1
|
Yang H, Yang Y, Cui G, Xu Y, Zhao R, Le G, Xie Y, Li P. Dietary methionine restriction ameliorates atherosclerosis by remodeling the gut microbiota in apolipoprotein E-knockout mice. Food Funct 2025. [PMID: 40421996 DOI: 10.1039/d5fo00841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Dietary methionine restriction (MR) has been shown to reduce the risk of atherosclerosis, but the specific regulatory effects and mechanisms remain unclear. This research intends to investigate the effects of MR on atherosclerosis in apolipoprotein E-knockout (ApoE-/-) mice fed a high-fat, high-cholesterol, high-choline diet and their mechanisms. ApoE-/- mice were fed a normal diet (0.86% methionine + 4.5% fat + 0% cholesterol + 0.2% choline), a high-fat, high-cholesterol, high-choline diet (0.86% methionine + 20% fat + 1% cholesterol + 1% choline), or a high-fat, high-cholesterol, high-choline + MR diet (0.17% methionine + 20% fat + 1% cholesterol + 1% choline) for 8 consecutive weeks. The results show that MR reduced body weight, fat mass, fat deposition in the liver and adipocytes, and plasma lipid levels; improved the morphological structure of the aorta; and reduced the aortic lesion area and lipid levels. In addition, MR downregulated aortic pro-inflammatory cytokine levels, upregulated aortic anti-inflammatory cytokine levels, and improved aortic oxidative stress. Moreover, metagenomic sequencing results suggested that MR improved the gut microbiota composition, particularly through increased relative abundance of short-chain fatty acid (SCFA)-producing bacteria, and changed the relative abundance of inflammation-, lipid metabolism-, and bile acid metabolism-related bacteria at the species level. Furthermore, MR promoted SCFA production and bile acid metabolism, and reduced cell adhesion molecules and foam cell formation in the aorta. Thus, our findings indicated that MR improved the gut microbiota composition, especially increased SCFA production, and ameliorated oxidative stress and inflammation in the aorta, thereby preventing atherosclerosis.
Collapse
Affiliation(s)
- Hao Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuhui Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Guifang Cui
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuncong Xu
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Renyong Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Desouky DA, Nosair NA, Salama MK, El-Magd MA, Desouky MA, Sherif DE. PCSK9 and its relationship with HMGB1, TLR4, and TNFα in non-statin and statin-treated coronary artery disease patients. Mol Cell Biochem 2025; 480:2935-2949. [PMID: 39541017 DOI: 10.1007/s11010-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Despite statin use in coronary artery disease (CAD), significant risk remains, potentially due to increased proprotein convertase subtilisin/kexin-type 9 (PCSK9) production, which raises LDL-C levels and induces inflammation. The exact relationship between PCSK9, inflammatory markers like TNFα, TLR4, CRP, and HMGB1, and monocyte subsets is poorly understood. This study aimed to explore these relationships in non-statin and statin-taking CAD patients. This case-control study included 91 controls and 91 stable CAD patients, divided into no-statin (NS, n = 25), low-dose statin (LDS, n = 25), and high-dose statin (HDS, n = 41) groups. Serum levels of LDL-C, CRP, PCSK9, TLR4, HMGB1, and TNFα were measured. Monocyte subsets were classified using flow cytometry into classical monocytes (CM), intermediate monocytes (IM), and non-classical monocytes (NCM). CAD patients showed elevated PCSK9, LDL-C, and inflammatory markers compared to controls. Statin groups (LDS, HDS) had lower LDL-C and inflammatory markers but higher PCSK9 than the NS group, with the HDS group showing the lowest LDL-C and inflammatory markers but the highest PCSK9. In the NS group, PCSK9 positively correlated with inflammatory markers (HMGB1, TNFα, TLR4, CRP) and monocyte subsets (IM%, NCM%). In the total statin group (LDS + HDS), PCSK9 negatively correlated with HMGB1, TLR4, and NCM%, for each, respectively, and positively with CM%. Multivariable linear regression showed significant associations between PCSK9 and HMGB1, NCM%, and IM% in the NS group, and HMGB1, NCM%, and TLR4 in the total statin group. In conclusion, we recommend combining PCSK9 inhibitors with statins in high-risk CAD patients. This may enhance statin efficacy, reduce LDL-C, and inhibit the TLR4/NF-кB inflammatory pathway, decreasing atherosclerotic inflammation.
Collapse
Affiliation(s)
- Dina A Desouky
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt.
| | - Nahla A Nosair
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohamed K Salama
- Department of Cardiovascular, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | | | - Dalia E Sherif
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Adkar SS, Lynch J, Choi RB, Roychowdhury T, Judy RL, Paruchuri K, Go DC, Bamezai S, Cabot J, Sorondo S, Levin MG, Milewicz DM, Willer CJ, Natarajan P, Pyarajan S, Chang KM, Damrauer S, Tsao P, Skirboll S, Leeper NJ, Klarin D. Dissecting the Genetic Architecture of Intracranial Aneurysms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025:e004626. [PMID: 40255156 DOI: 10.1161/circgen.123.004626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The genetic risk of intracranial aneurysm (IA) development has been ascribed to the genetic risk of smoking exposure and hypertension. The relationship of IA to other cardiovascular traits and the contribution of IA risk loci to aberrant gene programs within cerebrovascular cell types remains unclear. METHODS We performed a genome-wide association study in the Million Veteran Program and Finnish cohort study testing association of roughly 25 million DNA variants with unruptured IA (4694 cases and 877 091 controls) in individuals of European, African, and Hispanic ancestries. Meta-analysis with publicly available summary statistics generated a final cohort of 15 438 cases and 1 183 973 controls. We constructed a cerebrovascular single-nuclear RNA sequencing data set and integrated IA summary statistics to prioritize candidate causal cell types. We constructed a polygenic risk score to identify patients at risk of developing IA. RESULTS We identified 5 novel associations with IA, increasing the number of known susceptibility loci to 22. At these susceptibility loci, we prioritized 17 candidate causal genes. We found a significant positive genetic correlation of IA with coronary artery disease and abdominal aortic aneurysm. Integration of an IA gene set with cerebrovascular single-nuclear RNA sequencing data revealed a significant association with pericytes and smooth muscle cells. Finally, a polygenic risk score was significantly associated with IA across European (odds ratio, 1.87 [95% CI, 1.61-2.17]; P=8.8×10-17), African (odds ratio, 1.62 [95% CI, 1.19-2.15]; P=1.2×10-3), and Hispanic (odds ratio, 2.28 [95% CI, 1.47-3.38]; P=1.0×10-4) ancestries. CONCLUSIONS Here, we identify 5 novel loci associated with IA. Integration of summary statistics with cerebrovascular single-nuclear RNA sequencing reveals an association of cell types involved in matrix production. We validated a polygenic risk score that predicts IA, controlling for demographic variables including smoking status and blood pressure. Our findings suggest that a deficit in matrix production may drive IA pathogenesis independent of hypertension and smoking.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA. (S.S.A., J.C., S. Sorondo, N.J.L., D.K.)
- Stanford Cardiovascular Institute, Stanford University, CA (S.S.A., S.B., J.C., S. Sorondo. P.T., N.J.L.)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| | - Julie Lynch
- VA Salt Lake City Healthcare System The University of Utah, Salt Lake City (J.L.)
- Epidemiology, School of Medicine, The University of Utah, Salt Lake City (J.L.)
| | - Ryan B Choi
- Stanford University School of Medicine, Palo Alto, CA (R.B.C.)
| | - Tanmoy Roychowdhury
- Department of Biology and Koita Centre for Digital Health, Trivedi School of Biosciences, Ashoka University, Sonepat, India (T.R.)
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia. (R.L.J.)
- Research, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA. (R.L.J.)
| | - Kaavya Paruchuri
- Department of Medicine, Massachusetts General Hospital, Boston. (K.P., P.N.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston. (K.P., P.N.)
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA. (K.P., P.N.)
| | - Dong-Chuan Go
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.-C.G., D.M.M.)
| | - Sharika Bamezai
- Stanford Cardiovascular Institute, Stanford University, CA (S.S.A., S.B., J.C., S. Sorondo. P.T., N.J.L.)
- University of Michigan School of Medicine, Ann Arbor (S.B.)
| | - John Cabot
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA. (S.S.A., J.C., S. Sorondo, N.J.L., D.K.)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| | - Sabina Sorondo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA. (S.S.A., J.C., S. Sorondo, N.J.L., D.K.)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia. (M.G.L.)
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia. (M.G.L.)
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.-C.G., D.M.M.)
| | - Cristen J Willer
- Division of Cardiology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor (C.J.W.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor. (C.J.W.)
- Department of Human Genetics, University of Michigan, Ann Arbor. (C.J.W.)
| | - Pradeep Natarajan
- Department of Medicine, Massachusetts General Hospital, Boston. (K.P., P.N.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston. (K.P., P.N.)
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA. (K.P., P.N.)
- Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA. (P.N.)
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Health Care System, MA (S.P.)
- Research, Harvard Medical School, Boston, MA (S.P.)
| | - Kyong-Mi Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia. (K.-M.C.)
- Research and Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA. (K.-M.C.)
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia. (S.D.)
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia. (S.D.)
- Penn Cardiovascular Institute, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA. (S.D.)
- Department of Surgery, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA. (S.D.)
| | - Phil Tsao
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA. (P.T., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (S.S.A., S.B., J.C., S. Sorondo. P.T., N.J.L.)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| | - Stephen Skirboll
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA. (S. Skirboll)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA. (S.S.A., J.C., S. Sorondo, N.J.L., D.K.)
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA. (P.T., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (S.S.A., S.B., J.C., S. Sorondo. P.T., N.J.L.)
| | - Derek Klarin
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA. (S.S.A., J.C., S. Sorondo, N.J.L., D.K.)
