1
|
Xia J, Gao X, Yao J, Fei Y, Song D, Gu Z, Zheng G, Gu Y, Tu C. Injectable Brain Extracellular Matrix Hydrogels Enhance Neuronal Migration and Functional Recovery After Intracerebral Hemorrhage. Biomater Res 2025; 29:0192. [PMID: 40265103 PMCID: PMC12012376 DOI: 10.34133/bmr.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/09/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Neural repair within the lesion cavity caused by intracerebral hemorrhage (ICH) remains a major therapeutic challenge. Hydrogels hold great potential in regenerative medicine as functional scaffolds. However, inadequate host cell infiltration and suboptimal delivery methods have limited their application in tissue engineering. Here, we describe an optimized decellularization approach to create injectable brain extracellular matrix (ECM) hydrogels for the treatment of ICH. The hydrogel exhibits excellent biodegradability and biocompatibility. In an ICH rat model, the hydrogel implanted into the stroke cavity promoted neural recovery, facilitated cell recruitment, enhanced angiogenesis, and inhibited inflammation in the peri-cavity region at 14 d post-implantation. Furthermore, the hydrogel improved cell proliferation and migration, reversed cell apoptosis, and modulated transcriptomic changes in vitro. Notably, the hydrogel may promote neuronal migration and neural functional recovery after ICH through the slit guidance ligand 2-receptor roundabout guidance receptor 1 (Slit2-Robo1) signaling pathway. These findings highlight the potential of brain ECM hydrogels as a promising strategy for brain tissue regeneration.
Collapse
Affiliation(s)
- Jiajie Xia
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Jun Yao
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Dagang Song
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Zhiwei Gu
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Gang Zheng
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuxiang Gu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Chuanjian Tu
- Department of Neurosurgery, Shaoxing Central Hospital,
China Medical University, Shaoxing, Zhejiang 312030, China
| |
Collapse
|
2
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Bolan F, Dickie BR, Cook JR, Thomas JM, Pinteaux E, Allan SM, Saiani A, Lawrence CB. Intracerebral Administration of a Novel Self-Assembling Peptide Hydrogel Is Safe and Supports Cell Proliferation in Experimental Intracerebral Haemorrhage. Transl Stroke Res 2024; 15:986-1004. [PMID: 37853252 PMCID: PMC11364698 DOI: 10.1007/s12975-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023]
Abstract
Intracerebral haemorrhage (ICH) is the deadliest form of stroke, but current treatment options are limited, meaning ICH survivors are often left with life-changing disabilities. The significant unmet clinical need and socioeconomic burden of ICH mean novel regenerative medicine approaches are gaining interest. To facilitate the regeneration of the ICH lesion, injectable biomimetic hydrogels are proposed as both scaffolds for endogenous repair and delivery platforms for pro-regenerative therapies. In this paper, the objective was to explore whether injection of a novel self-assembling peptide hydrogel (SAPH) Alpha2 was feasible, safe and could stimulate brain tissue regeneration, in a collagenase-induced ICH model in rats. Alpha2 was administered intracerebrally at 7 days post ICH and functional outcome measures, histological markers of damage and repair and RNA-sequencing were investigated for up to 8 weeks. The hydrogel Alpha2 was safe, well-tolerated and was retained in the lesion for several weeks, where it allowed infiltration of host cells. The hydrogel had a largely neutral effect on functional outcomes and expression of angiogenic and neurogenic markers but led to increased numbers of proliferating cells. RNAseq and pathway analysis showed that ICH altered genes related to inflammatory and phagocytic pathways, and these changes were also observed after administration of hydrogel. Overall, the results show that the novel hydrogel was safe when injected intracerebrally and had no negative effects on functional outcomes but increased cell proliferation. To elicit a regenerative effect, future studies could use a functionalised hydrogel or combine it with an adjunct therapy.
Collapse
Affiliation(s)
- Faye Bolan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - James R Cook
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Josephine M Thomas
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Alberto Saiani
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, M13 9PL, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK.
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Irregular shape as an independent predictor of prognosis in patients with primary intracerebral hemorrhage. Sci Rep 2022; 12:8552. [PMID: 35595831 PMCID: PMC9123162 DOI: 10.1038/s41598-022-12536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
The utility of noncontrast computed tomography markers in the prognosis of spontaneous intracerebral hemorrhage has been studied. This study aimed to investigate the predictive value of the computed tomography (CT) irregularity shape for poor functional outcomes in patients with spontaneous intracerebral hemorrhage. We retrospectively reviewed all 782 patients with intracranial hemorrhage in our stroke emergency center from January 2018 to September 2019. Laboratory examination and CT examination were performed within 24 h of admission. After three months, the patient's functional outcome was assessed using the modified Rankin Scale. Multinomial logistic regression analyses were applied to identify independent predictors of functional outcome in patients with intracerebral hemorrhage. Out of the 627 patients included in this study, those with irregular shapes on CT imaging had a higher proportion of poor outcomes and mortality 90 days after discharge (P < 0.001). Irregular shapes were found to be significant independent predictors of poor outcome and mortality on multiple logistic regression analysis. In addition, the increase in plasma D-dimer was associated with the occurrence of irregular shapes (P = 0.0387). Patients with irregular shapes showed worse functional outcomes after intracerebral hemorrhage. The elevated expression level of plasma D-dimers may be directly related to the formation of irregular shapes.
Collapse
|
5
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
6
|
Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells 2021; 10:cells10102513. [PMID: 34685493 PMCID: PMC8534252 DOI: 10.3390/cells10102513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Despite marked advances in surgical techniques and understanding of secondary brain injury mechanisms, the prognosis of intracerebral hemorrhage (ICH) remains devastating. Harnessing and promoting the regenerative potential of the central nervous system may improve the outcomes of patients with hemorrhagic stroke, but approaches are still in their infancy. In this review, we discuss the regenerative phenomena occurring in animal models and human ICH, provide results related to cellular and molecular mechanisms of the repair process including by microglia, and review potential methods to promote tissue regeneration in ICH. We aim to stimulate research involving tissue restoration after ICH.
Collapse
|
7
|
Soch A, Sominsky L, Younesi S, De Luca SN, Gunasekara M, Bozinovski S, Spencer SJ. The role of microglia in the second and third postnatal weeks of life in rat hippocampal development and memory. Brain Behav Immun 2020; 88:675-687. [PMID: 32360602 DOI: 10.1016/j.bbi.2020.04.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS). In adulthood they are involved in surveillance and responses to pathogens and injury and prenatally they play a role in brain development. However, the role of microglia during the early postnatal period and how they impact development long-term remains poorly understood. Here, to investigate the specific role of microglia in postnatal development, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia from either postnatal day (P) 7 or 14. We specifically assessed how transient microglial ablation affected astrocytes and neurons acutely, during the juvenile period, and in adulthood. Hippocampal microglial numbers remained low at P21 in the P7-ablated animals and complexity remained reduced after P14-ablation. This protracted effect on these key immune cells led to a small but significant increase in CA1 mature neuron numbers and a significant increase in astrocyte density in the subgranular dentate gyrus in adults that had their microglia ablated at P14. However, these histological differences were small, and spatial and recognition memory in novel objection and place recognition tests were not affected. Overall, our data reveal for the first time that the transient depletion of microglia during the neonatal period impacts briefly on the brain but that the long-lasting effects are minimal. Neonatal microglia may be dispensable in the establishment of hippocampal brain function. These data also imply that novel therapeutic anti-inflammatories that cross the blood-brain barrier to inhibit microglia are unlikely to have long-term negative consequences if administered in the neonatal period.
