1
|
Li P, Wang S, Li J, Xiao Z, Zhu H, Sheng D, Liu W, Xiao B, Zhou L. Appraising the Effects of Gut Microbiota on Insomnia Risk Through Genetic Causal Analysis. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33021. [PMID: 39754389 DOI: 10.1002/ajmg.b.33021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
BackgroundInsomnia is a common neurological disorder that exhibits connections with the gut microbiota; however, the exact causal relationship remains unclear. MethodsWe conducted a Mendelian randomization (MR) study to systematically evaluate the causal effects of genus-level gut microbiota on insomnia risk in individuals of European ancestry. Summary-level datasets on gut microbiota were sourced from the genome-wide association study (GWAS) of MiBioGen, while datasets on insomnia were obtained from the GWAS of Neale Lab and FinnGen. The primary analytical approach used was the inverse-variance weighted (IVW) method, supplemented by MR-Egger, maximum likelihood, MR-robust adjusted profile score, and weighted median. Sensitivity analyses were conducted to ensure robustness. ResultsThe microbial taxa Enterorhabdus, Family XIII AD3011 group, Paraprevotella, and Lachnospiraceae UCG004 were associated with an increased risk of insomnia, whereas Coprococcus1, Coprobacter, Desulfovibrio, Flavonifractor, Olsenella, Odoribacter, and Oscillibacter were linked to a decreased risk. Regarding the insomnia phenotype characterized by trouble falling asleep, the microbial taxon Eisenbergiella was correlated with an increased risk, while Haemophilus and the Eubacterium brachy group were associated with a reduced risk. Furthermore, for the insomnia phenotype characterized by waking too early, the microbial taxa Family XIII UCG001, Lachnospiraceae FCS020 group, and Olsenella were linked to an increased risk, whereas the Eubacterium brachy group and Victivallis were associated with a lower risk. The results remained robust across all sensitivity analyses. ConclusionOur MR study identified multiple genus-level gut microbial taxa that may exhibit potential causal effects on insomnia from a genetic perspective. These findings provide evidence supporting the theory of the microbiota-gut-brain axis and offer new insights into potential prevention and therapeutic targets for insomnia.
Collapse
Affiliation(s)
- Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Song Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dandan Sheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiping Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Paiva BR, Schultz J, Modolon F, de Brito JS, Kemp JA, Ribeiro M, Ribeiro-Alves M, Nakao LS, Vargas D, Baptista BG, Fonseca L, Alvarenga L, Alam I, Incitti R, Rosado AS, Cardozo LFMF, Mafra D. A cross-sectional study on gut microbiota and inflammation in patients with chronic kidney disease. Am J Med Sci 2025:S0002-9629(25)01036-5. [PMID: 40381952 DOI: 10.1016/j.amjms.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND This study investigated the inflammatory and gut microbiota profile in chronic kidney disease (CKD) patients undergoing hemodialysis (HD) and peritoneal dialysis (PD). METHODS A total of 249 patients undergoing HD and 61 patients on PD participated in the study. The mRNA expressions of nuclear factor erythroid 2-related factor-2 (NRF2), nuclear factor-κappa B (NF-κB), mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) were evaluated in peripheral blood mononuclear cells (PBMCs) by quantitative real-time PCR. Malondialdehyde (MDA), interleukin 6 (IL-6), and routine biochemical parameters were also analyzed. The fecal DNA extraction was performed, and the V4 regions of the bacterial 16S ribosomal RNA gene were sequenced. Uremic toxins such as p-cresyl sulfate (p-CS), indoxyl sulfate (IS), and indole-3-acetic acid (IAA) plasma levels were determined by HPLC. RESULTS MDA, IS, and p-CS levels were lower in PD than in HD patients. The mRNA expression of the transcription factors was not different between groups. Gut microbial α-diversity indices showed no significant difference between groups, but the β-diversity was different in PD patients. Members of the genera Meditarraneibacter, Roseburia, Agathobacter, Anaerobutyricum, Collinsella, Streptococcus, Clostridium, and Bacteroides, as well as the families Lachnospiraceae and Enterobacteriaceae, appear to be positively correlated with most dietary factors, particularly lipid and phosphorus intake. CONCLUSION Our findings indicate that in patients with CKD on HD, there is increased plasma retention of uremic toxins and reduced gut microbial diversity compared to PD patients.
Collapse
Affiliation(s)
- Bruna R Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Fluvio Modolon
- Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Jessyca S de Brito
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Julie A Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Lia S Nakao
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Drielly Vargas
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Beatriz G Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Intikhab Alam
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Roberto Incitti
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Alexandre Soares Rosado
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
3
|
Zhou HM, Yang XY, Yue SJ, Wang WX, Zhang Q, Xu DQ, Li JJ, Tang YP. The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:145-155. [PMID: 38412071 DOI: 10.1080/21691401.2024.2319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.