- Veterans Affairs (VA) Palo Alto Healthcare System, CA (S.S.A., J.C., S. Sorondo, P.T., S. Skirboll, D.K.)
| |
Collapse
|
4
|
Tan D, Yang X, Yang J, Fan G, Xiong G. PCSK9 in Vascular Aging and Age-Related Diseases. Aging Dis 2025:AD.2024.1713. [PMID: 40354375 DOI: 10.14336/ad.2024.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 05/14/2025] Open
Abstract
The aging process significantly contributes to human disease, and as worldwide life expectancy increases, addressing the challenges of aging and age-related cardiovascular diseases is becoming increasingly urgent. Vascular aging is a key link between aging and the development of age-related diseases. Recent studies indicate that proprotein convertase subtilisin/kexin type 9 (PCSK9), a type of protein involved in the metabolism of lipids, is crucial in modulating vascular aging by affecting the physiological functioning of vascular cells. PCSK9 is linked to lipid metabolism and chronic inflammation and is involved in regulating senescence-related activities, including migration, proliferation, apoptosis, and differentiation. These factors contribute to the aging of vascular cells and age-related vascular diseases, including atherosclerosis, hypertension, coronary artery disease, and cerebrovascular diseases. Given its involvement in these processes, this article provides a comprehensive summary of PCSK9's regulatory functions in vascular aging, highlighting potential therapeutic targets for combating age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Dong Tan
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
| | - Xin Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Fan
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Urology, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong Province, China
| | - Guozuo Xiong
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Third Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Salvo A, Tuttolomondo A. The Role of Olive Oil in Cardiometabolic Risk. Metabolites 2025; 15:190. [PMID: 40137153 PMCID: PMC11943877 DOI: 10.3390/metabo15030190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Olive oil, the primary fat source in the Mediterranean diet (MedDiet), is rich in monounsaturated fatty acids (MUFA), especially oleic acid, which constitutes 70-80% of its composition. Extra-virgin olive oil (EVOO), produced by mechanically pressing olives, is the highest quality olive oil, with an intense flavor and acidity <1%. In contrast, refined olive oil (ROO), a blend of virgin and refined oils, contains fewer antioxidants and anti-inflammatory compounds. EVOO's health benefits stem largely from its MUFA content, which is linked to reduced risks of cardiovascular disease (CVD), neurodegenerative conditions, and certain cancers. Additionally, EVOO contains minor, but bioactive, components such as polyphenols, tocopherols, and phytosterols, contributing to its oxidative stability, sensory qualities, and health-promoting properties. These include polyphenols, like oleuropein, hydroxytyrosol, and tyrosol, which exhibit anti-inflammatory, cardioprotective, neuroprotective, and anticancer effects. Epidemiological studies suggest an inverse relationship between olive oil intake and CVD, with EVOO-enriched MedDiet interventions showing improved lipid profiles, reduced blood pressure, and lower cardiovascular event risk. The PREDIMED study highlights the significant role of EVOO in reducing cardiometabolic risk. This review explores the impact of EVOO's chemical components within the MedDiet framework on metabolic variables influencing cardiometabolic health.
Collapse
Affiliation(s)
- Andrea Salvo
- Internal Medicine and Stroke Care Ward, Policlinico, P. Giaccone, Piazza delle Cliniche n.2, 90127 Palermo, Italy;
- ProMISE Department, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Policlinico, P. Giaccone, Piazza delle Cliniche n.2, 90127 Palermo, Italy;
- ProMISE Department, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2025; 42:359-405. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
7
|
Zhang XY, Lu QQ, Li YJ, Shi SR, Ma CN, Miao M, Guo SD. Conditional knockdown of hepatic PCSK9 ameliorates high-fat diet-induced liver inflammation in mice. Front Pharmacol 2025; 16:1528250. [PMID: 39963241 PMCID: PMC11830812 DOI: 10.3389/fphar.2025.1528250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Instruction Accumulating evidence has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with inflammation in the vascular system. However, the roles of PCSK9 in hepatic inflammation remain unclear. Because PCSK9 is mainly expressed in the liver and modulates lipid uptake through low-density lipoprotein receptor family members, the present study aimed to elucidate the effect of conditional knockdown of hepatic PCSK9 on hyperlipidemia-induced inflammation and the underlying mechanisms of action. Methods PCSK9flox/flox mice were bred with ALB-Cre+ mice to obtain hepatic PCSK9 (-/-) , PCSK9 (+/-) , and PCSK9 (+/+) mice. These mice were fed with a high-fat diet for 9 weeks to induce inflammation. The effects of conditional knockdown of hepatic PCSK9 on inflammation and the underlying mechanisms were investigated by molecular biological techniques. Moreover, the findings were verified in vitro using HepG2 cells. Results and Discussion Conditional knockdown of hepatic PCSK9 remarkably decreased plasma levels of total cholesterol and alleviated hyperlipidemia-induced liver injury. Mechanistically, conditional knockdown of hepatic PCSK9 significantly reduced the levels of pro-inflammatory factors by downregulating the expression of Toll-like receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B, which subsequently attenuated the expression of downstream molecules, namely nuclear factor kappa-B and activator protein-1. The related mechanisms were confirmed using lipid-loaded HepG2 cells together with PCSK9 siRNA, alirocumab (anti-PCSK9 antibody), and/or a p38-MAPK inhibitor. These findings confirmed that conditional knockdown of hepatic PCSK9 attenuates liver inflammation following hyperlipidemia induction by modulating multiple signaling pathways; this suggests that targeting PCSK9 knockdown/inhibition with appropriate agents is useful not only for treating hyperlipidemia but also for ameliorating hyperlipidemia-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
8
|
Miao M, Zhang XY, Yu HX, Shi SR, Ma CN, Guo SD. Mechanisms underlying the effects of the conditional knockdown of hepatic PCSK9 in attenuating lipopolysaccharide-induced acute liver inflammation. Int J Biol Macromol 2025; 291:139066. [PMID: 39716700 DOI: 10.1016/j.ijbiomac.2024.139066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to promote hyperlipidemia primarily by inducing the degradation of the low-density lipoprotein receptor. Notably, recent studies have demonstrated that PCSK9 promotes inflammation in the vascular system, however, the roles of PCSK9 in hepatic inflammation remain unclear. As PCSK9 is primarily expressed in the liver, this study aimed to elucidate the roles of PCSK9 and the underlying mechanisms in lipopolysaccharide (LPS)-challenged hepatocytes. Next-generation sequencing analysis revealed that the conditional knockdown of hepatic PCSK9 significantly reduced the plasma levels of total cholesterol and modulated the expression of hundreds of genes. Importantly, PCSK9 knockdown attenuated hepatic inflammation by suppressing several signaling pathways related to inflammation, including the Toll-like receptor, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B pathways. This subsequently altered the expression of nuclear factor kappa-B and activator protein 1. The underlying mechanisms were further confirmed by in vitro studies using primary hepatocytes and HepG2 cells, with a p38-MAPK inhibitor, a PCSK9 antibody, and two siRNAs against PCSK9. This study is the first to report that hepatic PCSK9 knockdown ameliorates LPS-induced acute liver inflammation via modulating multiple signaling pathways, thereby suggesting therapeutic potential of PCSK9 inhibitors in treating diseases related to hepatic inflammation.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hai-Xin Yu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Tian W, Cao H, Li X, Gong X, Yu X, Li D, Xie J, Bai Y, Zhang D, Li X, Xu P, Liu J, Zhang B, Ji X, Dong H. Adjunctive PCSK9 Inhibitor Evolocumab in the Prevention of Early Neurological Deterioration in Non-cardiogenic Acute Ischemic Stroke: A Multicenter, Prospective, Randomized, Open-Label, Clinical Trial. CNS Drugs 2025; 39:197-208. [PMID: 39755915 DOI: 10.1007/s40263-024-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS. METHODS This was a multicenter, prospective, open-label, blinded-endpoint clinical trial. Participants with AIS within 24 h were randomly assigned to either the group receiving combination therapy of evolocumab and atorvastatin, which is a 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitor, i.e., a "statin" (PI group), or the group receiving atorvastatin monotherapy (AT group). The primary outcome was END within 7 days, defined as a 2-point increase in the National Institutes of Health Stroke Scale (NIHSS) score or a 1-point increase in motor function within 24 h-7 days from the onset of AIS. Secondary outcomes included LDL-C target achievement rate on day 7 (≤ 1.8 mmol/L with a reduction exceeding 50% from baseline), inflammatory factors (interleukin [IL]-6, IL-8, and tumor necrosis factor [TNF]-α) before and after 7 days of treatment, and stroke-related death with 7 days. Safety endpoints included any adverse events. RESULTS Patients with AIS (n = 272) were randomly assigned to the PI (n = 136) or AT (n = 136) groups. Within 7 days, 18 (13.2%) and 33 (24.3%) patients experienced END in the PI and AT groups, respectively (relative risk [RR] -0.90; 95% confidence interval [CI]: -1.59 to -0.22; p = 0.010). On the seventh day, LDL-C target achievement rate in the PI and AT groups was 74.3% and 14.7%, respectively (RR 3.27; 95% CI: 2.40-4.15; p = 0.001). Changes in IL-6 over 7 days were significantly lower in the PI group compared with the AT group, respectively (median 1.02 [range -1.91, 5.47] versus 2.54 [-0.83, 15.20]; p = 0.033). On the 90th day of follow-up, 83.1% and 65.4% of patients had a modified Rankin Scale score ≤ 2 in the PI and AT groups, respectively (RR 0.51; 95% CI: 0.66-2.66; p = 0.001). There was no significant difference in stroke recurrence between the two groups within 90 days (RR -1.72; 95% CI: -4.57 to 1.13; p = 0.237). Regarding adverse events, 15 and 22 patients in the PI and AT groups, respectively, experienced slight abnormalities in liver and kidney function laboratory values during the 7-day treatment period (odds ratio 0.62; 95% CI: 0.30-1.29; p = 0.203), but no serious adverse events were observed in either group. CONCLUSION These results suggest that the combination therapy of evolocumab and atorvastatin within 24 h of AIS onset may effectively reduce the incidence of END compared with atorvastatin monotherapy. Additionally, in the early stages of AIS, this combination therapy can reduce blood LDL-C levels, and inhibit IL-6 elevation, potentially improving the prognosis of patients with AIS within 90 days. TRIAL REGISTRATION China Clinical Trials Registry (No: ChicTR2200059445, 29 April 2022, https://www.chictr.org.cn/ ).
Collapse
Affiliation(s)
- Wen Tian
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Hua Cao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Xidan Li
- Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xing Gong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Xinting Yu
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Dongyun Li
- Department of Neurology, Dalian Lvshun District People's Hospital, Dalian, China
| | - Jing Xie
- Department of Neurology, Dalian Lvshun District People's Hospital, Dalian, China
| | - Ying Bai
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Dawei Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Xiaohong Li
- Department of Neurology, Dalian Municipal Friendship Hospital, Dalian, China
| | - Ping Xu
- Department of Neurology, The Fifth People's Hospital of Dalian, Dalian, China
| | - Jiahui Liu
- Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingwei Zhang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Xiaofei Ji
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China.
