kadle RL, Mubasher A, Kowzun M, Ceradini DJ. Dysregulation of Nrf2/Keap1 Redox Pathway in Diabetes Affects Multipotency of Stromal Cells. Diabetes 2019; 68:141-155. [PMID: 30352880 PMCID: PMC6302538 DOI: 10.2337/db18-0232] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
The molecular and cellular level reaches of the metabolic dysregulations that characterize diabetes are yet to be fully discovered. As mechanisms underlying management of reactive oxygen species (ROS) gain interest as crucial factors in cell integrity, questions arise about the role of redox cues in the regulation and maintenance of bone marrow-derived multipotent stromal cells (BMSCs) that contribute to wound healing, particularly in diabetes. Through comparison of BMSCs from wild-type and diabetic mice, with a known redox and metabolic disorder, we found that the cytoprotective nuclear factor erythroid-related factor 2 (Nrf2)/kelch-like erythroid cell-derived protein 1 (Keap1) pathway is dysregulated and functionally insufficient in diabetic BMSCs (dBMSCs). Nrf2 is basally active, but in chronic ROS, we found irregular inhibition of Nrf2 by Keap1, altered metabolism, and limited BMSC multipotency. Forced upregulation of Nrf2-directed transcription, through knockdown of Keap1, restores redox homeostasis. Normalized Nrf2/Keap1 signaling restores multipotent cell properties in dBMSCs through Sox2 expression. These restored BMSCs can resume their role in regenerative tissue repair and promote healing of diabetic wounds. Knowledge of diabetes and hyperglycemia-induced deficits in BMSC regulation, and strategies to reverse them, offers translational promise. Our study establishes Nrf2/Keap1 as a cytoprotective pathway, as well as a metabolic rheostat, that affects cell maintenance and differentiation switches in BMSCs.
Collapse
Affiliation(s)
- Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Marc A Soares
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Sophia G Hameedi
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Rohini L Kadle
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Adnan Mubasher
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Maria Kowzun
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| | - Daniel J Ceradini
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
26
|
Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M, Lakey JRT, Paydar KZ, Evans GRD, Widgerow AD. Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep 2018; 46:1459-1475. [PMID: 30484107 DOI: 10.1007/s11033-018-4516-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic disease that results in a variety of systemic complications. Recently, stem cell-based therapies have been proposed as potential modalities to manage DM related complications. Mesenchymal stem cell (MSC) based therapies are often considered as an ideal stem cell-based treatment for DM management due to their immunosuppressive characteristics, anti-inflammatory properties and differentiation potential. While MSCs show tremendous promise, the underlying functional deficits of MSCs in DM patients is not well understood. Using the MEDLINE database to define these functional deficits, our search yielded 1826 articles of which 33 met our inclusion criteria. This allowed us to review the topic and illuminate four major molecular categories by which MSCs are compromised in both Type 1 DM and Type II DM models which include: (1) changes in angiogenesis/vasculogenesis, (2) altered pro-inflammatory cytokine secretion, (3) increased oxidative stress markers and (4) impaired cellular differentiation and decreased proliferation. Knowledge of the deficits in MSC function will allow us to more clearly assess the efficacy of potential biologic therapies for reversing these dysfunctions when treating the complications of diabetic disease.
Collapse
Affiliation(s)
- Arman Fijany
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Lohrasb R Sayadi
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Nima Khoshab
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Derek A Banyard
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Ashkaun Shaterian
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Michael Alexander
- UC Irvine Department of Surgery & Biomedical Engineering, Orange, CA, USA
| | | | - Keyianoosh Z Paydar
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA
| | - Gregory R D Evans
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA.,UC Irvine Department of Surgery & Biomedical Engineering, Orange, CA, USA
| | - Alan D Widgerow
- UC Irvine Department of Plastic Surgery, Center for Tissue Engineering, Orange, CA, USA. .,UC Irvine Department of Surgery & Biomedical Engineering, Orange, CA, USA. .,University of California, Irvine Suite 108a Building 55, 101 S. City Dr., Orange, CA, 92868, USA.
| |
Collapse
|
27
|
Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG. Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 2018; 113:46. [PMID: 30353243 PMCID: PMC6314032 DOI: 10.1007/s00395-018-0703-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.