Collapse
Affiliation(s)
- Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Maneesha Gunasekara
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Vic., Australia.
| |
Collapse
|
8
|
Zhou L, Yang F, Yin JW, Gu X, Xu Y, Liang YQ. Compound K induces neurogenesis of neural stem cells in thrombin induced nerve injury through LXRα signaling in mice. Neurosci Lett 2020; 729:135007. [PMID: 32371156 DOI: 10.1016/j.neulet.2020.135007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) causes neurological function deficit due to the loss of neurons surrounding the hematoma. Increased neurogenesis of endogenous neural stem cells (EnNSCs) is believed to increase cell proliferation and differentiation, thereby improving the neurological deficit. However, there are still limited drugs that are effective for treating neurological deficit. So, the effects of compound K (CK) in EnNSCs were measured after thrombin-induced mice models both in vivo and in vitro, and investigated the probable mechanisms of CK during pro-neurogenesis. The results revealed that 10 μM CK promotes neurogenesis, proliferation and reduces apoptosis of EnNSCs after induction by thrombin. After that, CK treatment increased the neurogenesis of EnNSCs through liver X receptor α (LXRα) signaling pathway using adeno-associated virus knockdown and knocked out mice of LXRα gene. Finally, intraperitoneal injection of 10 mg/kg CK improved the neurogenesis of subventricular zone (SVZ), myelin repair and behavioral deficit after stereotaxic injection of thrombin in the basal ganglia of mice, and this process involved LXRα. These observations provided evidence regarding the effect of CK in pro-neurogenesis via LXRα activation, and suggested further evaluation of it due to its potential role as an effective modulator in the treatment of ICH.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Jie-Wen Yin
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Gu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue Xu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
9
|
Li D, Chen QX, Zou W, Sun XW, Yu XP, Dai XH, Teng W. Acupuncture promotes functional recovery after cerebral hemorrhage by upregulating neurotrophic factor expression. Neural Regen Res 2020; 15:1510-1517. [PMID: 31997816 PMCID: PMC7059575 DOI: 10.4103/1673-5374.257532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acupuncture is widely used in the treatment of cerebral hemorrhage, and it improves outcomes in experimental animal models and patients. However, the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear. In this study, a model of intracerebral hemorrhage was produced by injecting 50 μL autologous blood into the caudate nucleus in Wistar rats. Acupuncture at Baihui (DU20) and Qubin (GB7) acupoints was performed at a depth of 1.0 inch, 12 hours after blood injection, once every 24 hours. The needle was rotated at 200 r/min for 5 minutes, For each 30-minute session, needling at 200 r/min was performed for three sessions, each lasting 5 minutes. For the positive control group, at 6 hours, and 1, 2, 3 and 7 days after induction of hemorrhage, the rats were intraperitoneally injected with 1 mL aniracetam (0.75 mg/mL), three times a day. The Bederson behavioral test was used to assess palsy in the contralateral limbs. Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia. Immunohistochemistry was performed to count the number of Nestin- and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia. Acupuncture effectively reduced hemorrhage and brain edema, elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia, and increased the number of Nestin- and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia. Together, these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors. The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center (approval No. 2017061001) on June 10, 2017.
Collapse
Affiliation(s)
- Dan Li
- Department of Acupuncture, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiu-Xin Chen
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
Intracerebral Hemorrhage: Blood Components and Neurotoxicity. Brain Sci 2019; 9:brainsci9110316. [PMID: 31717522 PMCID: PMC6896063 DOI: 10.3390/brainsci9110316] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke which is associated with the highest mortality and morbidity rates of all strokes. Although it is a major public health problem, there is no effective treatment for ICH. As a consequence of ICH, various blood components accumulate in the brain parenchyma and are responsible for much of the secondary brain damage and ICH-induced neurological deficits. Therefore, the strategies that could attenuate the blood component-induced neurotoxicity and improve hematoma resolution are highly needed. The present article provides an overview of blood-induced brain injury after ICH and emphasizes the need to conduct further studies elucidating the mechanisms of hematoma resolution after ICH.
Collapse
|
11
|
Zhou T, Wang H, Shen J, Li W, Cao M, Hong Y, Cao M. The p35/CDK5 signaling is regulated by p75NTR in neuronal apoptosis after intracerebral hemorrhage. J Cell Physiol 2019; 234:15856-15871. [PMID: 30770557 DOI: 10.1002/jcp.28244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Hongmei Wang
- Department of Neurology, Nantong Rich Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yao Hong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
Thrombin promotes pericyte coverage by Tie2 activation in a rat model of intracerebral hemorrhage. Brain Res 2019; 1708:58-68. [DOI: 10.1016/j.brainres.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
|
13
|
Lactate potentiates angiogenesis and neurogenesis in experimental intracerebral hemorrhage. Exp Mol Med 2018; 50:1-12. [PMID: 29980670 PMCID: PMC6035243 DOI: 10.1038/s12276-018-0113-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Lactate accumulation has been observed in the brain with intracerebral hemorrhage (ICH). However, the outcome of lactate accumulation has not been well characterized. Here, we report that lactate accumulation contributes to angiogenesis and neurogenesis in ICH. In the first set of the experiment, a rat model of ICH was induced by injecting collagenase into the brain. The effects of lactate accumulation on the neurological function, apoptosis, and numbers of newborn endothelial cells and neurons, as well as the proliferation-associated signaling pathway, were evaluated in the rat brain. In the second set, exogenous L-lactate was infused into intact rat brains so that its effects could be further assessed. Following ICH, lactate accumulated around the hematoma; the numbers of PCNA+/vWF+ nuclei and PCNA+/DCX+ cells were significantly increased compared with the numbers in the Sham group. Moreover, ICH induced translocation of nuclear factor-kappa B (NF-κB) p65 into the nucleus, resulting in a notable upregulation of VEGF and bFGF mRNAs and proteins compared with the levels in the Sham controls. Administration of a lactate dehydrogenase inhibitor dramatically inhibited these effects, decreased the vascular density, and aggravated neurological severity scores and apoptosis after ICH. After exogenous L-lactate infusion, the numbers of PCNA+/vWF+ nuclei and PCNA+/DCX+ cells were strikingly increased compared with the numbers in the Sham controls. In addition, lactate facilitated NF-κB translocation to induce increased transcription of VEGF and bFGF. Co-infusion with an NF-κB inhibitor significantly inhibited these effects. These data suggest that lactate potentiates angiogenesis and neurogenesis by activating the NF-κB signaling pathway following ICH.
