1
|
Zhang Y, Yang Q, Cheng H, Zhang Y, Xie Y, Zhang Q. Extracellular vesicles derived from endothelial progenitor cells modified by Houshiheisan promote angiogenesis and attenuate cerebral ischemic injury via miR-126/PIK3R2. Sci Rep 2024; 14:28166. [PMID: 39548169 PMCID: PMC11568282 DOI: 10.1038/s41598-024-78717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Angiogenesis following cerebral ischemia is crucial for restoring blood supply to the ischemic region. Extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) offer potential therapeutic benefits in the treatment of cerebral ischemia. Houshiheisan (HSHS) has been shown to improve clinical outcomes in ischemic stroke patients, reduce cerebral ischemic damage in rats, and protect endothelial cells. However, the potential effects of HSHS-modified EPC-derived EVs (EVsHSHS) for cerebral ischemia remain unexplored. This study investigated the impact of EVsHSHS on angiogenesis using rats with permanent middle cerebral artery occlusion (pMCAO) and brain microvascular endothelial cells (BMECs) subjected to oxygen-glucose deprivation (OGD). Results demonstrated that EVsHSHS promoted the proliferation, migration, and tube formation of BMECs in vitro. In vivo, high doses of EVsHSHS exhibited better performance than equivalent doses of unmodified EPC-derived EVs in reducing cerebral infarction volume, improving cortical blood perfusion, decreasing neurological deficit scores, and increasing cortical microvessel density at day 7 post-modeling. The pro-angiogenic effects of EVsHSHS following cerebral ischemia were associated with the regulation of miR-126 and the PIK3R2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuyue Yang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hongfa Cheng
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yahui Xie
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuxia Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Cheng YW, Yang LY, Chen YT, Chou SC, Chen KW, Chen YH, Deng CR, Chen IC, Chou WJ, Chang CC, Chen YR, Hwa HL, Wang KC, Kuo MF. Endothelial progenitor cell-derived conditioned medium mitigates chronic cerebral ischemic injury through macrophage migration inhibitory factor-activated AKT pathway. Stem Cell Res Ther 2024; 15:428. [PMID: 39543689 PMCID: PMC11566597 DOI: 10.1186/s13287-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Chronic cerebral ischemia (CCI) is a significant health issue characterized by hypoperfusion due to damage or occlusion of the cerebral or carotid arteries. CCI may lead to progressive cognitive impairment that is considered as a prelude to neurodegenerative diseases, including dementia and Alzheimer's disease (AD). Endothelial progenitor cells (EPCs) have been implicated in vascular repair in ischemic cerebrovascular diseases, primarily by differentiating into endothelial cells (ECs) or through paracrine effects. However, the clinical transplantation of stem cell therapies remains limited. In this study, we investigated the effects of EPC-derived conditioned medium (EPC-CM) on the impaired vasculature and neurological function in a rodent model of CCI and the mechanism involved. METHODS EPC-CM was analyzed by cytokine array to identify key factors involved in angiogenesis and cellular senescence. The effects and mechanism of the candidate factors in the EPC-CM were validated in vitro using oxygen-glucose deprivation (OGD)-injured ECs and EPCs. The therapeutic effects of EPC-CM and the identified key factor were further examined in a rat model of CCI, which was induced by bilateral internal carotid artery ligation (BICAL). EPC-CM was administered via intracisternal injection one week post BICAL. The cerebral microvasculature and neurobehavior of the rats were examined three weeks after BICAL. RESULTS Macrophage migration inhibitory factor (MIF) was identified as a key factor in the EPC-CM. Recombinant MIF protein promoted angiogenesis and prevented senescence in the injured EPCs and ECs. The effect was similar to that of the EPC-CM. These therapeutic effects were diminished when the EPC-CM was co-treated with MIF-specific antibody (Ab). Additionally, the vascular, motor, and cognitive improvements observed in the BICAL rats treated with EPC-CM were abolished by co-treated with MIF Ab. Furthermore, we found MIF promoted angiogenesis and anti-senescence via activating the AKT pathway. Inhibition of the AKT pathway diminished the protective effects of MIF in the in vitro study. CONCLUSIONS We demonstrated that EPC-CM protected the brain from chronic ischemic injury and promoted functional recovery through MIF-mediated AKT pathway. These findings suggest EPC-CM holds potential as a novel cell-free therapeutic approach for treating CCI through the actions of MIF.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsing Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Rou Deng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - I-Chin Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wan-Ju Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chih Chang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yong-Ren Chen
- Non-Invasive Cancer Therapy Research Institute, Taipei, Taiwan
- Adjunct Visiting Staff, Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Lin Hwa
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Lv W, Zhou Y, Zhao K, Xuan L, Huang F, Fan Z, Chang Y, Yi Z, Jin H, Liang Y, Liu Q. Cytomegalovirus results in poor graft function via bone marrow-derived endothelial progenitor cells. Front Microbiol 2024; 15:1463335. [PMID: 39360328 PMCID: PMC11445044 DOI: 10.3389/fmicb.2024.1463335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Poor graft function (PGF), characterized by myelosuppression, represents a significant challenge following allogeneic hematopoietic stem cell transplantation (allo-HSCT) with human cytomegalovirus (HCMV) being established as a risk factor for PGF. However, the underlying mechanism remains unclear. Bone marrow endothelial progenitor cells (BM-EPCs) play an important role in supporting hematopoiesis and their dysfunction contributes to PGF development. We aim to explore the effects of CMV on BM-EPCs and its underlying mechanism. Methods We investigated the compromised functionality of EPCs derived from individuals diagnosed with HCMV viremia accompanied by PGF, as well as after infected by HCMV AD 169 strain in vitro, characterized by decreased cell proliferation, tube formation, migration and hematopoietic support, and increased apoptosis and secretion of TGF-β1. Results We demonstrated that HCMV-induced TGF-β1 secretion by BM-EPCs played a dominant role in hematopoiesis suppression in vitro experiment. Moreover, HCMV down-regulates Vitamin D receptor (VDR) and subsequently activates p38 MAPK pathway to promote TGF-β1 secretion by BM-EPCs. Discussion HCMV could infect BM-EPCs and lead to their dysfunction. The secretion of TGF-β1 by BM-EPCs is enhanced by CMV through the activation of p38 MAPK via a VDR-dependent mechanism, ultimately leading to compromised support for hematopoietic progenitors by BM EPCs, which May significantly contribute to the pathogenesis of PGF following allo-HSCT and provide innovative therapeutic strategies targeting PGF.
Collapse
Affiliation(s)
- Weiran Lv
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Loiola RA, Hachani J, Duban-Deweer S, Sevin E, Bugno P, Kowalska A, Rizzi E, Shimizu F, Kanda T, Mysiorek C, Mazurek M, Gosselet F. Secretome of brain microvascular endothelial cells promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Mol Med 2024; 30:132. [PMID: 39187765 PMCID: PMC11348522 DOI: 10.1186/s10020-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cell-based therapeutic strategies have been proposed as an alternative for brain and blood vessels repair after stroke, but their clinical application is hampered by potential adverse effects. We therefore tested the hypothesis that secretome of these cells might be used instead to still focus on cell-based therapeutic strategies. We therefore characterized the composition and the effect of the secretome of brain microvascular endothelial cells (BMECs) on primary in vitro human models of angiogenesis and vascular barrier. Two different secretome batches produced in high scale (scHSP) were analysed by mass spectrometry. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used as well as in vitro models of EC monolayer (CMECs) and blood-brain barrier (BBB). Cells were also exposed to oxygen-glucose deprivation (OGD) conditions and treated with scHSP during reoxygenation. Protein yield and composition of scHSP batches showed good reproducibility. scHSP increased CD34+-EC proliferation, tubulogenesis, and migration. Proteomic analysis of scHSP revealed the presence of growth factors and proteins modulating cell metabolism and inflammatory pathways. scHSP improved the integrity of CMECs, and upregulated the expression of junctional proteins. Such effects were mediated through the activation of the interferon pathway and downregulation of Wnt signalling. Furthermore, OGD altered the permeability of both CMECs and BBB, while scHSP prevented the OGD-induced vascular leakage in both models. These effects were mediated through upregulation of junctional proteins and regulation of MAPK/VEGFR2. Finally, our results highlight the possibility of using secretome from BMECs as a therapeutic alternative to promote brain angiogenesis and to protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Sophie Duban-Deweer
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Emmanuel Sevin
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Eleonora Rizzi
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | | | - Fabien Gosselet
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France.