- Department of Neurology, The People's Hospital of Naqu, 15 Zhejiang Middle Road, Seni District, Naqu, 852000, Xizang, China.
| | - Huijie Dong
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Zhang Q, Miao M, Cao S, Liu D, Cao Z, Bai X, Yin Y, Jin S, Dong L, Zheng M. PCSK9 promotes vascular neointimal hyperplasia through non-lipid regulation of vascular smooth muscle cell proliferation, migration, and autophagy. Biochem Biophys Res Commun 2025; 742:151081. [PMID: 39632291 DOI: 10.1016/j.bbrc.2024.151081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
We aim to explore the impact of Proprotein convertase subtilisin-kexin type 9 (PCSK9) and its inhibitor evolocumab on neointimal hyperplasia. Wild type and PCSK9 knockout (PCSK9-/-) mice were subjected to ligation of the common carotid artery, with or without subcutaneous injection of evolocumab. Mouse aortic vascular smooth muscle (MOVAS) cells were pretreated with evolocumab or under siRNA-mediated suppression of PCSK9, and then exposed to platelet-derived growth factor type BB(PDGF-BB), a major promoter of MOVAS transformation to a proliferative phenotype. PCSK9 was upregulated in ligated carotid arteries and PDGF-BB-treated MOVAS cells. PCSK9-/- mice showed decreased intimal area and intimal/media area ratio, downregulation of proliferation and autophagy, which was coincidence with wild-type mice treated with evolocumab. In MOVAS cells fortified with evolocumab or silencing of PCSK9, PCNA, Beclin1, p62, LC3 were downregulated, additionally, EdU-positive cells decreased, cell viability reduced, migration ability was weakened, and the number of autophagosomes and autolysosomes decreased after the treatment. We also identified the PI3K/AKT/mTOR signaling molecules as potential PCSK9 targets mediating proliferative effect in MOVAS cells. To sum up, our results suggest that PCSK9 has intrinsic properties to promote proliferation, migration and autophagy in VSMCs independent of its lipid-regulating role. The proliferative effects of PCSK9 may be mediated by the PI3K/AKT/mTOR signaling pathway. These data provide additional evidence for PCSK9i in cardiovascular disease beyond the low-density lipoprotein (LDL)-lowering benefit.
Collapse
MESH Headings
- Animals
- Autophagy
- Cell Proliferation
- Proprotein Convertase 9/metabolism
- Proprotein Convertase 9/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Movement
- Neointima/metabolism
- Neointima/pathology
- Mice
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Antibodies, Monoclonal, Humanized/pharmacology
- Male
- Mice, Knockout
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Becaplermin/metabolism
- Becaplermin/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China; Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Shanhu Cao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Zelong Cao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Xiaoyu Bai
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, 361 zhongshan Road, Shijiazhuang, 050017, China
| | - Lihua Dong
- Department of Biochemistry and Molecular Biology, Hebei Medical University, 050017, Shijiazhuang, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
11
|
Wang Y, Fang X, Liu J, Lv X, Lu K, Lu Y, Jiang Y. PCSK9 in T-cell function and the immune response. Biomark Res 2024; 12:163. [PMID: 39736777 DOI: 10.1186/s40364-024-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) was first reported in 2003 and confirmed to be strongly associated with familial hypercholesterolemia. Small-molecule inhibitors targeting PCSK9 provide an effective and safe method for managing hypercholesterolemia and reducing the cardiovascular risk. In recent years, increasing evidence has indicated other important roles for PCSK9 in inflammation, tumors, and even immune regulation. PCSK9 might be an attractive regulator of T-cell activation and expansion. It might mediate inflammation and regulate other types of immune cells. In this review, we summarize the current advances in the field of PCSK9 and provide a narrative of the biological processes associated with PCSK9. The relationships between PCSK9 and different T cells were investigated in depth. Finally, the signaling pathways associated with PCSK9 and the immune response are also summarized in this review.
Collapse
Affiliation(s)
- Yuying Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Yingxue Lu
- Department of Nephrology, Shandong Second Provincial General Hospital, Jinan , Shandong, 250021, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China.
| |
Collapse
|
12
|
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxid Redox Signal 2024; 41:865-889. [PMID: 39495600 DOI: 10.1089/ars.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Significance: Glucose-induced lipid metabolism is essential for preserving functional β-cells, and its disruption is linked to type 2 diabetes (T2D) development. Lipids are an integral part of the cells playing an indispensable role as structural components, energy storage molecules, and signals. Recent Advances: Glucose presence significantly impacts lipid metabolism in β-cells, where fatty acids are primarily synthesized de novo and/or are transported from the bloodstream. This process is regulated by the glycerolipid/free fatty acid cycle, which includes lipogenic and lipolytic reactions producing metabolic coupling factors crucial for insulin secretion. Disrupted lipid metabolism involving oxidative stress and inflammation is a hallmark of T2D. Critical Issues: Lipid metabolism in β-cells is complex involving multiple simultaneous processes. Exact compartmentalization and quantification of lipid metabolism and its intermediates, especially in response to glucose or chronic hyperglycemia, are essential. Current research often uses non-physiological conditions, which may not accurately reflect in vivo situations. Future Directions: Identifying and quantifying individual steps and their signaling, including redox, within the complex fatty acid and lipid metabolic pathways as well as the metabolites formed during acute versus chronic glucose stimulation, will uncover the detailed mechanisms of glucose-stimulated insulin secretion. This knowledge is crucial for understanding T2D pathogenesis and identifying pharmacological targets to prevent this disease. Antioxid. Redox Signal. 41, 865-889.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Stokičová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Kim JD, Jain A, Fang L. Mitigating Vascular Inflammation by Mimicking AIBP Mechanisms: A New Therapeutic End for Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:10314. [PMID: 39408645 PMCID: PMC11477018 DOI: 10.3390/ijms251910314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of lipoproteins and lipids within the vascular wall, underlies a heart attack, stroke, and peripheral artery disease. Endothelial inflammation is the primary component driving atherosclerosis, promoting leukocyte adhesion molecule expression (e.g., E-selectin), inducing chemokine secretion, reducing the production of nitric oxide (NO), and enhancing the thrombogenic potential. While current therapies, such as statins, colchicine, anti-IL1β, and sodium-glucose cotransporter 2 (SGLT2) inhibitors, target systemic inflammation, none of them addresses endothelial cell (EC) inflammation, a critical contributor to disease progression. Targeting endothelial inflammation is clinically significant because it can mitigate the root cause of atherosclerosis, potentially preventing disease progression, while reducing the side effects associated with broader anti-inflammatory treatments. Recent studies highlight the potential of the APOA1 binding protein (AIBP) to reduce systemic inflammation in mice. Furthermore, its mechanism of action also guides the design of a potential targeted therapy against a particular inflammatory signaling pathway. This review discusses the unique advantages of repressing vascular inflammation or enhancing vascular quiescence and the associated benefits of reducing thrombosis. This approach offers a promising avenue for more effective and targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Repp ML, Edwards MD, Burch CS, Rao A, Chinyere IR. PCSK9 Inhibitors and Anthracyclines: The Future of Cardioprotection in Cardio-Oncology. HEARTS 2024; 5:375-388. [PMID: 39268545 PMCID: PMC11391951 DOI: 10.3390/hearts5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
The field of cardio-oncology is an expanding frontier within cardiovascular medicine, and the need for evidence-based guidelines is apparent. One of the emerging focuses within cardio-oncology is the concomitant use of medications for cardioprotection in the setting of chemotherapy regimens that have known cardiovascular toxicity. While clinical trials focusing on cardioprotection during chemotherapy are sparse, an inaugural trial exploring the prophylactic potential of Sodium-Glucose Cotransporter-2 inhibitors (SGLT2is) for anthracycline (ANT)-induced cardiotoxicity has recently commenced. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, though less studied in this oncology demographic, have exhibited promise in preclinical studies for conferring cardiac protection during non-ischemic toxic insults. While primarily used to reduce low-density lipoprotein, PCSK9 inhibitors exhibit pleiotropic effects, including the attenuation of inflammation, reactive oxygen species, and endothelial dysfunction. In ANT-induced cardiotoxicity, these same processes are accelerated, resulting in premature termination of treatment, chronic cardiovascular sequelae, heart failure, and/or death. This review serves a dual purpose: firstly, to provide a concise overview of the mechanisms implicated in ANT-induced cardiotoxicity, and, finally, to summarize the existing preclinical data supporting the theoretical possibility of the cardioprotective effects of PCSK9 inhibition in ANT-induced cardiotoxicity.
Collapse
Affiliation(s)
- Matthew L Repp
- Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Mark D Edwards
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher S Burch
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amith Rao
- Department of Medicine, Banner University Medicine, Tucson, AZ 85724, USA
| | - Ikeotunye Royal Chinyere
- Department of Medicine, Banner University Medicine, Tucson, AZ 85724, USA
- Sarver Heart Center, University of Arizona, 1501 North Campbell Avenue, Room 6154, Tucson, AZ 85724, USA
| |
Collapse
|
15
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
16
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Tiller C, Holzknecht M, Lechner I, Oberhollenzer F, von der Emde S, Kremser T, Gollmann-Tepeköylü C, Mayr A, Bauer A, Metzler B, Reinstadler SJ, Reindl M. Association of Circulating PCSK9 With Ischemia-Reperfusion Injury in Acute ST-Elevation Myocardial Infarction. Circ Cardiovasc Imaging 2024; 17:e016482. [PMID: 39163371 DOI: 10.1161/circimaging.123.016482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Beyond therapeutic implications, PCSK9 (proprotein convertase subtilisin/kexin 9) has emerged as a promising cardiovascular biomarker. The exact role of PCSK9 in the setting of acute ST-elevation myocardial infarction (STEMI) is incompletely understood. We aimed to investigate the association of PCSK9 with ischemia-reperfusion injury, visualized by cardiac magnetic resonance imaging, in patients with STEMI revascularized by primary percutaneous coronary intervention (PCI). METHODS In this prespecified substudy from the prospective MARINA-STEMI (NCT04113356) registry, we included 205 patients with STEMI. PCSK9 concentrations were measured from venous blood samples by an immunoassay 24 and 48 hours after PCI. The primary end point was defined as presence of intramyocardial hemorrhage according to cardiac magnetic resonance T2* mapping. Secondary imaging end points were the presence of microvascular obstruction (MVO) and infarct size. The clinical end point was the occurrence of major adverse cardiac events. RESULTS We observed a significant increase in PCSK9 levels from 24 to 48 hours (268-304 ng/mL; P<0.001) after PCI. PCSK9 24 hours after PCI did not show any relation to intramyocardial hemorrhage, MVO, and infarct size (all P>0.05). PCSK9 concentrations 48 hours post-STEMI were higher in patients with intramyocardial hemorrhage (333 versus 287 ng/mL; P=0.004), MVO (320 versus 292 ng/mL; P=0.020), and large infarct size (323 versus 296 ng/mL; P=0.013). Furthermore, patients with increased PCSK9 levels >361 ng/mL at 48 hours were more likely to experience major adverse cardiac events (15% versus 8%; P=0.002) during a median follow-up of 12 months. CONCLUSIONS In patients with STEMI, a significant increase in PCSK9 was observed from 24 to 48 hours after PCI. While PCSK9 levels after 24 hours were not related to myocardial or microvascular injury, PCSK9 after 48 hours was significantly associated with intramyocardial hemorrhage, MVO, and infarct size as well as worse subsequent clinical outcomes. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier; NCT04113356.