Collapse
|
14
|
Zhou Y, Wang S, Li Y, Yu S, Zhao Y. SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats. Front Mol Neurosci 2018; 10:443. [PMID: 29375306 PMCID: PMC5767311 DOI: 10.3389/fnmol.2017.00443] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Silent information regulator 1 (SIRT1) exerts neuroprotection in many neurodegenerative diseases. However, it is not clear if SIRT1 has protective effects after intracerebral hemorrhage (ICH)-induced brain injury in rats. Thus, our goal was to examine the influence of SIRT1 on ICH injuries and any underlying mechanisms of this influence. Brain injury was induced by autologous arterial blood (60 μL) injection into rat brains, and data show that activation of SIRT1 with SRT1720 (5 mg/kg) restored nuclear SIRT1, deacetylation of PGC-1α, and mitochondrial biogenesis and decreased mortality, behavioral deficits, and brain water content without significant changes in phosphorylated AMP-activated protein kinase (pAMPK) induced by ICH. Activation of SIRT1 with SRT1720 also restored mitochondrial electron transport chain proteins and decreased apoptotic proteins in ICH; however, these changes were reversed after ICH. In contrast, treatment with PGC-1α siRNA yielded opposite effects. To explore the protective effects of SIRT1 after ICH, siRNAs were used to knockdown SIRT1. Treatment with SIRT1 siRNA increased mortality, behavioral deficits, brain water content, mitochondrial dysfunction, and neurocyte apoptosis after ICH. Thus, activation of SIRT1 promotes recovery of mitochondrial protein and function by increasing mitochondrial biogenesis and reduces apoptosis after ICH via the PGC-1α mitochondrial pathway. These data may suggest a new therapeutic approach for ICH injuries.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shaohua Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yixin Li
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Zhong JH, Zhou HJ, Tang T, Cui HJ, Yang AL, Zhang QM, Zhou JH, Zhang Q, Gong X, Zhang ZH, Mei ZG. Activation of the Notch-1 signaling pathway may be involved in intracerebral hemorrhage-induced reactive astrogliosis in rats. J Neurosurg 2017; 129:732-739. [PMID: 29076782 DOI: 10.3171/2016.11.jns162121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. The purpose of this paper was to establish whether Notch-1 signaling is involved in reactive astrogliosis after ICH. METHODS ICH was induced in adult male Sprague-Dawley rats via stereotactic injection of autologous blood into the right globus pallidus. N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) was injected into the lateral ventricle to block Notch-1 signaling. The rats' brains were perfused to identify proliferating cell nuclear antigen (PCNA)-positive/GFAP-positive nuclei. The expression of GFAP, Notch-1, and the activated form of Notch-1 (Notch intracellular domain [NICD]) and its ligand Jagged-1 was assessed using immunohistochemical and Western blot analyses, respectively. RESULTS Notch-1 signaling was upregulated and activated after ICH as confirmed by an increase in the expression of Notch-1 and NICD and its ligand Jagged-1. Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH. CONCLUSIONS Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.
Collapse
Affiliation(s)
| | - Hua-Jun Zhou
- 2Institute of Neurology, and.,3Department of Neurology, The First College of Clinical Medical Sciences
| | - Tao Tang
- 4Institute of Integrative Medicine and
| | | | - A-Li Yang
- 5Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qi-Mei Zhang
- 2Institute of Neurology, and.,3Department of Neurology, The First College of Clinical Medical Sciences
| | - Jing-Hua Zhou
- 2Institute of Neurology, and.,3Department of Neurology, The First College of Clinical Medical Sciences
| | - Qiang Zhang
- 2Institute of Neurology, and.,3Department of Neurology, The First College of Clinical Medical Sciences
| | | | | | - Zhi-Gang Mei
- 6Medical College, China Three Gorges University, Yichang, Hubei; and
| |
Collapse
|
16
|
Chen X, Wang H, Yu W, Chen F, Wang G, Shi J, Zhou C. IDH1 Associated with Neuronal Apoptosis in Adult Rats Brain Following Intracerebral Hemorrhage. Cell Mol Neurobiol 2017; 37:831-841. [PMID: 27568302 PMCID: PMC11482103 DOI: 10.1007/s10571-016-0421-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1), one member of the IDH family can convert isocitrate to α-ketoglutarate (α-KG) via oxidative decarboxylation. IDH1 and IDH2 mutations have been identified in multiple tumor types and the mutations confer neomorphic activity in the mutant protein, resulting in the conversion of α-KG to the oncometabolite, D-2-hydroxyglutarate (2-HG). The subsequent accumulation of 2-HG results in epigenetic dysregulation via inhibition of α-KG-dependent histone and DNA demethylase. And the glutamate levels are reduced in IDH mutant cells compared to wild-type. We have known that diffuse gliomas contain a high frequency of mutations in the IDH1 gene. However, the expression of IDH1 and its roles in Intracranial hemorrhage (ICH) remain largely unknown. We observed increased expression of IDH1 in neurons after intracerebral hemorrhage. Up-regulation of IDH1 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein and decreased expression of anti-apoptotic protein B cell lymphoma-2 in vivo and vitro studies. So we hypothesized that IDH1 was involved in the regulation of neuronal apoptosis. The present research for the first time detected the expression and variation of IDH1 surrounding the hematoma, and all data proved the involvement of IDH1 in neuronal apoptosis following ICH.
Collapse
Affiliation(s)
- Xing Chen
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Hongmei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Weibing Yu
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Fen Chen
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guiyun Wang
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiajia Shi
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Chunying Zhou
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, 226001, Jiangsu Province, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
17
|
Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135429. [PMID: 28698874 PMCID: PMC5494071 DOI: 10.1155/2017/5135429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) which refers to bleeding in the brain is a very deleterious condition with high mortality and disability rate. Surgery or conservative therapy remains the treatment option. Various studies have divided the disease process of ICH into primary and secondary injury, for which knowledge into these processes has yielded many preclinical and clinical treatment options. The aim of this review is to highlight some of the new experimental drugs as well as other treatment options like stem cell therapy, rehabilitation, and nanomedicine and mention some translational clinical applications that have been done with these treatment options.
Collapse
|
18
|
Luh HT, Huang APH, Yang SH, Chen CM, Cho DY, Chen CC, Kuo LT, Li CH, Wang KC, Tseng WL, Hsing MT, Yang BS, Lai DM, Tsai JC. Local hemostatic matrix for endoscope-assisted removal of intracerebral hemorrhage is safe and effective. J Formos Med Assoc 2017; 117:63-70. [PMID: 28343893 DOI: 10.1016/j.jfma.2017.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/04/2017] [Accepted: 02/18/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/PURPOSE Minimally invasive endoscope-assisted (MIE) evacuation of spontaneous intracerebral hemorrhage (ICH) is simple and effective, but the limited working space may hinder meticulous hemostasis and might lead to rebleeding. Management of intraoperative hemorrhage is therefore a critical issue of this study. This study presents experience in the treatment of patients with various types of ICH by MIE evacuation followed by direct local injection of FloSeal Hemostatic Matrix (Baxter Healthcare Corp, Fremont, CA, USA) for hemostasis. METHODS The retrospective nonrandomized clinical and radiology-based analysis enrolled 42 patients treated with MIE evacuation of ICH followed by direct local injection of FloSeal Hemostatic Matrix. Rebleeding, morbidity, and mortality were the primary endpoints. The percentage of hematoma evacuated was calculated from the pre- and postoperative brain computed tomography (CT) scans. Extended Glasgow Outcome Scale (GOSE) was evaluated at 6 months postoperatively. RESULTS Forty-two ICH patients were included in this study, among these, 23 patients were putaminal hemorrhage, 16 were thalamic ICH, and the other three were subcortical type. Surgery-related mortality was 2.4%. The average percentage of hematoma evacuated was 80.8%, and the rebleeding rate was 4.8%. The mean operative time was 102.7 minutes and the average blood loss was 84.9 mL. The mean postoperative GOSE score was 4.55 at 6-months' follow-up. CONCLUSION This study shows that local application of FloSeal Hemostatic Matrix is safe and effective for hemostasis during MIE evacuation of ICH. In our experience, this shortens the operation time, especially in cases with intraoperative bleeding. A large, prospective, randomized trial is needed to confirm the findings.