| |
Collapse
|
5
|
Liou YJ, Chen MH, Hsu JW, Huang KL, Huang PH, Bai YM. Dysfunction of circulating endothelial progenitor cells in major depressive disorder. Acta Neuropsychiatr 2024; 36:153-161. [PMID: 38178721 DOI: 10.1017/neu.2023.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Despite mounting evidence demonstrates circulating endothelial progenitor cells (cEPCs) quantitative changes in depression, no study has investigated cEPC functions in major depressive disorder (MDD). We investigated the role of cEPC adhesive and apoptotic functions in MDD. METHODS We recruited 68 patients with MDD and 56 healthy controls (HCs). The depression symptoms, anxiety, psychosomatic symptoms, subjective cognitive dysfunction, quality of life, and functional disability were evaluated using the Hamilton Depression Rating Scale and Montgomery-Åsberg Depression Rating Scale, Hamilton Anxiety Rating Scale, Depression and Somatic Symptoms Scale (DSSS), Perceived Deficits Questionnaire-Depression, 12-Item Short Form Health Survey (SF-12), and Sheehan Disability Scale (SDS), respectively. Working memory and executive function were assessed using a 2-back task and Wisconsin Card Sorting Test (WCST). Inflammatory marker (soluble interleukin-6 receptor, C-reactive protein, and tumor necrosis factor-α receptor-1), cEPC adhesive, and apoptotic levels were measured using in vitro assays. RESULTS The MDD patients showed significantly lower cEPC adhesive levels than the HCs, and this difference in adhesive function remained statistically significant even after adjusting for inflammatory marker levels. The cEPC adhesion levels were in inverse correlations with commission and omission errors in 2-back task, the percent perseverative response and percent perseverative errors in WCST, and the DSSS and SDS scores, but in positive correlations with SF-12 physical and mental component scores. cEPC apoptotic levels did not differ significantly between the groups. CONCLUSION The findings indicate that cEPC adhesive function is diminished in MDD and impacts various aspects of cognitive and psychosocial functions associated with the disorder.
Collapse
Affiliation(s)
- Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Wang B, Zhu S, Guo M, Ma RD, Tang YL, Nie YX, Gu HF. Artemisinin ameliorates cognitive decline by inhibiting hippocampal neuronal ferroptosis via Nrf2 activation in T2DM mice. Mol Med 2024; 30:35. [PMID: 38454322 PMCID: PMC10921734 DOI: 10.1186/s10020-024-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sheng Zhu
- Department of Nuclear Medicine, Affiliated Hospital of Xiangnan University, No. 25 Renmin West Road, Beihu District, Chenzhou, 423001, Hunan, China
| | - Miao Guo
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Run-Dong Ma
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Ling Tang
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Xiong Nie
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong-Feng Gu
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Yang X, Chang L, Liu Z, Geng X, Wang R, Yin X, Fan W, Zhao BQ. Neddylation in the chronically hypoperfused corpus callosum: MLN4924 reduces blood-brain barrier injury via ERK5/KLF2 signaling. Exp Neurol 2024; 371:114587. [PMID: 37914067 DOI: 10.1016/j.expneurol.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Blood-brain barrier (BBB) breakdown and cerebrovascular dysfunction may contribute to the pathology in white matter lesions and consequent cognitive decline caused by cerebral hypoperfusion. Neddylation is the process of attaching a ubiquitin-like molecule NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) to specific targets. By modifying protein substrates, neddylation plays critical roles in various important biological processes. However, whether neddylation influences the pathogenesis of hypoperfused brain remains unclear. In the present study, cerebral hypoperfusion-induced white matter lesions were produced by bilateral common carotid artery stenosis in mice. The function of the neddylation pathway, BBB integrity, cerebrovascular dysfunction, myelin density in the corpus callosum and cognitive function were determined. We show that NEDD8 conjugation aberrantly amplified in microvascular endothelium in the corpus callosum following cerebral hypoperfusion. MLN4924, a small-molecule inhibitor of NEDD8-activating enzyme currently in clinical trials, preserved BBB integrity, attenuated glial activation and enhanced oligodendrocyte differentiation, and reduced hypoperfusion-induced white matter lesions in the corpus callosum and thus improved cognitive performance via inactivating cullin-RING E3 ligase (CRL). Administration of MLN4924 caused the accumulation of ERK5 and KLF2. The ERK5 inhibitor BIX 02189, down-regulated MLN4924-induced activation of KLF2 and reversed MLN4924-mediated increase in pericyte coverage and junctional proteins. Furthermore, BIX 02189 blocked MLN4924-afforded protection against BBB disruption and white matter lesions in the corpus callosum. Collectively, our results revealed that neddylation impairs vascular function and thus exacerbated the pathology of hypoperfused brain and that inhibition of neddylation with MLN4924 may offer novel therapeutic opportunities for cerebral hypoperfusion-associated cognitive impairment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue Geng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuhui Yin
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Moghan M, Naidu P, Zulkifly NB, Selan YN, Setyawan EMN, Winarsih S, Kusindarta DL. Secretome of bovine umbilical vein endothelial cells promote wound healing regeneration on the second degree rat model burn injury. Open Vet J 2023; 13:1597-1606. [PMID: 38292702 PMCID: PMC10824095 DOI: 10.5455/ovj.2023.v13.i12.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024] Open
Abstract
Background Burn injuries are an alarming indicator of the sensitivity of human tissue when confronted with high temperatures or chemicals. The current treatment for burn wounds needs to be improved and more extensive in scope. Significant research advances concerning the therapeutic potential of secretomes over the past two decades have expanded the range of therapies that utilize secretomes to encompass populations other than stem cells. Aim This study details how the secretome extracted from the bovine umbilical vein endothelial cell (BUVEC) promotes the healing of burn injuries. Methods The 48 rats were divided into four groups, namely the control group with povidone-iodine, the 5% BUVEC-conditioned medium (CM) cream group, the 10% BUVEC-CM cream group, the 15% BUVEC-CM cream group. Animals induced type II burns under anesthesia. Treatment is carried out topically, two times a day. Every day the wound was measured. The animals were put to sleep for samples on days 5, 13, 21, and 19. Samples in the form of skins were soaked in 4% paraformaldehyde and processed with paraffin-embedded for tissue preparations. The research results were processed using two way ANOVA. Results The study showed that on day 5, wound closure occurred, whereas in the povidone-iodine group, macroscopically, the wound closed faster. Epithelial repair, increased fibroblasts and collagen, and blood vessel formation greatly increased in the 15% BUVEC-CM group on days 13, 21, and 29. Conclusion Taken together, BUVEC secretome promoted fibroblast regeneration, collagen formation, re-epithelialization, and hair follicle regeneration on the burn injury wound healing.
Collapse
Affiliation(s)
- Mavheena Moghan
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Paarvaishnee Naidu
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nadhrah Binti Zulkifly
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yulfia Nelymalik Selan
- Department of Anatomy, Faculty of Medicine and Veterinary Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Erif Maha Nugraha Setyawan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sugi Winarsih
- Department of Agriculture, Food, and Fisheries of Sleman Regency, Yogyakarta, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Hamanaka G, Hernández IC, Takase H, Ishikawa H, Benboujja F, Kimura S, Fukuda N, Guo S, Lok J, Lo EH, Arai K. Myelination- and migration-associated genes are downregulated after phagocytosis in cultured oligodendrocyte precursor cells. J Neurochem 2023; 167:571-581. [PMID: 37874764 PMCID: PMC10842993 DOI: 10.1111/jnc.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
In the central nervous system, microglia are responsible for removing infectious agents, damaged/dead cells, and amyloid plaques by phagocytosis. Other cell types, such as astrocytes, are also recently recognized to show phagocytotic activity under some conditions. Oligodendrocyte precursor cells (OPCs), which belong to the same glial cell family as microglia and astrocytes, may have similar functions. However, it remains largely unknown whether OPCs exhibit phagocytic activity against foreign materials like microglia. To answer this question, we examined the phagocytosis activity of OPCs using primary rat OPC cultures. Since innate phagocytosis activity could trigger cell death pathways, we also investigated whether participating in phagocytosis activity may lead to OPC cell death. Our data shows that cultured OPCs phagocytosed myelin-debris-rich lysates prepared from rat corpus callosum, without progressing to cell death. In contrast to OPCs, mature oligodendrocytes did not show phagocytotic activity against the bait. OPCs also exhibited phagocytosis towards lysates of rat brain cortex and cell membrane debris from cultured astrocytes, but the percentage of OPCs that phagocytosed beta-amyloid was much lower than the myelin debris. We then conducted RNA-seq experiments to examine the transcriptome profile of OPC cultures and found that myelination- and migration-associated genes were downregulated 24 h after phagocytosis. On the other hand, there were a few upregulated genes in OPCs 24 h after phagocytosis. These data confirm that OPCs play a role in debris removal and suggest that OPCs may remain in a quiescent state after phagocytosis.