Collapse
Affiliation(s)
- Hao-Ming Zhou
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Xiao Wang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Pala B, Tocci G, Nardoianni G, Barbato E, Amedei A. Gut Microbiome and Carotid Artery Intima-Media Thickness: A Narrative Review of the Current Scenario. Diagnostics (Basel) 2024; 14:2463. [PMID: 39594129 PMCID: PMC11592993 DOI: 10.3390/diagnostics14222463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Up to the last update, the gut microbiome (GM) had been associated with a different physiologic host process, including those affecting cardiovascular health. The carotid intima-media thickness (IMT) is an indicator of atherosclerosis and cardiovascular risk. The GM influence on atherosclerosis progression has garnered growing attention in recent years but the consensus in subclinical atherosclerosis remains elusive. The aim of this narrative review is to investigate the connection between the GM and carotid IMT, encompassing mechanisms like the microbiome impact on metabolite production, and systemic inflammation, and its effects on endothelial function. The literature analysis revealed that the GM appears to exert an influence on carotid IMT development, likely through mechanisms involving metabolites' production, systemic inflammation, and endothelial function modulation. Additional research, however, is needed to finely elucidate the relationship between the GM and atherosclerosis. Specifically, more extensive studies are required to pinpoint individuals at the highest risk of developing atherosclerosis based on their GM composition. This will facilitate the enhancement and optimization of cardiovascular disease prevention strategies and enable the treatments' customization for each patient. Further investigations are required to refine patient outcomes in the context of probiotics and other interventions aimed at improving microbiome composition and function.
Collapse
Affiliation(s)
- Barbara Pala
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Giuliano Tocci
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Giulia Nardoianni
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Emanuele Barbato
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Amedeo Amedei
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
5
|
Salvado R, Santos-Minguez S, Lugones-Sánchez C, Gonzalez-Sánchez S, Tamayo-Morales O, Quesada-Rico JA, Benito R, Rodríguez-Sánchez E, Gómez-Marcos MA, Casado-Vicente V, Guimarães-Cunha P, Hernandez-Rivas JM, Mira A, García-Ortiz L. Gut microbiota and its relationship with early vascular ageing in a Spanish population (MIVAS study). Eur J Clin Invest 2024; 54:e14228. [PMID: 38655910 DOI: 10.1111/eci.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Gut microbiota and its by-products are increasingly recognized as having a decisive role in cardiovascular diseases. The aim is to study the relationship between gut microbiota and early vascular ageing (EVA). METHODS A cross-sectional study was developed in Salamanca (Spain) in which 180 subjects aged 45-74 years were recruited. EVA was defined by the presence of at least one of the following: carotid-femoral pulse wave velocity (cf-PWV), cardio-ankle vascular index (CAVI) or brachial-ankle pulse wave velocity (ba-PWV) above the 90th percentile of the reference population. All other cases were considered normal vascular ageing (NVA). MEASUREMENTS cf-PWV was measured by SphygmoCor® System; CAVI and ba-PWV were determined by Vasera 2000® device. Gut microbiome composition in faecal samples was determined by 16S rRNA Illumina sequencing. RESULTS Mean age was 64.4 ± 6.9 in EVA group and 60.4 ± 7.6 years in NVA (p < .01). Women in EVA group were 41% and 53% in NVA. There were no differences in the overall composition of gut microbiota between the two groups when evaluating Firmicutes/Bacteriodetes ratio, alfa diversity (Shannon Index) and beta diversity (Bray-Curtis). Bilophila, Faecalibacterium sp.UBA1819 and Phocea, are increased in EVA group. While Cedecea, Lactococcus, Pseudomonas, Succiniclasticum and Dielma exist in lower abundance. In logistic regression analysis, Bilophila (OR: 1.71, 95% CI: 1.12-2.6, p = .013) remained significant. CONCLUSIONS In the studied Spanish population, early vascular ageing is positively associated with gut microbiota abundance of the genus Bilophila. No relationship was found between phyla abundance and measures of diversity.