Collapse
Affiliation(s)
- Christina Tiller
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Magdalena Holzknecht
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Fritz Oberhollenzer
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Sebastian von der Emde
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Thomas Kremser
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery (C.G.-T.), Medical University of Innsbruck, Austria
| | - Agnes Mayr
- University Clinic of Radiology (A.M.), Medical University of Innsbruck, Austria
| | - Axel Bauer
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| |
Collapse
|
18
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Sun L, Wang JX, Ma J, Zhang X, Wang YH, Jing AR, Liang MM, Liu JY, Liu Y, Gao J. Association of the PCSK6 rs1531817(C/A) polymorphism with the prognosis and coronary stenosis in premature myocardial infarction patients: a prospective cohort study. Lipids Health Dis 2024; 23:220. [PMID: 39039525 PMCID: PMC11264971 DOI: 10.1186/s12944-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisins/kexin 6 (PCSK6) polymorphisms have been shown to be associated with atherosclerosis progression. This research aimed to evaluate the relationship of PCSK6 rs1531817 polymorphisms with coronary stenosis and the prognosis in premature myocardial infarction (PMI) patients. METHODS This prospective cohort analysis consecutively included 605 PMI patients who performed emergency percutaneous coronary intervention (PCI) at Tianjin Chest Hospital sequentially between January 2017 and August 2022, with major adverse cardiovascular events (MACEs) as the outcome. Analyses assessed the relationships among PCSK6 rs1531817 polymorphism, Gensini score (GS), triple vessel disease (TVD), and MACEs. RESULTS 92 (16.8%) patients experienced MACEs with an average follow-up of 25.7 months. Logistic analysis revealed that the PCSK6 rs1531817 CA + AA genotype was an independent protective factor against high GS and TVD. Cox analysis revealed that the PCSK6 rs1531817 CA + AA genotype was an independent protective factor against MACEs. The mediation effect results showed that apolipoprotein A1/apolipoprotein B (ApoA1/ApoB) partially mediated the association between PCSK6 rs1531817 polymorphism and coronary stenosis and that total cholesterol/high-density lipoprotein (TC/HDL) and TVD partially and in parallel mediated the association between the PCSK6 rs1531817 polymorphism and MACEs. CONCLUSION Patients with the PCSK6 CA + AA genotype have milder coronary stenosis and a better long-term prognosis; according to the mediation model, ApoA1/ApoB and TC/HDL partially mediate. These results may provide a new perspective on clinical therapeutic strategy for anti-atherosclerosis and improved prognosis in PMI patients.
Collapse
Affiliation(s)
- Li Sun
- Graduate School, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
- Department of Cardiology, Zoucheng Peoples Hospital, No. 59 Qianquan Road, Zoucheng, 273500, Shandong, P.R. China
| | - Jing-Xian Wang
- Graduate School, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
| | - Jing Ma
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Tianjin, 300222, Jinnan District, P.R. China
| | - Xu Zhang
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Tianjin, 300222, Jinnan District, P.R. China
| | - Yu-Hang Wang
- Graduate School, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
| | - An-Ran Jing
- Graduate School, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
| | - Miao-Miao Liang
- Graduate School, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
| | - Jing-Yu Liu
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Tianjin, 300222, Jinnan District, P.R. China
| | - Yin Liu
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China.
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Tianjin, 300222, Jinnan District, P.R. China.
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiang Tai Road, Tianjin, 300070, Heping District, P.R. China.
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Tianjin, 300222, Jinnan District, P.R. China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, P.R. China.
- Chest Hospital, Tianjin University, No.92 Weijin Road, Tianjin, 300072, Nankai District, P.R. China.
| |
Collapse
|
20
|
Uehara H, Kajiya T, Abe M, Nakata M, Hosogi S, Ueda S. Early and short-term use of proprotein convertase anti-subtilisin-kexin type 9 inhibitors on coronary plaque stability in acute coronary syndrome. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae055. [PMID: 39131906 PMCID: PMC11316204 DOI: 10.1093/ehjopen/oeae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 08/13/2024]
Abstract
Aims Proprotein convertase anti-subtilisin-kexin type 9 inhibitors (PCSK9Is) improve plaque volume and composition and reduce major adverse coronary events in chronic coronary artery disease. We evaluated the effects of the short-term use of PCSK9Is on coronary plaque stability in patients with acute coronary syndrome (ACS) using optical coherence tomography (OCT). Methods and results This is a multicentre, open-label randomized controlled trial. The enrolled 80 subjects met the inclusion criteria. Of these, 52 patients (age 60 ± 11 years, 38 men, 14 women) with ST-elevated ACS had undergone successful primary percutaneous coronary intervention with LDL-cholesterol (LDL-C) levels > 70 mg/dL while receiving high-intensity statins. Participants were randomly assigned to the PCSK9I group (evolocumab 420 mg for 3 months, n = 29) or the standard of care (SoC) group (n = 23). Optical coherence tomography was performed at baseline (BL) and 3 and 9 months after randomization to assess lipid-rich plaques in non-culprit lesions. The change in the minimum fibrous cap thickness (MFCT) from BL to 9 months was the primary endpoint. The percentage change in LDL-C levels from BL to 3 months was significantly greater in the PCSK9I group (-67.8 ± 21.5% in the PCSK9I group vs. -16.3 ± 21.8% in the SoC group; P < 0.0001), and the difference between the two groups disappeared from BL to 9 months (-20.0 ± 37.8% in the PCSK9I group vs. -6.7 ± 34.2% in the SoC group; P = 0.20). The changes in MFCT from BL to 9 months were significantly greater in the PCSK9I group, even after PCSK9I discontinuation {100 μm [interquartile range (IQR): 45-180 μm] vs. 50 μm [IQR: 0-110 μm]; P = 0.032}. Conclusion Combination treatment with PCSK9Is and statins resulted in more marked plaque stabilization after ACS than SoC alone, and this effect persisted for 6 months after PCSK9I discontinuation. Registration Adage-Joto study, UMIN ID No. 26516.
Collapse
Affiliation(s)
- Hiroki Uehara
- Department of Cardiology, Urasoe General Hospital, 1-56-1/Maeda Urasoe City, Okinawa 9012102, Japan
- Department of Clinical Research Education and Management, University of Ryukyus Graduate School of Medicine, 207 Uebaru Nishihara town, Okinawa 9030215, Japan
| | - Takashi Kajiya
- Department of Cardiology, Tenyoukai Central Hospital, Kagoshima, Japan
| | - Masami Abe
- Department of Cardiology, Yuai Medical Center Hospital, Okinawa, Japan
| | - Marohito Nakata
- Department of Cardiology, Naha City Hospital, Okinawa, Japan
| | - Shingo Hosogi
- Department of Cardiology, Hosogi hospital, Kochi, Japan
| | - Shinichiro Ueda
- Department of Clinical Research Education and Management, University of Ryukyus Graduate School of Medicine, 207 Uebaru Nishihara town, Okinawa 9030215, Japan
| |
Collapse
|
21
|
Jiao J, Hu B, Mou T, Li Q, Tian Y, Zhang N, Zhang Y, Yun M, Nan N, Tian J, Yu W, Mi H, Dong W, Song X. Translocator Protein 18 kDa Tracer 18F-FDPA PET/CTA Imaging for the Evaluation of Inflammation in Vulnerable Plaques. Mol Pharm 2024; 21:3623-3633. [PMID: 38819959 DOI: 10.1021/acs.molpharmaceut.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Biao Hu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tiantian Mou
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Quan Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yi Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nan Nan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jing Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Yu
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hongzhi Mi
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Dong
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
22
|
Peng C, Li J, Chen Y, Zhang HR, Li TX, Jiang YH, Yang XY, Zhao Y. PCSK9 aggravated carotid artery stenosis in ApoE -/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF-κB pathway. Biochem Pharmacol 2024; 225:116314. [PMID: 38797271 DOI: 10.1016/j.bcp.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.
Collapse
Affiliation(s)
- Chao Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Heng-Rui Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Tian-Xing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Hang Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
23
|
Yang B, Hang S, Xu S, Gao Y, Yu W, Zang G, Zhang L, Wang Z. Macrophage polarisation and inflammatory mechanisms in atherosclerosis: Implications for prevention and treatment. Heliyon 2024; 10:e32073. [PMID: 38873669 PMCID: PMC11170185 DOI: 10.1016/j.heliyon.2024.e32073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterised by plaque accumulation in the arteries. Macrophages are immune cells that are crucial in the development of atherosclerosis. Macrophages can adopt different phenotypes, with the M1 phenotype promoting inflammation while the M2 phenotype counteracting it. This review focuses on the factors that drive the polarisation of M1 macrophages towards a pro-inflammatory phenotype during AS. Additionally, we explored metabolic reprogramming mechanisms and cytokines secretion by M1 macrophages. Hyperlipidaemia is widely recognised as a major risk factor for atherosclerosis. Modified lipoproteins released in the presence of hyperlipidaemia can trigger the release of cytokines and recruit circulating monocytes, which adhere to the damaged endothelium and differentiate into macrophages. Macrophages engulf lipids, leading to the formation of foam cells. As atherosclerosis progresses, foam cells become the necrotic core within the atherosclerotic plaques, destabilising them and triggering ischaemic disease. Furthermore, we discuss recent research focusing on targeting macrophages or inflammatory pathways for preventive or therapeutic purposes. These include statins, PCSK9 inhibitors, and promising nanotargeted drugs. These new developments hold the potential for the prevention and treatment of atherosclerosis and its related complications.