Collapse
Affiliation(s)
- Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iván Coto Hernández
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fouzi Benboujja
- Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School
| | - Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Norito Fukuda
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Kim DY, Park G, Hong HS, Kim S, Son Y. Platelet-Derived Growth Factor-BB Priming Enhances Vasculogenic Capacity of Bone Marrow-Derived Endothelial Precursor Like Cells. Tissue Eng Regen Med 2023; 20:695-704. [PMID: 37266845 PMCID: PMC10352207 DOI: 10.1007/s13770-023-00546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Human endothelial progenitor cells (EPCs) were first identified in the peripheral blood and later in the cord blood and bone marrow (BM) with different vascularization capacity and different surface marker profiles. However, their identity and functional roles in neovascularization have not been clearly demonstrated in vivo and in vitro. METHODS Characterization of BM-EPC like cells were performed by fluorescence-activated cell sorting, immunofluorescence staining, enzyme-linked immunosorbent assay, Matrigel tube formation assay, and western blot analysis. RESULTS BM-EPC like cells were identified by selective adhesion to fibronectin and collagen from BM mononuclear cells, which generate fast-growing colonies with spindle morphology, express surface markers of CD105, vWF, UEA-I lectin binding, secrete HGF, VEGF, TGF-beta1 but can be distinguished from circulating EPC and endothelial cells by no expression of surface markers such as CD31, CD309, CD45, and CD34. These BM-EPC like cells shared many cell surface markers of BM-mesenchymal stem cells (MSC) but also can be distinguished by their vasculogenic property and other unique surface markers. Furthermore, the vasculogenic capacity of BM-EPC like cells were enhanced by co-culture of BM-MSC or PDGF-BB priming. PDGF-BB stimulated cell migration, proliferation, and secretion of laminin β-1, which was proposed as one of the mechanisms involved in the better vascularization of BM-EPC like cells. CONCLUSION PDGF-BB priming may be applied to improve the potency and function of BM-EPC like cells as vasculogenic cell therapy for the ischemic vascular repair.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Gabee Park
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
| | - Suna Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| |
Collapse
|
12
|
Yamanaka K, Nakamura K, Shibahara T, Takashima M, Takaki H, Hidaka M, Komori M, Yoshikawa Y, Wakisaka Y, Ago T, Kitazono T. Deletion of Nox4 enhances remyelination following cuprizone-induced demyelination by increasing phagocytic capacity of microglia and macrophages in mice. Glia 2023; 71:541-559. [PMID: 36321558 DOI: 10.1002/glia.24292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
NOX4 is a major reactive oxygen species-producing enzyme that modulates cell stress responses. We here examined the effect of Nox4 deletion on demyelination-remyelination, the most common pathological change in the brain. We used a model of cuprizone (CPZ)-associated demyelination-remyelination in wild-type and Nox4-deficient (Nox4-/- ) mice. While the CPZ-induced demyelination in the corpus callosum after 4 weeks of CPZ intoxication was slightly less pronounced in Nox4-/- mice than that in wild-type mice, remyelination following CPZ withdrawal was significantly enhanced in Nox4-/- mice with an increased accumulation of IBA1-positive microglia/macrophages in the demyelinating corpus callosum. Consistently, locomotor function, as assessed by the beam walking test, was significantly better during the remyelination phase in Nox4-/- mice. Nox4 deletion did not affect autonomous growth of primary-culture oligodendrocyte precursor cells. Although Nox4 expression was higher in cultured macrophages than in microglia, Nox4-/- microglia and macrophages both showed enhanced phagocytic capacity of myelin debris and produced increased amounts of trophic factors upon phagocytosis. The expression of trophic factors was higher, in parallel with the accumulation of IBA1-positive cells, in the corpus callosum in Nox4-/- mice than that in wild-type mice. Nox4 deletion suppressed phagocytosis-induced increase in mitochondrial membrane potential, enhancing phagocytic capacity of macrophages. Treatment with culture medium of Nox4-/- macrophages engulfing myelin debris, but not that of Nox4-/- astrocytes, enhanced cell growth and expression of myelin-associated proteins in cultured oligodendrocyte precursor cells. Collectively, Nox4 deletion promoted remyelination after CPZ-induced demyelination by enhancing microglia/macrophage-mediated clearance of myelin debris and the production of trophic factors leading to oligodendrogenesis.
Collapse
Affiliation(s)
- Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Komori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Yoshikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
14
|
Bayaraa O, Dashnyam K, Singh RK, Mandakhbayar N, Lee JH, Park JT, Lee JH, Kim HW. Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 2023; 292:121914. [PMID: 36436306 DOI: 10.1016/j.biomaterials.2022.121914] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Critical limb ischemia (CLI) is a serious form of peripheral arterial disease that involves severe blockage of blood flow in lower extremities, often leading to foot necrosis and limb loss. Lack of blood flow and high pro-inflammation with overproduced reactive oxygen species (ROS) in CLI aggravate the degenerative events. Among other therapies, cell delivery is considered potential for restoring regenerative capacity, and preservation of cell survival under high oxidative stress has been challenging and prerequisite to harness cellular functions. Here, we introduce a multicellular delivery system that is intercalated with nanoceria-decorated graphene oxide (CeGO), which is considered to have high ROS scavenging ability while providing cell-matrix interaction signals. The CeGO nano-microsheets (8-nm-nanoceria/0.9-μm-GO) incorporated in HUVEC/MSC (7/3) could form cell-material hybrid spheroids mediated by cellular contraction. Under in vitro oxidative-stress-challenge with H2O2, the CeGO-intercalation enhanced the survival and anti-apoptotic capacity of cellular spheroids. Pro-angiogenic events of cellular spheroids, including cell sprouting and expression of angiogenic markers (HIF1α, VEGF, FGF2, eNOS) were significantly enhanced by the CeGO-intercalation. Proteomics analysis also confirmed substantial up-regulation of a series of angiogenesis-related secretome molecules. Such pro-angiogenic events with CeGO-intercalation were proven to be mediated by the APE/Ref-1 signaling pathway. When delivered to ischemic hindlimb in mice, the CeGO-cell spheroids could inhibit the accumulation of in vivo ROS rapidly, preserving high cell survival rate (cells were more proliferative and less apoptotic vs. those in cell-only spheroids), and up-regulated angiogenic molecular expressions. Monitoring over 28 days revealed significantly enhanced blood reperfusion and tissue recovery, and an ultimate limb salvage with the CeGO-cell delivery (∼60% salvaged vs. ∼29% in cell-only delivery vs. 0% in ischemia control). Together, the CeGO intercalated in HUVEC/MSC delivery is considered a potential nano-microplatform for CLI treatment, by scavenging excessive ROS and enhancing transplanted cell survival, while stimulating angiogenic events, which collectively help revascularization and tissue recovery, salvaging critical ischemic limbs.