Collapse
Affiliation(s)
- Rita Salvado
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sandra Santos-Minguez
- Instituto de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Lugones-Sánchez
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
| | - Susana Gonzalez-Sánchez
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
| | - Olaya Tamayo-Morales
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
| | - José A Quesada-Rico
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
- Facultad de Medicina, Universidad Miguel Hernández de Elche, Sant Joan, D'Alacant, Spain
| | - Rocío Benito
- Instituto de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Emiliano Rodríguez-Sánchez
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Manuel A Gómez-Marcos
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Verónica Casado-Vicente
- Centro de Salud Parquesol. Gerencia de Salud Valladolid Oeste, Gerencia Regional de Salud de Castilla y Leon (SACyL), Valladolid, Spain
- Departamento de Medicina, Dermatología and Toxicología, Universidad de Valladolid, Valladolid, Spain
| | - Pedro Guimarães-Cunha
- Life and Health Sciences Research Institute (IICVS) and School of Medicine, Universidade do Minho, Braga, Portugal
- Center for the Research and Treatment of arterial Hypertension and cardiovascular Risk, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Jesús M Hernandez-Rivas
- Instituto de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Departamento de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Alex Mira
- Departamento de Salud y Genómica, Fundación FISABIO, Valencia, Spain
- CIBER Centro de Epidemiología y Salud Pública, Madrid, Spain
| | - Luis García-Ortiz
- Unidad de Investigación de Atención Primaria de Salamanca (APISAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red de Investigación en Cronicidad Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Barcelona, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
I Fernández-Avila A, Gutiérrez-Ibanes E, Martín de Miguel I, Sanz-Ruiz R, Gabaldón Á, Fernández-Avilés F, Gómez-Lara J, Fernández-Castillo M, Vázquez-Cuesta S, Martínez-Legazpi P, Lozano-Garcia N, Blázquez-López E, Yotti R, López-Cade I, Reigadas E, Muñoz P, Elízaga J, Correa R, Bermejo J. One-year longitudinal changes of peripheral CD4+ T-lymphocyte counts, gut microbiome, and plaque vulnerability after an acute coronary syndrome. IJC HEART & VASCULATURE 2024; 53:101438. [PMID: 38912228 PMCID: PMC11190720 DOI: 10.1016/j.ijcha.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Background Longitudinal changes in gut microbiome and inflammation may be involved in the evolution of atherosclerosis after an acute coronary syndrome (ACS). We aimed to characterize repeated profiles of gut microbiota and peripheral CD4+ T lymphocytes during the first year after an ACS, and to address their relationship with atherosclerotic plaque changes. Methods Over one year we measured the microbiome, peripheral counts of CD4+ T populations and cytokines in 67 patients shortly after a first ACS. We compared baseline measurements to those of a matched population of 40 chronic patients. A subgroup of 20 ACS patients underwent repeated assessment of fibrous cap thickness (FCT) of a non-culprit lesion. Results At admission, ACS patients showed gut dysbiosis compared with the chronic group, which was rapidly reduced and remained low at 1-year. Also, their Th1 and Th2 CD4+ T counts were increased but decreased over time. The CD4+ T counts were related to ongoing changes in gut microbiome. Unsupervised clustering of repeated CD4+ Th0, Th1, Th2, Th17 and Treg counts in ACS patients identified two different cell trajectory patterns, related to cytokines. The group of patients following a high-CD4+ T cell trajectory showed a one-year reduction in their FCT [net effect = -24.2 µm; p = 0.016]. Conclusions Patients suffering an ACS show altered profiles of microbiome and systemic inflammation that tend to mimic values of chronic patients after 1-year. However, in one-third of patients, this inflammatory state remains particularly dysregulated. This persistent inflammation is likely related to plaque vulnerability as evident by fibrous cap thinning (Clinical Trial NCT03434483).
Collapse
Affiliation(s)
- Ana I Fernández-Avila
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Irene Martín de Miguel
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Álvaro Gabaldón
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Josep Gómez-Lara
- Department of Cardiology, Hospital Universitario de Bellvitge, and CIBERCV, Barcelona, Spain
| | - Marta Fernández-Castillo
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Nuria Lozano-Garcia
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Elena Blázquez-López
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Igor López-Cade
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Jaime Elízaga
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Rafael Correa
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| |
Collapse
|
7
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
8
|
Zheng S, Liu Z, Liu H, Lim JY, Li DWH, Zhang S, Luo F, Wang X, Sun C, Tang R, Zheng W, Xie Q. Research development on gut microbiota and vulnerable atherosclerotic plaque. Heliyon 2024; 10:e25186. [PMID: 38384514 PMCID: PMC10878880 DOI: 10.1016/j.heliyon.2024.e25186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The relationship between gut microbiota and its metabolites with cardiovascular disease (CVD) has been proven. In this review, we aim to conclude the potential mechanism of gut microbiota and its metabolites on inducing the formation of vulnerable atherosclerotic plaque, and to discuss the effect of intestinal metabolites, including trimethylamine-N-oxide (TMAO), lipopolysaccharide (LPS), phenylacetylglutamine (PAG), short-chain fatty acids (SCFAs) on plaque stability. Finally, we include the impact of gut microbiota and its metabolites on plaque stability, to propose a new therapeutic direction for coronary heart disease. Gut microbiota regulation intervenes the progress of arteriosclerosis, especially on coronary atherosclerosis, by avoiding or reducing the formation of vulnerable plaque, to lower the morbidity rate of myocardial infarction.