Collapse
Affiliation(s)
- Parul Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yiru Guo
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yibing Nong
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Qianhong Li
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - James A Bradley
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Bradford G Hill
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA.
| |
Collapse
|
28
|
Kubota K, Nakano M, Kobayashi E, Mizue Y, Chikenji T, Otani M, Nagaishi K, Fujimiya M. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells. PLoS One 2018; 13:e0204252. [PMID: 30240403 PMCID: PMC6150479 DOI: 10.1371/journal.pone.0204252] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that an enriched environment (EE) ameliorates cognitive impairment by promoting repair of brain damage. However, the mechanisms by which this occurs have not been determined. To address this issue, we investigated whether an EE enhanced the capability of endogenous bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to prevent hippocampal damage due to diabetes by focusing on miRNA carried in BM-MSC-derived exosomes. In diabetic streptozotocin (STZ) rats housed in an EE (STZ/EE), cognitive impairment was significantly reduced, and both neuronal and astroglial damage in the hippocampus was alleviated compared with STZ rats housed in conventional cages (STZ/CC). BM-MSCs isolated from STZ/CC rats had functional and morphological abnormalities that were not detected in STZ/EE BM-MSCs. The miR-146a levels in exosomes in conditioned medium of cultured BM-MSCs and serum from STZ/CC rats were decreased compared with non-diabetic rats, and the level was restored in STZ/EE rats. Thus, the data suggest that increased levels of miR-146a in sera were derived from endogenous BM-MSCs in STZ/EE rats. To examine the possibility that increased miR-146a in serum may exert anti-inflammatory effects on astrocytes in diabetic rats, astrocytes transfected with miR-146a were stimulated with advanced glycation end products (AGEs) to mimic diabetic conditions. The expression of IRAK1, NF-κB, and tumor necrosis factor-α was significantly higher in AGE-stimulated astrocytes, and these factors were decreased in miR-146a-transfected astrocytes. These results suggested that EEs stimulate up-regulation of exosomal miR-146a secretion by endogenous BM-MSCs, which exerts anti-inflammatory effects on damaged astrocytes and prevents diabetes-induced cognitive impairment.
Collapse
Affiliation(s)
- Kenta Kubota
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
- Department of Physical Therapy, Hokkaido Chitose Rehabilitation University, Chitose, Hokkaido, Japan
| | - Masako Nakano
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Eiji Kobayashi
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuka Mizue
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Takako Chikenji
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Miho Otani
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Kanna Nagaishi
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
29
|
Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res 2018; 374:555-565. [DOI: 10.1007/s00441-018-2895-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/08/2018] [Indexed: 01/23/2023]
|
30
|
Liew A, Baustian C, Thomas D, Vaughan E, Sanz-Nogués C, Creane M, Chen X, Alagesan S, Owens P, Horan J, Dockery P, Griffin MD, Duffy A, O'Brien T. Allogeneic Mesenchymal Stromal Cells (MSCs) are of Comparable Efficacy to Syngeneic MSCs for Therapeutic Revascularization in C57BKSdb/db Mice Despite the Induction of Alloantibody. Cell Transplant 2018; 27:1210-1221. [PMID: 30016879 PMCID: PMC6434464 DOI: 10.1177/0963689718784862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intramuscular administration of mesenchymal stromal cells (MSCs) represents a therapeutic option for diabetic critical limb ischemia. Autologous or allogeneic approaches may be used but disease-induced cell dysfunction may limit therapeutic efficacy in the former. Our aim was to compare the efficacy of allogeneic and autologous MSC transplantation in a model of hindlimb ischemia in diabetes mellitus and to determine whether allogeneic transplantation would result in the activation of an immune response. MSCs were isolated from C57BL/6 (B6) and diabetic obese C57BKSdb/db mice. Phosphate-buffered saline (control group), and MSCs (1 × 106) from B6 (allogeneic group) or C57BKSdb/db (syngeneic group) were administered intramuscularly into the ischemic thigh of C57BKSdb/db mice following the induction of hindlimb ischemia. MSCs derived from both mouse strains secrete several angiogenic factors, suggesting that the potential therapeutic effect is due to paracrine signaling. Administration of allogeneic MSCs significantly improved blood perfusion as compared with the control group on week 2 and 3, post-operatively. In comparison with the control group, syngeneic MSCs significantly improved blood perfusion at week 2 only. There was no statistical difference in blood perfusion between allogeneic and syngeneic MSC groups at any stages. There was no statistical difference in ambulatory and necrosis score among the three groups. Amputation of toes was only observed in the control group (one out of seven animals). Alloantibody was detected in three out of the eight mice that received allogeneic MSCs but was not observed in the other groups. In summary, we demonstrated comparable efficacy after transplantation of autologous and allogeneic MSCs in a diabetic animal model despite generation of an immune response.