Collapse
Affiliation(s)
- Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Drug Research Institute, Mongolian University of Pharmaceutical Science, 14250, Mongolia
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Drug Research Institute, Mongolian University of Pharmaceutical Science, 14250, Mongolia
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jong-Tae Park
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Oral Anatomy, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
15
|
Al-Omar MT, Alnajjar MT, Ahmed ZT, Salaas FMI, Alrefaei TSM, Haider KH. Endothelial progenitor cell-derived small extracellular vesicles for myocardial angiogenesis and revascularization. J Clin Transl Res 2022; 8:476-487. [PMID: 36457898 PMCID: PMC9709527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have been well-studied for their differentiation potential and paracrine activity in vitro and in experimental animal studies. EPCs are the precursors of endothelial cells (ECs) and a rich source of pro-angiogenic factors, and hence, possess enormous potential to treat ischemic heart through myocardial angiogenesis. Their proven safety and efficacy observed during the pre-clinical and clinical studies have portrayed them as a near ideal cell type for cell-based therapy of ischemic heart disease.In response to the chemical cues from the ischemic heart, EPCs from the bone marrow and peripheral circulation home-in to the ischemic myocardium and participate in the intrinsic repair process at the molecular and cellular levels through paracrine activity and EC differentiation. EPCs also release small extracellular vesicles (sEVs) loaded with bioactive molecules as part of their paracrine activity for intercellular communication to participate in the reparative process in the heart. AIM This literature review is based on the published data regarding the characteristic features of EPC-derived sEVs and their proteomic and genomic payload, besides facilitating safe and effective repair of the ischemic myocardium. In light of the encouraging published data, translational and clinical assessment of EPC-derived sEVs is warranted. We report the recent experimental animal studies and their findings using EPC-derived sEVs on cardiac angiogenesis and preservation of cardiac function. RELEVANCE FOR PATIENTS With the promising results from pre-clinical studies, clinical trials should be conducted to assess the clinical utility of EPC-derived sEVs in the treatment of the ischemic myocardium.
Collapse
Affiliation(s)
- Maher T. Al-Omar
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Mahmoud T. Alnajjar
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Ziyad T. Ahmed
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Faris M. I. Salaas
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Tamim S. M. Alrefaei
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Khawaja H. Haider
- Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| |
Collapse
|
16
|
Zhao Y, Zhu W, Wan T, Zhang X, Li Y, Huang Z, Xu P, Huang K, Ye R, Xie Y, Liu X. Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice. Nat Commun 2022; 13:6813. [PMID: 36357389 PMCID: PMC9649811 DOI: 10.1038/s41467-022-34293-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Oligovascular coupling contributes to white matter vascular homeostasis. However, little is known about the effects of oligovascular interaction on oligodendrocyte precursor cell (OPC) changes in chronic cerebral ischemia. Here, using a mouse of bilateral carotid artery stenosis, we show a gradual accumulation of OPCs on vasculature with impaired oligodendrogenesis. Mechanistically, chronic ischemia induces a substantial loss of endothelial caveolin-1 (Cav-1), leading to vascular secretion of heat shock protein 90α (HSP90α). Endothelial-specific over-expression of Cav-1 or genetic knockdown of vascular HSP90α restores normal vascular-OPC interaction, promotes oligodendrogenesis and attenuates ischemic myelin damage. miR-3074(-1)-3p is identified as a direct inducer of Cav-1 reduction in mice and humans. Endothelial uptake of nanoparticle-antagomir improves myelin damage and cognitive deficits dependent on Cav-1. In summary, our findings demonstrate that vascular abnormality may compromise oligodendrogenesis and myelin regeneration through endothelial Cav-1, which may provide an intercellular mechanism in ischemic demyelination.
Collapse
Affiliation(s)
- Ying Zhao
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Wusheng Zhu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ting Wan
- grid.233520.50000 0004 1761 4404Department of Neurology, Xijing Hospital, Air Force Medical University, Xi’an, Shanxi 710032 China
| | - Xiaohao Zhang
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000 China
| | - Yunzi Li
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Zhenqian Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Pengfei Xu
- grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| | - Kangmo Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ruidong Ye
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Yi Xie
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Xinfeng Liu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China ,grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| |
Collapse
|
17
|
Custodia A, Ouro A, Sargento-Freitas J, Aramburu-Núñez M, Pías-Peleteiro JM, Hervella P, Rosell A, Ferreira L, Castillo J, Romaus-Sanjurjo D, Sobrino T. Unraveling the potential of endothelial progenitor cells as a treatment following ischemic stroke. Front Neurol 2022; 13:940682. [PMID: 36158970 PMCID: PMC9492921 DOI: 10.3389/fneur.2022.940682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is becoming one of the most common causes of death and disability in developed countries. Since current therapeutic options are quite limited, focused on acute reperfusion therapies that are hampered by a very narrow therapeutic time window, it is essential to discover novel treatments that not only stop the progression of the ischemic cascade during the acute phase, but also improve the recovery of stroke patients during the sub-acute or chronic phase. In this regard, several studies have shown that endothelial progenitor cells (EPCs) can repair damaged vessels as well as generate new ones following cerebrovascular damage. EPCs are circulating cells with characteristics of both endothelial cells and adult stem cells presenting the ability to differentiate into mature endothelial cells and self-renew, respectively. Moreover, EPCs have the advantage of being already present in healthy conditions as circulating cells that participate in the maintenance of the endothelium in a direct and paracrine way. In this scenario, EPCs appear as a promising target to tackle stroke by self-promoting re-endothelization, angiogenesis and vasculogenesis. Based on clinical data showing a better neurological and functional outcome in ischemic stroke patients with higher levels of circulating EPCs, novel and promising therapeutic approaches would be pharmacological treatment promoting EPCs-generation as well as EPCs-based therapies. Here, we will review the latest advances in preclinical as well as clinical research on EPCs application following stroke, not only as a single treatment but also in combination with new therapeutic approaches.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - João Sargento-Freitas
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, UC, Biotech Parque Tecnológico de Cantanhede, University of Coimbra, Coimbra, Portugal
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Daniel Romaus-Sanjurjo
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino
| |
Collapse
|
18
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
19
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
20
|
Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem 2022; 124:151833. [PMID: 34929523 DOI: 10.1016/j.acthis.2021.151833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) play an important role in repairing damaged blood vessels and promoting neovascularization. However, the specific mechanism of EPCs promoting vascular repair is still unclear. Currently, there are two different views on the repair of damaged vessels by EPCs, one is that EPCs can directly differentiate into endothelial cells (ECs) and integrate into injured vessels, the other is that EPCs act on cells and blood vessels by releasing paracrine substances. But more evidence now supports the latter. Therefore, the paracrine mechanisms of EPCs are worth further study. This review describes the substances secreted by EPCs, some applications based on paracrine effects of EPCs, and the studies of paracrine mechanisms in cardiovascular diseases--all of these are to support the view that EPCs repair blood vessels through paracrine effects rather than integrating directly into damaged vessels.
Collapse
Affiliation(s)
- Fanchen Yan
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaodan Liu
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huang Ding
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wei Zhang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
21
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
22
|
Loiola RA, García-Gabilondo M, Grayston A, Bugno P, Kowalska A, Duban-Deweer S, Rizzi E, Hachani J, Sano Y, Shimizu F, Kanda T, Mysiorek C, Mazurek MP, Rosell A, Gosselet F. Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Stem Cell Res Ther 2021; 12:552. [PMID: 34702368 PMCID: PMC8549346 DOI: 10.1186/s13287-021-02608-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. METHODS Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs-CMECs) and blood-brain barrier (BBB; brain-like ECs-BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM-control). CMECs or BLECs were exposed (6 h) to oxygen-glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control-5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). RESULTS The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. CONCLUSION Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Sophie Duban-Deweer
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Eleonora Rizzi
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | | | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Fabien Gosselet
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France.