Collapse
Affiliation(s)
- Shujiao Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zuheng Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ying Lim
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dolly Wong Hui Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaofeng Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiujing Wang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wuyang Zheng
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Xie
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Garcia-Fernandez H, Arenas-de Larriva AP, Lopez-Moreno J, Gutierrez-Mariscal FM, Romero-Cabrera JL, Molina-Abril H, Torres-Peña JD, Rodriguez-Cano D, Malagon MM, Ordovas JM, Delgado-Lista J, Perez-Martinez P, Lopez-Miranda J, Camargo A. Sex-specific differences in intestinal microbiota associated with cardiovascular diseases. Biol Sex Differ 2024; 15:7. [PMID: 38243297 PMCID: PMC10797902 DOI: 10.1186/s13293-024-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD), including coronary heart disease (CHD), display a higher prevalence in men than women. This study aims to evaluate the variations in the intestinal microbiota between men and women afflicted with CHD and delineate these against a non-CVD control group for each sex. METHODS Our research was conducted in the framework of the CORDIOPREV study, a clinical trial which involved 837 men and 165 women with CHD. We contrasted our findings with a reference group of 375 individuals (270 men, 105 women) without CVD. The intestinal microbiota was examined through 16S metagenomics on the Illumina MiSeq platform and the data processed with Quiime2 software. RESULTS Our results showed a sex-specific variation (beta diversity) in the intestinal microbiota, while alpha-biodiversity remained consistent across both sexes. Linear discriminant analysis effect size (LEfSe) analysis revealed sex-centric alterations in the intestinal microbiota linked to CVD. Moreover, using random forest (RF) methodology, we identified seven bacterial taxa-g_UBA1819 (Ruminococcaceae), g_Bilophila, g_Subdoligranulum, g_Phascolarctobacterium, f_Barnesiellaceae, g_Ruminococcus, and an unknown genus from the Ruminococcaceae family (Ruminococcaceae incertae sedis)-as key discriminators between men and women diagnosed with CHD. The same taxa also emerged as critical discriminators between CHD-afflicted and non-CVD individuals, when analyzed separately by sex. CONCLUSION Our findings suggest a sex-specific dysbiosis in the intestinal microbiota linked to CHD, potentially contributing to the sex disparity observed in CVD incidence. Trial registration Clinical Trials.gov.Identifier NCT00924937.
Collapse
Affiliation(s)
- Helena Garcia-Fernandez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan L Romero-Cabrera
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | | | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria M Malagon
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Jose M Ordovas
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- IMDEA Food Institute, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain.
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain.
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain.
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain.
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain.
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain.
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Peters BA, Hanna DB, Wang Y, Weber KM, Topper E, Appleton AA, Sharma A, Hodis HN, Santoro N, Guillemette C, Caron P, Knight R, Burk RD, Kaplan RC, Qi Q. Sex Hormones, the Stool Microbiome, and Subclinical Atherosclerosis in Women With and Without HIV. J Clin Endocrinol Metab 2024; 109:483-497. [PMID: 37643897 PMCID: PMC11032255 DOI: 10.1210/clinem/dgad510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
CONTEXT Cardioprotective roles of endogenous estrogens may be particularly important in women with HIV, who have reduced estrogen exposure and elevated cardiovascular disease risk. The gut microbiome metabolically interacts with sex hormones, but little is known regarding possible impact on cardiovascular risk. OBJECTIVE To analyze potential interplay of sex hormones and gut microbiome in cardiovascular risk. METHODS Among 197 postmenopausal women in the Women's Interagency HIV Study, we measured 15 sex hormones in serum and assessed the gut microbiome in stool. Presence of carotid artery plaque was determined (B-mode ultrasound) in a subset (n = 134). We examined associations of (i) sex hormones and stool microbiome, (ii) sex hormones and plaque, and (iii) sex hormone-related stool microbiota and plaque, adjusting for potential confounders. RESULTS Participant median age was 58 years and the majority were living with HIV (81%). Sex hormones (estrogens, androgens, and adrenal precursors) were associated with stool microbiome diversity and specific species, similarly in women with and without HIV. Estrogens were associated with higher diversity, higher abundance of species from Alistipes, Collinsella, Erysipelotrichia, and Clostridia, and higher abundance of microbial β-glucuronidase and aryl-sulfatase orthologs, which are involved in hormone metabolism. Several hormones were associated with lower odds of carotid artery plaque, including dihydrotestosterone, 3α-diol-17G, estradiol, and estrone. Exploratory mediation analysis suggested that estrone-related species, particularly from Collinsella, may mediate the protective association of estrone with plaque. CONCLUSION Serum sex hormones are significant predictors of stool microbiome diversity and composition. The gut microbiome may play a role in estrogen-related cardiovascular protection.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL 60608, USA
| | - Elizabeth Topper
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Allison A Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY 12144, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard N Hodis
- Departments of Medicine and Population and Public Health Sciences, Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chantal Guillemette
- Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Microbiology and Immunology and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Jiang S, Yu C, Lv B, He S, Zheng Y, Yang W, Wang B, Li D, Lin J. Two-sample Mendelian randomization to study the causal association between gut microbiota and atherosclerosis. Front Immunol 2024; 14:1282072. [PMID: 38283337 PMCID: PMC10811052 DOI: 10.3389/fimmu.2023.1282072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background According to some recent observational studies, the gut microbiota influences atherosclerosis via the gut microbiota-artery axis. However, the causal role of the gut microbiota in atherosclerosis remains unclear. Therefore, we used a Mendelian randomization (MR) strategy to try to dissect this causative link. Methods The biggest known genome-wide association study (GWAS) (n = 13,266) from the MiBioGen collaboration was used to provide summary data on the gut microbiota for a two-sample MR research. Data on atherosclerosis were obtained from publicly available GWAS data from the FinnGen consortium, including cerebral atherosclerosis (104 cases and 218,688 controls), coronary atherosclerosis (23,363 cases and 187,840 controls), and peripheral atherosclerosis (6631 cases and 162,201 controls). The causal link between gut microbiota and atherosclerosis was investigated using inverse variance weighting, MR-Egger, weighted median, weighted mode, and simple mode approaches, among which inverse variance weighting was the main research method. Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables (IVs), and the MR Egger intercept test was used to assess the pleiotropy of IVs. Results Inverse-variance-weighted (IVW) estimation showed that genus Ruminiclostridium 9 had a protective influence on cerebral atherosclerosis (OR = 0.10, 95% CI: 0.01-0.67, P = 0.018), while family Rikenellaceae (OR = 5.39, 95% CI: 1.50-19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95% CI: 1.60-29.49, P = 0.010), genus Paraprevotella (OR = 2.88, 95% CI: 1.18-7.05, P = 0.021), and genus Streptococcus (OR = 5.26, 95% CI: 1.28-21.61, P = 0.021) had pathogenic effects on cerebral atherosclerosis. For family Acidaminococcaceae (OR = 0.87, 95% CI: 0.76-0.99, P = 0.039), the genus Desulfovibrio (OR = 0.89, 95% CI: 0.80-1.00, P = 0.048), the genus RuminococcaceaeUCG010 (OR = 0.80, 95% CI: 0.69-0.94, P = 0.006), and the Firmicutes phyla (OR = 0.87, 95% CI: 0.77-0.98, P = 0.023) were protective against coronary atherosclerosis. However, the genus Catenibacterium (OR = 1.12, 95% CI: 1.00-1.24, P = 0.049) had a pathogenic effect on coronary atherosclerosis. Finally, class Actinobacteria (OR = 0.83, 95% CI: 0.69-0.99, P = 0.036), family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61-0.94, P = 0.013), genus Coprococcus2 (OR = 0.76, 95% CI: 0.60-0.96, P = 0.022), and genus RuminococcaceaeUCG010 (OR = 0.65, 95% CI: 0.46-0.92, P = 0.013), these four microbiota have a protective effect on peripheral atherosclerosis. However, for the genus Lachnoclostridium (OR = 1.25, 95% CI: 1.01-1.56, P = 0.040) and the genus LachnospiraceaeUCG001 (OR = 1.22, 95% CI: 1.04-1.42, P = 0.016), there is a pathogenic role for peripheral atherosclerosis. No heterogeneity was found for instrumental variables, and no considerable horizontal pleiotropy was observed. Conclusion We discovered that the presence of probiotics and pathogens in the host is causally associated with atherosclerosis, and atherosclerosis at different sites is causally linked to specific gut microbiota. The specific gut microbiota associated with atherosclerosis identified by Mendelian randomization studies provides precise clinical targets for the treatment of atherosclerosis. In the future, we can further examine the gut microbiota's therapeutic potential for atherosclerosis if we have a better grasp of the causal relationship between it and atherosclerosis.
Collapse
Affiliation(s)
- Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zeng Z, Qiu J, Chen Y, Liang D, Wei F, Fu Y, Zhang J, Wei X, Zhang X, Tao J, Lin L, Zheng J. Altered Gut Microbiota as a Potential Risk Factor for Coronary Artery Disease in Diabetes: A Two-Sample Bi-Directional Mendelian Randomization Study. Int J Med Sci 2024; 21:376-395. [PMID: 38169662 PMCID: PMC10758148 DOI: 10.7150/ijms.92131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The current body of research points to a notable correlation between an imbalance in gut microbiota and the development of type 2 diabetes mellitus (T2D) as well as its consequential ailment, coronary artery disease (CAD). The complexities underlying the association, especially in the context of diabetic coronary artery disease (DCAD), are not yet fully understood, and the causal links require further clarification. In this study, a bidirectional Mendelian randomization (MR) methodology was utilized to explore the causal relationships between gut microbiota, T2D, and CAD. By analyzing data from the DIAGRAM, GERA, UKB, FHS, and mibioGen cohorts and examining GWAS databases, we sought to uncover genetic variants linked to T2D, CAD, and variations in gut microbiota and metabolites, aiming to shed light on the potential mechanisms connecting gut microbiota with DCAD. Our investigation uncovered a marked causal link between the presence of Oxalobacter formigenes and an increased incidence of both T2D and CAD. Specifically, a ten-unit genetic predisposition towards T2D was found to be associated with a 6.1% higher probability of an increase in the Oxalobacteraceae family's presence (β = 0.061, 95% CI = 0.002-0.119). In a parallel finding, an augmented presence of Oxalobacter was related to an 8.2% heightened genetic likelihood of CAD (β = 0.082, 95% CI = 0.026-0.137). This evidence indicates a critical pathway by which T2D can potentially raise the risk of CAD via alterations in gut microbiota. Additionally, our analyses reveal a connection between CAD risk and Methanobacteria, thus providing fresh perspectives on the roles of TMAO and carnitine in the etiology of CAD. The data also suggest a direct causal relationship between increased levels of certain metabolites - proline, lysophosphatidylcholine, asparagine, and salicylurate - and the prevalence of both T2D and CAD. Sensitivity assessments reinforce the notion that changes in Oxalobacter formigenes could pose a risk for DCAD. There is also evidence to suggest that DCAD may, in turn, affect the gut microbiota's makeup. Notably, a surge in serum TMAO levels in individuals with CAD, coinciding with a reduced presence of methanogens, has been identified as a potentially significant factor for future examination.