Collapse
Affiliation(s)
- Hui-Tzung Luh
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ming Chen
- Department of Neurosurgery, Chang-Hau Christian Hospital, Chang-Hau, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Hsun Li
- Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Lung Tseng
- Department of Surgery, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ming-Tai Hsing
- Department of Neurosurgery, Chang-Hau Christian Hospital, Chang-Hau, Taiwan
| | - Bing-Shiang Yang
- Biomechanics and Medical Application Laboratory, Department of Mechanical Engineering, National Chiao Tung University, Taiwan
| | - Dar-Ming Lai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Lv LJ, Li J, Qiao HB, Nie BJ, Lu P, Xue F, Zhang ZM. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage. Mol Med Rep 2017; 15:1368-1372. [PMID: 28098881 DOI: 10.3892/mmr.2017.6126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucose‑regulated protein 75 (GRP75) is a member of the heat shock protein 70 family and previous studies have demonstrated that GRP75 is involved in diseases of the central nervous system. However, the biological function of GRP75 in intracerebral hemorrhage (ICH) remains to be clarified. Thus, the aim of the present study was to evaluate the effects of GRP75 in a rat model of ICH. Western blotting was used to detect the protein expression of GRP75, active caspase‑3, Bax, Bcl‑2, p‑Akt and Akt in brain tissues following ICH. The levels of tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β were evaluated using ELISA assay. Expression of GRP75 mRNA and protein was demonstrated to be reduced in the brain tissues of rats with ICH compared with sham‑operated rats. In addition, overexpression of GRP75 in brain tissues with ICH significantly inhibited the production of the inflammatory cytokines TNF‑α and IL-1β and increased Bcl‑2/decreased Bax levels compared with ICH alone. Furthermore, overexpression of GRP75 in brain tissues with ICH resulted in significantly increased phosphorylation of Akt compared with ICH alone. Therefore, the present study demonstrated, for the first time to the best of our knowledge, significantly reduced GRP75 expression in brain tissues following ICH, and that overexpression of GRP75 inhibits inflammation and potentially inhibits neuronal apoptosis in a rat model of ICH. GRP75 may, therefore, represent a promising target in the treatment of ICH.
Collapse
Affiliation(s)
- Lian-Jie Lv
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jia Li
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Hai-Bo Qiao
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ben-Jin Nie
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Peng Lu
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Feng Xue
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhi-Ming Zhang
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
20
|
Zhou HJ, Yang X, Cui HJ, Tang T, Zhong JH, Luo JK, Yang AL, Zhang QM, Zhou JH, Zhang Q. Leukemia Inhibitory Factor Contributes to Reactive Astrogliosis via Activation of Signal Transducer and Activator of Transcription 3 Signaling after Intracerebral Hemorrhage in Rats. J Neurotrauma 2016; 34:1658-1665. [PMID: 27825285 DOI: 10.1089/neu.2016.4711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactive astrogliosis has occurred after intracerebral hemorrhage (ICH). Leukemia inhibitory factor (LIF) can act as a modulator for glial gene expression. Signal transducer and activator of transcription 3 (STAT3) is a critical regulator of reactive astrogliosis. The present study tested whether endogenous LIF acted on ICH-induced reactive astrogliosis via the STAT3 signaling pathway. Rats were divided into three experimental groups: 1) Rats received either an ICH or a needle insertion (sham), 2) Rats received 100 ng LIF or an equal volume of phosphate-buffered saline (PBS) by direct infusion into the lateral ventricle (LV) after ICH, and 3) AG490 (0.25 mg/kg) was injected into the LV to block STAT3 signaling. Brains were perfused to identify proliferating cell nuclear antigen (PCNA)+/glial fibrillary acidic protein (GFAP)+nuclei. The expression of GFAP, LIF, LIF receptor (LIFR), glycoprotein 130 (gp130), and phospho-STAT3 (p-STAT3) was evaluated by immunohistochemistry and Western blot, respectively. After ICH, the number of the PCNA+/GFAP+ nuclei and the expression of GFAP, LIF, LIFR, gp130, and p-STAT3 were increased. Moreover, LIF increased the number of PCNA+/GFAP+ nuclei and the expression of GFAP, LIFR, gp130, and p-STAT3. The number of PCNA+/ GFAP+ nuclei and GFAP protein levels were attenuated markedly after inhibition of p-STAT3. Together, these data suggest that LIF contributes to ICH-related reactive astrogliosis via activation of STAT3 signaling.
Collapse
Affiliation(s)
- Hua-Jun Zhou
- 1 The SATCM Key Lab of Chinese Gan, Central South University, Changsha , Hunan, P. R. China .,2 Institute of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China .,3 Department of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China
| | - Xi Yang
- 2 Institute of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China .,3 Department of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China
| | - Han-Jin Cui
- 1 The SATCM Key Lab of Chinese Gan, Central South University, Changsha , Hunan, P. R. China .,4 Institute of Integrative Medicine, Central South University, Changsha , Hunan, P. R. China
| | - Tao Tang
- 1 The SATCM Key Lab of Chinese Gan, Central South University, Changsha , Hunan, P. R. China .,4 Institute of Integrative Medicine, Central South University, Changsha , Hunan, P. R. China
| | - Jian-Hua Zhong
- 5 Department of Intensive Care Unit, The First College of Clinical Medical Sciences, China Three Gorges University , Yichang, Hubei, P. R. China
| | - Jie-Kun Luo
- 1 The SATCM Key Lab of Chinese Gan, Central South University, Changsha , Hunan, P. R. China .,4 Institute of Integrative Medicine, Central South University, Changsha , Hunan, P. R. China
| | - A-Li Yang
- 6 Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha , Hunan, P. R. China
| | - Qi-Mei Zhang
- 2 Institute of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China .,3 Department of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China
| | - Jing-Hua Zhou
- 2 Institute of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China .,3 Department of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China
| | - Qiang Zhang
- 2 Institute of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China .,3 Department of Neurology, China Three Gorges University , Yichang, Hubei, P. R. China
| |
Collapse
|
21
|
p75 neurotrophin receptor and its novel interaction partner, NIX, are involved in neuronal apoptosis after intracerebral hemorrhage. Cell Tissue Res 2016; 368:13-27. [DOI: 10.1007/s00441-016-2510-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
|
22
|
Guan J, Zhang S, Zhou Q, Yuan Z, Lu Z. Effect of thrombin preconditioning on migration of subventricular zone-derived cells after intracerebral hemorrhage in rats. Neurol Res 2016; 38:809-16. [PMID: 27477964 DOI: 10.1080/01616412.2016.1210356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the effect of thrombin preconditioning (TPC) on the intracerebral hemorrhage (ICH)-induced proliferation, migration, and function of subventriclular zone (SVZ) cells and to find new strategies that enhance endogenous neurogenesis after ICH. METHODS Male Sprague-Dawley rats were randomly divided into 3 groups (ICH, TPC, and control group). Rats of each group were randomly divided into 5 subgroups (3-d, 7-d, 14-d, 21-d, and 28-d subgroup). ICH was caused by intrastrial stereotactic administration of collagenase type IV. Brdu was used to label newborn SVZ cells. Organotypic brain slices were cultured to dynamically observe the migration of SVZ cells at living brain tissue. Migration of Dil-labeled SVZ cells in living brain slices was traced by time-lapse microscopy. To assess whether SVZ cells migrating to injured striatum had the ability to form synapses with other cells, brain slices from each group were double immunolabeled with Brdu and synapsin I. RESULTS The number of Brdu-positive cells markedly increased in the ipsilateral SVZ and striatum 3 days after TPC, peaked at 14 days (P < 0.01), continued to 21 days, and then gradually decreased at 28 days with significant difference compared to the ICH group at each time point (P < 0.01). Migration of Dil-labeled SVZ cells in brain slices in each group was observed and imaged during a 12-h period. Dil-labeled SVZ cells in the TPC group were observed to migrate laterally toward striatum with time with a faster velocity compared to the ICH group (P < 0.01). Our study also demonstrated that TPC induced strong colocalization of Brdu and synapsin I in the ipsilateral striatum between 3 and 28 days after injury.TPC made colocalization of Brdu and synapsin I appear earlier and continue for a longer time compared to the ICH group. CONCLUSIONS Our results demonstrated that TPC could promote proliferation, migration, and function of SVZ cells after ICH, which may provide a new idea for enhancing endogenous neurogenesis and developing new therapeutic strategies against ICH-induced brain injury.