- Laboratory of the Blood-Brain Barrier, Sciences Faculty Jean Perrin, Artois University, Lens, France.
| |
Collapse
|
23
|
Associations between increased circulating endothelial progenitor cell levels and anxiety/depressive severity, cognitive deficit and function disability among patients with major depressive disorder. Sci Rep 2021; 11:18221. [PMID: 34521977 PMCID: PMC8440504 DOI: 10.1038/s41598-021-97853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The association of major depressive disorder (MDD) with cardiovascular diseases (CVDs) through endothelial dysfunction is bidirectional. Circulating endothelial progenitor cells (cEPCs), essential for endothelial repair and function, are associated with risks of various CVDs. Here, the relationship of cEPC counts with MDD and the related clinical presentations were investigated in 50 patients with MDD and 46 healthy controls. In patients with MDD, a battery of clinical domains was analysed: depressed mood with Hamilton Depression Rating Scale (HAMD) and Montgomery–Åsberg Depression Rating Scale (MADRS), anxiety with Hamilton Anxiety Rating Scale (HAMA), cognitive dysfunction and deficit with Digit Symbol Substitution Test (DSST) and Perceived Deficits Questionnaire-Depression (PDQ-D), somatic symptoms with Depressive and Somatic Symptom Scale (DSSS), quality of life with 12-Item Short Form Health Survey (SF-12) and functional disability with Sheehan Disability Scale (SDS). Immature and mature cEPC counts were measured through flow cytometry. Increased mature and immature cEPC counts were significantly associated with higher anxiety after controlling the confounding effect of systolic blood pressure, and potentially associated with more severe depressive symptoms, worse cognitive performance and increased cognitive deficit, higher social disability, and worse mental health outcomes. Thus, cEPCs might have pleiotropic effects on MDD-associated symptoms and psychosocial outcomes.
Collapse
|
24
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
25
|
de Miguel-Gómez L, Romeu M, Pellicer A, Cervelló I. Strategies for managing asherman's syndrome and endometrial atrophy: Since the classical experimental models to the new bioengineering approach. Mol Reprod Dev 2021; 88:527-543. [PMID: 34293229 DOI: 10.1002/mrd.23523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Endometrial function is essential for embryo implantation and pregnancy, but managing endometrial thickness that is too thin to support pregnancy or an endometrium of compromised functionality due to intrauterine adhesions is an ongoing challenge in reproductive medicine. Here, we review current and emerging therapeutic and experimental options for endometrial regeneration with a focus on animal models used to study solutions for Asherman's syndrome and endometrial atrophy, which both involve a damaged endometrium. A review of existing literature was performed that confirmed the lack of consensus on endometrial therapeutic options, though promising new alternatives have emerged in recent years (platelet-rich plasma, exosomes derived from stem cells, bioengineering-based techniques, endometrial organoids, among others). In the future, basic research using established experimental models of endometrial pathologies (combined with new high-tech solutions) and human clinical trials with large population sizes are needed to evaluate these emerging and new endometrial therapies.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
- University of Valencia, Valencia, Spain
| | - Mónica Romeu
- Reproductive Medicine Research Group, La Fe Health Research Institute, La Fe University Hospital, Valencia, Spain
- Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain
| | | | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
26
|
Mause SF, Ritzel E, Deck A, Vogt F, Liehn EA. Endothelial Progenitor Cells Modulate the Phenotype of Smooth Muscle Cells and Increase Their Neointimal Accumulation Following Vascular Injury. Thromb Haemost 2021; 122:456-469. [PMID: 34214997 DOI: 10.1055/s-0041-1731663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Smooth muscle cells (SMCs) are the main driver of neointima formation and restenosis following vascular injury. In animal models, endothelial progenitor cells (EPCs) accelerate endothelial regeneration and reduce neointima formation after arterial injury; however, EPC-capture stents do not reduce target vessel failure compared with conventional stents. Here we examined the influence of EPCs on features of SMCs pivotal for their impact on injury-induced neointima formation including proliferation, migration, and phenotype switch. METHODS AND RESULTS EPCs, their conditioned medium, and EPC-derived microparticles induced proliferation of SMCs while limiting their apoptosis. In transwell membrane experiments and scratch assays, EPCs stimulated migration of SMCs and accelerated their recovery from scratch-induced injury. Treatment of SMCs with an EPC-derived conditioned medium or microparticles triggered transformation of SMCs toward a synthetic phenotype. However, co-cultivation of EPCs and SMCs enabling direct cell-cell contacts preserved their original phenotype and protected from the transformative effect of SMC cholesterol loading. Adhesion of EPCs to SMCs was stimulated by SMC injury and reduced by blocking CXCR2 and CCR5. Interaction of EPCs with SMCs modulated their secretory products and synergistically increased the release of selected chemokines. Following carotid wire injury in athymic mice, injection of EPCs resulted not only in reduced neointima formation but also in altered cellular composition of the neointima with augmented accumulation of SMCs. CONCLUSION EPCs stimulate proliferation and migration of SMCs and increase their neointimal accumulation following vascular injury. Furthermore, EPCs context-dependently modify the SMC phenotype with protection from the transformative effect of cholesterol when a direct cell-cell contact is established.
Collapse
Affiliation(s)
- Sebastian F Mause
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elisabeth Ritzel
- Department of Otorhinolaryngology Head and Neck Surgery, Klinikum Stuttgart, Stuttgart, Germany.,Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Annika Deck
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix Vogt
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elisa A Liehn
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Shi L, Tee BC, Sun Z. Effects of porcine bone marrow-derived platelet-rich plasma on bone marrow-derived mesenchymal stem cells and endothelial progenitor cells. Tissue Cell 2021; 71:101587. [PMID: 34273802 DOI: 10.1016/j.tice.2021.101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the abundance of pro-regenerative growth factors in bone marrow-derived platelet-rich plasma (BM-PRP) and their effects on bone marrow-derived mesenchymal stem cells (BM-MSC) and bone marrow-derived endothelial progenitor cells (BM-EPC). Four 4-5 months-old domestic pigs were included, and each underwent bone marrow aspiration from its humerus bones and processed into bone marrow aspiration concentrate (BMAC) samples. The plasma and cellular portions of BMAC were subsequently separated and collected. The concentration of growth factors including BMP-2, PDGF-BB, TGF-β1 and VEGF in the plasma portion was measured and compared between BM-PRP and bone marrow-derived platelet-poor plasma (BM-PPP). It was found that platelet count was significantly higher in BM-PRP than in BM-PPP, but the concentration of above-mentioned growth factors was not significantly different between BM-PRP and BM-PPP. As most existing literature has indicated the regenerative potency of PRP, this study focused on assessing the effect of BM-PRP treatment on BM-MSC and BM-EPC proliferation, osteogenic differentiation and angiogenesis capacity by comparing samples with 2.5% BM-PRP treatment and samples without BM-PRP treatment (control). In response to BM-PRP treatment, the cellular doubling time increased with culturing time and was significantly shorter in the BM-PRP-treated samples than in control samples. For osteogenic differentiation, BM-PRP-treated BM-MSCs demonstrated a time-dependent increase in alkaline phosphatase (ALP) activity and expression levels of osteogenic differentiation markers. For the expression of angiogenic genes, none of the differences reached statistical significance despite a tendency of stronger expression at day 18 in BM-PRP-treated BM-EPCs. In conclusion, this in vitro study suggests that most BMP-2, PDGF-BB, TGF-β1 and VEGF-A contained in BM-PRP are not platelet-released and BM-PRP may have some stimulation (less than 1-fold) for MSC, EPC proliferation and MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China; Visiting Scholar, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Gabriel-Salazar M, Lei T, Grayston A, Costa C, Medina-Gutiérrez E, Comabella M, Montaner J, Rosell A. Angiogenin in the Neurogenic Subventricular Zone After Stroke. Front Neurol 2021; 12:662235. [PMID: 34234733 PMCID: PMC8256153 DOI: 10.3389/fneur.2021.662235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P, Tittle AN, Li XS, Fu X, Androjna C, DiDonato AJ, Brinson K, Trapp BD, Fischbach MA, Rey FE, Hajjar AM, DiDonato JA, Hazen SL. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021; 29:1199-1208.e5. [PMID: 34139173 DOI: 10.1016/j.chom.2021.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have demonstrated associations between circulating levels of the gut-microbiota-derived metabolite trimethylamine-N-oxide (TMAO) and stroke incident risk. However, a causal role of gut microbes in stroke has not yet been demonstrated. Herein we show that gut microbes, through dietary choline and TMAO generation, directly impact cerebral infarct size and adverse outcomes following stroke. Fecal microbial transplantation from low- versus high-TMAO-producing human subjects into germ-free mice shows that both TMAO generation and stroke severity are transmissible traits. Furthermore, employing multiple murine stroke models and transplantation of defined microbial communities with genetically engineered human commensals into germ-free mice, we demonstrate that the microbial cutC gene (an enzymatic source of choline-to-TMA transformation) is sufficient to transmit TMA/TMAO production, heighten cerebral infarct size, and lead to functional impairment. We thus reveal that gut microbiota in general, specifically the metaorganismal TMAO pathway, directly contributes to stroke severity.