Collapse
Affiliation(s)
- Zhaopei Zeng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiothoracic Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiarui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiexiao Wei
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Xinyi Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liling Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Meng WS, Sui X, Xiao Y, Zou Q, Cui Y, Wang T, Chen Z, Li D. Regulating effects of chlorinated drinking water on cecal microbiota of broiler chicks. Poult Sci 2023; 102:103140. [PMID: 37844529 PMCID: PMC10585633 DOI: 10.1016/j.psj.2023.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
In this study, 2 types of drinking water were provided to broiler chicks to evaluate the relationship between the bacterial load of drinking water and cecal microbiota. One type of drinking water was untreated, while the other type was daily treated with sodium dichlorocyanurate (50 mg/L). A total of 240 broiler chicks were divided into 2 groups based on their initial body weight. There were 6 replicates in each group, and each replicate cage contained 20 birds. Each cage was assigned to a different floor of the battery cage. On the final day, water samples were collected from each replicate cage at the opening of the drinking cup height, and one bird was selected from each replicate cage to obtain cecal content samples for measuring microbiota composition using the 16S rRNA technique. We found that drinking water treated with sodium dichlorocyanurate significantly reduced the richness and diversity of microbiota and diminished/disappeared most gram-negative bacteria. Broiler chicks that consumed chlorinated drinking water exhibited changes in the composition of cecal microbiota, with Alistipes serving as the marker species in the cecal content of broiler chicks that consumed untreated water, whereas AF12 served as the marker species in the cecal content of broiler chicks that consumed chlorinated drinking water. Functional prediction using the MetaCyc database and species composition analysis of metabolic pathways showed that changes in 7 metabolic pathways were related to the abundance of Providencia. Therefore, we concluded that chlorinated drinking water reduced the bacterial load in drinking water, thereby altering the cecal microbiota composition and regulating the metabolic activity of broiler chicks.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Xinxin Sui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China
| | - Zeliang Chen
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
14
|
Mollace R, Macrì R, Nicita M, Musolino V, Gliozzi M, Carresi C, Bava I, Maiuolo J, Tavernese A, Cardamone A, Tucci L, Trunfio G, Janda E, Palma E, Muscoli C, Barillà F, Federici M, Scarano F, Mollace V. Bergamot Polyphenolic Extract Combined with Albedo and Pulp Fibres Counteracts Changes in Gut Microbiota Associated with High-Fat Diet: Implications for Lipoprotein Size Re-Arrangement. Int J Mol Sci 2023; 24:12967. [PMID: 37629146 PMCID: PMC10454550 DOI: 10.3390/ijms241612967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence exists that the gut microbiota contributes to the alterations of lipid metabolism associated with high-fat diet (HFD). Moreover, the gut microbiota has been found to modulate the metabolism and absorption of dietary lipids, thereby affecting the formation of lipoproteins occurring at the intestinal level as well as systemically, though the pathophysiological implication of altered microbiota composition in HFD and its role in the development of atherosclerotic vascular disease (ATVD) remain to be better clarified. Recently, evidence has been collected indicating that supplementation with natural polyphenols and fibres accounts for an improvement of HFD-associated intestinal dysbiosis, thereby leading to improved lipidaemic profile. This study aimed to investigate the protective effect of a bergamot polyphenolic extract (BPE) containing 48% polyphenols enriched with albedo and pulp-derived micronized fibres (BMF) in the gut microbiota of HFD-induced dyslipidaemia. In particular, rats that received an HFD over a period of four consecutive weeks showed a significant increase in plasma cholesterol, triglycerides and plasma glucose compared to a normal-fat diet (NFD) group. This effect was accompanied by body weight increase and alteration of lipoprotein size and concentration, followed by high levels of MDA, a biomarker of lipid peroxidation. Treatment with a combination of BPE plus BMF (50/50%) resulted in a significant reduction in alterations of the metabolic parameters found in HFD-fed rats, an effect associated with increased size of lipoproteins. Furthermore, the effect of BPE plus BMF treatment on metabolic balance and lipoprotein size re-arrangement was associated with reduced gut-derived lipopolysaccharide (LPS) levels, an effect subsequent to improved gut microbiota as expressed by modulation of the Gram-negative bacteria Proteobacteria, as well as Firmicutes and Bacteroidetes. This study suggests that nutraceutical supplementation of HFD-fed rats with BPE and BMP or with their combination product leads to restored gut microbiota, an effect associated with lipoprotein size re-arrangement and better lipidaemic and metabolic profiles.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy; (F.B.); (M.F.)