Collapse
Affiliation(s)
- Jingxia Guan
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Shaofeng Zhang
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Qin Zhou
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Zhenhua Yuan
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Zuneng Lu
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
23
|
Ni H, Shen J, Song Y, Cao M, Liu X, Huang J, Zhang W, Xie L, Ning X, Ke K. EP3, Prostaglandin E2 Receptor Subtype 3, Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage. Cell Mol Neurobiol 2016; 36:971-980. [PMID: 26718710 PMCID: PMC11482414 DOI: 10.1007/s10571-015-0287-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022]
Abstract
EP3 is prostaglandin E2 receptor subtype 3 and mediates the activation of several signaling pathways, changing in cAMP levels, calcium mobilization, and activation of phospholipase C. Previous studies demonstrated a direct role for EP3 in various neurodegenerative disorders, such as stroke and Alzheimer disease. However, the distribution and function of EP3 in ICH diseases remain unknown. Here, we demonstrate that EP3 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot and immunohistochemistry, we obtained a significant up-regulation of EP3 in neurons adjacent to the hematoma following ICH. Up-regulation of EP3 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein (Bax) and decreased expression of anti-apoptotic protein B cell lymphoma-2 (Bcl-2) in vivo and vitro studies. Furthermore, the expression of these three proteins reduced active caspase-3 and Bax expression, while increased Bcl-2 were changed after knocking down EP3 by RNA interference in PC12 cells, further confirmed that EP3 might exert its pro-apoptotic function on neuronal apoptosis. Thus, EP3 may play a role in promoting the neuronal apoptosis following ICH.
Collapse
Affiliation(s)
- Haidan Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaorong Liu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jie Huang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Weidong Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lili Xie
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaojin Ning
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Up-Regulation of Interferon Regulatory Factor 3 Involves in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. Neurochem Res 2016; 41:2937-2947. [DOI: 10.1007/s11064-016-2012-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 01/18/2023]
|
25
|
Thrombin preferentially induces autophagy in glia cells in the rat central nervous system. Neurosci Lett 2016; 630:53-58. [PMID: 27431453 DOI: 10.1016/j.neulet.2016.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
Autophagy widely occurs after intracerebral hemorrhage (ICH). In our previous study, we demonstrated that thrombin, a serine protease produced after hematoma, contributes to ICH-induced autophagy. However, whether thrombin plays a neuronal and/or astrocytic role in autophagy induction is largely unknown. Here, we examined the autophagic role of thrombin on neurons and glia cells, respectively. In vivo, we found that intracaudate injection of thrombin specifically elevated the astrocytic expression of beclin-1 and LC3, two autophagic markers, and promoted the formation of autophagic vacuoles within astrocytes rather than neurons in the ipsilateral basal ganglia. Consistent with this, thrombin enhanced the LC3-II level and increased the number of MDC-labeled autophagic vacuoles in cultured astrocytes. These results indicated that thrombin preferentially activated astrocytic autophagy after ICH, and therefore provided novel insights into the pathophysiological mechanisms and therapeutic targets for hemorrhage stroke and brain trauma.
Collapse
|
26
|
Xu Z, Chen J, Shi J, Zhao J, Wang J, Ji Y, Han L, Zhu L, Li X, Zhang D. Upregulated Expression of Karyopherin α2 is Involved in Neuronal Apoptosis Following Intracerebral Hemorrhage in Adult Rats. Cell Mol Neurobiol 2016; 36:755-65. [PMID: 26340948 PMCID: PMC11482370 DOI: 10.1007/s10571-015-0258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022]
Abstract
Karyopherin α2 (KPNA2) plays a central role in nucleocytoplasmic transport. It is involved in controlling the flow of genetic information and the modulation of diverse cellular activities. Here we explored the KPNA2's roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant upregulation of KPNA2 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing KPNA2 level was found to be accompanied by the upregulation of active caspase-3, Bax, and decreased expression of Bcl-2. Besides, KPNA2 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. What's more, knocking down KPNA2 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, KPNA2 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Zhiwei Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianping Chen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiansheng Shi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianmei Zhao
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jun Wang
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuhong Ji
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lijian Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Liang Zhu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab 2016; 36:1059-74. [PMID: 26661165 PMCID: PMC4908617 DOI: 10.1177/0271678x15606462] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 EP3 receptor is the only prostaglandin E2 receptor that couples to multiple G-proteins, but its role in thrombin-induced brain injury is unclear. In the present study, we exposed mouse hippocampal slice cultures to thrombin in vitro and injected mice with intrastriatal thrombin in vivo to investigate the role of EP3 receptor in thrombin-induced brain injury and explore its underlying cellular and molecular mechanisms. In vitro, EP3 receptor inhibition reduced thrombin-induced hippocampal CA1 cell death. In vivo, EP3 receptor was expressed in astrocytes and microglia in the perilesional region. EP3 receptor inhibition reduced lesion volume, neurologic deficit, cell death, matrix metalloproteinase-9 activity, neutrophil infiltration, and the number of CD68(+) microglia, but increased the number of Ym-1(+) M2 microglia. RhoA-Rho kinase levels were increased after thrombin injection and were decreased by EP3 receptor inhibition. In mice that received an intrastriatal injection of autologous arterial blood, inhibition of thrombin activity with hirudin decreased RhoA expression compared with that in vehicle-treated mice. However, EP3 receptor activation reversed this effect of hirudin. These findings show that prostaglandin E2 EP3 receptor contributes to thrombin-induced brain damage via Rho-Rho kinase-mediated cytotoxicity and proinflammatory responses.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Cheng
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takayuki Maruyama
- Project Management, Discovery and Research, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Abstract
About half of patients survive intracerebral hemorrhage (ICH), but most are left with significant disability. Rehabilitation after ICH is the mainstay of treatment to reduce impairment, improve independence in activities, and return patients to meaningful participation in the community. The authors discuss the neuroplastic mechanisms underlying recovery in ICH, preclinical and clinical interventional studies to augment recovery, and the rehabilitative and medical management of post-ICH patients.
Collapse
Affiliation(s)
- Michael F Saulle
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York
| | - Heidi M Schambra
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York
| |
Collapse
|
29
|
After Intracerebral Hemorrhage, Oligodendrocyte Precursors Proliferate and Differentiate Inside White-Matter Tracts in the Rat Striatum. Transl Stroke Res 2016; 7:192-208. [PMID: 26743212 PMCID: PMC4873533 DOI: 10.1007/s12975-015-0445-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
Abstract
Damage to myelinated axons contributes to neurological deficits after acute CNS injury, including ischemic and hemorrhagic stroke. Potential treatments to promote re-myelination will require fully differentiated oligodendrocytes, but almost nothing is known about their fate following intracerebral hemorrhage (ICH). Using a rat model of ICH in the striatum, we quantified survival, proliferation, and differentiation of oligodendrocyte precursor cells (OPCs) (at 1, 3, 7, 14, and 28 days) in the peri-hematoma region, surrounding striatum, and contralateral striatum. In the peri-hematoma, the density of Olig2+ cells increased dramatically over the first 7 days, and this coincided with disorganization and fragmentation of myelinated axon bundles. Very little proliferation (Ki67+) of Olig2+ cells was seen in the anterior subventricular zone from 1 to 28 days. However, by 3 days, many were proliferating in the peri-hematoma region, suggesting that local proliferation expands their population. By 14 days, the density of Olig2+ cells declined in the peri-hematoma region, and, by 28 days, it reached the low level seen in the contralateral striatum. At these later times, many surviving axons were aligned into white-matter bundles, which appeared less swollen or fragmented. Oligodendrocyte cell maturation was prevalent over the 28-day period. Densities of immature OPCs (NG2+Olig2+) and mature (CC-1+Olig2+) oligodendrocytes in the peri-hematoma increased dramatically over the first week. Regardless of the maturation state, they increased preferentially inside the white-matter bundles. These results provide evidence that endogenous oligodendrocyte precursors proliferate and differentiate in the peri-hematoma region and have the potential to re-myelinate axon tracts after hemorrhagic stroke.