Collapse
Affiliation(s)
- Weifei Zhu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kymberleigh A Romano
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Prem Prakash
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aaron N Tittle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony J DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly Brinson
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline M Hajjar
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
30
|
Santo SD, Seiler S, Guzman R, Widmer HR. Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells. Cell Transplant 2021; 29:963689720912689. [PMID: 32193955 PMCID: PMC7444205 DOI: 10.1177/0963689720912689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is substantial evidence that stem and progenitor cells secrete
trophic factors that have potential for repairing injured tissues. We
have previously reported that the conditioned medium (CM) obtained
from endothelial progenitor cells (EPC) cultures protects striatal
neurons against 3-nitropropionic acid-induced toxicity. In the present
study we tested the hypothesis that EPC-CM may support cortical
neuronal cell function and/or survival. EPC were isolated from the
peripheral blood of healthy human donors and cultured in hypoxic
conditions (1.5% O2) to stimulate the secretion of growth
factors. The supernatant or conditioned medium (EPC-CM) was then
collected and used for the various experiments. Primary cultures of
cerebral cortex from fetal rat embryonic day 14 were treated with
EPC-CM and challenged by glucose and serum deprivation. We observed
that EPC-CM treatment significantly increased total cell number and
cell viability in the cultures. Similarly, the number of
lba1-expressing cells was significantly upregulated by EPC-CM, while
western blot analyses for the astroglial marker glial fibrillary
acidic protein did not show a marked difference. Importantly, the
number of beta-lll-tubulin-positive neurons in the cultures was
significantly augmented after EPC-CM treatment. Similarly, western
blot analyses for beta-III-tubulin showed significant higher signal
intensities. Furthermore, EPC-CM administration protected neurons
against glucose- and serum deprivation-induced cell loss. In sum, our findings identified EPC-CM as a means to promote viability
and/or differentiation of cortical neurons and suggest that EPC-CM
might be useful for neurorestorative approaches.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Guzman
- Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland.,Both the authors share senior authorship
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Both the authors share senior authorship
| |
Collapse
|
31
|
PAC-Mediated AKI Protection Is Critically Mediated but Does Not Exclusively Depend on Cell-Derived Microvesicles. Int J Nephrol 2021; 2021:8864183. [PMID: 33777453 PMCID: PMC7969116 DOI: 10.1155/2021/8864183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Acute kidney injury (AKI) significantly worsens the prognosis of hospitalized patients. In recent years, cell-based strategies have been established as a reliable option for improving AKI outcomes in experimental AKI. Our previous studies focused on the so-called proangiogenic cells (PACs). Mechanisms that contribute to PAC-mediated AKI protection include production/secretion of extracellular vesicles (MV, microvesicles). In addition, the cells most likely act by paracrinic processes (secretome). The current study evaluated whether AKI may be preventable by the administration of either PAC-derived MV and/or the secretome alone. Methods AKI was induced in male C57/Bl6N mice (8-12 weeks) by bilateral renal ischemia (IRI-40 minutes). Syngeneic murine PACs were stimulated with either melatonin, angiopoietin-1 or -2, or with bone morphogenetic protein-5 (BMP-5) for one hour, respectively. PAC-derived MV and the vesicle-depleted supernatant were subsequently collected and i.v.-injected after ischemia. Mice were analyzed 48 hours later. Results IRI induced significant kidney excretory dysfunction as reflected by higher serum cystatin C levels. The only measure that improved AKI was the injection of MV, collected from native PACs. The following conditions worsened after ischemic renal function even further: MV + Ang-1, MV + BMP-5, MV + melatonin, and MV + secretome + Ang-1. Conclusion Together, our data show that PAC-mediated AKI protection substantially depends on the availability of cell-derived MV. However, since previous data showed improved AKI-protection by PACs after cell preconditioning with certain mediators (Ang-1 and -2, melatonin, BMP-5), mechanisms other than exclusively vesicle-dependent mechanisms must be involved in PAC-mediated AKI protection.
Collapse
|
32
|
Conditioned medium-preconditioned EPCs enhanced the ability in oligovascular repair in cerebral ischemia neonatal rats. Stem Cell Res Ther 2021; 12:118. [PMID: 33579354 PMCID: PMC7881622 DOI: 10.1186/s13287-021-02157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02157-4.
Collapse
|
33
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
34
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
35
|
Leptin Receptor Deficiency Protects Mice against Chronic Cerebral Hypoperfusion-Induced Neuroinflammation and White Matter Lesions. Mediators Inflamm 2021; 2020:7974537. [PMID: 33380900 PMCID: PMC7762643 DOI: 10.1155/2020/7974537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Leptin participates in the inflammatory responses in multiple cell types and animal models. Chronic cerebral hypoperfusion (CCH) induces inflammation in the central nervous system (CNS), which acts as one of the main reasons for CCH-induced white matter lesions (WMLs). But whether leptin participates in the pathogenesis of CCH-induced WMLs remains unknown. Therefore, we performed bilateral common carotid artery stenosis (BCAS) to induce CCH on the leptin receptor- (LepR-) deficient db/db mice, aiming to evaluate the possible involvement of leptin in CCH-induced cognitive impairment, WMLs, and neuroinflammation, and further explore the effect of leptin on chronic hypoxia-induced inflammation using the BV2 microglial cell line. After four weeks of BCAS, wild-type mice showed significant working memory deficits, WMLs, activation of microglia and astrocytes, decrease in the number of oligodendrocytes, downregulation of myelin basic protein expression, and increase in the expression of TNF-α and IL-1β; however, four weeks of BCAS failed to induce significant changes in the LepR-deficient db/db mice but elevated the production of anti-inflammatory cytokines and activated the M2 microglia. We further confirmed that leptin would aggravate the hypoxia-induced proinflammatory cytokine expression in the BV2 microglia cell line. These results suggested that LepR deficiency would protect mice against the CCH-induced cognitive impairment and WMLs by inhibiting glial activation and suppressing proinflammatory responses as well as promoting anti-inflammatory cytokine expression and M2 microglia activation in the white matter.