Collapse
Affiliation(s)
- A Liew
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Baustian
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - D Thomas
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland.,2 Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Centre for Research in Medical Devices (CÚRAM), Galway, Ireland
| | - E Vaughan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Sanz-Nogués
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - M Creane
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - X Chen
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - S Alagesan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Owens
- 3 National Centre for Biomedical Engineering Science (NCBES), and Centre for Microscopy & Imaging and National Biophotonic & Imaging Platform Ireland, Galway, Ireland
| | - J Horan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Dockery
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - M D Griffin
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - A Duffy
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - T O'Brien
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| |
Collapse
|
31
|
Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, Liu H, Wang T, Ono S, Guo X, Yatsula B, Guo J, Gu Y, Navarro T, Dardik A. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther 2018; 9:188. [PMID: 29996912 PMCID: PMC6042254 DOI: 10.1186/s13287-018-0938-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation and generalization of the results. METHODS The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical studies were selected for analysis. RESULTS There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials. Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone. CONCLUSIONS Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an alternative to amputation for some patients without other options for revascularization. Concordance between preclinical and clinical studies may help design future randomized clinical trials.
Collapse
Affiliation(s)
- Lara Lopes
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Afsha Aurshina
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haiyang Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Tun Wang
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Xiangjiang Guo
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tulio Navarro
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
| |
Collapse
|
32
|
Fromer MW, Chang S, Hagaman AL, Koko KR, Nolan RS, Zhang P, Brown SA, Carpenter JP, Caputo FJ. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. J Vasc Surg 2018; 68:234-244. [DOI: 10.1016/j.jvs.2017.05.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
33
|
Zhang X, Huang F, Li W, Dang JL, Yuan J, Wang J, Zeng DL, Sun CX, Liu YY, Ao Q, Tan H, Su W, Qian X, Olsen N, Zheng SG. Human Gingiva-Derived Mesenchymal Stem Cells Modulate Monocytes/Macrophages and Alleviate Atherosclerosis. Front Immunol 2018; 9:878. [PMID: 29760701 PMCID: PMC5937358 DOI: 10.3389/fimmu.2018.00878] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is the major cause of cardiovascular diseases. Current evidences indicate that inflammation is involved in the pathogenesis of atherosclerosis. Human gingiva-derived mesenchymal stem cells (GMSC) have shown anti-inflammatory and immunomodulatory effects on autoimmune and inflammatory diseases. However, the function of GMSC in controlling atherosclerosis is far from clear. The present study is aimed to elucidate the role of GMSC in atherosclerosis, examining the inhibition of GMSC on macrophage foam cell formation, and further determining whether GMSC could affect the polarization and activation of macrophages under different conditions. The results show that infusion of GMSC to AopE−/− mice significantly reduced the frequency of inflammatory monocytes/macrophages and decreased the plaque size and lipid deposition. Additionally, GMSC treatment markedly inhibited macrophage foam cell formation and reduced inflammatory macrophage activation, converting inflammatory macrophages to anti-inflammatory macrophages in vitro. Thus, our study has revealed a significant role of GMSC on modulating inflammatory monocytes/macrophages and alleviating atherosclerosis.