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Martina Nicita
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Luigi Tucci
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Giuseppe Trunfio
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Elzbieta Janda
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Francesco Barillà
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy; (F.B.); (M.F.)
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy; (F.B.); (M.F.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (M.N.); (M.G.); (I.B.); (A.T.); (A.C.); (L.T.); (G.T.); (E.J.); (C.M.); (F.S.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
15
|
Chou PS, Hung WC, Yang IH, Kuo CM, Wu MN, Lin TC, Fong YO, Juan CH, Lai CL. Predicting Adverse Recanalization Therapy Outcomes in Acute Ischemic Stroke Patients Using Characteristic Gut Microbiota. Microorganisms 2023; 11:2016. [PMID: 37630576 PMCID: PMC10458507 DOI: 10.3390/microorganisms11082016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Recanalization therapy is the most effective treatment for eligible patients with acute ischemic stroke (AIS). Gut microbiota are involved in the pathological mechanisms and outcomes of AIS. However, the association of gut microbiota features with adverse recanalization therapy outcomes remains unclear. Herein, we investigated gut microbiota features associated with neurological deficits in patients with AIS after recanalization therapy and whether they predict the patients' functional outcomes. We collected fecal samples from 51 patients with AIS who received recanalization therapy and performed 16S rRNA gene sequencing (V3-V4). We compared the gut microbiota diversity and community composition between mild to moderate and severe disability groups. Next, the characteristic gut microbiota was compared between groups, and we noted that the characteristic gut microbiota in patients with mild to moderate disability included Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas. Moreover, the relative abundance of Bacteroides fragilis, Fusobacterium sp., and Parabacteroides gordonii was high in patients with severe disability. The characteristic gut microbiota was correlated with neurological deficits, and areas under the receiver operating characteristic curves confirmed that the characteristic microbiota predicted adverse recanalization therapy outcomes. In conclusion, gut microbiota characteristics are correlated with recanalization therapy outcomes in patients with AIS. Gut microbiota may thus be a promising biomarker associated with early neurological deficits and predict recanalization therapy outcomes.
Collapse
Affiliation(s)
- Ping-Song Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
| | - I-Hsiao Yang
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Chia-Ming Kuo
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Meng-Ni Wu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Tzu-Chao Lin
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| |
Collapse
|
16
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
17
|
Meng WS, Zou Q, Xiao Y, Ma W, Zhang J, Wang T, Li D. Growth performance and cecal microbiota of broiler chicks as affected by drinking water disinfection and/or herbal extract blend supplementation. Poult Sci 2023; 102:102707. [PMID: 37216884 PMCID: PMC10209021 DOI: 10.1016/j.psj.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiawen Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Jinzhou Zhongke Gene Detection Service Co., Ltd., Jinzhou 121219, China.
| |
Collapse
|
18
|
Nesci A, Carnuccio C, Ruggieri V, D'Alessandro A, Di Giorgio A, Santoro L, Gasbarrini A, Santoliquido A, Ponziani FR. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 2023; 24:ijms24109087. [PMID: 37240434 DOI: 10.3390/ijms24109087] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies in recent years have demonstrated that gut microbiota-host interactions play an important role in human health and disease, including inflammatory and cardiovascular diseases. Dysbiosis has been linked to not only well-known inflammatory diseases, such as inflammatory bowel diseases, rheumatoid arthritis, and systemic lupus erythematous, but also to cardiovascular risk factors, such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. The ways the microbiota is involved in modulating cardiovascular risk are multiple and not only related to inflammatory mechanisms. Indeed, human and the gut microbiome cooperate as a metabolically active superorganism, and this affects host physiology through metabolic pathways. In turn, congestion of the splanchnic circulation associated with heart failure, edema of the intestinal wall, and altered function and permeability of the intestinal barrier result in the translocation of bacteria and their products into the systemic circulation, further enhancing the pro-inflammatory conditions underlying cardiovascular disorders. The aim of the present review is to describe the complex interplay between gut microbiota, its metabolites, and the development and evolution of cardiovascular diseases. We also discuss the possible interventions intended to modulate the gut microbiota to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Carnuccio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessia D'Alessandro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
19
|