Collapse
|
36
|
Di Santo S, Widmer HR. Sustained neuronal viability by paracrine factors: new opportunities for endothelial progenitor cell secretome. Neural Regen Res 2021; 16:1429-1430. [PMID: 33318440 PMCID: PMC8284278 DOI: 10.4103/1673-5374.301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern, Switzerland University of Bern, Inselspital, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern, Switzerland University of Bern, Inselspital, Switzerland
| |
Collapse
|
37
|
Shindo A, Takase H, Hamanaka G, Chung KK, Mandeville ET, Egawa N, Maki T, Borlongan M, Takahashi R, Lok J, Tomimoto H, Lo EH, Arai K. Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neurosci Ther 2020; 27:60-70. [PMID: 33314664 PMCID: PMC7804900 DOI: 10.1111/cns.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent clinical studies suggest that pentraxin 3 (PTX3), which is known as an acute-phase protein that is produced rapidly at local sites of inflammation, may be a new biomarker of disease risk for central nervous system disorders, including stroke. However, the effects of PTX3 on cerebrovascular function in the neurovascular unit (NVU) after stroke are mostly unknown, and the basic research regarding the roles of PTX3 in NVU function is still limited. In this reverse translational study, we prepared mouse models of white matter stroke by vasoconstrictor (ET-1 or L-Nio) injection into the corpus callosum region to examine the roles of PTX3 in the pathology of cerebral white matter stroke. PTX3 expression was upregulated in GFAP-positive astrocytes around the affected region in white matter for at least 21 days after vasoconstrictor injection. When PTX3 expression was reduced by PTX3 siRNA, blood-brain barrier (BBB) damage at day 3 after white matter stroke was exacerbated. In contrast, when PTX3 siRNA was administered at day 7 after white matter stroke, compensatory angiogenesis at day 21 was promoted. In vitro cell culture experiments confirmed the inhibitory effect of PTX3 in angiogenesis, that is, recombinant PTX3 suppressed the tube formation of cultured endothelial cells in a Matrigel-based in vitro angiogenesis assay. Taken together, our findings may support a novel concept that astrocyte-derived PTX3 plays biphasic roles in cerebrovascular function after white matter stroke; additionally, it may also provide a proof-of-concept that PTX3 could be a therapeutic target for white matter-related diseases, including stroke.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mia Borlongan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
38
|
Rasheed A, Shawky SA, Tsai R, Jung RG, Simard T, Saikali MF, Hibbert B, Rayner KJ, Cummins CL. The secretome of liver X receptor agonist-treated early outgrowth cells decreases atherosclerosis in Ldlr-/- mice. Stem Cells Transl Med 2020; 10:479-491. [PMID: 33231376 PMCID: PMC7900590 DOI: 10.1002/sctm.19-0390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) promote the maintenance of the endothelium by secreting vasoreparative factors. A population of EPCs known as early outgrowth cells (EOCs) is being investigated as novel cell‐based therapies for the treatment of cardiovascular disease. We previously demonstrated that the absence of liver X receptors (LXRs) is detrimental to the formation and function of EOCs under hypercholesterolemic conditions. Here, we investigate whether LXR activation in EOCs is beneficial for the treatment of atherosclerosis. EOCs were differentiated from the bone marrow of wild‐type (WT) and LXR‐knockout (Lxrαβ−/−) mice in the presence of vehicle or LXR agonist (GW3965). WT EOCs treated with GW3965 throughout differentiation showed reduced mRNA expression of endothelial lineage markers (Cd144, Vegfr2) compared with WT vehicle and Lxrαβ−/− EOCs. GW3965‐treated EOCs produced secreted factors that reduced monocyte adhesion to activated endothelial cells in culture. When injected into atherosclerosis‐prone Ldlr−/− mice, GW3965‐treated EOCs, or their corresponding conditioned media (CM) were both able to reduce aortic sinus plaque burden compared with controls. Furthermore, when human EOCs (obtained from patients with established CAD) were treated with GW3965 and the CM applied to endothelial cells, monocyte adhesion was decreased, indicating that our results in mice could be translated to patients. Ex vivo LXR agonist treatment of EOCs therefore produces a secretome that decreases early atherosclerosis in Ldlr−/− mice, and additionally, CM from human EOCs significantly inhibits monocyte to endothelial adhesion. Thus, active factor(s) within the GW3965‐treated EOC secretome may have the potential to be useful for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Adil Rasheed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sarah A Shawky
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Richard G Jung
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Trevor Simard
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Hibbert
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Banting and Best Diabetes Centre, Toronto, Ontario, Canada.,The Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Blood-based biomarkers and stem cell therapy in human stroke: a systematic review. Mol Biol Rep 2020; 47:6247-6258. [DOI: 10.1007/s11033-020-05627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
|
40
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Yasuda K, Maki T, Kinoshita H, Kaji S, Toyokawa M, Nishigori R, Kinoshita Y, Ono Y, Kinoshita A, Takahashi R. Sex-specific differences in transcriptomic profiles and cellular characteristics of oligodendrocyte precursor cells. Stem Cell Res 2020; 46:101866. [PMID: 32563975 DOI: 10.1016/j.scr.2020.101866] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/21/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The susceptibility to neurological and psychiatric disorders reveals sexual dimorphism in the structure and function of human brains. Recent evidence has also demonstrated the sex-related differences in cellular components of the brain, including neurons, microglia, astrocytes, and endothelial cells. Oligodendrocyte precursor cells (OPCs) regulate the neuronal system in various ways and play crucial roles in brain homeostasis beyond their well-known role as a reservoir for mature oligodendrocytes. Although recent studies have shown regional diversities and heterogeneities of OPCs, sex-related differences in OPCs are largely unknown. Here, we revealed transcriptomic differences in OPCs isolated from male and female neonatal rat brains. Furthermore, we demonstrated sex-dependent differences in OPCs regarding proliferation, migration, differentiation, tolerance against ischemic stress, energy metabolism, and the ability to regulate the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Ken Yasuda
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
| | - Hisanori Kinoshita
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Masaru Toyokawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryusei Nishigori
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yusuke Kinoshita
- Department of Developmental Neurobiology, KAN Research Institute, Inc., Kobe, Hyogo 650-0047, Japan
| | - Yuichi Ono
- Department of Developmental Neurobiology, KAN Research Institute, Inc., Kobe, Hyogo 650-0047, Japan
| | - Ayae Kinoshita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| |
Collapse
|
42
|
Doppelt O, Cohen G, Tamari T, Elimelech R, Sabbah N, Zigdon-Giladi H. Endothelial progenitors increase vascularization and improve fibroblasts function that prevent medication-related osteonecrosis of the jaw. Oral Dis 2020; 26:1523-1531. [PMID: 32400918 DOI: 10.1111/odi.13412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES In a previous rat model, MRONJ occurrence was 50%. Our aim was to investigate the potential of endothelial progenitor cells (EPCs) to improve fibroblasts function and prevent MRONJ. METHODS Human gingival fibroblasts were cultured with EPC-conditioned media (EPC-CM); endothelial growth media (EGM-2) or DMEM followed by incubation with 10 µM zoledronic (ZOL) and dexamethasone (DEX). Cell proliferation and migration were assessed by XTT and scratch wound healing assays. In vivo, ten Lewis rats were treated weekly with ZOL and DEX for 11 weeks. After a week, EPCs or EGM-2 were injected to the gingiva around the molars. At 3 weeks, bilateral molars were extracted. After 8 weeks, wound healing was assessed, and serum VEGF and blood vessels were quantified. RESULTS ZOL/DEX significantly reduced fibroblasts proliferation and wound healing. Treatment with EPC-CM before ZOL/DEX improved cell proliferation, and scratch healing (p = .007, p = .023). In vivo, local EPC injection before tooth extraction increased serum VEGF (p = .01) and soft tissue vascularization (p = .05). Normal healing was similar (80%) in EPCs and EGM-2 groups. CONCLUSION EPC rescued fibroblasts from the cytotoxic effect of ZOL/DEX and elevated serum VEGF and vessel density that might reduce MRONJ occurrence to 20% compared to 50% in a similar model.
Collapse
Affiliation(s)
- Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gal Cohen
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
43
|
Tamari T, Elimelech R, Cohen G, Cohen T, Doppelt O, Eskander-Hashoul L, Zigdon-Giladi H. Endothelial Progenitor Cells inhibit jaw osteonecrosis in a rat model: A major adverse effect of bisphosphonate therapy. Sci Rep 2019; 9:18896. [PMID: 31827217 PMCID: PMC6906486 DOI: 10.1038/s41598-019-55383-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious adverse effect of antiresorptive and antiangiogenic therapies. MRONJ is identified by chronic wounds in the oral mucosa associated with exposed necrotic bone. We hypothesized that zoledronic acid (ZOL) impairs keratinocyte and fibroblast function and reduces soft tissue vascularization; therefore, treating MRONJ with proangiogenic cells may benefit MRONJ patients. The effect of ZOL and dexamethasone (DEX) on gingival fibroblasts and keratinocytes was investigated. In-vitro, ZOL inhibited fibroblast and keratinocyte proliferation, delaying scratch healing. In-vivo, exposed bone was detected at tooth extraction sites, mainly in ZOL(+)/DEX(+) rats; and was associated with significantly decreased soft tissue vascularization, serum-VEGF, and tissue-VEGF. Local injection of early and late endothelial progenitor cells (EPCs) healed 13 of 14 MRONJ lesions compared with 2/7 lesions in the mesenchymal stem cells, and 2/6, in culture-medium group. The EPCs reduced necrotic bone area, increased serum and tissue VEGF levels. EPCs engraftment was minimal, suggesting their paracrine role in MRONJ healing. The EPC-conditioned medium improved scratch healing of keratinocytes and fibroblasts via VEGF pathway and elevated mRNA of VEGFA and collagen1A1. In conclusion, a novel MRONJ treatment with EPCs, increased vascularization and improved epithelial and fibroblast functions as well as cured the lesion.