Collapse
Affiliation(s)
- Ximei Zhang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Feng Huang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Weixuan Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Long Dang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Jia Yuan
- Division of Stomatology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Dong-Lan Zeng
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Can-Xing Sun
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Yan-Ying Liu
- Division of Rheumatology, Peking University People's Hospital, Beijing, China
| | - Qian Ao
- Department of Regeneration, Chinese Medical University, Shenyang, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxian Qian
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
34
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
35
|
Al Jofi FE, Ma T, Guo D, Schneider MP, Shu Y, Xu HHK, Schneider A. Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells. Cytotherapy 2018; 20:650-659. [PMID: 29555409 DOI: 10.1016/j.jcyt.2018.02.369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Compelling evidence indicates that metformin, a low-cost and safe orally administered biguanide prescribed to millions of type 2 diabetics worldwide, induces the osteoblastic differentiation of mesenchymal stromal cells (MSCs) through the 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway. As a highly hydrophilic cationic compound, metformin uptake is facilitated by cell membrane organic cation transporters (OCTs) of the solute carrier 22A gene family. We hypothesized that to effectively enhance osteogenic differentiation, and ultimately bone regeneration, metformin must gain access into functional OCT-expressing MSCs. METHODS Data was obtained through immunoblotting, cellular uptake, mineralization and gene expression assays. RESULTS We demonstrate for the first time that functional OCTs are expressed in human-derived MSCs from umbilical cord Wharton's jelly, an inexhaustible source of nonembryonic MSCs with proven osteogenic potential. A clinically relevant concentration of metformin led to AMPK activation, enhanced mineralized nodule formation and increased expression of the osteogenic transcription factor Runt-related transcription factor 2 (RUNX2). Indeed, targeting OCT function through pharmacological and genetic approaches markedly blunted these responses. CONCLUSIONS Our findings indicate that functional OCT expression in UC-MSCs is a biological prerequisite that facilitates the intracellular uptake of metformin to induce an osteogenic effect. Future pre-clinical studies are warranted to investigate whether the expression of functional OCTs may serve as a potential biomarker to predict osteogenic responses to metformin.
Collapse
Affiliation(s)
- Faisal E Al Jofi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Department of Preventive Dental Science, Division of Periodontics, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Monica P Schneider
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA; Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Hockin H K Xu
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
36
|
Hayes KL, Messina LM, Schwartz LM, Yan J, Burnside AS, Witkowski S. Type 2 diabetes impairs the ability of skeletal muscle pericytes to augment postischemic neovascularization in db/db mice. Am J Physiol Cell Physiol 2018; 314:C534-C544. [PMID: 29351404 DOI: 10.1152/ajpcell.00158.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease is an atherosclerotic occlusive disease that causes limb ischemia and has few effective noninterventional treatments. Stem cell therapy is promising, but concomitant diabetes may limit its effectiveness. We evaluated the therapeutic potential of skeletal muscle pericytes to augment postischemic neovascularization in wild-type and type 2 diabetic (T2DM) mice. Wild-type C57BL/6J and leptin receptor spontaneous mutation db/db T2DM mice underwent unilateral femoral artery excision to induce limb ischemia. Twenty-four hours after ischemia induction, CD45-CD34-CD146+ skeletal muscle pericytes or vehicle controls were transplanted into ischemic hindlimb muscles. At postoperative day 28, pericyte transplantation augmented blood flow recovery in wild-type mice (79.3 ± 5% vs. 61.9 ± 5%; P = 0.04), but not in T2DM mice (48.6% vs. 46.3 ± 5%; P = 0.51). Pericyte transplantation augmented collateral artery enlargement in wild-type (26.7 ± 2 μm vs. 22.3 ± 1 μm, P = 0.03), but not T2DM mice (20.4 ± 1.4 μm vs. 18.5 ± 1.2 μm, P = 0.14). Pericyte incorporation into collateral arteries was higher in wild-type than in T2DM mice ( P = 0.002). Unexpectedly, pericytes differentiated into Schwann cells in vivo. In vitro, Insulin increased Nox2 expression and decreased tubular formation capacity in human pericytes. These insulin-induced effects were reversed by N-acetylcysteine antioxidant treatment. In conclusion, T2DM impairs the ability of pericytes to augment neovascularization via decreased collateral artery enlargement and impaired engraftment into collateral arteries, potentially via hyperinsulinemia-induced oxidant stress. While pericytes show promise as a unique form of stem cell therapy to increase postischemic neovascularization, characterizing the molecular mechanisms by which T2DM impairs their function is essential to achieve their therapeutic potential.