Collapse
Affiliation(s)
- Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Sanhua Hang
- Department of Hematology, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, China
| | - Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
24
|
Rexhaj E, Bär S, Soria R, Ueki Y, Häner JD, Otsuka T, Kavaliauskaite R, Siontis GC, Stortecky S, Shibutani H, Spirk D, Engstrøm T, Lang I, Morf L, Ambühl M, Windecker S, Losdat S, Koskinas KC, Räber L. Effects of alirocumab on endothelial function and coronary atherosclerosis in myocardial infarction: A PACMAN-AMI randomized clinical trial substudy. Atherosclerosis 2024; 392:117504. [PMID: 38513436 DOI: 10.1016/j.atherosclerosis.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS The effects of protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors on endothelial function as assessed by flow-mediated dilation (FMD) in patients with acute myocardial infarction (AMI) are unknown. Therefore, we aimed to investigate the effects of the PCSK9 inhibitor alirocumab added to high-intensity statin on FMD, and its association with coronary atherosclerosis in non-infarct related arteries using intracoronary intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT). METHODS This was a pre-specified substudy among patients recruited at Bern University Hospital, Switzerland, for the randomized-controlled, double-blind, PACMAN-AMI trial, which compared the effects of biweekly alirocumab 150 mg vs. placebo added to rosuvastatin. Brachial artery FMD was measured at 4 and 52 weeks, and intracoronary imaging at baseline and 52 weeks. RESULTS 139/173 patients completed the substudy. There was no difference in FMD at 52 weeks in the alirocumab (n = 68, 5.44 ± 2.24%) versus placebo (n = 71, 5.45 ± 2.19%) group (difference = -0.21%, 95% CI -0.77 to 0.35, p = 0.47). FMD improved throughout 52 weeks in both groups similarly (p < 0.001). There was a significant association between 4 weeks FMD and baseline plaque burden (IVUS) (n = 139, slope = -1.00, p = 0.006), but not with lipid pool (NIRS) (n = 139, slope = -7.36, p = 0.32), or fibrous cap thickness (OCT) (n = 81, slope = -1.57, p = 0.62). CONCLUSIONS Among patients with AMI, the addition of alirocumab did not result in further improvement of FMD as compared to 52 weeks secondary preventative medical therapy including high-intensity statin therapy. FMD was significantly associated with coronary plaque burden at baseline, but not with lipid pool or fibrous cap thickness.
Collapse
MESH Headings
- Humans
- Male
- Female
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Middle Aged
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/diagnostic imaging
- Coronary Artery Disease/complications
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Double-Blind Method
- Aged
- PCSK9 Inhibitors
- Myocardial Infarction/drug therapy
- Myocardial Infarction/complications
- Myocardial Infarction/diagnostic imaging
- Myocardial Infarction/physiopathology
- Ultrasonography, Interventional
- Rosuvastatin Calcium/therapeutic use
- Treatment Outcome
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Tomography, Optical Coherence
- Vasodilation/drug effects
- Drug Therapy, Combination
- Spectroscopy, Near-Infrared
- Plaque, Atherosclerotic/drug therapy
- Coronary Vessels/diagnostic imaging
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Brachial Artery/drug effects
- Brachial Artery/physiopathology
- Brachial Artery/diagnostic imaging
- Time Factors
- Proprotein Convertase 9
Collapse
Affiliation(s)
- Emrush Rexhaj
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Sarah Bär
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Rodrigo Soria
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Jonas D Häner
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Tatsuhiko Otsuka
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Raminta Kavaliauskaite
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - George Cm Siontis
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Hiroki Shibutani
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - David Spirk
- Institute of Pharmacology, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland; Sanofi, Suurstofi 2, 6343, Risch-Rotkreuz, Switzerland
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 20100, Copenhagen, Denmark
| | - Irene Lang
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Laura Morf
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Maria Ambühl
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Sylvain Losdat
- CTU Bern, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Konstantinos C Koskinas
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland.
| |
Collapse
|
25
|
Li F, Mei Y, Wu Q, Wu X. Drug Target Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Atrial Fibrillation. Cardiology 2024; 149:495-501. [PMID: 38531334 PMCID: PMC11449189 DOI: 10.1159/000538551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is a prevalent cardiac arrhythmia with significant clinical implications. The potential influence of lipid-lowering therapies, specifically PCSK9 inhibitors (PCSK9i) and HMG-CoA reductase inhibitors (statins), on AF risk remains a topic of interest. This mendelian randomization (MR) study aimed to elucidate the causal relationship between genetically predicted inhibition of PCSK9 and HMG-CoA reductase and the risk of AF. METHODS Utilizing publicly available, summary-level genome-wide association study data, we employed single-nucleotide polymorphisms associated with lower LDL-C levels as instruments for gene-simulated inhibition of PCSK9 and HMG-CoA reductase. Multiple MR techniques were applied to estimate the causal effects, and sensitivity analyses were conducted to validate the results. RESULTS Genetically predicted inhibition of PCSK9 demonstrated a reduced risk of AF, with an odds ratio (OR) of 0.92 (95% CI: 0.85-0.99, p = 0.01) using the inverse variance-weighted (IVW) method. In contrast, the inhibition of HMG-CoA reductase did not exhibit a statistically significant association with AF risk (IVW: OR = 1.11, 95% CI: 1.00-1.22, p = 0.05). CONCLUSION Our MR study suggests that genetically predicted inhibition of PCSK9, but not HMG-CoA reductase, is associated with a lower risk of AF. These findings provide evidence for a causal protective effect of PCSK9i on AF and support the use of PCSK9i for AF prevention in patients with dyslipidemia. Further studies are needed to elucidate the mechanisms underlying the differential effects of PCSK9i and statins on AF and to confirm the clinical implications of our findings.
Collapse
Affiliation(s)
- Fuyuan Li
- Department of Cardiology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Cardiology, First Affiliated Hospital of Lishui University School of Medicine, Lishui, China
| | - Yibin Mei
- Department of Cardiology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Cardiology, First Affiliated Hospital of Lishui University School of Medicine, Lishui, China
| | - Qiongbi Wu
- Department of Cardiology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Cardiology, First Affiliated Hospital of Lishui University School of Medicine, Lishui, China
| | - Xianjun Wu
- Department of Cardiology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Cardiology, First Affiliated Hospital of Lishui University School of Medicine, Lishui, China
| |
Collapse
|
26
|
Chen L, Du Y, Qiao H, Yang L, Zhang P, Wang J, Zhang C, Jiang W, Xu R, Zhang X. Proprotein convertase subtilisin/kexin type 9 inhibitor ameliorates cerebral ischemia in mice by inhibiting inflammation. J Stroke Cerebrovasc Dis 2024; 33:107517. [PMID: 38056113 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES To investigate the potential protective effects of evolocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on ischemic stroke and its underlying mechanisms. MATERIALS AND METHODS We established a mouse model with distal middle cerebral artery occlusion. We evaluated the therapeutic effects through neurological function and infarct size, while the underlying mechanisms were elucidated using western blotting and real-time polymerase chain reaction. RESULTS Evolocumab improved neurological recovery, reduced the infarct volume, suppressed the activation of Toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB), and attenuated the increased levels of IL-1β and TNF-α after cerebral ischemia. CONCLUSION Evolocumab protects against cerebral ischemic injury by inhibiting inflammation. Therefore, the TLR4/NF-кB pathway may represent a major mechanism in ischemic stroke.
Collapse
Affiliation(s)
- Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Lan Yang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Jing Wang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Wei Jiang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Renhao Xu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
27
|
Waksman R, Merdler I, Case BC, Waksman O, Porto I. Targeting inflammation in atherosclerosis: overview, strategy and directions. EUROINTERVENTION 2024; 20:32-44. [PMID: 38165117 PMCID: PMC10756224 DOI: 10.4244/eij-d-23-00606] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a chronic condition characterised by the build-up of plaque in the inner lining of the blood vessels and it is the main underlying cause of cardiovascular disease. The development of atherosclerosis is associated with the accumulation of cholesterol and inflammation. Although effective therapies exist to lower low-density lipoprotein cholesterol (LDL-C) levels, some patients still experience cardiovascular events due to persistent inflammation, known as residual inflammatory risk (RIR). Researchers have conducted laboratory and animal studies to investigate the measurement and targeting of the inflammatory cascade associated with atherosclerosis, which have yielded promising results. In addition to guideline-directed lifestyle modifications and optimal medical therapy focusing on reducing LDL-C levels, pharmacological interventions targeting inflammation may provide further assistance in preventing future cardiac events. This review aims to explain the mechanisms of inflammation in atherosclerosis, identifies potential biomarkers, discusses available therapeutic options and their strengths and limitations, highlights future advancements, and summarises notable clinical studies. Finally, an evaluation and management algorithm for addressing RIR is presented.