Collapse
|
30
|
The MMP-1/PAR-1 Axis Enhances Proliferation and Neuronal Differentiation of Adult Hippocampal Neural Progenitor Cells. Neural Plast 2015; 2015:646595. [PMID: 26783471 PMCID: PMC4691474 DOI: 10.1155/2015/646595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/13/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1), a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs) from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2(+) neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2(+) undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli.
Collapse
|
31
|
Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice. Behav Brain Funct 2015; 11:30. [PMID: 26410080 PMCID: PMC4584127 DOI: 10.1186/s12993-015-0075-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. Methods The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Results Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Conclusions Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.
Collapse
|
32
|
Xu Z, Li X, Chen J, Zhao J, Wang J, Ji Y, Shen Y, Han L, Shi J, Zhang D. USP11, Deubiquitinating Enzyme, Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage. J Mol Neurosci 2015; 58:16-27. [PMID: 26334325 DOI: 10.1007/s12031-015-0644-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
Abstract
Protein ubiquitination is a dynamic two-way process that can be reversed or regulated by deubiquitinating enzymes (DUB). USP11, located on the X chromosome, 6 is a member of USP subclass of the DUB family. Here, we demonstrate that USP11 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot, immunohistochemistry, and immunofluorescence, we obtained a significant up-regulation of USP11 in neurons adjacent to the hematoma following ICH. Increasing USP11 level was found to be accompanied by the up-regulation of active caspase-3, Fas receptor (Fas), Fas ligand (FasL), and active caspase-8. Besides, USP11 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. What is more, knocking down USP11 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, USP11 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Zhiwei Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jianping Chen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jianmei Zhao
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jun Wang
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yuhong Ji
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yifen Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lijian Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jiansheng Shi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
33
|
Yang Y, Zhang M, Kang X, Jiang C, Zhang H, Wang P, Li J. Impaired adult hippocampal neurogenesis and cognitive ability in a mouse model of intrastriatal hemorrhage. Neurosci Lett 2015; 599:133-9. [PMID: 26021875 DOI: 10.1016/j.neulet.2015.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
Thrombin released by hematoma is an important mediator of the secondary injury of intracerebral hemorrhage (ICH), however, the effect of thrombin on adult neurogenesis and cognitive ability remains elusive. In this study, intrastriatal injection of 0.05 U thrombin didn't affect the neurogenesis at the subgranular zone (SGZ), which was distal to the injection site. 0.1 U thrombin increased the 5-bromo-2-deoxyuridine(+) (BrdU(+), S-phase proliferating cells)/doublecortin(+) (DCX(+), immature neurons) double labelled neurons, but decreased BrdU(+)/NeuN(+) double labelled mature neurons. Higher doses of thrombin (1 U, 2 U, and 5 U) significantly decreased the BrdU(+)/DCX(+) and BrdU(+)/NeuN(+) double labelled cells. After 1 U thrombin injection, cell apoptosis was found at the dentate gyrus of hippocampus at 3-24 h, but not 5 d post-injury. Thrombin infusion (1 U) induced spatial memory deficits in Morris water maze test; whereas, hirudin, the thrombin antagonist, significantly reversed both neurogenesis loss and spatial learning and memory impairment. In conclusion, at least at short term (5 days) after striatum ICH, the effect of high dose of thrombin on neurogenesis of SGZ, and the spatial learning and memory ability, is detrimental.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Neurological, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China
| | - Meikui Zhang
- Department of Telemedicine Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China.
| | - Xiaoni Kang
- Department of Telemedicine Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China
| | - Chen Jiang
- Department of Telemedicine Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China
| | - Huan Zhang
- Department Students Brigade, The Second Military Medical University, No. 800, Xiangyin Road, Shanghai 200433, China
| | - Pei Wang
- Department of Telemedicine Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China
| | - Jingjing Li
- Department of Telemedicine Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100036, China
| |
Collapse
|
34
|
Up-regulation of VCAM1 Relates to Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. Neurochem Res 2015; 40:1042-52. [PMID: 25868755 DOI: 10.1007/s11064-015-1561-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 01/27/2023]
Abstract
Vascular cell adhesion molecule 1 (VCAM1) is a member of the Immunoglobulin superfamily and encodes a cell surface sialoglycoprotein expressed in cytokine-activated endothelium. This type I membrane protein mediates leukocyte-endothelial cell adhesion, facilitates the downstream signaling, and may play a role in the development of artherosclerosis and rheumatoid arthritis. Accumulating evidence has demonstrated that VCAM1 exerts an anti-apoptotic effect in several tumor tissues such as ovarian cancer and breast cancer. Intracerebral hemorrhage (ICH) is the second most common subtype of stroke with high morbidity and mortality, which imposes a big burden on individuals and the whole society. These together prompted us to question whether VCAM1 has some association with neuron apoptosis during the pathological process of ICH. An ICH rat model was established and assessed by behavioral tests in order to explore the role of VCAM1 after ICH. Up-regulation of VCAM1 was observed in brain areas surrounding the hematoma following ICH by western blotting and immunohistochemistry. Immunofluorescence manifested VCAM1 was strikingly increased in neurons, but not in astrocytes and microglia. Furthermore, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with VCAM1. At the same time, Bcl-2 was also co-localized with VCAM1. Taken together, our findings suggested that VCAM1 might be involved in the neuronal apoptosis and pathophysiology of ICH.
Collapse
|
35
|
Ke K, Song Y, Shen J, Niu M, Zhang H, Yuan D, Ni H, Zhang Y, Liu X, Dai A, Cao M. Up-regulation of Glis2 involves in neuronal apoptosis after intracerebral hemorrhage in adult rats. Cell Mol Neurobiol 2015; 35:345-354. [PMID: 25370802 PMCID: PMC11486247 DOI: 10.1007/s10571-014-0130-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022]
Abstract
The novel Krüppel-like zinc finger protein Gli-similar 2 (Glis2), one member of the transcription factors, is involved in controlling the flow of genetic information and the modulation of diverse cellular activities. Accumulating evidence has demonstrated its important roles in adult development and several diseases. However, information regarding the regulation and possible function of Glis2 in the central nervous system is still limited. In this study, we explored the roles of Glis2 during the pathophysiological process of intracerebral hemorrhage (ICH). An ICH rat model was established and assessed by behavioral tests. Expression of Glis2 was significantly up-regulated in brain areas surrounding the hematoma following ICH. Immunofluorescence showed that Glis2 was strikingly increased in neurons, but not astrocytes or microglia. Up-regulation of Glis2 was found to be accompanied by the increased expression of active caspase-3 and Bax and decreased expression of Bcl-2 in vivo and vitro studies. Moreover, knocking down Glis2 by RNA-interference in PC12 cells reduced active caspase-3 and Bax expression while increased Bcl-2. Collectively, we speculated that Glis2 might exert pro-apoptotic function in neurons following ICH.