Collapse
Affiliation(s)
- Katherine L Hayes
- Department of Kinesiology, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Louis M Messina
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Jinglian Yan
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Amy S Burnside
- Flow Cytometry Core Facility, Institute for Applied Life Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts Amherst , Amherst, Massachusetts
| |
Collapse
|
37
|
Yan J, Tie G, Wang S, Tutto A, DeMarco N, Khair L, Fazzio TG, Messina LM. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 2018; 9:33. [PMID: 29295997 PMCID: PMC5750226 DOI: 10.1038/s41467-017-02425-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
People with type 2 diabetes mellitus (T2DM) have a 25-fold higher risk of limb loss than non-diabetics due in large part to impaired wound healing. Here, we show that the impaired wound healing phenotype found in T2D mice is recapitulated in lethally irradiated wild type recipients, whose hematopoiesis is reconstituted with hematopoietic stem cells (HSCs) from T2D mice, indicating an HSC-autonomous mechanism. This impaired wound healing phenotype of T2D mice is due to a Nox-2-dependent increase in HSC oxidant stress that decreases microRNA let-7d-3p, which, in turn, directly upregulates Dnmt1, leading to the hypermethylation of Notch1, PU.1, and Klf4. This HSC-autonomous mechanism reduces the number of wound macrophages and skews their polarization towards M1 macrophages. These findings reveal a novel inflammatory mechanism by which a metabolic disorder induces an epigenetic mechanism in HSCs, which predetermines the gene expression of terminally differentiated inflammatory cells that controls their number and function.
Collapse
Affiliation(s)
- Jinglian Yan
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Guodong Tie
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Shouying Wang
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Amanda Tutto
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Natale DeMarco
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lyne Khair
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Louis M Messina
- Diabetes Center of Excellence and Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
38
|
Mayorga ME, Kiedrowski M, McCallinhart P, Forudi F, Ockunzzi J, Weber K, Chilian W, Penn MS, Dong F. Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes. Stem Cells Transl Med 2017; 7:115-124. [PMID: 29119710 PMCID: PMC5746149 DOI: 10.1002/sctm.17-0172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stemcellstranslationalmedicine2018;7:115–124
Collapse
Affiliation(s)
- Maritza E Mayorga
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patricia McCallinhart
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Farhad Forudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jeremiah Ockunzzi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kristal Weber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Marc S Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
39
|
Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J Am Heart Assoc 2017; 6:JAHA.117.002238. [PMID: 29118033 PMCID: PMC5721733 DOI: 10.1161/jaha.117.002238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
41
|
Steven S, Daiber A, Dopheide JF, Münzel T, Espinola-Klein C. Peripheral artery disease, redox signaling, oxidative stress - Basic and clinical aspects. Redox Biol 2017; 12:787-797. [PMID: 28437655 PMCID: PMC5403804 DOI: 10.1016/j.redox.2017.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Jörn F Dopheide
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christine Espinola-Klein
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
42
|
van de Vyver M. Intrinsic Mesenchymal Stem Cell Dysfunction in Diabetes Mellitus: Implications for Autologous Cell Therapy. Stem Cells Dev 2017; 26:1042-1053. [DOI: 10.1089/scd.2017.0025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
43
|
Rezabakhsh A, Cheraghi O, Nourazarian A, Hassanpour M, Kazemi M, Ghaderi S, Faraji E, Rahbarghazi R, Avci ÇB, Bagca BG, Garjani A. Type 2 Diabetes Inhibited Human Mesenchymal Stem Cells Angiogenic Response by Over-Activity of the Autophagic Pathway. J Cell Biochem 2017; 118:1518-1530. [DOI: 10.1002/jcb.25814] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Aysa Rezabakhsh
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee of Tabriz University of Medical Sciences; Tabriz; Iran
| | - Omid Cheraghi
- Faculty of Natural Sciences; Department of Biology; University of Tabriz; Tabriz Iran
| | - Alireza Nourazarian