Collapse
Affiliation(s)
- Ron Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ilan Merdler
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Brian C Case
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ori Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| |
Collapse
|
28
|
Geng S, Wu Y, Li L. Immune Homeostasis Maintenance Through Advanced Immune Therapeutics to Target Atherosclerosis. Methods Mol Biol 2024; 2782:25-37. [PMID: 38622390 DOI: 10.1007/978-1-0716-3754-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Cecchini AL, Biscetti F, Manzato M, Lo Sasso L, Rando MM, Nicolazzi MA, Rossini E, Eraso LH, Dimuzio PJ, Massetti M, Gasbarrini A, Flex A. Current Medical Therapy and Revascularization in Peripheral Artery Disease of the Lower Limbs: Impacts on Subclinical Chronic Inflammation. Int J Mol Sci 2023; 24:16099. [PMID: 38003290 PMCID: PMC10671371 DOI: 10.3390/ijms242216099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CeVD) are characterized by atherosclerosis and inflammation as their underlying mechanisms. This paper aims to conduct a literature review on pharmacotherapy for PAD, specifically focusing on how different drug classes target pro-inflammatory pathways. The goal is to enhance the choice of therapeutic plans by considering their impact on the chronic subclinical inflammation that is associated with PAD development and progression. We conducted a comprehensive review of currently published original articles, narratives, systematic reviews, and meta-analyses. The aim was to explore the relationship between PAD and inflammation and evaluate the influence of current pharmacological and nonpharmacological interventions on the underlying chronic subclinical inflammation. Our findings indicate that the existing treatments have added anti-inflammatory properties that can potentially delay or prevent PAD progression and improve outcomes, independent of their effects on traditional risk factors. Although inflammation-targeted therapy in PAD shows promising potential, its benefits have not been definitively proven yet. However, it is crucial not to overlook the pleiotropic properties of the currently available treatments, as they may provide valuable insights for therapeutic strategies. Further studies focusing on the anti-inflammatory and immunomodulatory effects of these treatments could enhance our understanding of the mechanisms contributing to the residual risk in PAD and pave the way for the development of novel therapies.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Manzato
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Lo Sasso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
31
|
Zhou Q, Tang H, Li S. Protective effect of evolocumab on Müller cells in the rat retina under hyperglycaemic and hypoxic conditions. J Diabetes Complications 2023; 37:108593. [PMID: 37717351 DOI: 10.1016/j.jdiacomp.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
AIMS In this study, rat retinal Müller cells (RMCs) were cultured in vitro to investigate the protective mechanism of evolocumab on rat RMCs in diabetes mellitus (DM) and the expression of relevant inflammatory factors. METHODS The expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the retinal tissues of diabetic rats was detected by immunohistochemistry. Sprague-Dawley (SD) rats at 5-7 d of life were selected as the source of RMCs and divided equally into three groups of 12 rats/24 eyes each. The effect of CoCl2 and evolocumab on the cellular activity of RMCs was determined by CCK-8 assay. The effect of CoCl2 and evolocumab on the migration level of RMCs after 72 h was measured by scratch test and the expression of various proteins after 72 h was measured by Western blot. RESULTS In STZ rats, the expression of PCSK9 was significantly upregulated in the retina, especially in the inner nuclear layer, which is mainly composed of RMCs. High glucose and CoCl2 stimulation markedly elevated PCSK9 and GFAP expression at the protein level in RMCs (P < 0.05). Evolocumab treatment (100 μg/ml) reduced the expression and secretion of inflammatory factors in stimulated RMCs (P < 0.05). Furthermore, evolocumab downregulates toll-like receptor-4 (TLR-4) levels and inhibited nuclear transcription factor-κB (NF-κB) phosphorylation in RMCs (P < 0.05). CONCLUSIONS Evolocumab protects against inflammation in RMCs, at least in part, by negatively regulating the activation of the TLR-4/NF-κB signalling pathway. Evolocumab may be a promising anti-inflammatory therapy for ocular fundus diseases, such as DR.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Huan Tang
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuting Li
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
32
|
Bianconi V, Cafaro G, Mannarino MR, Perricone C, Cosentini E, Bistoni O, Paltriccia R, Lombardini R, Gerli R, Pirro M, Bartoloni E. Exploring the Link between Plasma Levels of PCSK9, Immune Dysregulation and Atherosclerosis in Patients with Primary Sjögren's Syndrome. Biomolecules 2023; 13:1384. [PMID: 37759784 PMCID: PMC10527459 DOI: 10.3390/biom13091384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid metabolism contributing to cardiovascular (CV) risk in the general population. The relationship between PCSK9 and CV risk in systemic autoimmune diseases has been poorly explored. We investigated the association between plasma PCSK9, measures of immune-inflammatory status and markers of atherosclerosis in 52 consecutive patients with primary Sjögren's syndrome (pSS) in comparison to healthy controls (HCs). Median plasma PCSK9 levels were significantly higher in pSS patients versus HCs (162 (79-255) vs. 53 (39-99) ng/mL). Significantly higher prevalence of subclinical atherosclerosis and lower of dyslipidaemia (61% vs. 85%, p = 0.042) characterized pSS patients versus HCs. In pSS, no significant correlation emerged between PCSK9 and disease activity, atherosclerosis and lipid levels. In HCs, PCSK9 significantly correlated with lipid levels and atherosclerosis. Interestingly, significantly higher PCSK9 levels were found in HCs with high-to-very-high as compared to low-to-moderate CV risk (p = 0.018) while a non-significant trend towards higher PCSK9 levels was detected in pSS patients with low-to-moderate as compared to high-to-very-high CV risk (p = 0.060). This is the first demonstration that pSS patients, despite lower prevalence of dyslipidaemia and higher CV risk profile, are characterized by a 3-fold increase in PCSK9 levels in comparison to HCs. As PCSK9 does not correlate with measures of CV risk, its role in CV morbidity in pSS needs further investigation.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Giacomo Cafaro
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (G.C.); (C.P.); (O.B.); (E.B.)
| | - Massimo Raffaele Mannarino
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (G.C.); (C.P.); (O.B.); (E.B.)
| | - Elena Cosentini
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (G.C.); (C.P.); (O.B.); (E.B.)
| | - Rita Paltriccia
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Rita Lombardini
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (G.C.); (C.P.); (O.B.); (E.B.)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (V.B.); (M.R.M.); (E.C.); (R.P.); (R.L.); (M.P.)
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (G.C.); (C.P.); (O.B.); (E.B.)
| |
Collapse
|
33
|
Braczko A, Harasim G, Kawecka A, Walczak I, Kapusta M, Narajczyk M, Stawarska K, Smoleński RT, Kutryb-Zając B. Blocking cholesterol formation and turnover improves cellular and mitochondria function in murine heart microvascular endothelial cells and cardiomyocytes. Front Physiol 2023; 14:1216267. [PMID: 37745244 PMCID: PMC10512729 DOI: 10.3389/fphys.2023.1216267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Statins and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are cornerstones of therapy to prevent cardiovascular disease, acting by lowering lipid concentrations and only partially identified pleiotropic effects. This study aimed to analyze impacts of atorvastatin and synthetic peptide PCSK9i on bioenergetics and function of microvascular endothelial cells and cardiomyocytes. Methods: Mitochondrial function and abundance as well as intracellular nucleotides, membrane potential, cytoskeleton structure, and cell proliferation rate were evaluated in mouse heart microvascular endothelial cells (H5V) and cardiomyocytes (HL-1) under normal and hypoxia-mimicking conditions (CoCl2 exposure). Results: In normal conditions PCSK9i, unlike atorvastatin, enhanced mitochondrial respiratory parameters, increased nucleotide levels, prevented actin cytoskeleton disturbances and stimulated endothelial cell proliferation. Under hypoxia-mimicking conditions both atorvastatin and PCSK9i improved the mitochondrial respiration and membrane potential in both cell types. Conclusion: This study demonstrated that both treatments benefited the endothelial cell and cardiomyocyte bioenergetics, but the effects of PCSK9i were superior.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
34
|
Xie W, Li J, Du H, Xia J. Causal relationship between PCSK9 inhibitor and autoimmune diseases: a drug target Mendelian randomization study. Arthritis Res Ther 2023; 25:148. [PMID: 37580807 PMCID: PMC10424393 DOI: 10.1186/s13075-023-03122-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND In addition to decreasing the level of cholesterol, proprotein convertase subtilis kexin 9 (PCSK9) inhibitor has pleiotropic effects, including immune regulation. However, the impact of PCSK9 on autoimmune diseases is controversial. Therefore, we used drug target Mendelian randomization (MR) analysis to investigate the effect of PCSK9 inhibitor on different autoimmune diseases. METHODS We collected single nucleotide polymorphisms (SNPs) of PCSK9 from published genome-wide association studies statistics and conducted drug target MR analysis to detect the causal relationship between PCSK9 inhibitor and the risk of autoimmune diseases. 3-Hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitor, the drug target of statin, was used to compare the effect with that of PCSK9 inhibitor. With the risk of coronary heart disease as a positive control, primary outcomes included the risk of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), myasthenia gravis (MG), multiple sclerosis (MS), asthma, Crohn's disease (CD), ulcerative colitis (UC), and type 1 diabetes (T1D). RESULTS PCSK9 inhibitor significantly reduced the risk of SLE (OR [95%CI] = 0.47 [0.30 to 0.76], p = 1.74 × 10-3) but increased the risk of asthma (OR [95%CI] = 1.15 [1.03 to 1.29], p = 1.68 × 10-2) and CD (OR [95%CI] = 1.38 [1.05 to 1.83], p = 2.28 × 10-2). In contrast, HMGCR inhibitor increased the risk of RA (OR [95%CI] = 1.58 [1.19 to 2.11], p = 1.67 × 10-3), asthma (OR [95%CI] = 1.21 [1.04 to 1.40], p = 1.17 × 10-2), and CD (OR [95%CI] = 1.60 [1.08 to 2.39], p = 2.04 × 10-2). CONCLUSIONS PCSK9 inhibitor significantly reduced the risk of SLE but increased the risk of asthma and CD. In contrast, HMGCR inhibitor may be a risk factor for RA, asthma, and CD.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Liu Y, Zhao Y, Feng P, Jiang H. PCSK9 inhibitor attenuates atherosclerosis by regulating SNHG16/EZH2/TRAF5-mediated VSMC proliferation, migration, and foam cell formation. Cell Biol Int 2023; 47:1267-1280. [PMID: 37017413 DOI: 10.1002/cbin.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 04/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor has been demonstrated to exert a great cardioprotection in cardiometabolic impairments, including atherosclerosis. However, its underlying mechanism remains not fully understood. This study focuses on uncovering the actions of PCSK9 inhibitor on the connection between atherosclerosis and vascular smooth muscle cell (VSMC) behaviors. qRT-PCR was utilized to detect the expression of SNHG16. Proliferation and migration of VSMC were characterized by Cell Counting Kit-8 and wound healing assays. The intracellular lipids and foam cell formation were assessed by Oil Red O staining, fluorescence image, and cholesterol quantification kit. Atherosclerosis in vivo was evaluated by imaging the atherosclerotic lesions, hematoxylin-eosin staining, Oil Red O staining and Masson staining. The interaction between SNHG16 with EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) were investigated by fluorescence in situ hybridization, RNA immunoprecipitation, and chromatin immunoprecipitation assays. A ApoE-/- mice model was used to validate the role of PCSK9 inhibitor and SNHG16 for atherosclerosis. The protective regulation of PCSK9 inhibitor was observed both in high-fat diet (HFD)-fed mice and oxidized low-density lipoprotein (ox-LDL)-treated VSMC, as manifested in the decreased the atherosclerotic lesions in vivo, as well as the weakened cell proliferation, migration, and formation of foam cells in vitro. SNHG16 was identified to be a downstream effector of PCSK9 inhibitor-mediated biological functions, of which knockdown also significantly ox-LDL-treated VSMC proliferation, migration, and foam cell formation abilities. SNHG16 epigenetically suppressed TRAF5 via recruiting EZH2. Silencing of TRAF5 abolished the protective effects of SNHG16 knockdown on the pathogenesis of atherosclerosis. Collectively, PCSK9 inhibitor attenuated atherosclerosis by regulating SNHG16/EZH2/TRAF5 axis to impair the proliferation, migration, and foam cell formation of VSMC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yueyan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Panyang Feng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haijie Jiang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
36
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
37
|
Klein J, Diaba-Nuhoho P, Giebe S, Brunssen C, Morawietz H. Regulation of endothelial function by cigarette smoke and next-generation tobacco and nicotine products. Pflugers Arch 2023:10.1007/s00424-023-02824-w. [PMID: 37285061 DOI: 10.1007/s00424-023-02824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Cigarette smoking is the most important avoidable cardiovascular risk factor. It causes endothelial dysfunction and atherosclerosis and increases the risk of its severe clinical complications like coronary artery disease, myocardial infarction, stroke, and peripheral artery disease. Several next-generation tobacco and nicotine products have been developed to decrease some of the deleterious effects of regular tobacco smoking. This review article summarizes recent findings about the impact of cigarette smoking and next-generation tobacco and nicotine products on endothelial dysfunction. Both cigarette smoking and next-generation tobacco products lead to impaired endothelial function. Molecular mechanisms of endothelial dysfunction like oxidative stress, reduced nitric oxide availability, inflammation, increased monocyte adhesion, and cytotoxic effects of cigarette smoke and next-generation tobacco and nicotine products are highlighted. The potential impact of short- and long-term exposure to next-generation tobacco and nicotine products on the development of endothelial dysfunction and its clinical implications for cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- Justus Klein
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Patrick Diaba-Nuhoho
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, Albert-Schweitzer-Str. 33, D-48149, Münster, Germany
| | - Sindy Giebe
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Coy Brunssen
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Henning Morawietz
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany.