Dong Y, Xu R, Chen X, Yang C, Jiang F, Shen Y, Li Q, Fang F, Li Y, Shen X. Characterization of gut microbiota in adults with coronary atherosclerosis. PeerJ 2023; 11:e15245. [PMID: 37220524 PMCID: PMC10200099 DOI: 10.7717/peerj.15245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Cardiovascular disease, which is mainly caused by coronary atherosclerosis, is one of the leading causes of death and disability worldwide. Gut microbiota likely play an important role in coronary atherosclerosis. This study aims to investigate the microbiota profile of adults with coronary atherosclerosis to provide a theoretical basis for future research. Methods Fecal samples were collected from 35 adult patients diagnosed with coronary atherosclerosis and 32 healthy adults in Nanjing, China, and the V3-V4 region of 16S rDNA genes was sequenced using high-throughput sequencing. Differences in alpha diversity, beta diversity, and gut microbiota composition between the two groups were then compared. Results A beta diversity analysis revealed significant differences between adults with coronary atherosclerosis and controls, but there was no statistical difference in alpha diversity between the two groups. There were also differences in the composition of the gut microbiota between the two groups. The genera, Megamonas, Streptococcus, Veillonella, Ruminococcus_torques_group, Prevotella_2, Tyzzerella_4, were identified as potential biomarkers for coronary atherosclerosis. Conclusion There are some differences in the gut microbiota of adults with coronary atherosclerosis compared to healthy adults. The insights from this study could be used to explore microbiome-based mechanisms for coronary atherosclerosis.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Zhang Y, Liu L, Wei C, Wang X, Li R, Xu X, Zhang Y, Geng G, Dang K, Ming Z, Tao X, Xu H, Yan X, Zhang J, Hu J, Li Y. Vitamin K2 supplementation improves impaired glycemic homeostasis and insulin sensitivity for type 2 diabetes through gut microbiome and fecal metabolites. BMC Med 2023; 21:174. [PMID: 37147641 PMCID: PMC10163743 DOI: 10.1186/s12916-023-02880-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is insufficient evidence for the ability of vitamin K2 to improve type 2 diabetes mellitus symptoms by regulating gut microbial composition. Herein, we aimed to demonstrate the key role of the gut microbiota in the improvement of impaired glycemic homeostasis and insulin sensitivity by vitamin K2 intervention. METHODS We first performed a 6-month RCT on 60 T2DM participants with or without MK-7 (a natural form of vitamin K2) intervention. In addition, we conducted a transplantation of the MK-7-regulated microbiota in diet-induced obesity mice for 4 weeks. 16S rRNA sequencing, fecal metabolomics, and transcriptomics in both study phases were used to clarify the potential mechanism. RESULTS After MK-7 intervention, we observed notable 13.4%, 28.3%, and 7.4% reductions in fasting serum glucose (P = 0.048), insulin (P = 0.005), and HbA1c levels (P = 0.019) in type 2 diabetes participants and significant glucose tolerance improvement in diet-induced obesity mice (P = 0.005). Moreover, increased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and mouse feces accompanied by an increased abundance of the genera that are responsible for the biosynthesis of these metabolites. Finally, we found that 4 weeks of fecal microbiota transplantation significantly improved glucose tolerance in diet-induced obesity mice by activating colon bile acid receptors, improving host immune-inflammatory responses, and increasing circulating GLP-1 concentrations. CONCLUSIONS Our gut-derived findings provide evidence for a regulatory role of vitamin K2 on glycemic homeostasis, which may further facilitate the clinical implementation of vitamin K2 intervention for diabetes management. TRIAL REGISTRATION The study was registered at https://www.chictr.org.cn (ChiCTR1800019663).
Collapse
Affiliation(s)
- Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ran Li
- Department of Nutrition, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingfeng Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Guannan Geng
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhu Ming
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinmiao Tao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Piccioni A, Niccolai E, Rozzi G, Spaziani G, Zanza C, Candelli M, Covino M, Gasbarrini A, Franceschi F, Amedei A. Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota-Immunity Axis in the New Diagnostic and Prognostic Frontiers. Pathogens 2023; 12:627. [PMID: 37111513 PMCID: PMC10142551 DOI: 10.3390/pathogens12040627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Familial hypercholesterolemia is a common genetic disorder with a propensity towards early onset of atherosclerotic cardiovascular disease (CVD). The main goal of therapy is to reduce the LDL cholesterol and the current treatment generally consists of statin, ezetimibe and PCSK9 inhibitors. Unfortunately, lowering LDL cholesterol may be difficult for many reasons such as the variation of response to statin therapy among the population or the high cost of some therapies (i.e., PCSK9 inhibitors). In addition to conventional therapy, additional strategies may be used. The gut microbiota has been recently considered to play a part in chronic systemic inflammation and hence in CVD. Several studies, though they are still preliminary, consider dysbiosis a risk factor for various CVDs through several mechanisms. In this review, we provide an update of the current literature about the intricate relation between the gut microbiota and the familial hypercholesterolemia.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gloria Rozzi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Giacomo Spaziani
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Christian Zanza
- Foundation “Ospedale Alba-Bra Onlus”, Department of Emergency Medicine, Anesthesia and Critical Care Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Marcello Covino
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|