- Faculty of Medicine; Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mehdi Hassanpour
- Faculty of Medicine; Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Kazemi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Shahrooz Ghaderi
- Faculty of Advanced Medical Sciences; Department of Molecular Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Esmaeil Faraji
- Faculty of Medicine; Department of Internal Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Advanced Medical Sciences; Department of Applied Cell Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Çığır Biray Avci
- Faculty of Medicine; Department of Medical Biology; Ege University; Izmir Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine; Department of Medical Biology; Ege University; Izmir Turkey
| | - Alireza Garjani
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
44
|
Lafosse A, Dufeys C, Beauloye C, Horman S, Dufrane D. Impact of Hyperglycemia and Low Oxygen Tension on Adipose-Derived Stem Cells Compared with Dermal Fibroblasts and Keratinocytes: Importance for Wound Healing in Type 2 Diabetes. PLoS One 2016; 11:e0168058. [PMID: 27992567 PMCID: PMC5167273 DOI: 10.1371/journal.pone.0168058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aim Adipose-derived stem cells (ASC) are currently proposed for wound healing in those with type 2 diabetes mellitus (T2DM). Therefore, this study investigated the impact of diabetes on adipose tissue in relation to ASC isolation, proliferation, and growth factor release and the impact of hyperglycemia and low oxygen tension (found in diabetic wounds) on dermal fibroblasts, keratinocytes, and ASC in vitro. Methods Different sequences of hypoxia and hyperglycemia were applied in vitro to ASC from nondiabetic (n = 8) or T2DM patients (n = 4) to study cell survival, proliferation, and growth factor release. Comparisons of dermal fibroblasts (n = 8) and keratinocytes (primary lineage) were made. Results No significant difference of isolation and proliferation capacities was found in ASC from nondiabetic and diabetic humans. Hypoxia and hyperglycemia did not impact cell viability and proliferation. Keratinocyte Growth Factor release was significantly lower in diabetic ASC than in nondiabetic ASC group in each condition, while Vascular Endothelial Growth Factor release was not affected by the diabetic origin. Nondiabetic ASC exposition to hypoxia (0.1% oxygen) combined with hyperglycemia (25mM glucose), resulted in a significant increase in VEGF secretion (+64%, p<0.05) with no deleterious impact on KGF release in comparison to physiological conditions (5% oxygen and 5 mM glucose). Stromal cell-Derived Factor-1α (-93%, p<0.001) and KGF (-20%, p<0.05) secretion by DF decreased in these conditions. Conclusions A better profile of growth factor secretion (regarding wound healing) was found in vitro for ASC in hyperglycemia coupled with hypoxia in comparison to dermal fibroblasts and keratinocytes. Interestingly, ASC from T2DM donors demonstrated cellular growth rates and survival (in hypoxia and hyperglycemic conditions) similar to those of healthy ASC (from normoglycemic donors); however, KGF secretion was significantly depleted in ASC obtained from T2DM patients. This study demonstrated the impact of diabetes on ASC for regenerative medicine and wound healing.
Collapse
Affiliation(s)
| | - Cécile Dufeys
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Denis Dufrane
- Novadip Biosciences, Mont-Saint-Guibert, Belgium
- * E-mail:
| |
Collapse
|
45
|
Zhang X, Huang F, Chen Y, Qian X, Zheng SG. Progress and prospect of mesenchymal stem cell-based therapy in atherosclerosis. Am J Transl Res 2016; 8:4017-4024. [PMID: 27829989 PMCID: PMC5095298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, occurring usually in the aged populations who are suffering from hypertension, dyslipidemia and diabetes for a long time. Research on atherosclerosis has shown that macrophage foam cell formation, inflammation, dyslipidemia and immune cells infiltration are all involved in regulating the onset and progression of atherosclerosis. Mesenchymal stem cells (MSCs) originated from different kinds of tissue are a group of cells possessing well-established self-renewal and multipotent differentiation properties as well as immunomodulatory and anti-inflammatory roles. Recent studies have displayed their dyslipidemia regulation functions. Transplantation of MSCs to atherosclerotic patients might be a new multifactorial therapeutic strategy to improve atherosclerosis. This review updates the advancement on MSCs and atherosclerosis.