| |
Collapse
|
38
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
39
|
Silla A, Fogacci F, Punzo A, Hrelia S, Simoni P, Caliceti C, Cicero AFG. Treatment with PCSK9 Inhibitor Evolocumab Improves Vascular Oxidative Stress and Arterial Stiffness in Hypercholesterolemic Patients with High Cardiovascular Risk. Antioxidants (Basel) 2023; 12:antiox12030578. [PMID: 36978827 PMCID: PMC10045769 DOI: 10.3390/antiox12030578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Atherosclerosis and atherosclerotic-related cardiovascular diseases (ASCVD) are characterized by high serum levels of low-density lipoprotein cholesterol (LDL-C) that can promote the generation of reactive oxygen species (ROS). To answer the need for better LDL-C control in individuals at high and very high risk for CVD, a new injectable innovative family of lipid-lowering (LL) monoclonal antibodies against the protein convertase subtilisin/kexin type 9 (PCSK9) has been approved. However, the effect of these drugs on vascular function, such as ROS generation and arterial stiffness, has not already been extensively described. In this report, we present data from 18 males with high to very high CV risk undergoing LL treatment (LLT) with either statin and ezetimibe or ezetimibe monotherapy, who experienced, after a 2-month treatment with Evolocumab, a significant improvement in blood pressure (BP)-adjusted carotid–femoral pulse wave velocity (cfPWV) (p-value = 0.0005 in the whole cohort, p-value = 0.0046 in the sub-cohort undergoing background LLT with statin and ezetimibe, p-value = 0.015 in the sub-cohort undergoing background LLT with ezetimibe monotherapy), which was significantly associated with a decrease in freshly isolated leukocytes (PBMCS)-derived H2O2 production (p-value = 0.004, p-value = 0.02 and p-value = 0.05, respectively, in the whole cohort, in the statin + ezetimibe sub-cohort, and the ezetimibe sub-cohort). Our observations support the role of systemic oxidative stress in atherosclerosis and give a further rationale for using Evolocumab also for its effect in vascular disorders linked to oxidative processes.
Collapse
Affiliation(s)
- Alessia Silla
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Federica Fogacci
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences—DIBINEM, University of Bologna, 40126 Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), 00136 Rome, Italy
- Interdepartmental Center of Industrial Research (CIRI)—Energy and Environment, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Arrigo F. G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| |
Collapse
|
40
|
Tissue and Serum Biomarkers in Degenerative Aortic Stenosis-Insights into Pathogenesis, Prevention and Therapy. BIOLOGY 2023; 12:biology12030347. [PMID: 36979039 PMCID: PMC10045285 DOI: 10.3390/biology12030347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Background and Aim. Degenerative Aortic Stenosis (DAS) is a common disease that causes substantial morbidity and mortality worldwide, especially in the older population. Our aim was to further investigate novel serum and tissue biomarkers to elucidate biological processes involved in this entity. Material and Methods. We evaluated the expression of six biomarkers significantly involved in cardiovascular pathology, i.e., irisin, periostin, osteoglycin, interleukin 18, high mobility group box 1 and proprotein convertase subtilisin/kexin type 9 in the serum at the protein level, and in the tissue at both the protein and mRNA levels of patients with AS (N = 60). Five normal valves obtained after transplantation from hearts of patients with idiopathic dilated cardiomyopathy were also studied. Serum measurements were also performed in 22 individuals without valvular disease who served as controls (C). Results. Higher levels of all factors were found in DAS patients’ serum than in normal C. IHC and PCR mRNA tissue analysis showed the presence of all biomarkers in the aortic valve cusps with DAS, but no trace of PCR mRNA was found in the five transplantation valves. Moreover, periostin serum levels correlated significantly with IHC and mRNA tissue levels in AS patients. Conclusion. We showed that six widely prevalent biomarkers affecting the atherosclerotic process were also involved in DAS, suggesting a strong osteogenic and pro-inflammatory profile, indicating that aortic valve calcification is a multifactorial biological process.
Collapse
|
41
|
Rehues P, Girona J, Guardiola M, Plana N, Scicali R, Piro S, Muñiz-Grijalvo O, Díaz-Díaz JL, Recasens L, Pinyol M, Rosales R, Esteban Y, Amigó N, Masana L, Ibarretxe D, Ribalta J. PCSK9 Inhibitors Have Apolipoprotein C-III-Related Anti-Inflammatory Activity, Assessed by 1H-NMR Glycoprotein Profile in Subjects at High or very High Cardiovascular Risk. Int J Mol Sci 2023; 24:2319. [PMID: 36768645 PMCID: PMC9917120 DOI: 10.3390/ijms24032319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by the accumulation of cholesterol in the intima. Proprotein convertase subtilisin/kexin type 9 inhibitors (iPCSK9) can reduce low-density lipoprotein (LDL) cholesterol levels by 60%, but there is still no evidence that they can lower markers of systemic inflammation such as high-sensitivity C-reactive protein (hsCRP). Acute-phase serum glycoproteins are upregulated in the liver during systemic inflammation, and their role as inflammatory biomarkers is under clinical evaluation. In this observational study, we evaluate the effects of iPCSK9 on glycoproteins (Glyc) A, B and F. Thirty-nine patients eligible for iPCSK9 therapy were enrolled. One sample before and after one to six months of iPCSK9 therapy with alirocumab was obtained from each patient. Lipids, apolipoproteins, hsCRP and PCSK9 levels were measured by biochemical analyses, and the lipoprotein and glycoprotein profiles were measured by 1H nuclear magnetic resonance (1H-NMR). The PCSK9 inhibitor reduced total (36.27%, p < 0.001), LDL (55.05%, p < 0.001) and non-high-density lipoprotein (HDL) (45.11%, p < 0.001) cholesterol, apolipoprotein (apo) C-III (10%, p < 0.001), triglycerides (9.92%, p < 0.001) and glycoprotein signals GlycA (11.97%, p < 0.001), GlycB (3.83%, p = 0.017) and GlycF (7.26%, p < 0.001). It also increased apoA-I (2.05%, p = 0.043) and HDL cholesterol levels (11.58%, p < 0.001). Circulating PCSK9 levels increased six-fold (626.28%, p < 0.001). The decrease in Glyc signals positively correlated with the decrease in triglycerides and apoC-III. In conclusion, in addition to LDL cholesterol, iPCSK9 therapy also induces a reduction in systemic inflammation measured by 1H-NMR glycoprotein signals, which correlates with a decrease in triglycerides and apoC-III.
Collapse
Affiliation(s)
- Pere Rehues
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Josefa Girona
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Montse Guardiola
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Plana
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Ovidio Muñiz-Grijalvo
- Unidad Clinico-Experimental de Riesgo Vascular, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - José Luis Díaz-Díaz
- Department of Internal Medicine, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
| | - Lluís Recasens
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Cardiac Rehabilitation Unit, Department of Cardiology, Hospital del Mar, 08003 Barcelona, Spain
| | - Marta Pinyol
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
| | - Roser Rosales
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Yaiza Esteban
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Amigó
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Lluís Masana
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Daiana Ibarretxe
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Josep Ribalta
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
42
|
Inclisiran-Safety and Effectiveness of Small Interfering RNA in Inhibition of PCSK-9. Pharmaceutics 2023; 15:pharmaceutics15020323. [PMID: 36839644 PMCID: PMC9965021 DOI: 10.3390/pharmaceutics15020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Dyslipidemia is listed among important cardiovascular disease risk factors. Treating lipid disorders is difficult, and achieving desirable levels of LDL-cholesterol (LDL-C) is essential in both the secondary and primary prevention of cardiovascular disease. For many years, statins became the basis of lipid-lowering therapy. Nevertheless, these drugs are often insufficient due to their side effects and restrictive criteria for achieving the recommended LDL-C values. Even the addition of other drugs, i.e., ezetimibe, does not help one achieve the target LDL-C. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has triggered intensive research on a new class of protein-based drugs. The protein PCSK9 is located mainly in hepatocytes and is involved in the metabolism of LDL-C. In the beginning, antibodies against the PCSK9 protein, such as evolocumab, were invented. The next step was inclisiran. Inclisiran is a small interfering RNA (siRNA) that inhibits the expression of PCSK9 by binding specifically to the mRNA precursor of PCSK9 protein and causing its degradation. It has been noticed in recent years that siRNA is a powerful tool for biomedical research and drug discovery. The purpose of this work is to summarize the molecular mechanisms, pharmacokinetics, pharmacodynamics of inclisiran and to review the latest research.