Collapse
Affiliation(s)
- Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Mu Niu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Haiyan Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Daming Yuan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Haidan Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yu Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaorong Liu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Aihua Dai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
36
|
Kandasamy M, Rosskopf M, Wagner K, Klein B, Couillard-Despres S, Reitsamer HA, Stephan M, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts. PLoS One 2015; 10:e0116069. [PMID: 25719447 PMCID: PMC4342015 DOI: 10.1371/journal.pone.0116069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michael Rosskopf
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Wagner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A. Reitsamer
- Department of Ophthalmology, SALK, Paracelsus Medical University, Salzburg, Austria
| | - Michael Stephan
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Friedrich-Alexander-University Erlangen-Nurnberg, Erlangen, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
37
|
Lei C, Wu B, Cao T, Zhang S, Liu M. Activation of the High-Mobility Group Box 1 Protein-Receptor for Advanced Glycation End-Products Signaling Pathway in Rats During Neurogenesis After Intracerebral Hemorrhage. Stroke 2015; 46:500-6. [PMID: 25538203 DOI: 10.1161/strokeaha.114.006825] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Purpose—
Following intracerebral hemorrhage (ICH), high-mobility group box 1 protein (HMGB1) may promote neurogenesis that supports functional recovery. How HMGB1 regulates or participates in this process is unclear, as are the pattern recognition receptors and signaling pathways involved.
Methods—
ICH was induced by injection of collagenase in Sprague–Dawley rats, which were treated 3 days later with saline, with the HMGB1 inhibitor ethyl pyruvate or with FPS-ZM1, an antagonist of the receptor for advanced glycation end-products. A Sham group was treated with saline solution instead of collagenase and then treated 3 days later with saline again or with ethyl pyruvate or N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1). Expression of the following proteins was measured by Western blot, immunohistochemistry, or immunofluorescence: HMGB1, receptor for advanced glycation end-products, toll-like receptor (TLR)-2, TLR4, brain-derived neurotrophic factor, and matrix metalloproteinase-9. The number of cells positive for 5-bromo-2-deoxyuridine or doublecortin was determined by immunohistochemistry and immunofluorescence.
Results—
Levels of HMGB1, receptor for advanced glycation end-products, TLR4, TLR2, brain-derived neurotrophic factor, and matrix metalloproteinase-9 were significantly higher 14 days after ICH than at baseline, as were the numbers of 5-bromo-2-deoxyuridine- or doublecortin-positive cells. At the same time, HMGB1 moved from the nucleus into the cytoplasm. Administering ethyl pyruvate significantly reduced all these ICH-induced increases, except the increase in TLR4 and TLR2. Administering FPS-ZM1 reduced the ICH-induced increases in the expression of brain-derived neurotrophic factor and matrix metalloproteinase-9 and in the numbers of 5-bromo-2-deoxyuridine- or doublecortin-positive cells.
Conclusions—
These findings suggest that HMGB1 acts via the receptor for advanced glycation end-products signaling pathway to promote neurogenesis in later phases of ICH.
Collapse
Affiliation(s)
- Chunyan Lei
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Bo Wu
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tian Cao
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Shuting Zhang
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Liu
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
38
|
Ke K, Shen J, Song Y, Cao M, Lu H, Liu C, Shen J, Li A, Huang J, Ni H, Chen X, Liu Y. CDK5 Contributes to Neuronal Apoptosis via Promoting MEF2D Phosphorylation in Rat Model of Intracerebral Hemorrhage. J Mol Neurosci 2014; 56:48-59. [DOI: 10.1007/s12031-014-0466-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
|
39
|
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 2014; 8:388. [PMID: 25477782 PMCID: PMC4238323 DOI: 10.3389/fncel.2014.00388] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.
Collapse
Affiliation(s)
- Eva Mracsko
- Department of Neurology, University Heidelberg Heidelberg, Germany
| | - Roland Veltkamp
- Department of Neurology, University Heidelberg Heidelberg, Germany ; Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
40
|
Abstract
BACKGROUND Brain injury after intracerebral hemorrhage (ICH) arises from numerous contributors, of which some also play essential roles. Notably, thrombin production, needed to stop bleeding, also causes acute cell death and edema. In some rodent models of ICH, peri-hematoma neurons die over weeks. Hence we evaluated whether thrombin is responsible for this chronic degeneration. Functional impairments after ICH also result from sub-lethal damage to neurons, especially the loss of dendrites. Thus, we evaluated whether thrombin infusion alone, a reductionist model of ICH, causes similar injury. METHODS Adult rats had a modest intra-striatal infusion of thrombin (1 U) or saline followed by a behavioral test, to verify impairment, 7 days later. After this they were euthanized and tissue stained with Golgi-Cox solution to allow the assessment of dendritic morphology in striatal neurons. In a second experiment, rats survived 7 or 60 days after thrombin infusion in order to histologically determine lesion volume. RESULTS Thrombin caused early cell death and considerable atrophy in surviving peri-lesion neurons, which had less than half of their usual numbers of branches. However, total tissue loss was comparable at 7 (24.1 mm3) and 60 days (25.6 mm3). CONCLUSION Thrombin infusion causes early cell death and neuronal atrophy in nearby surviving striatal neurons but thrombin does not cause chronic tissue loss. Thus, the chronic degeneration found after ICH in rats is not simply and solely due to acute thrombin production. Nonetheless, thrombin is an important contributor to behavioral dysfunction because it causes cell death and substantial dendritic injury.
Collapse
|
41
|
Zhou QB, Jin YL, Jia Q, Zhang Y, Li LY, Liu P, Liu YT. Baicalin attenuates brain edema in a rat model of intracerebral hemorrhage. Inflammation 2014; 37:107-15. [PMID: 23974988 PMCID: PMC3929027 DOI: 10.1007/s10753-013-9717-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baicalin is a flavonoid compound purified from the roots of Scutellaria baicalensis, which possesses multiple biological activities. Previous studies have shown that baicalin is protective in ischemic cerebral diseases. The aim of the present study was to examine the effects of baicalin on brain injury in a rat model of intracerebral hemorrhage (ICH) and to explore the possible mechanisms. Intracerebral hemorrhage was induced in male Wistar rats by injection of 0.5 U collagenaseVII to the caudate nucleus. Sham operation rats were injected with equal volume of saline. After the induction of ICH, the rats were randomly divided into four groups and administered with different dose of baicalin (0, 25, 50, or 100 mg/kg in saline) through peritoneal injection. The brain tissues around the hemorrhage areas were collected on days 1, 3, and 5 after treatment. Brain edema was analyzed by desiccation method; the metalloproteinase-9 (MMP-9) protein and mRNA expression were determined by western blotting and real time RT-PCR, respectively. Nuclear factor-κB (NF-κB) protein expression was analyzed by western blotting. IL-1β and IL-6 levels were determined by enzyme-linked immunosorbent assay. Blood-brain barrier permeability was determined by Evans blue leakage method. The results showed that baicalin reduced brain edema following ICH in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of MMP-9 expression. In addition, baicalin also reduced IL-1β and IL-6 production, as well as blood-brain barrier permeability. The above results indicated that baicalin prevents against perihematomal edema development after intracerebral hemorrhage possibly through an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Qing-Bo Zhou
- Department of Neurology, The Second Hospital, Shandong University, Jinan, 250033, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Belur PK, Chang JJ, He S, Emanuel BA, Mack WJ. Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurg Focus 2013; 34:E9. [PMID: 23634928 DOI: 10.3171/2013.2.focus1317] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is associated with a higher degree of morbidity and mortality than other stroke subtypes. Despite this burden, currently approved treatments have demonstrated limited efficacy. To date, therapeutic strategies have principally targeted hematoma expansion and resultant mass effect. However, secondary mechanisms of brain injury are believed to be critical effectors of cell death and neurological outcome following ICH. This article reviews the pathophysiology of secondary brain injury relevant to ICH, examines pertinent experimental models, and highlights emerging therapeutic strategies. Treatment paradigms discussed include thrombin inhibitors, deferoxamine, minocycline, statins, granulocyte-colony stimulating factors, and therapeutic hypothermia. Despite promising experimental and preliminary human data, further studies are warranted prior to effective clinical translation.