Collapse
Affiliation(s)
- Ximei Zhang
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
| | - Feng Huang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
| | - Yanming Chen
- Division of Endocrinology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Xiaoxian Qian
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
- Institute Integrated Traditional Chinese and Western Medicine, Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Song Guo Zheng
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
- Division of Rheumatology, Penn State Milton S. Hershey Medical CenterHershey, PA 17033, USA
| |
Collapse
|
46
|
Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K. Receptor for Advanced Glycation End Products-Mediated Signaling Impairs the Maintenance of Bone Marrow Mesenchymal Stromal Cells in Diabetic Model Mice. Stem Cells Dev 2016; 25:1721-1732. [PMID: 27539289 DOI: 10.1089/scd.2016.0067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have been demonstrated to contribute to tissue regeneration. However, chronic pathological conditions, such as diabetes and aging, can result in a decreased number and/or quality of BM-MSCs. We therefore investigated the maintenance mechanism of BM-MSCs by studying signaling through the receptor for advanced glycation end products (RAGE), which is thought to be activated under various pathological conditions. The abundance of endogenous BM-MSCs decreased in a type 2 diabetes mellitus (DM2) model, as determined by performing colony-forming unit (CFU) assays. Flow cytometric analysis revealed that the prevalence of the Lin-/ckit-/CD106+/CD44- BM population, which was previously identified as a slow-cycling BM-MSC population, also decreased. Furthermore, in a streptozotocin-induced type 1 DM model (DM1), the CFUs of fibroblasts and the prevalence of the Lin-/ckit-/CD106+/CD44- BM population also significantly decreased. BM-MSCs in RAGE knockout (KO) mice were resistant to such reduction induced by streptozotocin treatment, suggesting that chronic RAGE signaling worsened the maintenance mechanism of BM-MSCs. Using an in vitro culture condition, BM-MSCs from RAGE-KO mice showed less proliferation and expressed significantly more Nanog and Oct-4, which are key factors in multipotency, than did wild-type BM-MSCs. Furthermore, RAGE-KO BM-MSCs showed a greater capacity for differentiation into mesenchymal lineages, such as adipocytes and osteocytes. These data suggested that RAGE signaling inhibition is useful for maintaining BM-MSCs in vitro. Together, our findings indicated that perturbation of BM-MSCs in DM could be partially explained by chronic RAGE signaling and that targeting the RAGE signaling pathway is a viable approach for maintaining BM-MSCs under chronic pathological conditions.
Collapse
Affiliation(s)
- Eriko Aikawa
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Ryo Fujita
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan .,2 Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan .,3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Maiko Asai
- 4 Faculty of Medicine, Hiroshima University , Higashihiroshima, Japan
| | - Yasufumi Kaneda
- 3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Katsuto Tamai
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| |
Collapse
|
47
|
Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med 2016; 21:349-363. [PMID: 27641937 PMCID: PMC5264143 DOI: 10.1111/jcmm.12969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/06/2016] [Indexed: 01/09/2023] Open
Abstract
This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN‐BMMSCs, the bioactive content of ZDF‐BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5‐fold; P < 0.01) formation of tubule‐like structures and migration of these cells (3‐fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF‐1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.
Collapse
Affiliation(s)
- Jonathan Ribot
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Guavri Caliaperoumal
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Joseph Paquet
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | | | - Herve Petite
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Fani Anagnostou
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France.,Department of Periodontology, Service of Odontology, Pitié Salpêtrière Hospital et Hôtel-Dieu Hospital AP-HP, U.F.R. of Odontology Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
48
|
Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, Wei X, Zhang X, Li Q, Wysoczynski M, Bolli R, Bhatnagar A, Hill BG. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 2016; 291:13634-48. [PMID: 27151219 DOI: 10.1074/jbc.m116.722496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.