Collapse
Affiliation(s)
- Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Rina Elimelech
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Gal Cohen
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Talia Cohen
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofri Doppelt
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lana Eskander-Hashoul
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel. .,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
44
|
Ohtomo R, Arai K. Recent updates on mechanisms of cell-cell interaction in oligodendrocyte regeneration after white matter injury. Neurosci Lett 2019; 715:134650. [PMID: 31770564 DOI: 10.1016/j.neulet.2019.134650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
In most cases, neurological disorders that involve injuries of the cerebral white matter are accompanied by demyelination and oligodendrocyte damage. Promotion of remyelination process through the maturation of oligodendrocyte precursor cells (OPCs) is therefore proposed to contribute to the development of novel therapeutic approaches that could protect and restore the white matter from central nervous system diseases. However, efficient remyelination in the white matter could not be accomplished if various neighboring cell types are not involved to react with oligodendrocyte lineage cells in this process. Hence, profound understanding of cell-cell interaction between oligodendrocyte lineage cells and other cellular components is an essential step to achieve a breakthrough for the cure of white matter injury. In this mini-review, we provide recent updates on non-cell autonomous mechanisms of oligodendrocyte regeneration by introducing recent studies (e.g. published either in 2018 or 2019) that focus on crosstalk between oligodendrocyte lineage cells and the other constituents of the white matter.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neurology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
45
|
Yasuda K, Maki T, Saito S, Yamamoto Y, Kinoshita H, Choi YK, Arumugam TV, Lim YA, Chen CLH, Wong PTH, Ihara M, Takahashi R. Effect of fingolimod on oligodendrocyte maturation under prolonged cerebral hypoperfusion. Brain Res 2019; 1720:146294. [DOI: 10.1016/j.brainres.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
|
46
|
Sadanandan N, Di Santo S, Widmer HR. Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circ 2019; 5:106-111. [PMID: 31620656 PMCID: PMC6785943 DOI: 10.4103/bc.bc_41_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Progress in stem cell research demonstrates stem cells' potential for treating neurodegenerative diseases. Stem cells have proliferative/differentiative properties and produce a variety of paracrine factors that can potentially be used to regenerate nervous tissue. Previous studies have shown the positive regenerative effects of endothelial progenitor cells (EPCs), and thus, they may be used as a tool for regeneration. A study by Di Santo et al. explored whether EPC-derived conditioned medium (EPC-CM) promotes the survival of cultured striatal progenitor cells and attempted to find the paracrine factors and signaling pathways involved with EPC-CM's effects. The neuronal progenitor cells that were cultured with EPC-CM had much higher densities of GABA-immunoreactive (GABA-ir) neurons. It was shown that phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase/ERK signaling pathways are involved in the proliferation of GABAergic neurons, as inhibition of these pathways decreased GABAergic densities. In addition, the results suggest that paracrine factors from EPC, both proteinaceous and lipidic, significantly elevated the viability and/or differentiation in the cultures. Importantly, it was found that EPC-CM provided neuroprotection against toxins from 3-nitropropionic acid. In sum, EPC-CM engendered proliferation and regeneration of the cultured striatal cells through paracrine factors and imparted neuroprotection. Furthermore, the effects of EPC-CM may generate a cell-free therapeutic strategy to address neurodegeneration.
Collapse
Affiliation(s)
- Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers (Basel) 2019; 11:cancers11091322. [PMID: 31500197 PMCID: PMC6770958 DOI: 10.3390/cancers11091322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023] Open
Abstract
Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60–68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60–68) or chemisorption (the cysteine analogous Ang60–68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment.
Collapse
|
48
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|
49
|
Vahabzadeh-Hagh A, McCarthy TJ, De Taboada L, Streeter J, Pascual-Leone A, Lo EH, Hayakawa K. Near infrared light amplifies endothelial progenitor cell accumulation after stroke. CONDITIONING MEDICINE 2019; 2:170-177. [PMID: 34291201 PMCID: PMC8291201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Damage-associated molecular pattern signals may play key roles in mediating non-cell autonomous effects of pre and post-conditioning. Here, we show that near-infrared (NIR) light stimulation of astrocytes increases a calcium-dependent secretion of the prototypical DAMP, HMGB1, which may then accelerate endothelial progenitor cell (EPC) accumulation after stroke. Conditioned media from NIR-stimulated astrocytes increased EPC proliferation in vitro, and blockade of HMGB1 with siRNA diminished the effect. In vivo transcranial NIR treatment confirmed that approximately 40% of NIR could penetrate the scalp and skull. Concomitantly, NIR increased GFAP expression in normal mouse brain at 30 min after the irradiation. In a mouse model of focal ischemia, repeated irradiation of NIR at days 5, 9, and 13 successfully increased HMGB1 in peri-infarct cortex, leading to a higher accumulation of EPCs at 14 days post-stroke. Conditioning and tolerance are now known to involve cell-cell signaling between all cell types in the neurovascular unit. Taken together, our proof-of-concept study suggest that NIR light may be an effective conditioning tool to stimulate astrocytic signaling and promote EPC accumulation after stroke.
Collapse
Affiliation(s)
- Andrew Vahabzadeh-Hagh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
50
|
Kishida N, Maki T, Takagi Y, Yasuda K, Kinoshita H, Ayaki T, Noro T, Kinoshita Y, Ono Y, Kataoka H, Yoshida K, Lo EH, Arai K, Miyamoto S, Takahashi R. Role of Perivascular Oligodendrocyte Precursor Cells in Angiogenesis After Brain Ischemia. J Am Heart Assoc 2019; 8:e011824. [PMID: 31020902 PMCID: PMC6512138 DOI: 10.1161/jaha.118.011824] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Background Oligodendrocyte precursor cells ( OPC s) regulate neuronal, glial, and vascular systems in diverse ways and display phenotypic heterogeneity beyond their established role as a reservoir for mature oligodendrocytes. However, the detailed phenotypic changes of OPC s after cerebral ischemia remain largely unknown. Here, we aimed to investigate the roles of reactive OPC s in the ischemic brain. Methods and Results The behavior of OPC s was evaluated in a mouse model of ischemic stroke produced by transient middle cerebral artery occlusion in vivo. For in vitro experiments, the phenotypic change of OPC s after oxygen glucose derivation was examined using a primary rat OPC culture. Furthermore, the therapeutic potential of hypoxic OPC s was evaluated in a mouse model of middle cerebral artery occlusion in vivo. Perivascular OPC s in the cerebral cortex were increased alongside poststroke angiogenesis in a mouse model of middle cerebral artery occlusion. In vitro RNA -seq analysis revealed that primary cultured OPC s increased the gene expression of numerous pro-angiogenic factors after oxygen glucose derivation. Hypoxic OPC s secreted a greater amount of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-1, compared with normoxic OPC s. Hypoxic OPC -derived conditioned media increased the viability and tube formation of endothelial cells. In vivo studies also demonstrated that 5 consecutive daily treatments with hypoxic OPC -conditioned media, beginning 2 days after middle cerebral artery occlusion, facilitated poststroke angiogenesis, alleviated infarct volume, and improved functional disabilities. Conclusions Following cerebral ischemia, the phenotype of OPC s in the cerebral cortex shifts from the parenchymal subtype to the perivascular subtype, which can promote angiogenesis. The optimal use of hypoxic OPC s secretome would provide a novel therapeutic option for stroke.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Behavior, Animal
- Brain/blood supply
- Cell Hypoxia
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/psychology
- Male
- Mice, Inbred C57BL
- Motor Activity
- Neovascularization, Physiologic
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Paracrine Communication
- Phenotype
- Rats, Sprague-Dawley
- Recovery of Function
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Natsue Kishida
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takakuni Maki
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yasushi Takagi
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of NeurosurgeryGraduate School of MedicineTokushima UniversityTokushimaJapan
| | - Ken Yasuda
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hisanori Kinoshita
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takashi Ayaki
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Noro
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yusuke Kinoshita
- Department of Developmental NeurobiologyKAN Research Institute, Inc.KobeJapan
| | - Yuichi Ono
- Department of Developmental NeurobiologyKAN Research Institute, Inc.KobeJapan
| | - Hiroharu Kataoka
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazumichi Yoshida
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Eng H. Lo
- Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Ken Arai
- Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Susumu Miyamoto
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|