Collapse
|
43
|
Tolkmitt J, Brendel H, Zatschler B, Brose S, Brunssen C, Kopaliani I, Deussen A, Matschke K, Morawietz H. Aprotinin does not Impair Vascular Function in Patients Undergoing Coronary Artery Bypass Graft Surgery. Horm Metab Res 2023; 55:65-74. [PMID: 36599358 DOI: 10.1055/a-1984-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bleeding is a major complication in coronary artery bypass graft surgery. Antifibrinolytic agents like serine protease inhibitor aprotinin can decrease postoperative bleeding and complications of cardiac surgery. However, the effects of aprotinin on vascular function are not completely elucidated. We compared the ex vivo vascular function of left internal mammary arteries from patients undergoing coronary artery bypass graft surgery with and without intraoperative application of aprotinin using a Mulvany Myograph. Human internal mammary arteries were treated with aprotinin ex vivo and tested for changes in vascular function. We analyzed the impact of aprotinin on vascular function in rat aortic rings. Finally, impact of aprotinin on expression and activity of endothelial nitric oxide synthase was tested in human endothelial cells. Intraoperative application of aprotinin did not impair ex vivo vascular function of internal mammary arteries of patients undergoing coronary artery bypass graft surgery. Endothelium-dependent and -independent relaxations were not different in patients with or without aprotinin after nitric oxide synthase blockade. A maximum vasorelaxation of 94.5%±11.4vs. 96.1%±5.5% indicated a similar vascular smooth muscle function in both patient groups (n=13 each). Long-term application of aprotinin under physiological condition preserved vascular function of the rat aorta. In vitro application of increasing concentrations of aprotinin on human endothelial cells resulted in a similar expression and activity of endothelial nitric oxide synthase. In conclusion, intraoperative and ex vivo application of aprotinin does not impair the endothelial function in human internal mammary arteries and experimental models.
Collapse
Affiliation(s)
- Josephine Tolkmitt
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Dresden, Germany
| | - Heike Brendel
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Dresden, Germany
| | - Birgit Zatschler
- Institute of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Stefan Brose
- Department of Cardiac Surgery, University Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Dresden, Germany
| | - Irakli Kopaliani
- Institute of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, University Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
44
|
Kong N, Xu Q, Cui W, Feng X, Gao H. PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1205. [PMID: 36544639 PMCID: PMC9761140 DOI: 10.21037/atm-22-4652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022]
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to an intracellular invertase or decarboxylase and is an independent risk factor for atherosclerosis (AS). This study aimed to investigate the therapeutic potential of the PCSK9 inhibitor, inclisiran, and its underlying mechanism in AS. Methods ApoE-/- mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 1, 5, or 10 mg/kg inclisiran. Low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) levels were determined using commercially available kits. Oil Red O staining was applied to detect the aortic plaque area and oil formation. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to induce cell injuries. Cell death was determined using a Hoechst 33342/propidium iodide (PI) dual-staining assay. Cytotoxicity was measured by lactate dehydrogenase (LDH) activity analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were performed to examine the pyroptosis-related factors. Results Inclisiran inhibited the levels of LDL-C, TC, and TG, but increased the HDL-C level in the AS animal model. It also significantly inhibited plaque and oil droplet formation in a dose-dependent manner. Moreover, inclisiran markedly inhibited pyroptosis, as evidenced by the decreased levels of cleaved-caspase-1, NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC), gasdermin-D (GSDMD)-N, interleukin (IL)-1β, and IL-18. Furthermore, inclisiran substantially inhibited cell death and cytotoxicity induced by ox-LDL in HUVECs. Conclusions Inclisiran exerted an anti-atherosclerotic effect by inhibiting pyroptosis. This study provides a theoretical basis for the therapeutic potential of inclisiran in AS.
Collapse
Affiliation(s)
- Ni Kong
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Qin Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Wei Cui
- Basic Medical School, Qingdao University, Qingdao, China
| | - Xiaoying Feng
- School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Huijie Gao
- Department of Immunopharmacology, Jining Medical University, Rizhao, China
| |
Collapse
|
45
|
Greco MF, Rizzuto AS, Zarà M, Cafora M, Favero C, Solazzo G, Giusti I, Adorni MP, Zimetti F, Dolo V, Banfi C, Ferri N, Sirtori CR, Corsini A, Barbieri SS, Pistocchi A, Bollati V, Macchi C, Ruscica M. PCSK9 Confers Inflammatory Properties to Extracellular Vesicles Released by Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:13065. [PMID: 36361853 PMCID: PMC9655172 DOI: 10.3390/ijms232113065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 10/20/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are key participants in both early- and late-stage atherosclerosis and influence neighbouring cells possibly by means of bioactive molecules, some of which are packed into extracellular vesicles (EVs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed and secreted by VSMCs. This study aimed to unravel the role of PCSK9 on VSMCs-derived EVs in terms of content and functionality. EVs were isolated from human VSMCs overexpressing human PCSK9 (VSMCPCSK9-EVs) and tested on endothelial cells, monocytes, macrophages and in a model of zebrafish embryos. Compared to EVs released from wild-type VSMCs, VSMCPCSK9-EVs caused a rise in the expression of adhesion molecules in endothelial cells and of pro-inflammatory cytokines in monocytes. These acquired an increased migratory capacity, a reduced oxidative phosphorylation and secreted proteins involved in immune response and immune effector processes. Concerning macrophages, VSMCPCSK9-EVs enhanced inflammatory milieu and uptake of oxidized low-density lipoproteins, whereas the migratory capacity was reduced. When injected into zebrafish embryos, VSMCPCSK9-EVs favoured the recruitment of macrophages toward the site of injection. The results of the present study provide evidence that PCSK9 plays an inflammatory role by means of EVs, at least by those derived from smooth muscle cells of vascular origin.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandra Stefania Rizzuto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Marco Cafora
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Solazzo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Maria Pia Adorni
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, 43124 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, Università degli Studi di Parma, 43124 Parma, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Nicola Ferri
- Department of Medicine, Università degli Studi di Padova, 35100 Padua, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Stella Barbieri
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational, Università degli Studi di Milano, L.I.T.A., 20133 Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
46
|
Abstract
An elevated cholesterol concentration has been suspected to increase the susceptibility for SARS-COV-2 infection. Cholesterol plays a central role in the mechanisms of the SARS-COV-2 infection. In contrast, higher HDL-cholesterol levels seem to be protective. During COVID-19 disease, LDL-cholesterol and HDL-cholesterol appear to be decreased. On the other hand, triglycerides (also in different lipoprotein fractions) were elevated. Lipoprotein(a) may increase during this disease and is most probably responsible for thromboembolic events. This lipoprotein can induce a progression of atherosclerotic lesion formation. The same is suspected for the SARS-COV-2 infection itself. COVID-19 patients are at increased risk of incident cardiovascular diseases, including cerebrovascular disorders, dysrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure, and thromboembolic disorders. An ongoing lipid-lowering therapy, including lipoprotein apheresis, is recommended to be continued during the COVID-19 disease, though the impact of lipid-lowering drugs or the extracorporeal therapy on prognosis should be studied in further investigations.
Collapse
Affiliation(s)
- Ulrich Julius
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schatz
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Kettunen S, Ruotsalainen AK, Ylä-Herttuala S. RNA interference-based therapies for the control of atherosclerosis risk factors. Curr Opin Cardiol 2022; 37:364-371. [PMID: 35731681 DOI: 10.1097/hco.0000000000000972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis, characterized by lipid accumulation and chronic inflammation in the arterial wall, is the leading causes of death worldwide. The purpose of this article is to review the status of RNA interference (RNAi) based therapies in clinical trials for the treatment and prevention of atherosclerosis risk factors. RECENT FINDINGS There is a growing interest on using RNAi technology for the control of atherosclerosis risk factors. Current clinical trials utilizing RNAi for atherosclerosis are targeting lipid metabolism regulating genes including proprotein convertase subtilisin/kexin 9, apolipoprotein C-III, lipoprotein (a) and angiopoietin-like protein 3. Currently, three RNAi-based drugs have been approved by U.S. Food and Drug Administration, but there are several therapies in clinical trials at the moment, and potentially entering the market in near future. In addition, recent preclinical studies on regulating vascular inflammation have shown promising results. SUMMARY In recent years, RNAi based technologies and therapies have been intensively developed for the treatment of atherosclerosis risk factors, such as hyperlipidemia and vascular inflammation. Multiple potential therapeutic targets have emerged, and many of the reported clinical trials have already been successful in plasma lipid lowering. The scope of RNAi therapies is well recognized and recent approvals are encouraging for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
48
|
Non-Lipid Effects of PCSK9 Monoclonal Antibodies on Vessel Wall. J Clin Med 2022; 11:jcm11133625. [PMID: 35806908 PMCID: PMC9267174 DOI: 10.3390/jcm11133625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/07/2022] Open
Abstract
Elevated low density lipoprotein (LDL) cholesterol and lipoprotein(a) (Lp(a)) levels have an important role in the development and progression of atherosclerosis, followed by cardiovascular events. Besides statins and other lipid-modifying drugs, PCSK9 monoclonal antibodies are known to reduce hyperlipidemia. PCSK9 monoclonal antibodies decrease LDL cholesterol levels through inducing the upregulation of the LDL receptors and moderately decrease Lp(a) levels. In addition, PCSK9 monoclonal antibodies have shown non-lipid effects. PCSK9 monoclonal antibodies reduce platelet aggregation and activation, and increase platelet responsiveness to acetylsalicylic acid. Evolocumab as well as alirocumab decrease an incidence of venous thromboembolism, which is associated with the decrease of Lp(a) values. Besides interweaving in haemostasis, PCSK9 monoclonal antibodies play an important role in reducing the inflammation and improving the endothelial function. The aim of this review is to present the mechanisms of PCSK9 monoclonal antibodies on the aforementioned risk factors.
Collapse
|