Collapse
Affiliation(s)
- Joshua K Salabei
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | | | - Parul Mehra
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Andrew A Gibb
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Petra Haberzettl
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Xiaoli Wei
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202
| | - Xiang Zhang
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202 Pharmacology and Toxicology, and
| | | | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Aruni Bhatnagar
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics
| | - Bradford G Hill
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics,
| |
Collapse
|
49
|
Cao M, Pan Q, Dong H, Yuan X, Li Y, Sun Z, Dong X, Wang H. Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Res Ther 2015; 6:208. [PMID: 26519255 PMCID: PMC4628312 DOI: 10.1186/s13287-015-0201-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Effective therapies for obesity and diabetes are still lacking. The aim of this study was to evaluate whether a single intravenous infusion of syngeneic adipose-derived mesenchymal stem cells (ASCs) can reduce obesity, lower insulin resistance, and improve glucose homeostasis in a high-fat diet-induced obese (DIO) mouse model. METHODS Seven-week-old C57BL/6 mice were fed a high-fat diet for 20 weeks to generate the DIO mouse model. Mice were given a single intravenous infusion of ex vivo expanded syngeneic ASCs at 2 × 10(6) cells per mouse. DIO or CHOW mice injected with saline were used as controls. Body weights, blood glucose levels, glucose, and insulin tolerance test results were obtained before and 2 and 6 weeks after cell infusion. Triglyceride (TG), high-density lipoprotein (HDL), and insulin levels in serum were measured. Expressions of genes related to insulin resistance, including peroxisome proliferator-activated receptor γ (PPARγ) and insulin receptor (InsR), and inflammation (IL-6, F4/80, and nucleotide-binding oligomerization domain containing 2, or NOD2), were measured in livers at mRNA level by real-time-polymerase chain reaction analysis. Beta-cell mass in pancrheases from CHOW, DIO, and DIO + ASC mice was quantified. GFP(+) ASCs were injected, and the presence of GFP(+) cells in livers and pancreases was determined. RESULTS DIO mice that had received ASCs showed reduced body weights, reduced blood glucose levels, and increased glucose tolerance. ASC treatment was found to reduce TG levels and increase serum HDL levels. In livers, less fat cell deposition was observed, as were increased expression of InsR and PPARγ and reduction in expressions of IL-6 and F4/80. Treated mice showed well-preserved pancreatic β-cell mass with reduced expression of F4/80 and TNF-α compared with DIO controls. GFP(+) cells were found in liver and pancreas tissues at 1 and 2 weeks after cell injection. CONCLUSIONS ASC therapy is effective in lowering blood glucose levels and increasing glucose tolerance in DIO mice. The protective effects of ASCs arise at least in part from suppression of inflammation in the liver. In addition, ASCs are associated with better-preserved pancreatic β-cell mass.
Collapse
Affiliation(s)
- Mingjun Cao
- Colleges of Life Sciences, Qingdao Agricultural University, 700 Chenyang Road, Chenyang, Shandong, 266109, P.R. China.
| | - Qingjie Pan
- College of Animal Science and Veterinary Medicine, 700 Chenyang Road, Chenyang, Shandong, 266109, P.R. China.
| | - Huansheng Dong
- College of Animal Science and Veterinary Medicine, 700 Chenyang Road, Chenyang, Shandong, 266109, P.R. China.
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1 Hayden Dr., Petersburg, VA, 23806, USA.
| | - Yang Li
- Colleges of Life Sciences, Qingdao Agricultural University, 700 Chenyang Road, Chenyang, Shandong, 266109, P.R. China.
| | - Zhen Sun
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Ave, Charleston, SC, 29425, USA.
| | - Xiao Dong
- Colleges of Life Sciences, Qingdao Agricultural University, 700 Chenyang Road, Chenyang, Shandong, 266109, P.R. China.
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
50
|
Danhong Promotes Angiogenesis in Diabetic Mice after Critical Limb Ischemia by Activation of CSE-H 2 S-VEGF Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:276263. [PMID: 26491459 PMCID: PMC4605378 DOI: 10.1155/2015/276263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/21/2015] [Accepted: 09/06/2015] [Indexed: 01/18/2023]
Abstract
The aim of this paper is to investigate effect and mechanism of Danhong injection (DH) on angiogenesis in the diabetic hind limb ischemia mouse model. Thirty diabetic hind limb ischemic model mice and ten normal mice, established by intraperitoneal (i.p.) injection of streptozotocin (STZ) or PBS and ligation/excision of femoral artery, and then twenty diabetic hind limb ischemic model mice of all were evenly randomized to saline (control, n = 10) and DH i.p. injection (2 mL/kg weight for 7 days, n = 10) groups. Limb perfusion recovery and femoral blood hydrogen sulfide (H2S) and vessel regeneration and lower limb vascular endothelial growth factor (VEGF)/cystathionine γ-lyase (CSE) expression were evaluated during intervention and after euthanasia, respectively. DH i.p. increased ischemic limb perfusion and promoted collateral circulation generation without decreasing blood glucose level. Increased local CSE-H2S-VEGF expression contributed to beneficial effects of DH injection. In conclusion, activation of local CSE-H2S-VEGF axis might participate in proangiogenesis effects of DH injection in diabetic hind limb ischemia model mice, suggesting a potential therapy for diabetic patients with critical limb ischemia.
Collapse
|