Collapse
Affiliation(s)
- Praveen K Belur
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
44
|
Li L, Ke K, Tan X, Xu W, Shen J, Zhai T, Xu L, Rui Y, Zheng H, Zhai P, Zhao J, Cao M. Up-regulation of NFATc4 involves in neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 2013; 33:893-905. [PMID: 23852416 PMCID: PMC11497920 DOI: 10.1007/s10571-013-9955-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022]
Abstract
Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcriptional factor, is involved in the control about the flow of genetic information and the modulation of diverse cellular activities. Accumulating evidence has demonstrated that NFATc4 exerted a pro-apoptotic effect in multiple diseases. Here, we explored the NFATc4's roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant up-regulation of NFATc4 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing NFATc4 expression was found to be accompanied by the up-regulation of Fas ligand (FasL), active caspase-8, and active caspase-3, respectively. Besides, NFATc4 co-localized with active caspase-3 in neurons, indicating its role in neuronal apoptosis. Our in vitro study, using NFATc4 RNA interference in PC12 cells, further confirmed that NFATc4 might exert its pro-apoptotic function in neuronal apoptosis through extrinsic pathway. Thus, NFATc4 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Xiang Tan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Wei Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Tingting Zhai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Ling Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Ying Rui
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Heyi Zheng
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Peipei Zhai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Jianghua Zhao
- Department of Neurology, Jingjiang Traditional Chinese Medical Hospital, Jingjiang, Jiangsu People’s Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu People’s Republic of China
| |
Collapse
|
45
|
Tsai YD, Chiu SH, Lo YH, Yeh PK, Lai YW, Tsai YL, Hueng DY. Angiogenesis. J Neurosurg 2013; 118:914-5. [PMID: 23413945 DOI: 10.3171/2012.11.jns121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Sun H, Li L, Zhou F, Zhu L, Ke K, Tan X, Xu W, Rui Y, Zheng H, Zhou Z, Yang H. The member of high temperature requirement family HtrA2 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats. J Mol Histol 2013; 44:369-79. [PMID: 23413020 DOI: 10.1007/s10735-013-9489-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
The members of high-temperature requirement (HtrA) family are evolutionarily conserved serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. HtrA2, a special one, is mainly located in mitochondria and required for maintaining homeostasis. Once released into cytoplasm, HtrA2 contributes to apoptosis via caspase-dependent and -independent pathways. Accumulating evidence has showed its pro-apoptotic effect in cancers and central nervous system (CNS) diseases. However, the distribution and function of HtrA2 in CNS diseases remains to be further explored. To investigate HtrA2's roles in the pathophysiology of intracerebral hemorrhage (ICH), an ICH rat model was established and assessed by behavioral tests. Western blot and immunohistochemistry revealed a remarkable up-regulation of HtrA2 surrounding the hematoma after ICH; and immunofluorescence showed HtrA2 was strikingly increased in neurons, but not in astrocytes and oligodendrocytes. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining suggested the involvement of HtrA2 in neuronal apoptosis after ICH. Additionally, HtrA2 co-localized with active-caspase-3 around the hematoma and the expression of active-caspase-3 was parallel with that of HtrA2 in a time-dependent manner. Furthermore, hemin was used to stimulus a neuronal cell line PC12 to mimic ICH model in vitro. We analyzed the relationship of HtrA2 with X-linked inhibitor of apoptosis protein (XIAP) in PC12 cells by Western blot, immunofluorescence and co-immunoprecipitation. The connection of HtrA2 with XIAP was strengthened in apoptotic cells after hemin treatment. Thus, we speculated that HtrA2 might exert an important function in regulating caspase-dependent neuronal apoptosis through interacting with XIAP following ICH.
Collapse
Affiliation(s)
- Huiqing Sun
- Department of Osteology, Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Increased Expression of Small Heat Shock Protein αB-crystallin After Intracerebral Hemorrhage in Adult Rats. J Mol Neurosci 2013; 51:159-69. [DOI: 10.1007/s12031-013-9970-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022]
|
48
|
Yang D, Zhang J, Han Y, James E, Chopp M, Seyfried DM. Acute Statin Treatment Improves Recovery after Experimental Intracerebral Hemorrhage. ACTA ACUST UNITED AC 2013; 3:69-75. [PMID: 23837132 DOI: 10.4236/wjns.2013.32010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE We have previously demonstrated that 2-week treatment of experimental intracerebral hemorrhage (ICH) with a daily dose of 2 mg/kg statin starting 24 hours post-injury exerts a neuroprotective effect. The present study extends our previous investigation and tests the effect of acute high-dose (within 24 hours) statin therapy on experimental ICH. MATERIAL AND METHODS Fifty-six male Wistar rats were subjected to ICH by stereotactic injection of 100 μl of autologous blood into the striatum. Rats were divided randomly into seven groups: saline control group (n = 8); 10, 20 and 40 mg/kg simvastatin-treated groups (n = 8); and 10, 20 and 40 mg/kg atorvastatin-treated groups (n = 8). Simvastatin or atorvastatin were administered orally at 3 and 24 hours after ICH. Neurological functional outcome was evaluated using behavioral tests (mNSS and corner turn test) at multiple time points after ICH. Animals were sacrificed at 28 days after treatment, and histological studies were completed. RESULTS Acute treatment with simvastatin or atorvastatin at doses of 10 and 20 mg/kg, but not at 40 mg/kg, significantly enhanced recovery of neurological function starting from 2 weeks post-ICH and persisting for up to 4 weeks post ICH. In addition, at doses of 10 mg/kg and 20 mg/kg, histological evaluations revealed that simvastatin or atorvastatin reduced tissue loss, increased cell proliferation in the subventricular zone and enhanced vascular density and synaptogenesis in the hematoma boundary zone when compared to saline-treated rats. CONCLUSIONS Treatment with simvastatin or atorvastatin at doses of 10 and 20 mg/kg significantly improves neurological recovery after administration during the first 24 hours after ICH. Decreased tissue loss, increased cell proliferation and vascularity likely contribute to improved functional recovery in rats treated with statins after ICH.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI
| | | | | | | | | | | |
Collapse
|
49
|
Yang AL, Zhou HJ, Lin Y, Luo JK, Cui HJ, Tang T, Yang QD. Thrombin promotes the expression of thrombospondin-1 and ‐2 in a rat model of intracerebral hemorrhage. J Neurol Sci 2012; 323:141-6. [DOI: 10.1016/j.jns.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
50
|
Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage. Neuroscience 2012; 229:12-9. [PMID: 23137544 DOI: 10.1016/j.neuroscience.2012.10.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 02/05/2023]
Abstract
Neural stem cells, which reside mainly in the subventricular and subgranular zones of the hippocampus, can regenerate new neuroblasts after various brain insults. Aided by vascular remodeling, these new neuroblasts migrate long distances to injured brain regions. Studies have suggested that high-mobility group box1 (HMGB1), a nonhistone nuclear DNA-binding protein, may stimulate such remodeling in the late phase of some types of brain injury, but it is unclear whether this is true for intracerebral hemorrhage (ICH). Here we used a rat model of collagenase-induced ICH to determine whether HMGB1 can promote neurogenesis and angiogenesis in the late phase of injury. Daily administration of ethyl pyruvate, which inhibited HMGB1 expression, reduced the recovery of neurological function, decreased vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) levels in the ipsilateral striatum, and decreased the numbers of 5-bromo-2-deoxyuridine (BrdU)- and doublecortin (DCX)-positive cells around the hematoma. These findings suggest that HMGB1 may promote angiogenesis and neurogenesis in the late phase of ICH.
Collapse
|